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On the distortion of a copula and its margins

Emiliano A. Valdez ∗† Yugu Xiao ‡

December 23, 2009

Abstract

This article examines the notion of distortion of copulas, a natural extension of distortion within
the univariate framework. We study three approaches to this extension: (1) distortion of the
margins alone while keeping the original copula structure, (2) distortion of the margins while
simultaneously altering the copula structure, and (3) synchronized distortion of the copula and
its margins. When applying distortion within the multivariate framework, it is important to pre-
serve the properties of a copula function. For the first two approaches, this is a rather straight-
forward result, however for the third approach, the proof has been exquisitely constructed in
Morillas (2005). These three approaches of multivariate distortion unify the different types of
multivariate distortion that have scarcely scattered in the literature. Our contribution in this
paper is to further consider this unifying framework: we give numerous examples to illustrate
and we examine their properties particularly with some aspects of ordering multivariate risks.
The extension of multivariate distortion can be practically implemented in risk management
where there is a need to perform aggregation and attribution of portfolios of correlated risks.
Furthermore, ancillary to the results discussed in this article, we are able to generalize the
formula developed by Genest and Rivest (2001) for computing the distribution of the probabil-
ity integral transformation of a random vector and extend it to the case within the distortion
framework.
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1 Preliminaries

Assume that we have an underlying risk described by an n-dimensional real-valued random vec-
tor X = (X1, . . . , Xn) on a well-defined probability space (Ω,F ,P) where Ω is the sample space,
F = σ(X1, . . . , Xn) is the smallest σ-algebra generated from (X1, . . . , Xn), and P is the probabil-
ity measure. Denote its multivariate distribution function by FX belonging to the Fréchet space
Rn(F1, . . . , Fn) of random variables with univariate margins Fi(xi) = P(Xi ≤ xi) for i = 1, . . . , n.
The theorem by Sklar (1959) is a well-known result which states that for any random vector X, its
multivariate distribution function has the representation

FX (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) = C (F1(x1), . . . , Fn(Xn)) , (1)

where C is called the copula function. Effectively, it is a distribution function on the n-cube [0, 1]n

with uniform margins and it links the univariate margins to their full multivariate distribution. In
the case where we have a continuous random vector, we know that the transformation Ui = Fi(Xi)
leads to a uniform random variable so that we can write

C(u1, . . . , un) = FX(F−1
1 (u1), . . . , F−1

n (un)) (2)

to be the unique copula structure associated with X with quantile functions F−1
i defined by

F−1
i (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ [0, 1]. (3)

It is well-known that members of the Fréchet space Rn(F1, . . . , Fn) are bounded according to

max
[ n∑
i=1

Fi(xi)− n+ 1, 0
]
≤ FX (x1, . . . , xn) ≤ min [F1(x1), . . . , Fn(xn)]

where the bounds are respectively called the Fréchet lower and upper bounds. The copula function
in (2) is therefore bounded by

max
( n∑
i=1

ui − n+ 1, 0
)
≤ C(u1, . . . , un) ≤ min(u1, . . . , un). (4)

The Fréchet lower bound in (4) does not satisfy properties of a copula in the case where n > 2, but
the Fréchet upper bound does for all n referred to as the comonotonic copula and will be denoted
by CU . The independence copula will be denoted by CI(u1, . . . , un) =

∏n
i=1 ui.

In summary, we define a copula C : [0, 1]n → [0, 1] to be a multivariate distribution function
whose univariate margins are uniform on [0, 1]. Its important properties can be summarized below:

• C(u1, . . . , un) must be increasing in each component uk.

• C(u1, . . . , uk−1, 0, uk+1, . . . , un) = 0, for all k = 1, . . . , n.

• C(1, . . . , 1, uk, 1, . . . , 1) = uk, for all k = 1, . . . , n.

• the rectangle inequality which leads us to

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(u1i1 , . . . , unin) ≥ 0

for all ui ∈ [0, 1], (a1, . . . , an) and (b1, . . . , bn) with ai ≤ bi, and ui1 = ai and ui2 = bi.
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There are several classes of copulas that have been examined and studied in the literature.
For our purposes, consider the two families of copulas most commonly studied: elliptical copulas
and Archimedean copulas. Elliptical copulas are those types of copulas derived from the family of
multivariate elliptical distributions. See, for example, Landsman and Valdez (2003). Because the
joint distribution functions of elliptical random vectors can only be implicitly expressed, members
of elliptical copulas have copula forms that can only be implicitly expressed. Their primary ad-
vantages include their flexibility to model tail (or extreme) probabilities and the straightforward
procedures to simulate from them even for high dimensions. Two prime examples are the normal
and t copulas.

A normal copula has the form

CnR(u1, . . . , un) = ΦR(Φ−1(u1), . . . ,Φ−1(un)), (5)

where Φ is the distribution function of a standard univariate normal, ΦR is the joint distribution
function of an n-dimensional normal random vector X ∼ Nn(0,R) with R, the correlation matrix.
The case where R = In, the identity matrix, results in independence, and R = Jn, the exchange
matrix, gives comonotonicity. The exchange matrix consists of 1’s on the counterdiagonal and 0’s
everywhere else.

A t-copula has the form

Ctν,R(u1, . . . , un) = tν,R(t−1
ν (u1), . . . , t−1

ν (un)), (6)

where tν is the distribution function of a standard univariate student t with ν degrees of freedom,
tν,R is the joint distribution of an n-dimensional t random vector X ∼ tn(ν,0,R) with R, the
correlation matrix. The case where R = Jn gives comonotonicity, but R = In does not result in
independence.

An Archimedean copula has the form

Cψ(u1, . . . , un) = ψ−1(ψ(u1) + · · ·+ ψ(un)), (7)

for some function ψ (called the Archimedean generator) satisfying:

• ψ(1) = 0;

• ψ is decreasing; and

• ψ is convex.

To ensure that we get a legitimate copula for higher dimensions say n, ψ−1 must be completely
monotonic of order n; these are functions with higher derivatives, provided they exist, that alter-
nate in signs up to and including n. An important source of Archimedean generators is the inverse
of a Laplace transform of distribution functions. In Feller (1971), p. 439, a function ϕ on [0,∞]
is the Laplace transform of a distribution function F if and only if ϕ is completely monotonic with
ϕ(0) = 1.

The independence copula can be be viewed as a special Archimedean copula with generator
ψ(t) = − log(t). Other well-known generators within the Archimedean class are:

• Clayton copula: ψ(t) = t−α − 1, for α > 0;

• Ali-Mikhail-Haq copula: ψ(t) = log
(

1− α(1− t)
t

)
, for −1 ≤ α ≤ 1;
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• Gumbel-Hougaard copula: ψ(t) = (− log(t))α, for α ≥ 1; and

• Frank copula: ψ(t) = − log
(
e−αt − 1
e−α − 1

)
for α > 0.

The resulting copulas using formula (7) based on these generators are straightforward to derive.
Many other types, as well as additional characterizations, of this special class of copulas can be
found in Nelsen (2006).

To learn more about copulas, please refer to Joe (1997) and Nelsen (2006). For applications
in actuarial science, insurance and finance, please see Cherubini et al. (2004), Frees and Valdez
(1998), Klugman and Parsa (1999) and McNeil et al. (2005).

This introductory section on “Preliminaries” serves as a basic introduction to copulas, their
properties and some illustrative examples. While they are more extensively covered in many of
the sources we cite above, we provide here the foundation so that this article can be self-contained
for our purposes. The main purpose of this paper is examine the extension of univariate distortion
to the multivariate framework. Because most of the applications we are interested in relate to
risks, we confine ourselves to non-negative random vectors, i.e. each component of the vector
is a non-negative random variable. In Section 2, we provide a basic foundation of distortion
within the univariate framework to provide a prelude to subsequent sections. In Section 3, we
consider the extension to three different kinds of multivariate distortion. In Section 4, we examine
some properties of multivariate distortion in the particular case when we order risks in higher
dimensions. In Section 5, we extend the results of Genest and Rivest (2001) on the distribution of
the probability integral transform in two directions: one is to extend their probability formula to
more than two dimensions and another is to generalize it to integral transforms with distortion of
the third kind. Finally, we conclude in Section 6.

2 Univariate distortion

For this and subsequent sections, we assume X is a non-negative random variable, on a well-
defined probability space, with distribution function FX ∈ R+(FX), the Frechet space of non-
negative random variables with distribution function FX .

Convex functions will play a very important role in the distortion of univariate distribution
functions. Let I be an interval on the real line R and g, a mapping from I to R, i.e. g : I → R. We
say that g is convex if for all t1, t2 ∈ I and for any α ∈ [0, 1], we have

g(αt1 + (1− α)t2) ≤ αg(t1) + (1− α)g(t2). (8)

The simplest form of visualizing a convex function is that its graph will always fall below its chords.
That is, if you take any two points on the graph of g and connect them to form a line, the line will
always lie above the graph of g. If the inequality in (8) is reversed, then we say the function is
concave. Clearly, if g is convex, then −g is concave. In addition, if g is convex, then g−1 is concave.

Suppose that g is differentiable everywhere on I. A necessary and sufficient condition for g to
be convex is that its derivative g′ is non-decreasing. Thus, in the case where its second derivative,
g′′ exists everywhere on I, a necessary and sufficient condition for g to be convex is that g′′(t) ≥ 0
for all t ∈ I. For more about convex functions, see Roberts and Varberg (1973).

An important property of convex functions is the Jensen’s inequality. Let X have mean E(X)
that exists. According to Jensen’s inequality, we have

E[g(X)] ≥ g[E(X)] (9)
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for any convex function g.

Definition 2.1 (Distortion function) Assume that g : [0, 1]→ [0, 1]. We say g is a distortion function
if it satisfies the following properties:

• g(0) = 0 and g(1) = 1; and

• g is continuous and non-decreasing.

In the case where g is convex, then we have what we call a convex distortion function. On the other
hand, if g is concave, we have what we call concave distortion function.

Definition 2.2 (Probability distortion) Let g be a distortion function and X a random variable
with distribution function FX . Then the transformation of the distribution function with

FX∗(x) = g[FX(x)] = g ◦ FX(x) (10)

is the distribution function of X∗ that leads to a probability distortion of X to X∗.

In insurance pricing and in financial risk management, transformation of the distribution func-
tion typically represents a change in the probability measure. To illustrate in actuarial science,
Wang (1996) defines a premium principle based on the concept of distortion function motivated
by Yaari’s dual theory of choice under risk; see Yaari (1987). The distortion premium principle
associated with the distortion function g is then defined to be

πg(X) = E(X∗), (11)

the expectation under the distorted probability measure. Note that for insurance premium pur-
poses, this distorted expectation must be at least equal to the expectation under the original prob-
ability measure. Such is the case only when g is convex. To see this, if g is indeed convex, then
direct application of Jensen’s inequality in (9) leads us to

g[FX(x)] ≤ FX(x)

from which it follows that∫ ∞
0

[1− g[FX(x)]]dx ≥
∫ ∞

0
[1− FX(x)]dx.

Thus, clearly,

πg(X)− E(X) ≥ 0, (12)

and this difference is often referred to as the risk premium. In the actuarial literature, it is a more
common practice to distort the survival function, SX(x) = 1 − FX(x), instead of the distribution
function. If we distort FX with a distortion function g, this implies that

SX∗(x) = 1− g[1− SX(x)].

By defining the function

g̃(t) = 1− g(1− t) (13)
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Table 1: Some Examples of Distortion Functions
Functional form Inverse form Convex Concave

Distortion g(t) g−1(s) constraints constraints

Proportional hazard t1/γ sγ γ ≥ 1 0 < γ ≤ 1

Exponential
1− e−γt

1− e−γ
log[1− s(1− e−γ ] γ < 0 γ > 0

Logarithmic
1
γ

log[1− t(1− eγ)]
eγt−1

eγ−1
γ < 0 γ > 0

Wang transform Φ[Φ−1(t) + γ] Φ[Φ−1(s)− γ] γ ≤ 0 γ ≥ 0

Dual-power 1− (1− t)γ 1− (1− s)1/γ γ ≤ 1 γ ≥ 1

Note: The convex/concave constraints are for the function g(t).

for which it may be called the conjugate of the distortion function g, this demonstrates the equiv-
alence of the distortion between the distribution and survival functions. Clearly, if g is convex,
then its conjugate g̃ is concave, and vice-versa. However, in higher dimensions as we shall see in
subsequent sections, it is more imperative to distort distribution functions.

Examples of distortion functions are summarized above in Table (1). Several other distortion
functions can be found in Morillas (2005).

Mathematical theories of risk assume that probability distributions for risks under consideration
are known without ambiguity. In practice, for example, we estimate these probability distributions
usually based on limited data. As a result, parameter uncertainty is always present. To illustrate,
consider an insurance risk random variable X such that conditional on the risk parameter γ, its
distribution is Exponential with parameter γ: FX(x|γ) = 1 − exp(−γx). If γ has a Gamma distri-
bution with a scale and shape parameters λ and α, respectively, the unconditional distribution of
X is a Pareto distribution expressed as

FX(x) = 1− (1 + λx)−α.

See Frees and Valdez (1998). One can therefore effectively think of introducing uncertainty in
the parameter of the distribution as a distortion. As a matter of fact, one can easily derive the
corresponding distortion function in this case:

g(t) = 1− (1 + log(1− t)−λ/γ)−α.

Note that this distortion function is neither strictly convex nor concave.

3 Distortion of copulas

First, let us consider absolutely monotonic functions. Assume n is a non-negative integer.
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Definition 3.1 (Absolutely monotonic function) A function g(t) is said to be absolutely monotonic,
of order n, on an interval I if the following conditions are satisfied:

• g is continuous on I; and

• g has non-negative derivatives of orders up to, and including, n, i.e. g(k)(t) ≥ 0 for all t on the
interior of I and for k = 0, 1, . . . , n.

We can simply say that a function is absolutely monotonic if it is absolutely monotonic of order
n for all non-negative integer n. Absolutely monotonic functions are typically studied in connection
with Laplace transforms, see e.g. Widder (1946). Linear combinations and products of absolutely
monotonic functions are also absolutely monotonic functions. Clearly following immediately from
the definition, if g is absolutely monotonic of order n on I, then its k-th derivative is absolutely
monotonic of order n − k. Finally, if g and h are both absolutely monotonic of order n on an
interval I and h is defined on I such that h(t) is on the interior of I for all t on the interior of I,
then the composite function g ◦ h(t) = g(h(t)) is also absolutely monotonic of order n on I.

A sufficient condition for a function to be absolutely monotonic is given by: If g is absolutely
monotonic of order n on I, then it must be non-negative, non-decreasing, convex and continuous
everywhere on I. For proof of this and results stated in the previous paragraph, please consult
Widder (1946).

Let X = (X1, . . . , Xn) be an n-dimensional real-valued random vector with corresponding
copula denoted by CX(u1, . . . , un) with ui = Fi(xi). We now consider three different approaches
to extending distortion within the multivariate framework.

Definition 3.2 (Distortion of the first kind) Let g1, . . . , gn be n distortion functions. Then the
transformation of the copula associated with X defined by

CX(u∗1, . . . , u
∗
n) = CX(g1(u1), . . . , gn(un))

induces a multivariate probability distortion of X to X∗.

We shall call this a copula distortion of the first kind. This type of a distortion leads to a simple
distortion of the margins while preserving the copula structure. An example of this type is the
multivariate extension of the Wang transform constructed by Kijima (2006). Because the copula is
preserved, this type of a distortion does not lead us to a construction of a new copula but it does
lead us to the construction of a new multivariate distribution function. Consider the following
example.

Example 3.3 (Multivariate Burr I) Consider the Weibull margins

Fi(xi) = 1− exp(−xki ), xi ≥ 0, k > 0, (14)

for i = 1, . . . , n, linked with a legitimate copula, for example, a Clayton copula defined by

CX(u1, . . . , un) =
[ n∑
i=1

u−αi − n+ 1
]−1/α

. (15)

One can therefore view this as a multivariate Weibull distribution. Using the distortion function

g(t) = 1− (1− log(1− t))−γ , γ > 0, (16)
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this leads us to the Burr margins

F ∗i (xi) = 1− [(1 + xki )]
−γ , xi ≥ 0, k > 0, γ > 0. (17)

The result of the distortion is a simple transformation to a multivariate Burr distribution.

Definition 3.4 (Distortion of the second kind) Let g1, . . . , gn be n distortion functions. Then the
transformation of the copula associated with X defined by

Ĉ(u∗1, . . . , u
∗
n) = Ĉ(g1(u1), . . . , gn(un)),

where Ĉ is a copula function, induces a multivariate probability distortion of X to X̂.

We shall call this a copula distortion of the second kind. This definition leads to a simultaneous
distortion of the margins and the copula structure. Just as in the distortion of the first kind, this
does not lead us to a construction of a new copula, but rather a specification of a new copula. In
the case where we preserve the copula structure, i.e. Ĉ = CX, then we recover the distortion of
the first kind. Furthermore, similar to the first kind, it also leads us to the construction of a new
multivariate distribution function.

Example 3.5 (Multivariate Burr II) Following up on example (3.3), we can similarly distort the
margins from a Weibull to a Burr distribution, but transform the copula structure based on the
Gumbel-Hougaard which has the form

Ĉ(u1, . . . , un) = exp
{
−
[ n∑
i=1

(− log ui)α
]1/α}

. (18)

The result of this distortion can be viewed as yet another multivariate Burr distribution.

Definition 3.6 (Distortion of the third kind) Let g be a distortion function with an inverse function
g−1 that is absolutely monotonic of order n on the interval [0, 1]. Then the transformation of the
copula associated with X defined by

Cg(u1, . . . , un) = g−1(CX(g(u1), . . . , g(un)))

induces a multivariate probability distortion of X to X̃.

We shall call this a copula distortion of the third kind. The function Cg that is induced by
this distortion indeed satisfies the properties of a copula function and is then the copula that is
associated with the distorted random variable X̃ and therefore it can be written as

Cg(u1, . . . , un) = CeX(u1, . . . , un).

For proof, see Morillas (2005). This definition leads to a synchronized distortion of the margins
and the copula structure. Unlike the first two kinds, this leads us to a new method of constructing
new copulas from a given one. Furthermore, because CX is a copula, we have that

Cg(1, . . . , 1, uk, 1, . . . , 1) = g−1(CX(g(1), . . . , g(1), g(uk), g(1), . . . , g(1))
= g−1(CX(1, . . . , 1, g(uk), 1, . . . , 1)
= g−1(g(uk)) = uk,
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for all k = 1, . . . , n. This implies that a synchronized distortion preserves the margins; it simply
distorts the dependence structure.

Note that in Definition 3.6, the function g−1 must be absolutely monotonic which implies that
it must be convex. As a consequence, g must be concave. Except for the case of the “proportional
hazard”, all the distortion functions in Table 1 have inverses that are absolutely monotonic. We
provide the proof for the case of the “Wang Transform”; the rest are straightforward to prove. For
the “proportional hazard”, it is also easy to show that when the parameter γ is a non-negative
integer, it satisfies absolute monotonicity.

Example 3.7 (Distortion of the comonotonic copula) It is interesting to note that if we distort the
comonotonic copula defined by

CU (u1, . . . , un) = min(u1, . . . , un), (19)

we recover the same comonotonic copula. This is straightforward to show by noting that because g
is increasing, if ui = min(u1, . . . , un) for some i = 1, . . . , n, then g(ui) = min(g(u1), . . . , g(un)).
Therefore, it follows that

Cg(u1, . . . , un) = g−1(CU (g(u1), . . . , g(un))) = min(u1, . . . , un).

This result is also an immediate consequence of the fact that distortion of the third kind preserves the
margins.

Example 3.8 (Generalized multivariate Wang distortion) We note in the appendix that the inverse
of the Wang transform is an absolutely monotonic function. Thus, we have the following generalization
of the multivariate Wang transform:

Cw(u1, . . . , un) = Φ
{

Φ−1
[
ΦR(Φ[Φ−1(u1) + γ], . . . ,Φ[Φ−1(un) + γ])

]
− γ
}
, (20)

provided γ ≥ 0. An even further generalization is to additionally apply distortion of the first kind to
the copula in (20) with ui = Φ[Φ−1(u∗i ) + γi] for i = 1, . . . , n where γi ≥ 0. This leads us to the
following multivariate Wang transform:

Cw(u∗1, . . . , u
∗
n) = Φ

{
Φ−1

[
ΦR(Φ[Φ−1(u∗1) + γ∗1 ], . . . ,Φ[Φ−1(u∗n) + γ∗n])

]
− γ
}
, (21)

where, in our context, γ∗i = γi + γ.

Example 3.9 (Distortion of composite functions) Suppose g1 and g2 are two distortion functions
with respective inverses g−1

1 and g−1
2 that are both absolutely monotonic. Define the composite function

g = g1 ◦g2 so that g is itself a distortion function with g−1 = g1
2 ◦g

−1
1 . From the property of absolutely

monotone, since both g−1
1 and g−1

2 are absolutely monotonic, so with g−1. Therefore, distortion of
composite functions with absolutely monotonic inverses leads to a distortion of copula of the third
kind.

We notice that the absolutely monotone requirement for g−1 is only a sufficient condition for a
distortion of a copula of the third kind as defined in Definition 3.6. However, it is not a necessary
condition as the following two examples illustrate.
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Example 3.10 (Distortion of Archimedean copulas) Suppose g is a distortion function with inverse
g−1 that is absolutely monotonic. Consider applying this distortion on an Archimedean copula of the
form as defined in (7). We find that

Cg(u1, . . . , un) = g−1(Cψ(g(u1), . . . , g(un)))
= g−1[ψ−1(ψ(g(u1)) + · · ·+ ψ(g(un)))]
= ψ−1

g (ψg(u1) + · · ·+ ψg(un))
= Cψg(u1, . . . , un)

where ψg = ψ ◦g is the composite function of ψ and g. For this to be a legitimate Archimedean copula,
ψ−1
g must be completely monotonic. This is in conflict with the requirement in example (3.9) where

for it to be a legitimate copula, it must be absolutely monotonic. Clearly, it cannot be both completely
and absolutely monotonic at the same time. See also the comment of Morillas (2005) on page 183.

There are many examples we can use to demonstrate distortion within the class of Archimedean
copulas based on example (3.10). Consider the proportional hazard distortion of the Independence
copula. Here, we have ψ(t) = − log(t) and g(t) = t1/γ so that ψg(t) = − log(t1/γ) so that this
distortion preserves Independence. A proportional hazard distortion of the Clayton copula leads
us to an Archimedean generator ψg = t−α/γ − 1, another Clayton copula. Finally, it is easy to
demonstrate that in the logarithmic distortion of the Independence copula, we derive the Frank
copula.

Example 3.11 (Distortion of the Independence to Archimedean copulas) Consider the distortion
function defined by

g(t) = exp(−ψ(t)), (22)

where ψ is a function with inverse ψ−1 that is completely monotonic. Clearly, the inverse of g is

g−1(t) = ψ−1(− log(t)). (23)

If we apply the distortion of the third kind, it is straightforward to show it yields to an Archimedean
copula of the form as exactly defined in (7). This distortion can indeed be viewed as a special case
of Example 3.10 where the distortion function g is the composite function of two distortion functions
g1(t) = exp(−t) and g2(t) = ψ(t).

4 Multivariate ordering of risks with distortion

In this and subsequent sections, we shall consider only non-negative random vectors. Let X =
(X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two n-dimensional random vectors and x = (x1, . . . , xn)
and y = (y1, . . . , yn) be two n-dimensional real-valued vectors.

Definition 4.1 (Supermodular function) A function h : Rn → R is called supermodular, if for any
x,y ∈ Rn

h(x ∨ y) + h(x ∧ y) ≥ h(x) + h(y) (24)

where the operators ∨ and ∧ denotes componentwise maximum and minimum of x and y, respectively
defined as:

x ∨ y = (max(x1, y1), . . . ,max(xn, yn)) and x ∧ y = (min(x1, y1), . . . ,min(xn, yn)).
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As pointed out in Denuit et al. (2005), the condition for supermodularity is equivalent to
satisfying

h(x1, . . . , xi + δ, . . . , xj + ε, . . . , xn)− h(x1, . . . , xi + δ, . . . , xj , . . . , xn)
− h(x1, . . . , xi, . . . , xj + ε, . . . , xn) + h(x1, . . . , xn) ≥ 0,

for any δ > 0, ε > 0, 0 ≤ i < j ≤ n, from which an insurance interpretation of supermodularity
can best be drawn from. If h(x1, . . . , xn) represents the loss to the insurer when x1, . . . , xn denote
the individual claims coming from n policies, then the supermodularity of the function has the
implication of a worse loss to the insurer, given that an increase of a single claim increases the
values of some of the other claims. More about supermodular functions and their properties can
be found in Bäuerle (1997) and Müller and Scarsini (2000).

Definition 4.2 (Supermodular order) X is said to be smaller than Y in the supermodular order,
denoted by X ≤sm Y, if

E[h(X)] ≤ E[h(Y)]

for all measurable supermodular functions h for which the expectations exist.

Lemma 4.3 Suppose that X and Y have joint distribution functions FX and FY, respectively, and
let X have the univariate margins denoted by F1, . . . , Fn. If X ≤sm Y, then there exist two copulas
CX and CY such that

FX(x1, . . . , xn) = CX(F1(x1), . . . , Fn(xn)) and FY(y1, . . . , yn) = CY(F1(y1), . . . , Fn(yn)).

Proof. According to Theorem 3.4 in Müller and Scarsini (2000), since X ≤sm Y, then X and Y
have the same margins. The existence of the copulas immediately follows from Sklar (1959).

Proposition 4.4 (Distortion of the first kind preserves supermodular order) Let X∗ and Y∗ be
the two random vectors induced by the distortion according to Definition 3.2 with respective joint
distribution functions FX∗(x1, . . . , xn) = CX(g1(F1(x1)), . . . , gn(Fn(xn))) and FY∗(y1, . . . , yn) =
CY(g1(F1(y1)), . . . , gn(Fn(yn))). The following holds true:

X ≤sm Y implies X∗ ≤sm Y∗. (25)

Proof. Let Ui = gi ◦ Fi(X∗i ) for i = 1, . . . , n. Clearly, each Ui is uniform on [0, 1] and the joint
distribution of (U1, . . . , Un) is CX(u1, . . . , un). For any measurable supermodular function h,

E[h(X∗)] = E[h((g1 ◦ F1)−1(U1), . . . , (gn ◦ Fn)−1(Un))]
= E[h(F−1

1 ◦ g−1
1 ◦ F1 ◦ F−1

1 (U1), . . . , F−1
n ◦ g−1

n ◦ Fn ◦ F−1
n (Un))]

= E[h∗(F−1
1 (U1), . . . , F−1

n (Un))]
= E[h∗(X)],

where h∗(x1, . . . , xn) = h(F−1
1 ◦ g−1

1 ◦ F1(x1), · · · , F−1
n ◦ g−1

n ◦ Fn(xn))]. According to Lemma 2.1
in Bäuerle (1997), since for each i = 1, . . . , n, F−1

i ◦ g−1
i ◦ Fi(xi) is increasing, the composition

h[F−1
1 ◦g

−1
1 ◦F1(·), . . . , F−1

n ◦g−1
n ◦Fn(·)] is a supermodular function. It therefore follows X∗ ≤sm Y∗

which implies that E[h∗(X)] ≤ E[h∗(Y)]. Subsequently, we have E[h(X∗)] ≤ E[h(Y∗)] so that the
desired result follows.

We remark that the multivariate Wang transform constructed in Kijima (2006) is an example
of a distortion of the first kind and from Proposition 4.4, we find that it preserves supermodular
order.
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Lemma 4.5 Let Cg(u1, . . . , un) = g−1(CX(g(u1), . . . , g(un))) where g−1 is an absolutely monotonic
distortion function. If the copula CX(u1, . . . , un) has second order derivatives for all (u1, . . . , un) ∈
[0, 1]n, then the relative density between Cg(F1(x1), . . . , Fn(xn)) and CX(F ∗1 (x1), . . . , F ∗n(xn)) has
the expression

dCg(F1(x1), . . . , Fn(xn))
dCX(F ∗1 (x1), . . . , F ∗n(xn))

=
1

g′(g−1(C(F ∗1 (x1), . . . , F ∗n(xn))))
(26)

where F ∗i (xi) = g(Fi(xi)) for i = 1, . . . , n, and it is a supermodular function.

Proof. Straightforward differentiation leads us to the first part of the lemma:

dCg(F1(x1), . . . , Fn(xn))
dCX(F ∗1 (x1), . . . , F ∗n(xn))

=
dg−1(CX(F ∗1 (x1), . . . , F ∗n(xn))
dCX(F ∗1 (x1), . . . , F ∗n(xn))

=
1

g′(g−1(CX(F ∗1 (x1), . . . , F ∗n(xn))))
.

Since, by assumption, the copula CX is twice differentiable, and we know that ∂2CX(u1,··· ,un)
∂ui∂uj

≥ 0
for any 1 ≤ i < j ≤ n, then it follows from Theorem 2.2 in Müller and Scarsini (2000) that CX is
supermodular. In addition, the composition CX(F ∗1 (·), . . . , F ∗n(·))) is also supermodular. Because
g−1 is an absolutely monotonic distortion function, this implies that its derivative dg−1(t)/dt is a
convex function. Finally, from Lemma 2.1 in Bäuerle (1997), we have that

1
g′(g−1(CX(F ∗1 (x1), . . . , F ∗n(xn))))

is supermodular which gives us the desired result.

The following proposition gives us a condition for supermodularity so that supermodular order
is preserved for distortion of the third kind. Let us consider the following lemma needed to prove
the subsequent condition for supermodularity.

Lemma 4.6 (Product of supermodular functions) Suppose v and w are functions Rn → R, both
of which are non-negative, non-decreasing and supermodular. Their product vw is supermodular.

Proof. Define v11 = v(x1, . . . , xi + δ, . . . , xj + ε, . . . , xn), v10 = v(x1, . . . , xi + δ, . . . , xj , . . . , xn),
v01 = v(x1, . . . , xi, . . . , xj + ε, . . . , xn) and v00 = v(x1, . . . , xn), for any δ > 0, ε > 0, and 0 ≤ i <
j ≤ n. Similar definition holds for w. Because

v11w11 − v01w01 − v10w10 + v00w00

= [v01(w11 − w01)− v00(w10 − w00)] + [w11(v11 − v01)− w10(v10 − v00)]
= [v01(w11 − w01 − w10 + w00) + (v01 − v00)(w10 − w00)]
+ [(w11 − w10)(v11 − v01) + w10(v11 − v01 − v10 + v00)] ≥ 0,

we conclude that vw is supermodular.

Proposition 4.7 (Condition for supermodularity) Suppose that X and Y have respective asso-
ciated copulas CX and CY with absolutely continuous margins. Denote by X̃ and Ỹ the random
vectors induced by an absolutely monotonic distortion function g−1 according to Definition 3.6. Let
h : Rn → R be a non-negative, non-decreasing and supermodular function with E[h(X)] that exists.
If X ≤sm Y, then E[h(X̃)] ≤ E[h(Ỹ)].
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Proof. According to Proposition 4.6 in Morillas (2005), there exists a sequence of n-dimensional
copulas {Ck} which converges uniformly to CX and that each Ck has nth-derivatives that exist.
Define the sequence

hk(x1, . . . , xn) =
1

g′(g−1(Ck(F ∗1 (x1), . . . , F ∗n(xn))))
.

From Lemma 4.5, each hk in the sequence is supermodular. Because hk is non-negative and
non-decreasing, from Lemma 4.6, the product h(x1, . . . , xn)hk(x1, · · · , xn) is supermodular. By
Proposition 4.4, if X ≤sm Y, then X∗ ≤sm Y∗. Thus, it follows that

E[h(X∗)hk(X∗)] ≤ E[h(Y∗)hk(Y∗)].

Note that g−1 is an absolutely monotonic distortion function on [0, 1]. This implies that g−1(t) ≤ t
and dg−1(t)/dt ≤ g−1(t)/t ≤ 1, and that we have F−1

i ◦ g−1 ◦ Fi(y) ≤ y and hk(x1, . . . , xn) ≤
Ck(F ∗1 (x1), . . . , F ∗n(xn)) ≤ 1. Thus, we have

E[h(X∗)hk(X∗)] ≤ E[h(X∗)] ≤ E[h(X)],

and by the Dominated Convergence Theorem and from formula (26),

E[h(X̃)] = lim
k→∞

E[h(X∗)hk(X∗)] ≤ lim
k→∞

E[h(Y∗)hk(Y∗)] = E[h(Ỹ)],

which gives us the desired result.

Corollary 4.8 (Distortion of the third kind preserves supermodular order) Suppose that X and
Y have respective associated copulas CX and CY with absolutely continuous margins. The following
holds true:

X ≤sm Y implies X̃ ≤sm Ỹ. (27)

Proof. First, for any bounded, continuous and non-decreasing supermodular function h : Rn → R,
assuming h(x1, . . . , xn) ≥M , define v(x1, . . . , xn) = h(x1, . . . , xn)−M . Then v(x1, . . . , xn) is non-
negative, non-decreasing and supermodular. From Proposition 4.7, we have E[v(X̃)] ≤ E[v(Ỹ)]
so that E[h(X̃)] ≤ E[h(Ỹ)]. According to Theorem 3.3 and Theorem 3.4 in Müller and Scarsini
(2000), we can finally conclude X̃ ≤sm Ỹ.

Definition 4.9 (Stop-loss order) We say that X ≤SL Y , in the stop-loss order sense, if E[v(X)] ≤
E[v(Y )] for all functions v with non-negative first and second derivatives, i.e. v′ ≥ 0 and v

′′ ≥ 0
provided the expectations exist.

Additional equivalent characterizations of stop-loss order can be found in Denuit et al. (2005).
We remark that following Corollary 4.8, it is immediate to conclude that

SeX =
n∑
i=1

X̃i ≤SL S eY =
n∑
i=1

Ỹi.

In other words, stop-loss order of sums of the distorted random variables of the third kind is
preserved. Furthermore, it follows that when X ≤sm Y , we have E(SeX) ≤ E(S eY) and for any
positive deductible d, we have E[(SeX − d)+] ≤ E[(S eY − d)+].
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5 Multivariate probability integral transform with distortion

In this section, we extend the results of Genest and Rivest (2001) to higher dimension and when
we have distortion of the third kind. Let us briefly review the results in Genest and Rivest (2001).
Without loss of generality, Genest and Rivest (2001) considered a random pair (X1, X2) with
uniform margins on [0, 1] and associated copula denoted by C(x1, x2). They showed that the
probability of the event C(X1, X2) ≤ v has the following form:

K(v) = v +
∫ 1

v
Ċ
(
x1, C

−1
x1

(v)
)
dx1 = v − λ(v), (28)

where Ċ(x1, x2) = ∂C(x1, x2)/∂x1 which is known to represent the conditional distribution func-
tion of X2 given X1 = x1 and Cx1(x2) = C(x1, x2).

As in Genest and Rivest (2001), without having to give up generality, we simplify the sim-
ilar derivation to higher dimension by considering the random vector X = (X1, . . . , Xn) with
uniform margins on [0, 1] and associated copula denoted by C(X1, . . . , Xn). Define the event
Ak = {C(X1, . . . , Xk, Y, 1, . . . , 1) ≤ v} for integral values k ≥ 1, denoting the (k+ 1)-th element of
the vector by Y instead of Xk+1 for notational simplicity. Denote the probability of the event An−1

by Kn(v) = P(An−1).

For k = 1, . . . , n − 1, define the event Ek = {C(X1, . . . , Xk, 1, . . . , 1) ≥ v}, the case where the
observed values of the last n−k terms are all equal to 1. Its complement will be denoted with a su-
perscript c. For instance, in the case where k = 1, this is the same event as E1 = {C(X1, 1, . . . , 1) ≥
v} = {X1 ≥ v}. Furthermore, denote the set ek = {(x1, . . . , xk)| C(x1, . . . , xk, 1 . . . , 1) ≥ v} for
k = 1, . . . , n− 1.

Lemma 5.1 The probability of the event An−1 can be expressed as

Kn(v) = v +
n−1∑
k=1

E IE1E2···Ek
[E IAk

|X1, X2, . . . , Xk]. (29)

Proof. Since C(x1, . . . , xn−1, y) ≤ min(x1, . . . , xn−1, y), IEc
1
IAn = IEc

1
, and for any k = 1, . . . , n−1,

IEc
k
IAk

= IEc
k
, we have

Kn(v) = P(An−1) = E IEc
1
[E IAn−1 |X1, . . . , Xn−1] + E[E IE1IAn−1 |X1, . . . , Xn−1]

= E IEc
1

+ E IE1 [E IAn−1 |X1, . . . , Xn−1]
= v + E IE1 [E IAn−1IEc

2
|X1, . . . , Xn−1] + E IE1 [E IAn−1IE2 |X1, . . . , Xn−1]

= v + E IE1IEc
2

+ E IE1IE2 [E IAn−1 |X1, . . . , Xn−1]
= v + E IE1IEc

2
+ E IE1IE2IEc

3
+ E IE1IE2IE3 [E IAn−1 |X1, . . . , Xn−1]

= v + P(E1E
c
2) + P(E1E2E

c
3) + · · ·+ E IE1E2···En [E IAn−1 |X1, X2, · · · , Xn−1].

Note that we have the equivalent events

E1E2 · · ·Ek−1E
c
k = E1E2 · · ·Ek−1Ak−1, 1 < k ≤ n,

from which the desired result in (29) follows.
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Consider the partial derivatives of C. Denote the k-th partial derivative by

DkC(x1, . . . , xn−1, y) =
∂

∂xk
C(x1, . . . , xn−1, y),

and the first k partial derivative, for k = 1, . . . , n− 1 by

D1,...,kC(x1, . . . , xn−1, y) =
∂k

∂u1, . . . , uk
C(u1, . . . , un−1, y)

∣∣∣
(x1,...,xn−1,y))

.

More generally, if we let J ⊂ {1, . . . , n− 1} be such that J = {j1, . . . , jk}, ji 6= jl, for i 6= l, then

DJC(x1, . . . , xn−1, y) =
∂k

∂uj1 , . . . , ujk
C(u1, . . . , un−1, y)

∣∣∣
(x1,...,xn−1,y))

.

Note that if (x1, . . . , xn) ∈ e1e2 · · · en, it means that, given v, there is a solution y for the
equation C(x1, . . . , xn−1, y) = v. Otherwise, for any 0 ≤ y ≤ 1, we have C(x1, . . . , xn−1, y) < v,
even if v ≤ xi ≤ 1 for all i = 1, . . . , n − 1. For example, assuming C(x1, x2, y) = x1x2y, v = 1

2 ,
v < x1 = x2 = 2

3 , then C(x1, x2, y) < C(x1, x2, 1) = x1x2 <
1
2 . For simplicity, we use Xk to denote

the vector (X1, . . . , Xk) with xk = (x1, . . . , xk) for k = 1, . . . , n− 1.

Lemma 5.2 For any k = 1, . . . , n− 1, we have

E IE1E2···Ek
[E IAk

|Xk] =
∫
· · ·
∫
e1e2···ek

D1,2,··· ,kC(xk, yxk,v, 1, . . . , 1)dxk,

where yxk,v = {y|C(xk, y, 1, . . . , 1) = v} = {y|C(x1, . . . , xk, y, 1, . . . , 1) = v}.

Proof. According to Theorem 2.27 in Schmitz (2003), we have

E IE1E2···Ek
[E IAk

|Xk] =
∫
E1E2···Ek

P(Y ≤ yxk,v|Xk = xk)dP

=
∫
· · ·
∫
e1e2···ek

D1,2,··· ,kC(xk, yxk,v, 1, . . . , 1)dxk,

which proves the lemma.

Therefore, by writing

λk(v) = −
∫
· · ·
∫
e1e2···ek

D1,2,··· ,kC(xk, yxk,v, 1, . . . , 1)dxk,

we can express equation (29) as

Kn(v) = v −
n−1∑
k=1

λk(v). (30)

It is straightforward to show that we recover formula (28) in the case where we have n = 2.
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Example 5.3 (The case of independence) Consider the case where C is the independent copula, i.e.
C(x1, . . . , xk, y) = x1 · · ·xky. For n = 2, we have

λ1(v) = −
∫ 1

v
D1C(x1, yx1,v)dx1 = −

∫ 1

v

v

x1
dx1 = v log(v).

In the case where n = 3, because

e1e
c
2 =

{
(x1, x2)| v ≤ x1 ≤ 1, 0 ≤ x2 ≤

v

x1

}
and e1e2 =

{
(x1, x2)| v ≤ x1 ≤ 1,

v

x1
≤ x2 ≤ 1

}
,

we can derive the expression

λ2(v) = −
∫ ∫

e1e2

D1,2C(x1, x2, y(x1,x2),v)dx1dx2 = −
∫ 1

v

∫ 1

v/x1

v

x1x2
dx1dx2 = −1

2
v[log(v)]2.

Extending this to the case of n-dimension, it can be shown that

λk(v) =
(−1)k+1v

k!
[log(v)]k = − v

k!
[− log(v)]k, k = 1, . . . n− 1. (31)

In fact, we have

e1e2 · · · ek =
{

(x1, . . . xk)| v ≤ x1 ≤ 1,
v

x1
≤ x2 ≤ 1, · · · , v

x1 · · ·xk−1
≤ xk ≤ 1

}
,

so that it follows that

λk(v) = −
∫ 1

v

∫ 1

v
x1

· · ·
∫ 1

v
x1···xk−1

v

x1 · · ·xk
dx1 · · · dxk.

Now assuming that it holds for k > 1, that is, λk(v) =
(−1)k+1v

k!
[log(v)]k, we have

λk+1(v) = −
∫ 1

v

∫ 1

v
x1

· · ·
∫ 1

v
x1···xk

v

x1 · · ·xk+1
dx1 · · · dxk+1

= −
∫ 1

v
dx1

(∫ 1

v
x1

· · ·
∫ 1

v
x1···xk

v/x1

x2 · · ·xk+1
dx2 · · · dxk+1

)

= −
∫ 1

v

(−1)k+1(v/x1)
k!

[log(v/x1)]kdx1

=
(−1)k+2v

(k + 1)!
[log(v)]k+1 = − v

(k + 1)!
[− log(v)]k+1,

and so by mathematical induction, equation (31) holds. �

In extending these results to the case where we have distortion of the copula of the third kind
as defined in Definition 3.6, we introduce the following notations:

y∗xk,v
= {y|Cg(xk, y, 1, . . . , 1) = v}
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and

CX(g(x1), . . . , g(xk), g(y∗xk,v
), 1, . . . , 1) = g(Cg(xk, y∗xk,v

, 1, . . . , 1)) = g(v)

where y(g(x1),...,g(xk),g(v)) = g(y∗xk,v
). Define

λgk(v) = −
∫
· · ·
∫
e1e2···ek

D1,2,··· ,kCg(xk, y∗xk,v
, 1, . . . , 1)dxk. (32)

We make the following proposition.

Proposition 5.4 For any k = 1, · · · , n− 1, we have

λgk(v) =
λk(g(v))
g′(v)

+
k∑

m=2

∑
Pm

i=1 Ji={1,...,k}

fm(v)×

∫
· · ·
∫
g(e1e2···ek)

DJ1CX(zk, y∗zk,g(v)
, 1, . . . , 1) · · ·DJmCX(zk, y∗zk,g(v)

, 1, . . . , 1)dzk,

where g(e1e2 · · · ek) = {zk|z1 = g(x1), · · · , zk = g(xk),xk ∈ e1e2 · · · ek} and fm(v) stands for
dmg−1(t)/dtm evaluated at t = g(v).

Proof. First, notice that

D1Cg(xk, y, 1, . . . , 1) = g′(x1)
1

g′(g−1(CX(g(xk), y, 1, . . . , 1)))
D1CX(g(xk), y, 1, . . . , 1)

and

D12Cg(xk, y, 1, . . . , 1)

= g′(x1)g′(x2)
[

D12CX(g(xk), y, 1, . . . , 1)
g′(g−1(CX(g(xk), y, 1, . . . , 1)))

− g′′(g−1(CX(g(xk), y, 1, . . . , 1)))
[g′(g−1(CX(g(xk), y, 1, . . . , 1)))]3

×

D1CX(g(xk), y, 1, . . . , 1)D2CX(g(xk), y, 1, . . . , 1)] .

By mathematical induction, it can be shown that for the case k > 2, we have

D1···kCg(xk, y, 1, . . . , 1) =
k∏
i=1

g′(x1) · · · g′(xk)

 k∑
m=1

∑
Pm

i=1 Ji={1,...,k}

(g−1)(m−1)(v)×

DJ1CX(g(xk), y, 1, . . . , 1) · · ·DJmCX(g(xk), y, 1, . . . , 1)] .

Making the change of variable z = g(x), we have∫
· · ·
∫
e1e2···ek

D1,2,··· ,kCg(xk, y∗xk,v
, 1, . . . , 1)dxk

=
∫
· · ·
∫
g(e1e2···ek)

1
g′(v)

D1,2,··· ,kCX(zk, yzk,g(v), 1, . . . , 1)dzk

+


k∑

m=2

∑
Pm

i=1 Ji={1,··· ,k}

∫
· · ·
∫
g(e1e2···ek)

(g−1)(m−1)(v)DJ1CX(zk, yzk,g(v), 1, . . . , 1)

· · ·DJmCX(zk, yzk,g(v), 1, . . . , 1)dxk
}
.
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The last term in the equation above is equal to the term on the right-hand side of the equation in
the proposition.

The results of Proposition 5.4 is thus used to evaluate the following probability

Kg
n(v) = P(Cg(X1, . . . , Xn−1, Y ) ≤ v) = v −

n−1∑
k=1

λgk(v). (33)

We note that in our definition of distortion of the third kind, we required g−1 to be absolutely
monotonic to guarantee the legitimacy of the distorted copula Cg. However, in the examples
following the definition, we also observed that this was not a necessary condition, which means
that there are other distortion functions g that lead to a legitimate copula Cg. Proposition 5.4
only requires a distortion g leading to a legitimate copula Cg. To illustrate, consider example
(3.11) where we distorted the independence copula leading to an Archimedean copula. Thus,
the following example derives a formula for computing probabilities of the integral transform,
P(Cψ(u1, . . . , un) ≤ v), for the class of Archimedean copulas. First, consider the following lemma.

Lemma 5.5 Let ψ be an Archimedean generator. Then for any k ≥ 1,

(ψ−1(t))(k) =
dkψ−1(t)
dtk

= (−1)k
k∑
r=1

a(k, r)fr(t∗)e−rt, (34)

where a(k, 1) = 1, a(k, k) = 1, and a(k, r) = ra(k − 1, r) + a(k − 1, r− 1), for 1 < r < k, and fr(t∗)
stands for dkg−1(t∗)/dt∗k, evaluated at t∗ = e−t.

Proof. Since ψ−1(t) = g−1(e−t) = g−1(t∗), then (ψ−1(t))
′

= −(g−1(t∗))
′
e−t and

(ψ−1(t))(2) = (g−1(t∗))(2)e−2t + (g−1(t∗))
′
e−t.

Assuming (ψ−1(t))(k−1) = (−1)k−1
∑k−1

r=1 a(k − 1, r)fr(t∗)e−rt holds for k > 2, we have

(ψ−1(t))(k) = (−1)k−1

(
fk−1(t∗)e−(k−1)t +

k−2∑
r=2

a(k, r)fr(t∗)e−rt + f1(t∗)e−t
)′

= (−1)k−1(−fk(t∗)e−kt − (k − 1)fk−1(t∗)e−(k−1)t +
k−2∑
r=2

a(k − 1, r)fr+1(t∗)e−rt(−e−t)

+ (−r)a(k − 1, r)fr(t∗)e−rt + f2(t∗)e−t(−e−t)− f1e
−t)

= (−1)k
k∑
r=1

a(k, r)fr(t∗)e−rt.

Thus, it holds for all k ≥ 1.

Example 5.6 (The class of Archimedean copulas) Following example (3.11), we consider the n-
dimensional Archimedean copula with

Cg(x1, . . . , xn−1, y) = ψ−1{ψ(x1) + · · ·+ ψ(xn−1) + ψ(y)}.

From formula (33) and Proposition 5.4, we find that for k = 1,

λg1(v) =
λ1(g(v))
g′(v)

=
g(v)
g′(v)

log(g(v))
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and for k = 2,

λg2(v) =
λ2(g(v))
g′(v)

− g′′(v)
(g′(v))3

∫ ∫
g(e1e2)

D1CX(z1, z2, y(z1,z2,g(v)))D2CX(z1, z2, y(z1,z2,g(v)))dz1dz2.

Since

g(e1e2) =
{

(z1, z2)
∣∣∣ g(v) ≤ z1 ≤ 1,

g(v)
z1
≤ z2 ≤ 1

}
,

and from the previous example, we then have

λg2(v) =
λ2(g(v))
g′(v)

− g′′(v)
(g′(v))3

∫ 1

g(v)

∫ 1

g(v)/z1

[
z2
g(v)
z1z2

] [
z1
g(v)
z1z2

]
dz1dz2

= −1
2
g(v)
g′(v)

[log(g(v))]2 +
1
2
g′′(v)g2(v)

(g′(v))3
[log(g(v))]2.

Extending this to the case k > 2, we note that∫
· · ·
∫
g(e1e2···ek)

DJ1CX(zk, y∗zk,g(v)
, 1, . . . , 1) · · ·DJmCX(zk, y∗zk,g(v)

, 1, . . . , 1)dzk

=
∫ 1

g(v)

∫ 1

g(v)
g(x1)

· · ·
∫ 1

g(v)
g(x1)···g(xk−1)

gm(v)
z1 · · · zk

dzk

=
(−1)kgm(v)

k!
[log(g(v))]k.

From Proposition 5.4, we have

λgk(v) =
(−1)k

k!
[log(g(v))]k

k∑
m=1

∑
J1+···+Jm={1,··· ,k}

fm(v)gm(v)

=
(−1)k

k!
[log(g(v))]k

k∑
m=1

a(k,m)fm(v)gm(v),

where we write
k−1∑
m=1

∑
J1+···+Jm={1,··· ,k−1}

fm(v)gm(v) =
k−1∑
m=1

a(k − 1,m)fm(v)gm(v).

Note that the index sets {J1, · · · , Jm, k}, {{J1, k}, · · · , Jm}, · · · , {J1, · · · , {Jm, k}}, for any J1 + · · ·+
Jm = {1, · · · , k − 1}, is equivalent to J1 + · · ·+ Jm = {1, · · · , k} such that we have

k∑
m=1

∑
J1+···+Jm={1,··· ,k}

fm(v)gm(v)

=
k−1∑
m=1

∑
J1+···+Jm={1,··· ,k−1}

mfm(v)gm(v) +
k−1∑
m=1

∑
J1+···+Jm+{k}={1,··· ,k}

fm(v)gm+1(v)

=
k−1∑
m=1

ma(k − 1,m)fm(v)gm(v) +
k−1∑
m=1

a(k − 1,m− 1)fm(v)gm+1(v)

=
k∑

m=1

a(k,m)fm(v)gm(v).
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By mathematical induction, it follows that for any k ≥ 1,

λgk(v) =
(−1)k

k!
[log(g(v))]k

k∑
m=1

a(k,m)fm(v)gm(v).

If we let t = ψ(v), then g(v) = e−t. Based on Lemma 5.5, we have

λgk(v) =
(−1)k

k!
[ψ(v)]k[(ψ−1(t))(k)]. (35)

It can easily be verified that formula (35) conforms well with the result in Section 5 of Genest and
Rivest (2001).

6 Concluding remarks

This article extends the notion of probability distortion within the multivariate framework. Dis-
tortion in the univariate sense has been widely studied in the actuarial, insurance and financial
literature, with a variety of applications: pricing of insurance and financial risks, quantifying risk
measures, accommodating parameter uncertainty, to illustrate a few. These same set of applica-
tions can be conceptually extended to portfolios of correlated risks when applying distortion of
copulas. In financial pricing, for example, it has been used to price Collaterizerd Debt Obligations
(CDOs) where the payouts depend on an underlying portfolio of securities, see Crane and van der
Hoek (2008). Wang (2007) applied a similar notion of distortion in pricing and measuring of
multivariate risks, calling it exponential tilting. Risk analysts are constantly dealing with portfolios
that involve multivariate risks; the notion of distortion of a copula can be a tool for enhancing
their portfolio models to accommodate parameter uncertainty thereby accurately reflecting the
magnitude of risks.

Our contribution to the literature involves carefully crafting the notion of distortion in the
multivariate sense. When one distorts an existing copula, one must be careful to ensure that the
resulting distortion will still lead to preserving the properties of a copula. Otherwise, the distor-
tion can be mistakenly applied with dangerous implications. This is the primary reason why we
examined three different approaches to the extension. First is the distortion of the first kind which
distorts only the margins while preserving the original copula structure. Next is the distortion of
the second kind whereby we apply the distortion on the margins while simultaneously altering
the copula structure. Finally, in the distortion of the third kind, we synchronized the distortion of
the copula and its respective margins. We further examined the notion of multivariate ordering of
risks within these distortion frameworks. We primarily focused on the notion of supermodularity
because this is the type of ordering commonly applied when several risks are concerned.

Finally, ancillary to the work completed in this article, we are happy to extend the formula
developed by Genest and Rivest (2001) for computing the distribution of the probability integral
transformation of a random vector and even further extend it to the case within the distortion
framework. As far as the authors are concerned, these extension formulas to higher dimension has
never appeared in the literature.
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Appendix: Wang transform is absolutely monotonic

In this appendix, we prove that the Wang transform is absolutely monotonic using mathematical
induction. Define s = g(t) = Φ(Φ−1(t)+γ), for γ ≥ 0, where Φ is the standard Normal distribution
function. Then g−1(s) = Φ(Φ−1(s) − γ) and if we let s∗ = Φ−1(s), we have the first and second
order derivatives of g−1 :

(g−1(s))′ = φ(s∗ − γ)
ds∗

ds
=
φ(s∗ − γ)
φ(s∗)

= e−γ
2/2eγs

∗

and

(g−1(s))(2) = γe−γ
2/2eγs

∗ ds∗

ds
= γe−γ

2/2eγs
∗ 1
φ(s∗)

,

where φ is the density of a standard Normal. Clearly, both derivatives are non-negative. Applying
Leibnitz rule together with the above results, for any n > 2, the (n+ 1)-th order derivatives of g−1

can be expressed as

(g−1(s))(n+1) = e−γ
2/2

n∑
k=0

(
n

k

)
(eγs

∗
)(k)(s∗)(n−k).

This implies that if (s∗)(n) ≥ 0 for any n > 0, then (g−1(s))(n) ≥ 0 for all n > 0. Indeed, we have

(s∗)(n+1) =
[

1
φ(s∗)

](n)

=
√

2π(es
∗2/2)(n)

=
√

2π
n∑
j=0

(
n

j

)
(es
∗2/2)(j)(s∗2/2)(n−j)

=
√

2π
(
es
∗2/2s∗

ds∗

ds

)(n−1)

+
√

2π
(
s∗
ds∗

ds

)(n−1)

+
√

2π
n−1∑
j=1

(
n

j

)(
es
∗2/2s∗

ds∗

ds

)(j−1)(
s∗
ds∗

ds

)(n−j−1)

. (36)

Because the highest order of derivatives of s∗ in formula (36) is n, assuming (s∗)(n) ≥ 0, we have

(s∗)(n+1) = (Φ−1(s))(n+1) ≥ 0.

By the process of inductive reasoning, we conclude that n-th order derivative of g−1 is non-negative
for any n > 0. This proves that the Wang transform is absolutely monotonic.


