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Abstract: Searching for partners involves informational persistence that reduces future traders�match-

ing probability. In this paper, traders that are no longer available but who left tracks on the market

are called phantoms. I examine a discrete-time matching market in which phantom traders are

a by-product of search activity, no coordination frictions are assumed, and non-phantom traders

may lose time trying to match with phantom traders. The resulting aggregate matching technology

features increasing returns to scale in the short run, but has constant returns to scale in the long

run. I discuss the labor market evidence and argue that there is observational equivalence between

phantom unemployed and on-the-job seekers.

Keywords: Endogenous matching technology; Intertemporal and intratemporal congestion externalities;

Information persistence

JEL classi�cation: J60

�This paper bene�ted from the comments of participants in the 2009 SED meeting in Istanbul and participants in

seminars held at GREQAM and the University of New South Wales. I wish to thank Mohamed Belhaj, Gautam Bose,

Frédéric Deroïan, Jan Eeckhout, Cecilia Garcia-Penalosa, Alain Trannoy, and Alain Venditti.
yGREQAM - 2, rue de la charité, 13002 Marseille, France. Webpage: E-mail: decreuse@univmed.fr

1

ha
ls

hs
-0

04
72

75
1,

 v
er

si
on

 1
 - 

13
 A

pr
 2

01
0



1 Introduction

The matching technology is a popular tool among labor market specialists and macroeconomists. The

technology gives the number of jobs formed as an increasing function of the numbers of job-seekers and

vacancies. This function is generally well-behaved in that it is strictly concave and has constant returns

to scale. Such properties have strong empirical relevance (see Petrongolo and Pissarides, 2001) and are

associated with good model outcomes, as with the independence of the unemployment rate vis-à-vis

workforce size, and the saddle-path and uniqueness properties of equilibrium under rational expectations.

Most of the time, the functional form of the matching technology is exogenous and can hardly be derived

from elementary principles. This is unfortunate as changes in the environment like public policies or

business cycles may a¤ect the matching technology itself. The problem goes beyond the labor market

case and arises whenever people must meet before trade activities take place.

Several papers provide an explicit scenario behind the aggregate matching technology. In mismatch

models, workers are imperfectly mobile between sub-markets, and the distribution of traders across sub-

markets governs the shape of the aggregate matching technology (see Drèze and Bean, 1990, Lagos, 2000,

2003, and Shimer, 2007). In stock-�ow matching models, traders can only match with newcomers (see

e.g. Taylor, 1995, Coles and Muthoo, 1998, Coles and Smith, 1998, Coles, 1999, Gregg and Petrongolo,

2005, Coles and Petrongolo, 2008, and Ebrahimy and Shimer, 2008). In urn-ball matching models, buyers

independently send one buy order to each seller. As buyers do not coordinate, some sellers receive several

buy orders, while others do not receive any order (see e.g. Butters, 1977, Hall, 1977, Burdett et al, 2001,

and Albrecht et al, 2004, 2006, and Galenianos and Kircher, 2009, with multiple applications). Stevens

(2007) makes explicit the time-consuming nature of search and endogenizes search investments. The

resulting technology is CES.

As noted by Stevens (ibid), these papers rely on an implicit limited mobility assumption with an

associated coordination problem. Given that workers cannot readily transfer their attention from one

job (or sub-market) to another, lack of coordination generates frictions. However, another property is

also involved: matching frictions result from intratemporal congestion externalities. Traders on one side

of the market deteriorate search prospects for those who are currently on the same side, and improve

prospects for those who are currently on the other side. In this paper, I follow the general trend in

the rest of the literature as I assume that individuals have limited mobility between potential partners.

However, the source of market frictions is no longer contemporaneous. I examine the complementary

idea whereby matching frictions can result from informational persistence on the market about traders

who have already found a match. I refer to these traders as phantom traders, or phantoms for short.

Phantoms are a by-product of the search activity: when exiting the market, each trader may leave a trace

that disappears over time. Phantoms result in a loss of time and resources for future traders who want

to �nd an adequate partner. I argue that a matching technology endowed with reasonable properties can

be derived from this single source of information imperfection.

There are various reasons why there may be phantom traders on the market. First, search strategies

display involuntary persistence. To recruit workers, �rms post ads that convey information on job o¤ers.

Ads are very useful to attract potential employees, who can thus direct their search towards the corre-

sponding jobs. What happens to this information once a worker is recruited? The ad is likely to persist

for some additional time. This may be misleading for workers who lose time and e¤ort in prospecting
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a job that no longer exists. Similarly, workers send applications and register on websites. Firms may

process such applications or consult websites after actual recruitment. The example of monster.fr is

particularly enlightening. Ads last for one or two months, even if the position is �lled in the very �rst

minute. Firms bene�t from a price reduction when they pay for two months. On February 5 2010, placing

a single ad for one month cost 560e. The cost for two months was 650e. The phenomenon is probably

more pervasive for free websites where the site maker has fewer incentives to clean out old ads. Second,

match makers may voluntarily delay the moment they delete information about traders that have left the

market. Dating websites may keep online pro�les for months or even years after the person has logged

on for the last time. Estate agents may showcase sold or rented houses or �ats. This strategy aims at

attracting customers by making the number of potential traders bigger than it really is. Third, matched

traders may be incited to go on searching even though they do not want to �nd another trading partner.

Firms that have �lled in their jobs may post ads to accumulate a stock of potential applicants in case

they have new vacancies. Married persons may enter a romantic online relationship without willing to

go further �they certainly feel matched with their online partner, but what about this person? Finally,

on-the-match seekers can be considered as phantom traders from the perspective of the unmatched. Em-

ployees for instance contact alternative employers to put pressure on their current employer to grant a

pay rise. Doing so, they may create additional congestion for the unemployed.1

I consider a generic situation. Time is discrete and buyers and sellers try to contact each other on a

unique search place. To disentangle the impacts of phantoms on the search market from more standard

congestion externalities, I assume that each buyer meets one seller at most, and every trader on the

short side of the market is sure to meet someone. Unfortunately, that someone may be a phantom buyer,

or a phantom seller. No trade takes place in such cases. I assume that the populations of phantoms

obey simple �ow-stock equations, the in�ow of new phantoms being proportional to the past out�ow of

successful traders. I examine the resulting matching pattern between the two populations of traders.

I refer to the aggregate matching technology as the phantom matching technology, or PMT for short.

The PMT features intratemporal and intertemporal externalities. Intratemporal externalities result from

the fact that an increase in the number of agents on the long side of the market reduces the proportion of

phantom traders. A larger proportion of contacts leads to matches as a result. Intratemporal externalities

imply that the PMT displays increasing returns to scale in the short run. Intertemporal externalities

result from the fact that current matches fuel future phantom traders. Although period-t number of

traders may have an ambiguous impact on period-(t+ k) number of matches, intertemporal externalities

combine so as to negatively a¤ect the current number of matches. Intratemporal and intertemporal

externalities balance each other, and the PMT features constant returns to scale vis-à-vis the whole set

of current and past traders.

The interplay between intratemporal and intertemporal matching externalities has two implications.

First, I discuss the stationary phantom matching technology (SMPT) that emerges as the steady-state

PMT of an environment where the populations of traders are themselves stationary. The SMPT obeys a

simple parametric form that depends on the entry rate of new phantoms and phantom death probability.

The SMPT exhibits constant returns to scale. The elasticity of the matching technology vis-à-vis the

number of traders on the short side of the market depends on the ratio of sellers to buyers (negatively

1The consideration of on-the-job search is of course not new. What is new is the assimilation of on-the-job search with

the more general phenomenon of informational persistence on matching markets.
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if sellers are on the short side, and positively otherwise). This elasticity belongs to the interval (1=2; 1).

Second, I examine the e¤ects of a temporary increase in the number of traders on the short side of

the market. Owing to short-run increasing returns to scale, the temporary shock generates a matching

boom in the short run. The matching boom then gives birth to phantom traders that alter the matching

pattern. As the boom stops, the market is left with many more phantoms and fewer matches take place

than prior to the shock. Matching probabilities gradually converge towards their steady-state values.

I further discuss the PMT through four extensions to the basic model. The �rst extension is devoted

to the honeymoon e¤ect that bene�ts new markets. New markets have no history, and feature no

phantoms. Matching probabilities start very high as a result. Then, phantoms accumulate and matching

probabilities deteriorate. The second extension considers another popular source of market frictions,

namely coordination frictions. This allows a distinction to be made between the respective contributions

of phantom traders and coordination frictions to overall matching frictions. The third extension examines

the empirical implications of the PMT. The discussion is based on a general model that admits the

standard Cobb-Douglas matching technology and the nonfrictional technology as particular cases. The

�nal extension discusses the case of on-the-match search. I argue that on-the-match seekers can be

considered as phantoms in the PMT framework. This implies that phantoms and on-the-match seekers

are observationally equivalent. Consequently, papers studying the labor market and highlighting the role

played by on-the-job search on the aggregate matching technology provide indirect evidence in favor of

the phantom trader thesis.

The rest of the paper is organized as follows. Section 2 introduces the model and computes the

resulting matching technology. Section 3 analyzes the interplay between intratemporal and intertemporal

externalities. Section 4 discusses the honeymoon e¤ect, studies the interplay between phantom traders

and coordination frictions, looks at empirical implications, and analyzes the case of on-the-job search.

2 The model

Time is discrete and denoted by t. A population of buyers and sellers want to trade with each other. But

they have to meet before trade takes place. Matching takes place every period. Every time a buyer and

a seller meet and agree on match formation, they exit the market.

Let B denote the (mass) number of buyers, S the number of sellers, PB the number of phantom

buyers, and PS the number of phantom sellers.

The matching mechanism involves two steps. In a �rst step, each trader on the short side of the

market is assigned to a trader on the long side. This results in the following number of contacts:

min
�
Bt + P

B
t ; St + P

S
t

	
(1)

In a second step, matches are derived from contacts. The rule is that only contacts between non-phantom

traders lead to e¤ective trade. The number of matches is

Mt =
Bt

Bt + PBt

St
St + PSt

min
�
Bt + P

B
t ; St + P

S
t

	
(2)

The number of contacts is multiplied by the product of the two proportions of non-phantom traders. I

assume that phantoms cannot be distinguished from non-phantoms by the matching mechanism.
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Matching probabilities are

�t =
Mt

Bt
=

St
St + PSt

min

�
1;
St + P

S
t

Bt + PBt

�
(3)

�t =
Mt

St
=

Bt
Bt + PBt

min

�
Bt + P

B
t

St + PSt
; 1

�
(4)

The numbers of phantoms obey the following laws of motion:

PBt = �BMt�1 +
�
1� �B

�
PBt�1 (5)

PSt = �SMt�1 +
�
1� �S

�
PSt�1 (6)

with �j > 0, and 0 < �j � 1, j = B;S. The in�ow of new phantoms is proportional to former matches.
The parameter �j can be interpreted as the probability that a match gives birth to a phantom trader, or

as the relative search e¢ ciency of phantoms vis-à-vis non-phantoms. In the former case, �j � 1. In the
latter case, there are no additional restrictions on �j . The out�ow results from constant depreciation at

rate �j . Phantoms face a constant probability of dying �j each period. Life expectancy follows a Poisson

law.

Proposition 1 In each period t, the number of matches is given by

lnMt = lnSt + lnBt � ln
"
Xt + �t

1X
k=0

(1� �t)kMt�k�1

#
(PMT)

with

(
�t = �

B , �t = �
B and Xt = Bt if min

�
Bt + P

B
t ; St + P

S
t

	
= St + P

S
t

�t = �
S , �t = �

S and Xt = St if min
�
Bt + P

B
t ; St + P

S
t

	
= Bt + P

B
t

.

Proof. Suppose that min
�
Bt + P

B
t ; St + P

S
t

	
= St + P

S
t . This yields the following matching

technology

Mt =
StBt

Bt + PBt
(7)

We have

PBt = �B
1X
k=0

�
1� �B

�k
Mt�k�1 (8)

This gives

lnMt = lnSt + lnBt � ln
"
Bt + �

B
1X
k=0

�
1� �B

�k
Mt�k�1

#
(9)

Now suppose that min
�
Bt + P

B
t ; St + P

S
t

	
= Bt + P

B
t . This yields the following matching

technology

Mt =
BtSt
St + PSt

(10)

We have

PSt = �
S

1X
k=0

�
1� �S

�k
Mt�k�1 (11)

This gives

lnMt = lnSt + lnBt � ln
"
St + �

S
1X
k=0

�
1� �S

�k
Mt�k�1

#
(12)

This closes the proof.
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The phantom matching technology (PMT) collapses into the usual non-frictional technology whenever

�t = 0. The novelty comes from the inclusion of the weighted sum of former matches in the last term.

The weights depend on survival probabilities (1� �t)k and entry rate of new phantoms �t.
Market history may start at a �nite date, say t = 0, without loss of generality. Equation (PMT) must

be modi�ed accordingly:

lnMt = lnSt + lnBt � ln
"
Xt + �t

t�2X
k=0

(1� �t)kMt�k�1 + �t (1� �t)
t�1

P t0

#
(13)

where the relevant initial number of phantoms is P t0 =

(
PS0 if min

�
Bt + P

B
t ; St + P

S
t

	
= St + P

S
t

PB0 if min
�
Bt + P

B
t ; St + P

S
t

	
= Bt + P

B
t

.

The role played by market history is parameterized by �t. As �t tends to 0, phantoms are almost

in�nite-lived and old phantoms have a large impact on current matches. Conversely, with full depreciation

�B = �S = 1, phantoms live for one period and the PMT reduces to

lnMt = lnSt + lnBt � ln [Xt + �tMt�1] (14)

3 Intertemporal vs intratemporal externalities

In this section, I examine the matching externalities featured by the phantom matching technology. The

combination of intratemporal and intertemporal externalities implies that the technology has increasing

returns to scale in the short run and constant returns in the long run. I study these properties in three

steps.

3.1 Intratemporal externalities

Proposition 2 Without loss of generality, assume that St + PSt < Bt + P
B
t for all t. In each period t,

(i) d lnMt=d lnSt = 1

(ii) d lnMt=d lnBt =

�B

1X
k=0

(1��B)
k
Mt�k�1

Bt+�B

1X
k=0

(1��B)
k
Mt�k�1

Proof. This results from direct computation.

The phantom matching technology has constant returns with respect to the number of traders on the

short side of the market. This property is typical of non-frictional matching models. Meanwhile, the

PMT has positive returns with respect to the number of traders on the long side. The reason is that

additional traders reduce the proportion of phantom traders. The more phantoms there are, the greater

the e¤ect.

Intratemporal externalities imply that the matching technology exhibits increasing returns to scale in

the short run. Indeed, d lnMt=d lnSt+ d lnMt=d lnBt > 1. The magnitude of increasing returns to scale

is parameterized by �B (driving phantom births), �B (governing phantom deaths), and by the history of

matching �ows fMt�k�1g1k=0 (fueling potential phantoms).
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3.2 Intertemporal externalities

Proposition 3 Without loss of generality, assume that St + PSt < Bt + P
B
t for all t. In each period t,

(i) @ lnMt=@ lnMt�k�1 = �
�B(1��B)

k
Mt�k�1

Bt+�B

1X
k=0

(1��t)kMt�k�1

(ii) d lnMt+k=d lnBt =
k�1P
j=0

(@ lnMt+k=@ lnMt+j) (d lnMt+j=dBt)

(iii) d lnMt+k=d lnSt =
k�1P
j=0

(@ lnMt+k=@ lnMt+j) (d lnMt+j=dSt)

(iv)
P1

k=1 (d lnMt=d lnBt�k + d lnMt=d lnSt�k) = �
�B

1X
k=0

(1��B)
k
Mt�k�1

Bt+�B

1X
k=0

(1��B)
k
Mt�k�1

Proof. Points (i) to (iii) result from direct computation. Point (iv) results from the fact that

d lnMt=d lnMt�1 =
P1

k=1 (d lnMt=d lnBt�k + d lnMt=d lnSt�k).

Former matches generate phantom traders. In turn, phantoms deteriorate the current matching

process. These intertemporal externalities imply that the whole market history a¤ects current matches.

Intertemporal externalities are characterized by points (ii) and (iii).

Current matches may positively or negatively alter future matches. To understand this property, I

consider the case where phantoms only last one period, i.e. �B = �S = 1. Then,

d lnMt+k=d lnBt = (�1)k
k�1Q
j=0

�BMt+j

Bt+j + �
BMt+j

(15)

The magnitude of this elasticity decreases with horizon period k. Its sign depends on (�1)k, which is
negative for even k and positive for odd k. An increase in the number of period-t traders increases the

number of period-t + 1 phantoms, thereby reducing the �ow of matches in period t + 1. For a similar

reason, this increases the �ow of matches in period t+ 2.

Point (iv) shows that the sum of intertemporal externalities is negative. This compensates for the

positive intratemporal externality that is discussed in Proposition 3. Intratemporal and intertemporal

externalities combine so that the matching technology has constant returns to scale with respect to the

whole set of current and former traders.

3.3 Stationary phantom matching technology

I assume that whenever a buyer and a seller get matched they are replaced by a similar pair of agents.

I show that the phantom matching technology (PMT) converges towards a stationary technology, the

stationary phantom matching technology (SPMT).

The number of traders follows Bt = B and St = S for all t. The number of matches follows the PMT.

Without loss of restriction, sellers are on the short side of the market and

lnMt = lnS + lnB � ln
"
B + �B

1X
k=0

�
1� �B

�k
Mt�k�1

#
(16)
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Proposition 4 Let B + PBt > S + PSt for all t. The sequence Mt converges towards the stationary

number of matches

M = m (B;S) = B
�1 +

h
1 + 4�B=�B (S=B)

i1=2
2�B=�B

(SPMT)

Proof. In steady state, Mt =M and solves

�BM2=�B +BM �BS = 0

Resolution gives (SPMT). To establish convergence, note that Mt = BS= (B + Pt). This

implies that the sequence fMtg converges towardsM if and only if the sequence fPtg converges
towards P = �BM=�B . But,

Pt+1 = � (Pt) (17)

with � (x) = �BBS= (B + x) + (1� �)x. As � (0) > 0 and 0 < �0 (x) < 1 for all x � 0, fPtg
converges towards P for all � � 0 and all � 2 (0; 1].

The SPMT features standard properties. First, it is strictly increasing in the numbers of traders

on each market side. Second, it has constant returns to scale. This property results from the constant

intertemporal returns to scale discussed previously. Third, the elasticity of the matching technology with

respect to the ratio of sellers to buyers is " (S=B) =
2(�B=�B)S=B

�(1+4(�B=�B)S=B)
1=2

+(1+4(�B=�B)S=B)
2 (1=2; 1).

This elasticity decreases with
�
�B=�B

�
S=B. If buyers were on the short side of the market, the elasticity

would be decreasing in
�
�B=�B

�
S=B.

3.4 Dynamic implications

I consider a temporary increase in the number of sellers. This allows the results shown by Propositions

2 to 4 to be illustrated. From time t0 to time t1 > t0, the number of sellers goes from S to S (1 + ").

It then returns to S. Initial numbers of phantoms are set at their stationary numbers. I distinguish

three di¤erent matching technologies. In all cases, I consider deviations vis-à-vis the log of the stationary

number of matches lnM :

lnMt=M = lnSt=S + ln [B +M ]� ln
"
B + :5

1X
k=0

(:5)
k
Mt�k�1

#
(PMT1)

lnMt=M = lnSt=S + ln [B +M ]� ln [B +Mt�1] (PMT2)

lnMt=M = ln
�1 + [1 + 4 (St=B)]1=2

2
� lnS � ln [B +M ] (SPMT)

In technology PMT1, half of the matches give birth to phantom traders and the depreciation rate is

50%, i.e. �B = :5 and �B = :5. This technology has unlimited memory. In technology PMT2, all

matches originate phantom traders, but phantoms only last one period, i.e. �B = 1:0 and �B = 0. This

technology has limited memory. The technology SPMT is the stationary phantom matching technology

corresponding to PMT1 and PMT2. This technology does not depend on former matches.

The stationary numbers of traders are B = 2:0 and S = 1:0. The shock consists of a 10% increase in

the number of sellers, i.e. " = :1. Initial numbers of phantoms are set at their stationary values.
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Figure 1: Changes in buyers�matching probability following a one-period shock. The shock takes place

at time t0 = 3. Initial conditions: S = 1:0, B = 1:0, Mt = M for all t < t0. Shock " = :1. Parameters

are �B = :5 and �B = :5 in the case PMT1, and �B = 1:0 and �B = 0 in the case PMT2.

I �rst consider a one-period shock. The shock takes place at period t0 = 3. Figure 1 depicts the result-

ing trajectories of buyers�matching probabilities. With the SPMT, the matching probability increases at

the time of the shock, and subsequently goes down to its stationary value. The elasticity of the matching

probability with respect to the ratio S=B is about .7. With the other technologies, Proposition 2 shows

that the short-run elasticity of the matching probability with respect to S=B is one. This result explains

why the spike at the time of the shock is higher with PMT1 and PMT2 than with the SPMT. Changes

in the phantom proportion then alter the matching probabilities, which converge towards the SPMT.

The matching probability undershoots its long-run value at period t0 + 1 = 4. With PMT1, phantoms

die at a constant rate, and there is monotonic convergence towards the steady-state value. With PMT2,

phantoms only last one period. This implies oscillations of decreasing magnitude around the steady-state

value, as discussed after Proposition 3.

I then consider a �ve-period shock. The shock occurs from t0 = 3 to t1 = 7. Figure 2 shows that

the phantom matching technologies rapidly converge towards the SPMT. This implies oscillations with

PMT2, and monotonic convergence with PMT1. Both technologies originate the same negative e¤ect in

period t = 8, that is once the negative shock has elapsed. Technology PMT1 compensates a low phantom

birth rate by a large survival probability. Overall, the stock of phantoms is the same for PMT1 and

PMT2 in t = 8.

These examples illustrate two general phenomena. First, the matching technology has increasing

returns to scale in the short run. The PMT magni�es temporary shocks with respect to matching

technologies that have constant returns to scale in the short run. Second, the accumulation of phantoms

and the resulting negative intertemporal externality imply that matching probabilities fall below their
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Figure 2: Changes in buyers�matching probability following a �ve-period shock �The shock takes place

at time t0 = 3 and lasts until t1 = 7. Initial conditions: S = 1:0, B = 1:0, Mt =M for all t < t0. Shock

" = :1. Parameters are �B = :5 and �B = :5 in the case PMT1, and �B = 1:0 and �B = 0 in the case

PMT2.

stationary level after the shock.

4 Discussions

I discuss four aspects of the phantom matching technology (PMT). First, I argue that a new matching

place bene�ts from a honeymoon e¤ect because there are no phantoms haunting the place. Second, I

augment the model with another source of matching frictions, namely coordination frictions. Third, I

turn to empirical implications. Finally, I compare the PMT framework to matching technologies that

account for on-the-match search.

4.1 Market birth and the honeymoon e¤ect

Given increasing returns to scale in the short run, a new market bene�ts from a honeymoon e¤ect.

Without phantoms in the very beginning of market history, traders easily get matched. However, the

phantom stock grows and the matching technology deteriorates.

I consider the case where the total population of matched and unmatched agents is �xed. This case

corresponds to the marriage market, with an equal number of men and women. Suppose that a new

marketplace opens. Then, N men and N women enter the market, with S0 individuals unmatched

(singles) and N �S0 matched (in couples) on each side of the market. Matched men and matched women
originate phantoms with equal probability �, and phantoms of both gender die with equal probability �.
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Figure 3: Parameters are �B = :5 and �B = :5 in the case PMT1, and �B = 1:0 and �B = 0 in the case

PMT2.

The initial number of phantoms is 0. Once matched, men and women enjoy the bene�ts from being in

couple until they separate. The separation probability is q.

Populations of traders obey the following motions:

St = St�1 �Mt�1 + q (N � St�1) (18)

lnMt = 2 lnSt � ln
"
St + �

t�2X
k=0

(1� �)kMt�k�1

#
(19)

In steady-state, St = S and Mt =M . This gives M = m (S; S) and S = (qN �M) =q. It follows that

M

S
=

�1 + (1 + 4�=�)1=2

2�=�
(20)

S = qN=

"
�1 + (1 + 4�=�)1=2

2�=�
+ q

#
(21)

I assume that the initial population of singles is the steady-state population, i.e. S0 = S. The total pop-

ulation N of each gender is normalized to 1. I consider the two matching technologies PMT1 and PMT2

used in subsection 3.4. PMT1 corresponds to � = 1 and � = 1. PMT2 corresponds to � = :5 and � = :5.

Figure 3 depicts the resulting patterns of the matching probabilities. These patterns feature the honey-

moon e¤ect. Without phantoms, the �rst-period matching probability is one. The matching probability

subsequently falls and converges towards its stationary value.The honeymoon e¤ect may apply to various

match-making industries, as with online dating, real estate, or even temporary work agencies. This e¤ect

predicts that newcomers in those markets may build on their initial advantage and easily conquer market

shares in a �rst step. However, they should su¤er from negative intertemporal externalities in a second
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step, leading to high mortality rates. The honeymoon e¤ect may also contribute to explaining why old

and established match makers are not necessarily very e¢ cient despite their experience and visibility for

the unmatched traders.

4.2 Phantoms and coordination frictions

I examine how phantom traders interact with an alternative source of market frictions. In the urn-

ball matching (UBM) model, agents on one side of the market try to contact agents on the other side.

However, they do not coordinate, resulting in coordination frictions. The PMT framework and the UBM

model complete each other so as to o¤er a rich description of market frictions.

Assume that each buyer, including phantoms, sends a buy order to one of the sellers, including phan-

toms. The probability that a particular seller receives a buy order from a particular buyer is 1=
�
S + PS

�
.

Where a seller receives multiple o¤ers, two cases must be analyzed. Either the seller can detect phantom

buyers or he cannot.

If the seller can detect phantom buyers, the number of matches is

M = S

"
1�

�
1� 1

S + PS

�B#
(22)

As B;S; PS !1, this gives
M = S

�
1� exp

�
� B

S + PS

��
(23)

This technology still features increasing returns to scale vis-à-vis B and S, as an increase in S allows the

phantom proportion on the sellers�side to be reduced. In the long run, the SPMT is

M = S

�
1� exp

�
� B

S + �SM=�S

��
(24)

This equation implicitly de�nes M = m (B;S). The SPMT has constant returns to scale.

If the seller cannot detect phantom buyers, the number of matches is

M =
B

B + PB
S

�
1� exp

�
�B + P

B

S + PS

��
(25)

The corresponding SPMT is

M =
B

B + �BM=�B
S

"
1� exp

 
�B + �

BM=�B

S + �SM=�S

!#
(26)

The implicit function M = m (B;S) also features constant returns to scale. The latter technology

highlights the contributions of phantom traders and coordination frictions to overall market frictions.

The term BS=
�
B + �BM=�B

�
captures the direct role played by phantom traders, while the term 1 �

exp
�
�B+�BM=�B

S+�SM=�S

�
relies on coordination frictions. Coordination frictions themselves are parameterized

by the stocks of phantoms on each market side.

4.3 Empirical implications

The PMT can be confronted to labor market data. Without loss of generality, let buyers be the unem-

ployed and sellers be the vacancies, and consider the case where phantom traders are the only source of

12

ha
ls

hs
-0

04
72

75
1,

 v
er

si
on

 1
 - 

13
 A

pr
 2

01
0



frictions. For simplicity, I consider the case where the phantom and non-phantom unemployed always

outnumber the sum of phantom and non-phantom vacancies.2

Assuming that (i) the number of matches that take place in t can only be observed in t+1, (ii) St the

number of registered vacancies is proportional to the actual stock of vacancies (that includes nonregistered

vacancies), and (iii) there is unbiased measurement error on the number of sellers/vacancies, the statistical

model can be expressed as follows:

lnMt+1 = �0 + �1 lnSt + �2 lnBt � �3 ln
"
Bt + �

KX
k=1

(1� �)kMt�k

#
+ !t (27)

where !t is the error term. The number of lags has been arbitrarily limited to some constant K � 1 so
that the model can be estimated. When K = 1, parameters � and � cannot be identi�ed and phantoms

last one period. The constant �0 is due to the fact that St does not measure the total number of vacancies.

The model (27) allows the PMT to be tested against popular alternatives. When �1 = 1��2 > 0 and
�3 = 0, the matching technology is Cobb-Douglas with constant returns to scale. When �1 = 1, �2 = �3
and � = 0, matching is non-frictional and the number of matches equals the number of vacancies. Finally,

the PMT results when �1 = �2 = �3 = 1 and � > 0.

Of course, I do not expect the restrictions �1 = �2 = �3 = 1 and � > 0 to hold. The PMT abstracts

from many other sources of matching frictions that have been emphasized in the literature, like geographic

and skill mismatch or coordination frictions. Adding those various complementary matching frictions

would modify the theoretical matching technology, and the resulting technology could be compatible,

for instance, with �1, �2, and �3 di¤ering from one. However, the key particularity of the PMT is

the presence of the lagged numbers of matches among the explicative variables. These variables must

negatively a¤ect the current number of matches, creating the type of dynamic externalities emphasized

in this paper.

In addition to alternative sources of market frictions, I could consider alternative technologies of

phantom formation / dissolution. The phantom stock obeys a linear dynamic equation, i.e. current

phantom stock equals former stock minus depreciation plus new phantoms. A more general formulation

would be

Pt = f (Mt�1; Pt�1) (28)

Additional restrictions need to be imposed on function f . First, f must be increasing in the number

of matches Mt�1 and in the former phantom stock Pt�1. Second, to avoid the phantom stock growing

to in�nity, the partial derivative with respect to Pt�1 must be less than one. Moreover, f must have

constant returns to scale. Indeed, the stationary number of phantoms solves P = f (M;P ). Owing to the

fact that 0 < fP < 1, P can be expressed as an increasing function of the stationary number of matches

M . That is P = g (M). The SPMT can be written

M =
BS

B + g (M)
(29)

The PMT has constant returns to scale if and only if g (M) = Mg (1). Put otherwise, g must be linear

in M . In turn, this restriction implies that f must have constant returns to scale.

2 If this condition were not satis�ed the estimation technique would have to take into account the regime change that

may occur when the short side of the market becomes the long side.
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Alternative technologies of phantom formation would a¤ect model (27). The sequence fMt�kgKk=1
would enter in a non-additive way. However, the key property of the PMT would be preserved: former

matches diminish the number of current matches.

4.4 Phantoms and on-the-match search

On-the-match seekers form a particular type of phantom traders. In this subsection, I make two points.

On the one hand, the PMT is a natural framework to analyze on-the-match search. On the other hand,

usual empirical strategies to account for on-the-job search fail to distinguish on-the-job seekers from other

types of phantom traders.

On-the-match search occurs when matched traders go on searching for alternative partners. They

may do so for various reasons largely discussed in the literature, as with expanding their information set,

changing partner, or bargaining a larger share of match surplus. On-the-match seekers may alter the

search of unmatched agents through congestion or crowding-out e¤ects.

On-the-match search is usually captured as follows. Let E denote the number of matched traders. The

number of matches between unmatched traders is em (B;S;E). The dependence vis-à-vis E is typically

nonpositive.

Adopting the terminology in use in this paper, on-the-match seekers can be seen as phantoms. Here-

after, the total population of matched and unmatched agents are NB
t = Bt+Et and NS

t = St+Et, where

Et denotes the total number of matched agents. Matched agents separate with probability q. There are

no other phantoms than matched agents.

I assume that matched agents always go on searching for alternative partners. This may be so as to

improve their information on the distribution of potential partners, or to increase their share of match

surplus through alternative o¤ers and countero¤ers. I also assume that matched agents provide � e¢ cient

units of search. In the PMT framework, this corresponds to �B = �S = � and �B = q. The PMT is

lnMt+1 = lnSt + lnBt � ln
"
Bt + �

1X
k=0

(1� q)kMt�k�1

#
(30)

By de�nition, the total number of matches is the sum of all former matches weighted by the probability

that they have not separated. Therefore, Et =
1X
k=0

(1� q)kMt�k�1 and

lnMt+1 = lnSt + lnBt � ln [Bt + �Et] (31)

The matching technology directly derives from the PMT. As such, it features intratemporal increasing

returns to scale vis-à-vis B and S. It also has intertemporal constant returns to scale once the negative

dependence vis-à-vis Et is taken into account.

There is observational equivalence between phantoms and on-the-match seekers. This statement casts

doubt on the interpretation of estimated matching technologies that explicitly account for on-the-job

search. The general problem is that the number of phantoms is correlated with recent hires. The fact

that traders of the past a¤ect current recruitments does not prove that employees create congestion e¤ects

for the unemployed. This may also result from the type of informational persistence that is advocated in

this paper.
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Suppose for instance that there are two types of phantoms: on-the-match seekers and regular phan-

toms. The birth rate of regular phantoms is �R, while the dying rate is �R. Similarly, a matched person

seeks with search intensity �O, while the match destruction probability is q. The PMT is

lnMt+1 = lnSt + lnBt � ln
"
Bt + �

O
1X
k=0

(1� q)kMt�k�1 + �
R

1X
k=0

�
1� �R

�k
Mt�k�1

#
(32)

Focusing on the labor market case, the parameter q can be identi�ed using data on separation rates.

However, I cannot identify parameters �O and �R. I may try to use data on job-to-job movements to

control for the e¤ects of on-the-job seekers. However, this strategy is misleading. On the one hand, many

employed job-seekers do not want to change jobs but are seeking an alternative o¤er so as to pressure

their current employer into making a countero¤er. On the other hand, employed job-seekers do not

necessarily compete with the unemployed. Many of them seek jobs that are only available to already

employed people - that is, they search for jobs on a di¤erent search place.

A key di¤erence between phantom traders and on-the-match seekers is the fact that phantoms consist

of a backward variable, while part of on-the-match seekers consist of a forward variable. Burgess (1993)

and Anderson and Burgess (2000) argue that a large proportion of employees do not seek jobs. The

proportion that seeks jobs is actually procyclical.3 However, phantoms may also adapt to changing

market conditions. Parameters � and � may be endogenous, re�ecting the behavior of match-makers as

well as the behavior of job-seekers. I leave the corresponding extensions for future work.

5 Conclusion

This paper shows that information persistence on search markets can generate market frictions, and that

such market frictions give birth to a matching technology that has convenient properties from an applied

perspective. The key idea is that each new match gives birth to a pair of phantom traders. In turn,

phantom traders haunt the search place for some random period, inducing wasted resources spent by

unmatched traders that desperately try to contact them. The resulting aggregate matching technology

features increasing returns to scale in the short run, and constant returns in the long run.

The research can be extended in two directions. First, one may endogenize the parameters that govern

phantom death. Match makers may spend time and money to clean their websites or to advertise for

available trade partners. Non-phantom traders may send signals to be distinguished from phantoms.

Second, the interplay between intra and intertemporal externalities should have implications for turnover

externalities. Match formation is unlikely to account for phantom birth. Similarly, match destruction

should not be a¤ected by phantom proportion reduction.

3See Sunde (2007) for a discussion on the implications of endogenous search behavior.
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