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Abstract
The voting rule proposed by Basset and Persky (Public Choice 99: 299-

310) picks the alternative with best median evaluation. The present note
shows that this MaxMed principle is equivalent to ask the social planner to
apply the MaxMin principle allowing him to discard half of the population.
In one-dimensional, single-peaked domains, the paper compares this rule
with majority rule and the utilitarian criterion. The MaxMed outcome
is rejected by a majority of voters in favor of outcomes which are also
utilitarian improvements.

1 Introduction

When di¤erent individuals evaluate one object on some common scale, taking
as a summary of the various evaluations their median is a natural idea, often
used in Statistics. Using this idea for collective choice among several alternative
objects is thus occasionally proposed: the suggestion is that an alternative with
the largest median evaluation is to be chosen. I will call this method theMaxMed
voting scheme.
In the modern literature this was (up to my knowledge) proposed by Basset

and Persky, 1999 [2]. Properties of the best median can be expressed in the
language of utility theory (Bossert and Weymark 2004 [3]): the informational
basis is the ordinal and inter-individuallly comparable framework. In terms
of utilities, the utility levels attached by the di¤erent individuals to a given
alternative are compared (inter-individual comparability), and the median is
stable under any strictly increasing transformation of utility provided that the
transformation is the same for all individuals (ordinality). This is the same
informational basis as for the MaxMin, or Rawls principle. As will be shown,
instead of maximizing the satisfaction of the least favored individual in the
whole society, as the MaxMin does, MaxMed maximizes the satisfaction of the
least favored individual when half of the population can be discarded.
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As to strategic aspects, supporters of this method claim that it is relatively
immune to individual misrepresentation of evaluations. The reason for this claim
is that the median (contrary to the mean) is �robust� in the statistical sense.
For instance, in most cases, over-evaluating an object in order to push up its
median has simply no consequence. This argument was put forward by Basset
and Persky [2], who used the term �Robust Voting� to describe this method.
But, in fact, voting rules generally share the property that one voter is rarely
pivotal so that, in practice, median voting does not appear to be less, nor more,
manipulable than other voting rules (Gerhlein and Lepelley 2003 [6]).
Some properties of the MaxMed method are collected by Warren Smith at

the Center for Range Voting [10]. Using a limited set of grades, several candi-
dates usually end up with the same grade. Balinski and Laraki, 2007 [1] have
proposed several, more or less complicated, ways to choose among them, and
have ellaborated on the question of robustness to manipulation. Felsenthal and
Machover, 2008 [4] is a discussion of these issues.
In this paper I will leave aside the strategic questions and assume that voters

vote sincerely. I also leave aside the problem of ties associated with the use of
MaxMed voting in practice, by assuming that an evaluation can be any real
number. I will attempt to compare the outcomes of di¤erent choice principles,
including MaxMed, in a setting which is standard in Economic and Political
Theory and is relevant for the applications. I consider one-dimensional, single-
peaked utility pro�les with distributions of voters�ideal points which are skewed
(without loss of generality: skewed to the left).
From the point of view of Social Choice Theory, one-dimensional, single

peaked pro�les are very speci�c pro�les because they avoid Condorcet cycles,
but they nevertheless constitute an interesting benchmark case. In Political
Economy, this assumption is so common that it is often not even mentioned.
The idea that the distribution of voters with respect to the relevant parameter
is not uniform or symmetric but skewed is an empirical observation: it seems
to be a general rule that socioeconomic relevant parameters are �skewed to the
left,� the paradigmatic example being income distributions: most people earn
less than the average.
In this setting, Condorcet-consistent voting rules are very simple, and all

alike: all of them chose the median of the voters�ideal points, which is a Con-
dorcet winner in virtue of the celebrated Median Voter Theorem. This is the
outcome of majority voting. By comparison, the utilitarian choice (the e¢ cient
alternative in the sense of maximizing the sum of individual utilities, I will call
it the Bentham winner) tends, in the same setting, to produce choice which
are favored by richer people. Although this observation is not as clear-cut as
the Median Voter Theorem is, it matches the economic intuition and can be
stated formally if one makes the (standard) assumption of quadratic utility. In
that case the utilitarian optimum is simply the mean of the distribution of ideal
points. For left-skewed distribution, the mean is larger than the median.
Then, where is the alternative with the best median evaluation located? Is

it close to the utilitarian optimum or not, and if not, in which direction does it
diverges from the optimum: to the left, in the direction of the ideal points of
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the majority, or to the right, in the direction of the rich minority? How does it
compare to the outcome of Majority rule, the Condorcet winner? Is it more or
less e¢ cient than this outcome?
In order to answer this question, I present one very simple analytical exam-

ple, plus computer simulations under various hypothesis which will be described
in the sequel. The reached conclusion is always the same: the best median is
located on the wrong side of the Condorcet winner. The Bentham-inne¢ ciency
of the best median choice is of the same kind but worse than the Bentham-
inne¢ ciency of majority voting.
The example maybe useful in order to understand what one does when com-

paring medians. The usual argument for rejecting an alternative A in favor of
another alternative B when a majority of individuals prefer A to B is that
members of the relatively small population who gain in this move gain a lot
while members of the losing majority incur a relatively small loss. This is a typ-
ical Benthamite, utilitarian argument. Conversely, the Bentham-inne¢ ciency of
majority voting derives from the democratic power of the (many) poor1 . This
ine¢ ciency can be justi�ed by normative political arguments in favor of the prin-
ciple of majority rule. It can also often be justi�ed by invoking the argument
of decreasing individual marginal utility. In the one-dimensional settings under
scrutiny, the best median choice goes further away from e¢ ciency, for reasons
that are easily understood from the mathematical point of view (the example
in section 5 will explain this point) but which have no normative or political
appeal: apply Rawls principle to the most homogeneous half-population, with
no regard for the other half.

2 Interpretation of the MaxMed

In order to explain what one does when chosing the alternative with the best
possible median evaluation, it is useful to introduce some de�nitions and pieces
of notation.

De�nition 1 Consider a population P of individuals and a set X of alterna-
tives. The Rawlsian evaluation of x 2 X by P is:

R(P; x) = min
i2P

ui(x)

and the Rawlsian satisfaction of P is:

R(P ) = max
x2X

R(P; x):

Notice that this vocabulary may not be exactly true to John Rawls�ideas
(Rawls 1971 [8]), but it is customary in Economics to call Rawls�principle the
idea of giving full priority to the worst-o¤ individuals (Kolm 1972 [7], Fleurbaey
and Hammond 2004 [5]).

1At the limit one can wonder why, under majority rule, �the poor do not expropriate the
rich�; see Roemer, 1998 [9].
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De�nition 2 Let I, with measure 1, be the (in�nite) set of inviduals and let H
be the set of all sub-populations of measure 1=2. Suppose that, for an alternative
x, the evaluation ui(x) of x by i is continuously distributed in I. Then we denote
by medi2Iui(x) the median evaluation of x, uniquely de�ned by the fact that for
some half-population H 2 H,

uj(x) � medi2Iui(x) � uh(x)

for all h 2 H and all j 2 I nH.

Notice that for a �nite population, if the number of individual is odd then
there are no subpopulation of measure 1=2, and that if the number of individuals
is odd then the median is generally not unique For simplicity I consider from
now an in�nite population in which the median evaluation of each alternative
is well de�ned, and I shall indicate how the �ndings extend to the �nite case.
Let xMaxMed be an alternative with the largest median evaluation and let

uMaxMed be this evaluation. By de�nition those are obtained by the following
algorithm:

1. For each alternative x 2 X, compute umed(x) = mediui(x) the median of
the evaluations of x by all individuals.

2. Find the largest of these numbers uMaxMed = maxx umed(x) and an associ-
ated alternative xMaxMed which achieves this maximum.

The next lemma will show that the following de�nition is equivalent:

1. For each half-population H of P , compute its Rawlsian satisfaction R(H).

2. Find the largest of these numbers uMaxMed = maxH R(H) and an associated
alternative xMaxMed which achieves this maximum.

Lemma 1
max
x2X

med
i2I

ui(x) = max
H2H

R(H)

Proof. Write u� = maxx2X medi2Iui(x) and r� = maxH2HR(H). To see
that u� � r�, take any x 2 X. By de�nition of the median there exists
a half-population H 2 H such that 8j 2 H, medi2Iui(x) � uj(x). For
this H, R(H;x) = minj2H uj(x) � medi2Iui(x), which implies that R(H) �
medi2Iui(x). Thus r� � medi2Iui(x), hence r� � u�.
Conversely, suppose u� > r�. Then there exists " > 0 and there exists x 2 X

such that medi2Iui(x) > r� + ". For that x:

8 H 2 H; medi2Iui(x) > R(H) + ":

By de�nition of the median there existsH0 such that uh(x) � medi2Iui(x) for all
h 2 H0, hence, for this H0, uh(x) > R(H0) + ". But R(H0) = maxy2X R(H0; y)
thus, for y = x, we have that

8 h 2 H0; uh > R(H0; x) + ":
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Taking the min on h, one obtains the contradiction R(H0; x) � R(H0; x) +
": Q.E.D.

For a �nite population of odd size n, the same result holds when considering
for H the subpopulations of size (n + 1)=2. Here is, for illustration, a simple
example with three voters and two alternatives:

ui(x) i = 1 i = 2 i = 3 mediui(x)
x = a 6 7 8 7
x = b 4 3 9 4

Table 1: best median evaluation.

R(H;x) H = f1; 2g H = f1; 3g H = f2; 3g
x = a 6 6 7
x = b 3 4 3

R(H) 6 6 7
Table 2: Most favored half population

3 The one-dimensional model

The set of available alternatives is the set of positive real numbers X = [0;+1[.
To each individual i is attached an ideal point xi 2 X. The utility of i for an
alternative y 2 X is denoted ui(y). Under the quadratic utility assumption one
has:

ui(y) = � (y � xi)2 :

(Variants of this assumption will be considered later.)
The society is then described by the distribution of ideal points. Let F

denotes the cumulative distribution: for any x 2 X, F (x) is the proportion of
individuals i such that xi < x. We suppose that F is continuous and has a mean.
The Condorcet winner is then well-de�ned and unique, it is the median of the
distribution, that is the alternative, denoted xCond such that:

F (xCond) = 1=2:

The alternative which maximizes the total utilityW (y) =
R
X
�(y�x)2dF (x)

is the average of the ideal points. We call this point the Bentham optimum and
denote it by xBentham:

xBentham =

Z
x

x dF (x):

For any alternative y, the utility levels obtained by the various individuals
induce a probability distribution that we denote by Ey : for any utility level
u � 0, Ey(u) is the proportion of individuals in the society whose utility for
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y is less than u. Given our assumption about utilities, these individuals are
precisely those whose ideal points are at a distance larger than

p
�u from y:

ui(y) < u () � (y � xi)2 < u

() xi =2
�
y �

p
�u; y +

p
�u
�

thus
Ey(u) = 1� F (y +

p
�u) + F (y �

p
�u)

and the median evaluation of y, denoted umed(y) is such that Ey(umed(y)) = 1=2,
that is:

F (y +
p
�umed(y))� F (y �

p
�umed(y)) = 1=2:

It may be more convenient to write this formula with d(y) =
p
�umed(y) as:Z y+d(y)

y�d(y)
dF (x) = 1=2:

The best median evaluation choice, the outcome of �median evaluation�
is denoted by xMaxMed, its is the point which maximizes umed or, equivalently,
which minimize d. In general it is di¢ cult to compute this point, but the example
in the next sections makes these computations very simple.

4 Two results for non-symetric distributions

Here we consider the case of continuous distribution of ideal points with a density
that is continuous and monotonous on its support. Without loss of generality we
take the density to be decreasing and the support to be S = [0; b] or S = [0;+1).

Theorem 1 Suppose that the distribution F of voters� ideal points has a con-
tinuous density f on its support S and that f is decreasing on S. Suppose that
voters have quadratic utilities ui(y) = � (y � xi)2. Then xBentham � xCond.

Proof. The fact that xBentham � xCond is just the fact that, for such a dis-
tribution, the average is larger than the median. For a proof, consider G
the distribution made of a mass m at 0 plus a uniform distribution on [0; c].
Routine computation shows that, for G, the median is smaller than the av-
erage. Take G(x) = 1

2 + (x� xCond) � f(xCond), c = xCond +
1

2f(xCond)
and

m = 1=2 � xCondf(xCond). The median of G is xCond. The cumulative func-
tion G is above F so F stochastically dominates G and thus the average of F
is larger than the average of G. Therefore the average of F is larger than its
median. Q.E.D.
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Theorem 2 Suppose that the distribution F of voters�ideal points has a contin-
uous density f on its support S and that f is decreasing on S. Suppose that vot-

ers have utilities ordinally equivalent to quadratic utilities ui(y) =  
�
� (y � xi)2

�
for  strictly increasing. Then xMaxMed = 1

2xCond.

Proof. Note that for any population P with support [y; y + 2d], the Rawlsian
satisfaction is obtained for the choice y + d and has value R(P ) =  (�d2=4).
Therefore, in view of Lemma 1, xMaxMed is the value of y + d that minimizes d
under the constraint that Z y+2d

y

dF = 1=2

for some y � 0. This constraint can be written as

F (y + 2d) = 1=2 + F (y)

or, equivalently:
d = (1=2)F�1(1=2 + F (y)) � �(y):

Given our hypotheses, the function �(�) is diferentiable for y � 0, and

2�0(y) =
f(y)

f(y + 2�(y))
� 1:

Because f is decreasing, the ratio in this expression is smaller than 1, thus � is
decreasing too, and is maximized for the smallest value y = 0. It follows that
F (2d) = 1=2, which means that xCond = 2d. Hence the result. Q.E.D.

5 A simple example

Suppose that the distribution of voters�ideal point has bounded support [0; 1]
with an a¢ ne density function parametrized by a skewness parameter �, with
0 < � � 1:

f�(t) = 1 + � � 2�t:

For � = 0 the density is uniform on [0; 1] and for � > 0 the density is skewed
on the left. For � = 1 the density is triangular. Figure 1 is drawn for � = 1=3.
Then for 0 � x � 1,

F�(x) =

Z x

0

(1 + � � 2�t) dt = (1 + �)x� �x2:

Majority Voting : Condorcet winner. See point C in Figure 1. The median of
the ideal points is such that F�(xCond) = 1=2, that is 2�x2 � 2(1 + �)x+ 1 = 0,
which gives:

xCond =
1

2�

�
1 + � �

p
1 + �2

�
:

7

ha
l-0

03
97

40
3,

 v
er

si
on

 2
 - 

5 
Ju

l 2
01

0



xBentham xCond xMaxMed

� � 0 1=2 1=2 1=4
� = 1=2 :42 :38 :19
� = 1 :33 :29 :15

Table 1: Choices for an a¢ ne distribution with skewness �

Some values are provided in Table 1. When the skewness � tends to 0, xCond
tends to 1=2.

Utilitarian evaluation: Bentham optimum. See point B in Figure 1. The average
of the ideal points is xBentham =

R 2
0
tf�(t)dt and computation shows:

xBentham =
1

2
� �

6
:

Again, when the skewness � tends to 0, xBentham tends to 1=2, like xCond.

Maximal Median evaluation: See point M in Figure 1. In order to compute the
median evaluation at a point y one has to �nd a radius d(y) such that half
of the ideal points are located in the segment [y � d(y); y + d(y)], and half are
located outside. The best median is then obtained at the point y such that d(y)
is the smallest. In Figure 1, one can see that the best median is precisely the
mid-point between 0 and the Condorcet winner xCond. Indeed, by de�nition of
xCond, half of the population belongs to the segment [0; xCond], and because the
density is decreasing, any other segment of length smaller or equal will contain
strictly less than half of the population. Therefore:

xMaxMed =
xCond
2

=
1

4�

�
1 + � �

p
1 + �2

�
:

When the skewness � tends to 0, xMaxMed tends to 1=4, unlike the two other
choices.

One can see on this simple example the result announced in the introduction:

Proposition 1 For any a¢ ne distribution f� of skewness � > 0:

xMaxMed < xCond < xBentham:

Proof. This follows from the theorems above, but a direct proof is easy: For
any � 2 (0; 1], the inequality 1

2�

�
1 + � �

p
1 + �2

�
< 1

2�
�
6 is shown algebraically

by letting u =
p
1 + �2, and the result follows. Q.E.D.

Notice that the phenomenon, which holds for any value of the skewness
parameter �, is all the most striking for very small vallues of �, which coresponds
to distributions which are almost not skewed. In that case, letting � tend to 0, the
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B0 1CM

Figure 1: Three choices from a skewed distribution of ideal points

Condorcet winner and the utilitarian optimum both tend to 1=2, the center of
the distribution: for almost symmetric distributions, there is no con�ict between
the utilitarian and the majoritarian principles: both chose a consensual outcome
in the middle of the distribution. But things are totally di¤erent with MaxMed,
whose choice tends to 1=4. As we have seen this choice is due to the fact that
the MaxMed calculus allows to leave aside half of the population.
The graphical representation makes transparent the explanation of the phe-

nomenon. Half of the population lies on each side of the Condorcet winner
xCond = C, but the right side (between C and 1) is wider than the left one (be-
tween 0 and C). This should be an argument in favor of a collective choice larger
than C, like the utilitarian optimum xBentham = B, because individuals at the
left of C are relatively close to C while those at the right of C are relatively far
from C. This is a typical utilitarian argument, that weights numbers of individ-
uals and intensity of preferences. The reasoning of the MaxMed argument, that
leads to the choice xMaxMed = M , is reversed: the window being narrower on
the left and wider on the right, chosing a point in the middle of the left window
will satisfy the left half of the population and will reach for the � already quite
satis�ed � members of this group a relatively high level of satisfaction because
this group is not too diverse. On the contrary, choosing a point on the right of
M , such as C or B, the satis�ed half of the population would be spread over a
larger segment and it will be more di¢ cult to reach the same level of satisfaction
for this half population, because these people are more diverse.

9

ha
l-0

03
97

40
3,

 v
er

si
on

 2
 - 

5 
Ju

l 2
01

0



-1123450.10.20.30.40.50.6

Figure 2: Log-Normal distribution

The choice of M is dictated by the level of satisfaction obtained by some
half of the population. By de�nition of the MaxMed, this level is the largest
than can be obtained by any half of the population, thanks to inter-individual
comparability. But, doing so, it neglects the (maybe very low) level of satisfac-
tion obtained by the other half of the population, thanks to ordinality. There
is no compromise here: �nd the half of the population which would be better
o¤ if they were in power ! This �majoritarian� logic is �awed, as one can see
on the example, because the result is that moves away from M in the direction
of the center simultaneously (i) satisfy the majority criterion: more losers than
winners, and (ii) satisfy the utilitarian criterion: the losers loose less than what
the winners win.

6 Simulated examples with Log-Normal distri-
bution

In the simulations, I compute the Bentham optimum, the outcome of Majority
Rule (the Concorcet winner), the outcome of the Borda rule (the Borda winner)
and the point with the best median evaluation. I work with a Log-Normal distri-
bution, which is typically the kind of distribution met in Social Sciences (Figure
2) rather than a¢ ne distributions as in the previous section. The theoretical
mean of the Log-Normal distribution of parameters 0 and 1 is 1:649 and the stan-
dard deviation is 2:161. The distribution vanishes quickly after x = 5 and, when
needed, I restrict attention to the segment [0; 5].2 I pick at random 999 ideal
points according to this distribution. Then, in a �rst example, the individual

2This has no impact on the value of the Condorcet winner nor on the MaxMed. It leads to
a slight underestimation of the Bentham optimum and the Borda winner.
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candidates nk ui(y) Bentham Borda Condorcet MV
�d2 2 1 1 :5

11 �d 1 1 1 :5
uniform �d1=2 1 1 1 :5

�d2 1:77 1:15 1:04 :62
49 �d 1:04 1:15 1:04 :62

�d1=2 :83 1:15 1:04 :62
�d2 1:68 :92 :92 :56

11 �d :92 :92 :92 :56
repres. �d1=2 :83 :92 :92 :56

�d2 1:89 :93 1:04 :56
49 �d 1:04 :93 1:04 :56

�d1=2 :85 :93 1:04 :56

Table 2: Various speci�cations and choices with a Log-Normal Distribution

utility functions are quadratic: ui(y) = � (y � xi)2, and there are 11 candidates
evenly spread between 0 and 5 (at points 0, :5, 1, 1:5, 2; 2:5, :::, 5). In that case,
the Bentham optimum is located at xBentham = 2, the Borda winner and the
Condorcet winner are both located at xCond = xBorda = 1, and the best median
evaluation is obtained at 0:5, thus: xMaxMed < xCond = xBorda < xBentham
An alternative speci�cation is that the utility is decreasing linearly with

the distance: ui(y) = � jy � xij. I label this case linear utility. Going from one
speci�cation to the other does not change the Condorcet or Borda winner nor
does it change the median evaluations, because this is a strictly increasing trans-
formation common to all individuals. But it changes the utilitarian optimum,
which is now equal to the Condorcet winner. (Recall that the solution to the
problem miny

P
i jy � xij is the median of the xis.): Thus in that case, one has:

xMaxMed < xCond = xBorda = xBentham.
Although economists usually work with concave utility functions (used as

VNM utilities, these function are risk-adverse), it also makes sense in Politics
to consider that the marginal utility is decreasing with the distance to the ideal
point and to use utilities of the form ui(y) = �

p
jy � xij. We label this case

root utility. In the example, simulation shows: xMaxMed < xCond = xBorda =
xBentham.
Table 2 reports the results of simulations in various cases. Quadratic utility

is used for the lines labelled �d2, linear utility for the lines �d, and root utility
for the lines �d1=2. The number of candidates, nk, is 11 or 49. Candidates are
either evenly spaced from 0 to 5 (�uniform�case), or chosen according to the
same probability distribution of the voters (�representative�case).
The simulations reported in Table 2 are not averaged. Randomness comes

from the choice of the 999 individual ideal points and (in the �representative�
setting) of the choice of the candidate positions. This last point is important
for nk = 11. In order to check the robustness of the results I replicated some
of the above experiences. For instance here are the results obtained during 100
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(100 simulations) Bentham Borda Condorcet MV
mean value 1.56 .87 1.01 .65
standard deviation .28 .17 .13 .12

Table 3: Robustness of the results for 11 representative candidates and quadratic
utility

(100 simulations) Bentham-Condor Condor-Borda Borda-MV
mean value .55 .14 .22
standard deviation .29 .22 .19

Table 4: Robustness of the results for 11 representative candidates and quadratic
utility

simulations for the representative case with nk = 11 candidates and quadratic
utilities.
Out of 100 simulations, the usual ranking is: xMaxMed < xBorda � xCond <

xBentham. More exactly:

� the strict inequality xMaxMed < xBorda occurs 82 times, xMaxMed = xCond
occurs 17 times, and xMaxMed > xCond occurs only once;

� the strict inequality xBorda < xCond occurs 50 times, xBorda = xCond
occurs 46 times, and xBorda > xCond occurs 4 times;

� the strict inequality xCond < xBentham occurs 95 times, xCond = xD occurs
5 times, and xCond > xBentham does not occur.

Tables 3 and 4 provide further details about this robustness analysis. In
this model, Borda and Condorcet are not well distinguished, but the ranking
xMaxMed < xCond < xBentham appears to be robust. This indicates that the
observations that were made in the analytical sections are robust.
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