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Abstract

We consider a decision maker facing uncertainty which behaves as a subjective
expected utility maximizer. The value of information is traditionnaly captured
as a greater expected utility the decision maker can achieve by selecting a best
strategy as information arrives. We deal with the limit process of being better
informed and introduce an information density function depending soley on the
states that gives an exact least upper bound to being more informed. This
information density function is given by a Radon-Nikodym’s type theorem for
set functions and is explicitely computed for the countable case.

Keywords: decision making under uncertainty, value of information, expected
utility, capacity, Radon-Nikodym derivative.

JEL Classification: D 80, D 82, C 71.

1 Introduction

Traditionnaly more information is valuable for the decision maker (DM). As
information becomes available the decision making process can be improved.
Using Savage’s words (see 1.14 p.107 in [10]) “knowledge is not disavantageous”.
Our main interest is to consider the limit process of being better informed and
how to measure the overall information the DM could benefit from.

We consider a decision maker facing uncertainty which behaves as a subjective
expected utility maximizer ([10]). Typically, whenever information is obtained
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through a simple message, i.e. a partition ([1]), then the DM can choose a best
strategy on each atom and therefore raises its overall ex-ante expected utility
([4]). Since information is a desirable good, a DM can be willing to undergo some
cost in order to gather more information (see [6]). It seems therefore natural to
raise the following question. How much utility can the DM expect as he gathers
more and more information? For this matter we will produce an information
density function depending soley on the states, that can be interpreted as an
indirect utility for states. This information density function gives an exact upper
bound to being fully informed. It is obtained by means of a general Radon-
Nikodym'’s type theorem for monotone subadditive set functions of bounded sum
with respect to measures as treated in an earlier work ([9]).

1.1 Framework

Let Q denote the set of states. A DM is uncertain about the true state that will
prevail. Let S be a non-empty set of strategies available to the DM. We shall
assume that there exists a bounded utility function (see Theorem 14.5 p.206 in
3]) !

u:S xQ— 1[0, M]
and that each strategy is evaluated in state w through wu(s,w). Hence each
strategy s is evaluated through its expected utility?: Vs, s’ € S

s=s = /Qu(s,w) dp(w) > /Qu(s',w) dp(w)

We assume without loss of generality that there exists a null-strategy sg € S
such that
u(sp,w) = 0, u — a.e.
The null-strategy is the unique strategy available to the DM when no choice is
made possible.

We consider now a simple situation where the set of strategy S is not always
available, and depends on the realization of some event A € A. The DM is ask
to choose some strategy s if A occurs, that is to say if A includes the true state.
Otherwise if A° occurs the DM has no other choice than sy. In this case, the
expected utility of strategy s conditionally on A is given by

[ uls,w) dufw) + [ ulso,w) duw) = [ uls,w) dpfw)
The capacity of A is given by

Cap(4) = sup J,uls.0) di(w)

'In Savage’s terminology, each couple (s,w) can be interpreted as a consequence that is
measured by a utility function and each strategy s can be identified with a decision i.e., a
mapping s : w +— (s,w).

2For any s, u(s,.) is assumed to be measurable.
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hence Cap(A) is the highest utility the DM can expect if he is capable to choose
a strategy conditionally on A. Cap is a subadditive monotone set function (see
Appendix B.1). This supremum condition becomes a maximum under suitable
topological conditions ([5] and Appendix A.1).

By construction, the decision maker is always better off when he has the possi-
bility to choose his strategy conditionaly on A since he can always neglect his
available choices by choosing sg, i.e. Cap(A) > [, u(so,w) du(w) = 0. Using
Savage’s words (see 1.12 p.107 in [10]) “the person is free to ignore the observa-
tion”.

1.2 Information

Assume that the DM can be informed before the realization of uncertainty where
the true state will lie in. For instance he can perform some experiment before the
true state is revealed, and according to the message he receives he can therefore
localize the true state and will choose a best strategy accordingly.

Formally speaking the DM faces a partition of A and knows which atom of the
partition will contain the true state and on each atom he chooses a strategy in
order to maximize his expected utility, otherwise if A¢ occurs the DM has no
other choice than sg.

For a partition 114 = {A}}_, of A, the highest expected utility that can be
attained by the DM is given by

Cap(Il4) =  sup Xn: /Ak u(sg,w) du(w)

(81,00,5n)ES™ p—1

or equivalently by separability of the expected utility functional,
Cap(I14) = Cap(A;) + ...+ Cap(A4,).

This specific property of additive separability of the information function (I1I —
Cap(Il)) is axiomatically characterized in [4, 7].

Now if this process is carried on at the limit, the maximal utility he can extract
from the information given by A is 3,

I(A) = sup Cap(Il,).
ITa
The information gap at A can be evaluated through the quantity,
IG(A) =I(A) — Cap(A), IG(A) > 0.
By construction,

I(A)gMM(A):/AM dp, VA € A.

3The limit is taken with respect to the relation “finer than”, i.e. II > Rif VA € II,3B € R
/ ACB.
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Our aim is to know if whether or whether not there is an upper bound to being
better informed, besides the trivial constant function M *. More precisely we
wish to know if there exists an information density function U : Q — R* (i.e.
an integrable function) such that for all A € A,

14 < /A U (w)dp(w).

Moreover, the information density function U should be minimal, that is, for any
integrable measurable V :  — R™,

VA e A, Cap(A) < /A V(w)du(w) = U <V, u as.

From the standpoint of measure theory, the decision making problem can be
described through a probability measure i, a constant M > 0 and a set function
w satisfying,

w< Mp

Indeed consider Mg = {m; : s € S}, where
ms: A— [0, M]: A— /Au(s,w) dp(w)

and

w:= sup m =supmg = Cap

meMg S

The existence of a minimal integrable function is made possible by a Radon-
Nikodym theorem for the set function w w.r.t. the measure u, which is precisely
its Radon-Nikodym superior derivative (see [9]).
This allows us to give a positive answer to the existence of an information density
and a way to compute it (see Appendix B.1).

Positive result: The information density function is given by the superior
Radon-Nikodym derivative of Cap w.r.t. p and is precisely the supremum of
the Radon-Nikodym derivatives of the {ms}s, i.e., u(s,.)

d Cap® dmg
dp ses A g

U

Morerover, the information set function can be factorized in a minimal way
through U

VA€ A, I(A) = /A U(w)dp(w),

whence U = Z—I, the classical Radon-Nikodym derivative of I with respect to p
and VA € A,

Cap(A) >0 <= [(A) >0 < uw(An{U >0})>0.

4As for the converse situation, any bounded measurable function U : @ — R™ can be
trivially interpreted as the information density function derived from the degenerate decision
problem where S = {1} and u(1l,w) = U(w).
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As it turns out, information I is in fact a measure which is dominated by u.

Thus, the information gap, i.e. IG = I — Cap, is a superadditive set function
since Cap is subadditive and [ is additive.
The first equivalence is natural and states that information has a positive measure
if and only if it is valuable to the DM. The second equivalence reduces information
to its information density function. Hence, an atom is valueless as soon as is does
not meet the support of the information function, and a state of nature w that
is relevant for the DM is informative whenever U(w) > 0.

In the following section we clicitate the information density function for the
countable case. Then, we give some examples that show various aspects of the
information density function and make a comment on the entropy. Finally, we
study a two-period model where information can be traded. We provide subjec-
tive upper/lower bounds for a DM’s willingness to pay/accept additional infor-
mation. An Appendix gathers all the proofs and the technical material related
to superior Radon-Nikodym derivatives.

2 Information density functions

Besides the trivial constant function M as an upper bound, one can also consider
the wutility of perfect information using the supremum function

V(w) = sup u(s,w)
sES
that suggests to choose the best strategy accordingly with each state (see [5]).
When € is countable, V' is an appropriate choice. However, when €2 is uncount-
able, utility of perfect information is not an appropriate choice and this moti-
vates the use of an information density function instead. Both coincide when (2
is countable.

2.1 The countable case

The countable case: Let Q) be countable. We may assume w.l.o.g. that ) =
N, A = 2N and p({w}) > 0. In this case the information density function is
precisely
U(w) = sup u(s,w)
s
and

Cap({w}) = p({w}) x supuls,w),

1(4) = 3 Cap({}) = X u({}) x supu(s.w) = [ U dy

weA weA
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So whenever €2 is countable the choice of a best strategy can be performed
statewise (see Appendix B.2).

2.2 The uncountable case: examples

But when €2 is uncountable V' might not be minimal nor measurable and a fortiori
not available to the DM. Let us now consider the case when € is uncountable.
Take Q2 = S = [0, 00). Define u by,

uw: [0,00) x[0,00) — [0,11]

Tres ifs=w
(5,w) '_) 0, otherwise.
Define,
1
Vw € Q,V(w) =supu(s,w) = ——
sesS 1 + w
and 1
v Q,U(w) = 1en ,
weUW) =2 1 Lm(w)

n

where 1, denotes the indicator function at n. We will consider the discrete
probability measure p, defined by

Vn e N, u({n}) = (1 - §)o"

with ¢ € (0,1).

Example 1: We endow (2 with its Borel o-algebra, B.
V is B-measurable, since {V >t} = [0, ] for ¢ € (0,1].

Then,
Cap(A) = d = ! 1—0)0" = ! 1—0)0"
ap(A) = sup [ u(s,w) dp(w) = max (1 =) = (1 -9)
where n4 = min{n : n € A}. And®,
1 n

neA

Since g is concentrated on IN we can pick as an information density function
either U or V, both are B-measurable and are p-a.e. equal but U;V.

Let us introduce a particular o-algebras to show that V' is not necessarily
measurable.

Example 2: We endow () with the og-algebra of countable-cocountable sets

‘ACOC‘

SIQ) =3, 45 (1= 6)6" = 152 In(25) — 0 (1) when 6 — 1 (0).
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A € Acoc if A is countable or if its complement A€ is countable. For all w,
{w} € Acoc.

Now, V' is not Acoc-measurable, since {V > t} = [0, 7] for t € (0,1] which is
neither countable nor cocountable.

But U is Acoc-measurable. Then, Cap(A) = 1+1nA (1—06)0™*, where ny = min{n :
n e A}. And, I(A) = ¥,e4 135, (1—0)0". Hence the information density function

is given by the classical Radon-Nikodym derivative of I with respect to u:

1 dl1
;1—#71{} d p

Let us introduce another probability measure to show that V' is not necessarily
minimal despite being measurable.

Example 3: We endow (2 with its Borel o-algebra, B.
We will consider the diffuse probability measure u, defined by

VA € B, pu(A) = /A fe 02 dA ()

with @ > 0 and \ the Lebesgue measure on R™.

Since u(s,w) = 0, A—a.e for all s and p is diffuse then for all A € B, [, u(s,.) du =
0. Hence U =0, Cap = 0, I = 0 but pu({V > U}) = 1. So clearly V' is not
minimal despite being measurable.

2.3 Entropy: a comment

Information that can be extracted from a simple random experiment such as a
partition is widely associated to the notion of entropy.
The partition-entropy of 11 = {A;}, is defined by,

n

h(IT) = = >~ u(A:) In(u(A;))

i=1
By extension one could define the maximal-entropy by,

H = sup h(II)
i

A naive question is the following,

“Is there a decision making under uncertainty problem such that partition-entropy
could be interpreted as the capacity of a partition and mazimal-entropy as infor-
mation?”

The answer is twice no. The first objection is quite obvious and can be
overcomed. The second is more definitive. Let p be a non-atomic probability

measure on A and
f:00,1] — R*: p— —pln(p)
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with f(0) = 0. Put w = f o u. Hence,

however, w is not a monotone set function, since w(f)) = w(€2) = 0, so w can not
play the rdle of a capacity ©.

The second objection is without recourse. Since p is non-atomic for all n there
is a partition IL, = {A;}/; such that p(4;) = £ and 37", A; = Q. Hence,

n

h(Il,) = éf(u(Ai)) = nf() = ~In() = In(n) oo

Thus, H =qet supy h(IT) > sup,, ~A(Il,) = +00. So w can not be majorized by
an information density function and a fortiori by any constant M, i.e., VA €

A, w(A) < Mu(A).

3 WTP/WTA for information

We consider a two-period” model with date ¢t = 1, 2. The decision maker possesses
a monetary amount m > 0 at date ¢ = 1 and an information partition II which
enables him to choose a best strategy at t = 2. We assume that the DM has an
additive time-separable utility function, i.e.

u(m, (s,w)) = uy(m) + ua(s,w)

with wu; differentiable, increasing and that he exhibits a decreasing marginal
utility for wealth, i.e., u; is concave. So its expected utility given (m, II) is,

ui(m) + Cap,, (IT).

At t = 1, the DM is offered the possibility to purchase some additional infor-
mation IT" at cost p that allows him to modify its earlier strategy. Hence its
expected utility given (m — p, IT V IT') is®,

uy(m — p) + Cap,, (ITV IT').

So an additional information is worthwhile whenever

ur(m — p) + Cap,, (I1V II') > uy (m) + Cap,, (II).

SWe could have consider the monotone extension of f but a fortiori the maximal-entropy
would be infinite.

"Our model is different from La Valle’s [6] where a one-period model is introduced dealing
necessarily with monetary outcomes.

811 v II’ is the coarsest partition which is finer than II and II’.
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Symetrically, a DM, with initial wealth and information (m,II V II'), is willing
to abandon some information II" at some price p if,

uy(m + p) + Cap,, (II) > uy(m) + Cap,, (II V IT').

The information set function provides a way to obtain an upper bound for
the DM’s willingness to pay given (m, II) for any additional information II'. Let
us call it the absolute willingess to pay (AWTP), defined by,

1

P, (m, 1) = ()

[ Iu2(Q) - C&pu2 (H) ]

where [, is the information set function derived from the utility at date ¢ = 2.
The AWTP is an upper bound for the WTP to be fully informed. This quantity
can be loosely interpreted as a mazimal marginal rate of substitution: where the
DM abandon one unit of util at date 1 at a“price” of u/(m) for a maximal gain
in utility at date t = 2 : 1,,(Q2) — Cap,, (II), the information gap °.

®, is cardinal, non-increasing with respect to information by construction and
non-decreasing with respect to wealth (see Appendix B.3).

In term of comparative statics, one can deduce that preference for the present
decreases the AWTP. Consider the pairs (u, us) and (vy,us). Then'?,
Dy ug) (M, TT) > Dy 0y (M, TT) <= i (m) < vi(m)
In particular, if vy = (1 + d)uy with 6 > 0, then the AWTP decreases with 6.

More generally, the AWTP can be decomposed setwise with respect to I (see
Appendix B.3). Let IT = {Ay,..., Ax}. It holds,

X
@, (m, 1) =Y @, (m, Ay)
k=1

where

I,(Ax) — Cap,, (Ax)

(I)u' 7A =
(m, ) i (m)

®,(m, Ag) is the DM’s AWTP to pay for being more informed whenever Ay
occurs.

Finally, the function ® allows us to give some bounds for the willingness to pay
or to accept some additional information (see Appendix B.3). For all (m, II, IT"),

WTP < ®,(m, 1) — ®,(m,IIVI) < WTA.

The first inequality says that in order to acquire full information one should
proceed step by step: WT'P + &, (m,IIVII') < &, (m,II).

The second says that the DM is always willing to be better informed, since he is
still willing to pay more when he possesses more information than he could with
less and having sold a piece of information: ®,(m,II) — WTA < &, (m, 11V IT).

9When the marginal utility at date 1 is constant and equals to 1, u} = 1, i.e. uy + ug is
quasi-linear, then the AWTP for more information is precisely the information gap.
0This condition on marginal utilities is independent of being “more/less risk averse than”.



hal-00526251, version 1 - 15 Oct 2010

10

4 Conclusion

In this article we adressed the question of how a subjective expected utility
maximizer would evaluate full information. We provide a way to compute infor-
mation with an information density function that can be built starting with the
utility /strategy set of the decision maker. Information density function depar-
tures from the “first guess” utility of perfect information which seems a natural
pick but turns out to be inappropriate in general situation. This new approach
uses intensively non-additive measures and a Radon-Nikodym theorem for sub-
additive set functions (TU-games). Information is thus modelized as a measure
and allows us to introduce some tractable bounds for evaluating willingness to
pay/accept for being better informed.

A Technical material

A.1 Topological conditions

The condition of maximality can be achieved under suitable topological condi-
tions (see [5] for stronger conditions).

Proposition A.1 Let S be a compact topological space that satisfies the first
aziom of countability (e.g. S is a metric compact space) and u > 0.

Assume that p-a.e., u(.,w) is upper semi-continuous (usc) and that u(s,.) is
integrable (for instance if u < M ) then the maximum is attained.

Proof.
Let us show that
Frp:5—R:s '—>/ u(s,w)du(w)
A

is usc for all A € A. Hence by Weierstrass theorem the maximum will be attained
on S compact.

Now since S is satisfies the first axiom of countability, we can prove that F4 is
usc by mean of sequences.

By hypothesis, there is a set N € A with u(N) = 0 such that Vw € N, u(.,w) is
usc.

Let {s,}» C A be a sequence converging to s € S. Put f,(w) = u(s,,w), f(w) =
u(s,w), by hypothesis 0 < f,(w), f(w) < M and f,, f are mesurable.

Since u(.,w) is usc for w ¢ N, we have lim,, f,(w) < f(w). Thus,

Timn Fa(s,) = limy /A (s, @)dp(w) = lim /A Fulw)dp(w)

=T, [ a@dn() < [ T fe)dn@) < [ @)
— [ Fw)du(w) = [ uls,w)du(w) = Fas)

The first inequality holds by Fatou’s Lemma, the second by monotonicity. 0
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A.2 Superior Radon-Nikodym derivatives

From now on (£2,.4) denotes a measurable space.

w: A— R* with w(@) = 0 is a set function.

w is monotone if VA, B € A, w(A) < w(B) whenever A C B.

w is null hereditary (0-H) if VA, B € A, w(A) = 0 = w(B) = 0 whenever B C A.
w is subadditive if VA, B € A, w(AU B) < w(A) + w(B) whenever AN B = 0.
w is superadditive whenever the opposite inequality always holds.

w is of bounded sum i.e., w € BS (see [8]) if

sup{z w(P;) : {P}; € P} < 400

where P denotes the set of partitions: {P;}; € P if >, P, = Q i.e., U; P = Q and
P,NP; =0 fori+#j.

We can define a (extended) set function w in the following manner,

VAe A, w(A) = sup{z w(P;) : ZB = A} € [0, 00].

By construction w is superadditive and @w > w (see Theorem 3.1 in [§]).

We consider a class of set functions which is wider than the class of subadditive
set functions.
A set function is almost subadditive if

VA,Be A, AB =0,w(AUB) <w(A) + w(B),

Hence the contribution of A to B can not be greater than the maximal contri-
butions of disjoint subsets of A.

Various notions of continuity can be introduced whenever we consider set func-
tions.

w is order-continuous i.e., w | (), if w(A,) — 0 whenever A,, | (.

w is semicontinuous from below, if liminf,, w(A,) > w(A) whenever A4, T A.

w is continuous from below, if lim, w(A,) = w(A) whenever A, T A.

Their relationships are presented in [9]. For monotone subadditive set functions
of bounded sum these three notions are equivalent.

Let pu,w be set functions. p dominates w ie., u >> w, if for all A € A,
u(A) =0 = w(A) = 0. p,w are equivalent, i.e., p = w, whenever p >> w and
<< w.

The Radon-Nikodym theorem we shall consider for set functions w.r.t. measures
introduce a one-sided Radon-Nikodym derivative.

Definition A.1 Let w be a set function and p a measure. w admils a superior
Radon-Nikodym derivative w.r.t. p if there exists an integrable function f* >0
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that majorizes w, i.e. w < f*u,
VA € A w(A) < / £ dy
Ja
which s minimal i.e.

Vg integrable ,w < gu = f* < g,u— a.e.

We shall say that Z—Z’S exists and write %S = f® where no confusion is possible.

Hence, whenever w admits a superior Radon-Nikodym derivative, w is necessarily
of bounded sum, order-continuous and dominated by p.

Theorem: (SEE THEOREM 1 IN [9])
Let w be an a.-subadditive set function and p a measure. Then, w admits a
superior Radon-Nikodym derivative w.r.t. p if and only if

w € BS,w s semicontinuous from below, jp >> w

Moreover, f*u = w if and only if w is 0-H.

Then, we may restate the theorem for our purpose

Theorem 1 (SUBADDITIVE CASE)
Let w be a monotone subadditive set function and p a measure. Then, w admits
a superior Radon-Nikodym derivative w.r.t. p if and only if

w € BS,w is order-continuous, jt >> w

Moreover, f*u=w.

Proof. By definition of the superior Radon-Nikodym derivative the necessity
part holds. As for sufficiency, a monotone order-continuous subadditive set func-
tion is 0-H, almost subadditive and semicontinuous from below, so we may apply
Theorem 1 in [9]. 0

We now consider the operation of supremum, that allows one to build a.-
subadditive set functions from existing ones. Then, we explore how Radon-
Nikodym derivatives are obtained through suprema. This makes the structure
of a.-subadditive set functions of bounded sum and semicontinuous from below
a sup-lattice which is also boundedly complete. The subset of subadditive set
functions is moreover a convex cone and boundedly complete too.

Lemma 1 Let wy,wy be set functions, wy,wy € BS be a.-subadditive. Then
max{wy, wy} s a.-subadditive of bounded sum. Moreover,

max{wy, wy} =W V Wy

where V' denotes the supremum for charges.
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Proof : At first we check that w = max{w;,ws} is of bounded sum.
We have w < wy + wy, thus w < wy + wy < Wy + Wsy. As for a.-subadditivity.
Let A,B € A with AN B = (. Assume w;(A+ B) < wy(A+ B). Then,

w(A+ B) —w(A) = ws(A+ B) —w(A) < wy(A+ B) —ws(A) < we(B) <w(B).

Let us prove that w = w; V wy. We have w = max{w;, wy} < max{w;,ws} <
w1 Vwsy. Thus, w < w; Vws holds. For the other inequality, w > w;, thus w > w;
hence w > w; V w,. g

Corollary 1 Let wy,wy be a.-subadditive set functions and p a measure such
that ‘%‘:S, dwa® orist then

du
d max{wy, wy}* dw,® dwsy®
— = INa. — ., T
du dp = dup
. r S r S . . .
Proof : Since dd—“;} , dd—“f exist, wy, wy are semicontinuous from below, of bounded

sum and dominated by p. Hence max{wi,ws} is also semicontinuous from be-
low, of bounded sum and dominated by p. Moreover according to Lemma 1,
max{wy, wy} is a.-subadditive, thus its superior Radon-Nikodym derivative ex-
ists.

Let A € A, with wy(A) > wy(A) for instance,

dwls dwgs

max{wi(A), ws(A)} = wi(A) < — p (A) < max{—

. A
0 dp 1 (A)

thus p a.e.,

dmax{wy, wy}? dw?® dwy®
{wy,wy} < max{ 1 ’ 2
dp dp ~ dp

For the reverse inequality, since max{w;,wy;} > w; it comes

dmax{wi, wy}*

>
du b

thus p a.e.,
dmax{wy,ws}* _ dw;®

dp

0

Lemma 1 can be extended to an arbitrary collection of a.-subadditive set
functions as soon as it is bounded from above,

Lemma 2 Let {wy}aer be a set of a.-subadditive set functions. If there exists a
set function ¥ of bounded sum such that w, < 1) then sup; w, s a.-subadditive
of bounded sum. Moreover,
SUp Wa = V[ Wa.
I
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Proof : Let ¢ be of bounded sum. Since sup; w, < ¥, sup; w, is of bounded
sum.

As for a.-subadditivity. Let A, B € A with AN B = () and € > 0. There is an
a(e) € I such that,

sup[wa(A + B) —wo(B)] — € < woo)(A+ B) — wao)(B) < Wa(o(A) < supw,(A)
I I

thus
sup wy (A + B) — supw,(B) — € < Supwg(A).
I I I

Since sup; w, is additive and sup; w, > w, for all « € I, thus {w, : « € I}
admits an upper bound. Let ) be an upper bound. For A € A, e > 0 there is a
partition {A4; :i=1,...,n} of A,

SUpTe(A) — & < 3 supwa(A)
I 2 I

And there are some «; € I such that

thus,

squW(A) —€< isup wo (Ai) — g <Y we, (A) < im(Ai) < Q(4)

i=1 1 i=1 i=1

Since € is arbitrary chosen, sup; w, < (). Hence the least upper bound is precisely
given by SUp; W, l

In particular this shows that sup; w, is dominated by an additive set function
namely Sup; w, (which is o-additive as soon as the w, s are lower semicontinuous
from below, see Corollary 2). If we consider measures P,’s then VP, exists
if and only if the P,’s are bounded from above by a set function of bounded
sum, moreover this supremum is equal to sup; P,. In particular this shows that
the space of bounded charges (countable additive set functions) is boundedly
complete (see p. 29, 50 in [2]).

Corollary 2 Let {w,}acr be a set of a.-subadditive semicontinuous from below
set functions, i a measure and 1 a set function of bounded sum such that w, < 1.
If w, << p for all « € I then

dsup; wg” dw,,
=V
dp

Proof : Since w, << p for all « € I it comes sup; w, << . supj;w, is of
bounded sum since ® is. sup; w, is a.-subadditive according to Lemma 2.
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Let us check for semicontinuity from below. Let A,, T A and € > 0. There exists
a, € 1 s.t.

sup wy(A) — € < w,, (A) < liminf w,_ (A,) < lim inf sup w,(4,)
I " n I

Applying Theorem 1 in [9] and Lemma 2 gives

d sup;w,® dSUp;We d VW,
du B du  dp

Let us endow £} (p) with the p-a.e. preorder ie., f > g p-ae..
The sct of superior Radon-Nikodym derivatives {dd#’as :a € I} is clearly domi-

d sup; wa

nated by i
Let g € £} (p), with g > %S p-a.e. for all € I. Then gu > w, for all a € I.
Thus, gu > sup; w, and it comes by minimality of the superior Radon-Nikodym
derivative,

S d sup;we®

=
1Q o d wa S .
is a least upper bound of {W ca €T} O

S0 d Sl;praS
m

As a consequence of Corollary 2 we have a direct way to guarantee the exis-
tence of suprema in ca™(p).

Property: Consider ca™t(p) = {v € ca™ : v << u} and let {Py}1 C ca™(u).
If Q is a measure such Q > P, then there exists a measure R > P, with R << .
Hence, the supremum of {P,}1 C ca™(u) exists in ca™(u) if and only if it exists
in ca™ and these suprema are equal.

Proof: Let Q@ > P,, according to Lemma 2, V;FP, = sup; P,. Now since
w>> P, forall « € Iit comes p >> sup; P,, thus p >> V;P,. Take R = V[ F,.
Assume {P,}; C ca™(u) admits a supremum in cat. The supremum it given by
@ = VP,. Thus there exists R > P, with R << u. So R > V;FP,, and it comes
that VP, << pie. V[P, € ca™(u). And since VP, is a least upper bound in
ca™ it is also a smaller bound than any upper bound in ca™(u), so VP, is also
the supremum in ca™ ().

As for the converse, assume the supremum of {P,}; C cat(p) exists and let us
denote it by P. Since P, < P we have P, < V;P, < P and V[P, << p since
P € cat(u), thus V;P, is an upper bound in ca™(x). By minimality of P, it
comes P = V;P,, which is the supremum in ca™. Il

B Proofs
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B.1 The Positive result

We may now give a proof of the existence of an information density function in a
decision making problem under uncertainty and the way the information density
function can be obtained.

Proof.

We shall check that the conditions for the existence of a superior Radon-Nikodym
derivative are met and then give an explicite formula to compute it.

At first, we check that the set function Cap, where

VA e A, Cap(A) = sup/ u(s,w) du(w)
s Ja

is well defined, monotone and subadditive.

e Cap is a well defined set function.
Since 0 < Cap(A) < Mu(A) < M < oo and Cap(() = 0.

e Cap is monotone.
Let A C B, A, B € A, then Cap(A) < Cap(B) < oo since u(s,.) > 0.

e Cap is subadditive.
Let AC B,A, B e A with AN B = (). There exists s, € S such that,
Cap(A+ B) —e< /

s u(Se, .) du = /A u(Se,.) du+ /B u(Se,.) du

< Cap(A) + Cap(B)
since € can be arbitrary chosen close to 0, Cap(A+ B) < Cap(A)+ Cap(B) holds.

Let us prove that Cap satisfies the sufficient conditions of Theorem 1.
Since Cap < My and p is o-additive, it holds

e Cap is order-continuous.
Let A, | 0. It comes, 0 < lim,, Cap(A,,) < M lim,, u(A,) = 0.

e Cap is of bounded sum.
Let {A;}", be a partition. Then, > | Cap(A;) < M X, u(A;) = Mp(Q) < oo.

e Cap is dominated by pu.
We have Cap << Mp with M > 0 thus Cap << p.

So Cap fulfills the hypothesis of Theorem 1. Thus Cap admits a superior
Radon-Nikodym derivative w.r.t. u. Take U = %?Lps. By definition I = Cap, so
the information set function (measure) can be factorized by U through p, i.e.,

dl — dCap _

dp — dp
and by minimality of the superior Radon-Nikodym derivative, for any integrable
V:Q— R,

U

VA € A, Cap(A) < /A V(w)dp(w) = U <V, as.
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Moreover since Cap is monotone, thus null hereditary, it holds for all A € A,
Cap(A) = 0 <= I(A):/AUdu:O — w(AN{U > 0}) =0.

Secondly, to obtain explicitely the Radon-Nikodym derivative formula we apply
directely Corollary 2.

Take for index set I = 5, ¢ = Mp and w, = m, where my(.) = [ u(s,w) du(w).
So,

sup w, = supmg = Cap.
I S

And it comes

U

d Cap® dmg
= = \/ = \/ U(S, ‘)
dp ses A g

B.2 The countable case
Let us show that the information density function is precisely V. = supguf(s,.)
whenever Q = N, A = 2N with p(w) > 0.

Proof.
Since A = 2%, V is measurable and for all A C NN,

—= . < .. < .
Cap(A) Sl;p/Au(& ) dp < /Asgpu(s, ) dp < /AV dp

So V' majorizes Cap.
It remains to check that V' is minimal.
Let f be a function such that Cap < fu. In particular, for all w € €2

Cap({w}) < flw)p(w).
But,
Cap({w}) =aet V(w)p(w) and p(w) >0

thus V(w) < f(w). So V is the superior Radon-Nikodym derivative of Cap w.r.t.
IL. U

B.3 AWTP

Ly () —Cap,,, (IT)
()

Let us prove that the AWTP, ®,(m,Il) =
the DM’s willingness to pay for any II'.

Proof.
An additional information at cost p is worthwhile whenever

, s an upper bound to

uy(m — p) + Cap,,(ITV II') > uy(m) + Cap,, (II)
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thus,
uy(m) — uy(m — p) < Cap,, (IL VII') — Cap,,(II) < I,,,(©2) — Cap,, (II)
Moreover u, is concave and differentiable at m, thus
ur(m) — wi(m — p) = —uy(m)((m — p) —m) = uj(m)p.
Since u}(m) > 0 it comes,

< fuz(Q)uj(S;puz(H)

= &, (m,II).

Hence the maximal price the DM is ready to pay for any II' is bounded from
above by @, (m,II). O

Let us check that ®,(m, A) is the maximal price the DM could pay for being more
informed whenever A occurs.

Proof.

Let A € A. Consider the partitions IT = {A;,..., Ax} with A = A for some k
and II' = {By,..., By}.

Let us consider the following information structure

HDAH/:{Al:l;’ék}U{AﬂBjij:L...,J}.

In otherwords the set A is “decomposed” over IT', whereas the other sets A;
remain inchanged, hence the DM has a finer information structure than II and
this additional information is gained whenever A occurs by means of IT’, so the
DM is offered IT" contingently.

This contingent information at cost p4 is worthwhile whenever,
ui(m — pa) + Cap,, (Il >4 IT') > uy(m) 4 Cap,, (1)

thus,
ui(m) — uy(m — pa) < Cap,, (IT>4 IT') — Cap,,, (IT)

J
= Z Cap,, (AN B;) — Cap,,(A) < I,,(A) — Cap,, (IT)

j=1
Following the same lines than the previous proof, it comes
qu (A) — Capu2 (H)

pa < p =®,(m,A).
4 @) (m, 4)

Hence the maximal price the DM is ready to pay for II' whenever A occurs is
bounded from above by @, (m, A) . 0

Let us prove that ®,(m,II) can decomposed setwise with respect to I1.
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Proof.
Let IT = {Ay,...,Ag}. Since I, is additive, I,,(Q) = =K, I,(A;) and by
definition Cap,,(II) = Y4, Cap,, (4), thus

om0 = 22 5 Ll - O () _ S, (1, )

Uy k=1 ui(m) k=1

0
Let us prove that the quantities ®,(m,II), ®,(m, A) are cardinal.

Proof.
The utility function (m, (s,w)) — u(m, (s,w)) is defined up to a positive linear
transformation. Let a > 0,b € R and consider

v=au+b=alu; +uy) +b=(au; +b) + aus = vy + vs.
We have, (v1)" = (au; +b)" = auy and 1,,(2) — Cap,, (II) = a(1,, (£2) — Cap,, (1I)),
thus
1y,(©2) — Cap,,(I) _ a 1,,(?) — Cap,,(II)

O, (m,II) = = o) = ) = O, (m,II).

The proof is similar for &, (m, A). O
Let us prove that for all (m,I1,11"), it holds

WTA > ®,(m,IT) — ®,(m,[IVII') > WTP.
Proof.

Indeed, a DM, with initial wealth and information (m,II V II'), is willing to
abandon some information II' at some price p if,

uy(m) + Cap,,,(IT VII') < uy(m 4+ p) + Cap,, (IT)

or
ur(m +p) —w(m) = Cap,,(IIVII') — Cap,,(II)

=u'(m)[®,(m, ) — @, (m, 1TV IT')]
and since u; is concave it comes
p > P, (m, 1) — O, (m, IV II')

thus the willingness to accept is greater than @, (m,II) — @, (m, I v II').
Similarely, a DM with initial wealth and information (m,II) is willing to pay
some additional information II" at some price p if,

ui(m — p) + Cap,,(ITV II') > u;(m) + Cap,, (II)

or
ur(m —p) —wi(m) = Cap,, (IT) — Cap,,,(I1 V IT)

= u'(m)[®,(m, 1TV II') — &, (m,II)]
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and since u; is concave it comes
p < Dy (m, 1) — @, (m, IV IT')

thus the willingness to pay is smaller than ®,(m,II) — &, (m, IV IT'). O
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