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1 Introduction

This paper is concerned with the existence of multiple equilibria in two-

sector models of endogenous growth with economy-wide external effects à

la Romer [28]. Most of the papers on multiple equilibria available in the

literature provide a separate analysis of local versus global indeterminacy

and give strong restrictions on technologies and/or preferences. Our aim

is then to develop a two-sector formulation in which the existence of local

and global indeterminacy can be analysed simultaneously and to provide

less restrictive sufficient conditions than those usually available. Local in-

determinacy is associated with the existence of a continuum of equilibrium

paths from different initial conditions converging towards a given stationary

balanced growth path, while global indeterminacy concerns the existence of

multiple equilibrium paths from a given initial condition converging towards

different stationary balanced growth paths.

The existence of local indeterminacy and multiple converging balanced

growth paths have been a major concern of the literature dealing with two-

sector endogenous growth models. Depending on the assumptions on the

externalities, different types of conclusions have been provided. Benhabib

and Perli [7] and Xie [31] consider the Lucas [19] formulation with aggre-

gate human capital externalities in the final good sector only. They prove

the uniqueness of the stationary balanced growth path and show that the

existence of local indeterminacy requires a large enough elasticity of in-

tertemporal substitution in consumption.1 Benhabib et al. [6], Mino [21]

and Nishimura and Venditti [25] consider sector-specific externalities in both

sectors. Uniqueness of the stationary balanced growth path is also obtained

and local indeterminacy arises under conditions on the capital intensity dif-

ference across sectors, namely if the final good sector is more physical capital

intensive from the social perspective but more human capital intensive from

the private perspective than the human capital sector.2 It is worth noting

1See also Mitra [22] for a similar analysis of a discrete-time version of the Lucas model.
2Similar results are also obtained by Bond et al. [10] in a model with taxes instead

of externalities, by Raurich [26] in a model with taxes and government spending, and by

Ben-Gad [5] in a model with both taxes and sector-specific externalities.
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that no particular condition on the elasticity of intertemporal substitution

in consumption is necessary in this case.

Concerning the existence of multiple stationary balanced growth paths,

an augmented version of the Lucas model is usually considered. In a first

set of contributions we find Benhabib and Perli [7] and Ladrón-de-Guevara

et al. [16, 17] who introduce endogenous leisure to obtain two stationary so-

lutions. In a second and more recent set of contributions, Garćıa-Belenguer

[15] and Mattana et al. [20] focus on different specifications for the exter-

nal effects. Garćıa-Belenguer [15] shows the existence of multiple stationary

balanced growth paths with a Lucas model augmented to include aggregate

physical capital externalities in the production of the final good and de-

creasing returns to scale in the human capital accumulation process. Local

indeterminacy is also obtained but still requires a large enough elasticity of

intertemporal substitution in consumption.3 In Mattana et al. [20], multiple

stationary balanced growth paths are derived from the introduction of exter-

nalities in the human capital sector, and global indeterminacy is exhibited

through an homoclinic bifurcation.

In this paper, we develop a formulation which allows to provide a joint

analysis of multiple stationary balanced growth paths and multiple com-

petitive equilibrium balanced growth paths. Building on the Lucas [19]

framework generalized by Mulligan and Sala-i-Martin [23], we consider a

two-sector endogenous growth model where the productions of the final good

(used for consumption and as physical capital) and human capital require

economy-wide external effects. Our formulation differs from that of Lucas

[19] in two dimensions: First the technology for the production of human

capital depends on both physical and human capital,4 and is also affected by

the externalities. Second, the economy-wide external effects are defined as

physical capital by unit of efficient labor. In other words, the externalities

are formulated in such a way that the returns to scale in both sectors are

3Similar results have been obtained by Drugeon et al. [14] and Nishimura et al. [24] in

a two-sector endogenous growth model with a pure consumption good and an investment

good, and economy-wide capital externalities.
4See also Rebelo [27].
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constant at the private and social levels.5 From this point of view, it allows

to avoid to refer to the existence of positive profit at the private level as

in Benhabib et al. [6], Mino [21], or Nishimura and Venditti [25]. Such a

formulation is also embedded in the general model considered by Mulligan

and Sala-i-Martin [23] but has never been analyzed in the literature.6

Our main results are the following. First we give simple conditions for

the existence of one or two stationary balanced growth paths. Second, we

show that for a given stationary solution, two kinds of local indeterminacy

can occur: a local indeterminacy of order 2 in which the stable manifold

has dimension 2, and a local indeterminacy of order 3 in which the stable

manifold has dimension 3. This last case is particularly interesting as we

prove that in a configuration with two stationary solutions, one can be locally

indeterminate of order 2 while the other is locally indeterminate of order

3. This type of generalized local and global indeterminacy has never been

illustrated previously.

We actually provide improved sufficient conditions for local and global

indeterminacy with respect to the literature. We show indeed that the ex-

istence of multiple stationary solutions and the existence of a continuum

of equilibrium paths are compatible with both types of physical capital in-

tensity differences across sectors at the private level and low values for the

elasticity of intertemporal substitution in consumption. In particular these

results can be obtained with a standard logarythmic utility function in which

the elasticity of intertemporal substitution in consumption is unitary pro-

vided the final good sector is human capital intensive at the private level.

Note however that in this case, only a local indeterminacy of order 2 can

occur and requires the existence of two stationary balanced growth paths.

In other words, local and global indeterminacy are closely related.

When a non unitary elasticity of intertemporal substitution in consump-

tion is considered, we prove in particular that a local indeterminacy of order

3 can arise in two configurations: either when the final good is more inten-

5Such an assumption meets the findings of Basu and Fernald [4] according to which

the aggregate returns to scale in the US are roughly constant.
6Drugeon [13] considers a similar formulation but with sector-specific externalities.
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sive in human capital at the private level and the elasticity of intertemporal

substitution in consumption is lower than unity, or when the final good is

more intensive in physical capital at the private level and the elasticity of

intertemporal substitution in consumption is larger than unity.

To summarize, we show that the existence of multiple equilibrium bal-

anced growth paths can arise under a wide variety of parameters configu-

rations, i.e. for any sign of the capital intensity difference at the private

level, and any value of the elasticity of intertemporal substitution in con-

sumption. These results differ from most of the previous analysis of models

with externalities where indeterminacy has been shown to arise only for

large intertemporal substitutability.7 A second contribution of our paper is

that we can place it in the context of the literature on poverty traps.8 We

prove that global indeterminacy is always associated with the existence of a

poverty trap when the elasticity of intertemporal substitution in consump-

tion is larger than unity, while it can be characterized by a high growth

balanced growth path which has a higher dimension of stability than the

low growth one when the elasticity of intertemporal substitution is lower

than unity. In this last case, the poverty trap can be avoided by correctly

choosing the equilibrium path.

The rest of the paper is organized as follows: Section 2 presents the

model and solves the competitive equilibrium. The existence and multi-

plicity of stationary balanced growth paths are studied in Section 3 and the

characteristic polynomial associated with the linearized dynamical system is

computed. Section 4 contains the analysis of local and global indeterminacy.

Section 5 provides concluding comments. The proofs are in the Appendix.

2 The model

We consider the model formulated by Mulligan and Sala-i-Martin [23] with

constant point-in-time returns and different technologies. The representative

household (-firm owner) decides optimally over consumption streams and

7See Benhabib and Perli [7], Garćıa-Belenguer [15].
8See Azariadis and Stachurski [2].
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allocations of physical (K1) and human (K2) capital between manufacturing

and educational activities, by solving the intertemporal problem:

max
C(t),K11(t),K21(t),K12(t),K22(t)

∫ +∞

0

C(t)1−σ − 1

1 − σ
e−ρtdt

s.t. K̇1(t) = Y1(t) − δ1K1(t) − C(t)

K̇2(t) = Y2(t) − δ2K2(t)

Yj(t) = ej(t)K1j(t)
β1jK2j(t)

β2j , j = 1, 2

Ki(t) = Ki1(t) +Ki2(t), i = 1, 2

Kj(0), {ej(t)}
+∞
t=0 , j = 1, 2, given

(1)

where σ > 0 is the inverse of the elasticity of intertemporal substitution in

consumption, ρ > 0 is the discount factor, Kij is the amount of capital good

i used in sector j and δi is the rate of depreciation of capital Ki, i = 1, 2. In

order to simplify the analysis, we assume that the depreciation rate of both

physical and human capital is equal to zero, i.e. δ1 = δ2 = 0. Of course, all

our results would be preserved by continuity if we introduce small enough

depreciation rates for both stocks.

Each technology is homogeneous of degree one at the private level, i.e.
∑2

i=1 βij = 1, j = 1, 2, and contains some Romer-type productive external-

ities. We assume that these externalities are given as functions of physical

capital by unit of efficient labor, namely

ej(t) = k̄(t)bj , j = 1, 2 (2)

with k̄(t) = K̄1(t)/K̄2(t), K̄1(t) and K̄2(t) the average stocks of physical

and human capital in the economy, and bj ∈ [0, 1]. At the equilibrium, we

have K̄i = Ki, k̄ = k = K1/K2 and the technologies at the social level are

Y1(t) = K11(t)
β11K21(t)

β21k(t)b1

Y2(t) = K12(t)
β12K22(t)

β22k(t)b2

They are both homogeneous of degree 1 at the private and social levels.

Let us denote the matrix of private Cobb-Douglas coefficients as follows

B =

(

β11 β12

β21 β22

)

with β21 = 1 − β11 and β22 = 1 − β12.

5

ha
ls

hs
-0

04
08

01
8,

 v
er

si
on

 1
 - 

28
 J

ul
 2

00
9



Assumption 1. The technological coefficients at the private level satisfy

0 < βij < 1 for i, j = 1, 2 and β11 − β12 6= 0.

The inverse of B, denoted by Ψ, is thus

Ψ =

(

ψ11 ψ12

ψ21 ψ22

)

=
1

β11 − β12

(

β22 −β12

−β21 β11

)

,

The Hamiltonian and Lagrangian in current value are

H = C1−σ−1
1−σ + P1(Y1 − C) + P2Y2

L = H +R1(K1 −K11 −K12) +R2(K2 −K21 −K22)

where Pi is the utility price and Ri the rental rate of good i = 1, 2. The

Pontryagin maximum principle gives necessary conditions for a maximum:

C−σ = P1 (3)

Kij = Pj
βij
Ri
Yj, for i, j = 1, 2 (4)

Ki = Ki1 +Ki2, for i = 1, 2 (5)

Ṗi = ρPi −Ri, for i = 1, 2 (6)

K̇i = Yi − Cι1, for i = 1, 2 (7)

where ι1 := {1 if i = 1, 0 if i = 2}. From the first-order condition (3)

and (4), we can easily check that the maximised Hamiltonian is concave in

(K1,K2) and satisfies the Arrow’s condition.9 It follows that any path that

satisfies the conditions (3)-(7) together with the transversality conditions

lim
t→+∞

P1(t)K1(t)e
−ρt = lim

t→+∞
P2(t)K2(t)e

−ρt = 0

for any given path of external effects {e1(t), e2(t)}
+∞
t=0 and initial conditions

(K1(0), K2(0)), is an optimal solution of problem (1).

Lemma 1. Solving the first order conditions (4)-(5) gives the rental rates

Ri = (P1e1β
∗
1)ψ1i (P2e2β

∗
2)ψ2i , i = 1, 2 (8)

where
β∗j = β

β1j

1j β
β2j

2j , j = 1, 2

and the optimal production levels

Yj = ej (ψ1jR1K1 + ψ2jR2K2) (β1j/R1)
β1j (β2j/R2)

β2j , i = 1, 2.

Proof. See Appendix 6.1.

9See Leonard and Van Long [18].
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Remark : Private constant returns imply that the rental rates are homoge-

neous of degree one in the prices, since ψ11 + ψ21 = ψ12 + ψ22 = 1.

Consider now the formulation of external effects (2). After substitution

of this expression into the rental rates (8), and from the first order conditions

(6)-(7), we get the following result:

Proposition 1. Under Assumption 1, denote A−1 = [αij ] with αij =

Rjψij/Pi, ri = Ri/Pi, P = (P1, P2) and K = (K1,K2). The equilibrium

paths are solution of the following dynamical system

Ṗi = Pi(ρ− ri(P,K)), for i = 1, 2

K̇i = αi1K1 + αi2K2 − Cι1, for i = 1, 2.
(9)

with

C = C(P1) = P
−1/σ
1

Ri(P,K) = (β∗1)ψ1i(β∗2)ψ2iPψ1i

1 Pψ2i

2 (K1/K2)
b1ψ1i+b2ψ2i i = 1, 2,

Remark : Denoting π = P2/P1 and k = K1/K2, the rental rates ri = Ri/Pi

become

ri(π, k) = (β∗1)ψ1i(β∗2)ψ2iπψ2ikb1ψ1i+b2ψ2i (10)

Note that ri(π, k) is a function of k only if there are externalities. If there

are no externalities, it only depends on prices.

We now define a balanced growth path, BGP, as the state where all

the variables grow at a constant rate. We thus rule out paths with ever

increasing growth rates which will not satisfy the transversality conditions.

As the social production functions are homogeneous of degree 1 at the private

and social levels, along a BGP physical and human capital will grow at

the same rate denoted γ. It follows that along a BGP the prices P1 and

P2 of physical and human capital will also grow at the same rate denoted

γp. From the dynamical equation characterizing the behavior of physical

capital, the stationary balanced growth rate of consumption will be also

equal to that of physical capital, i.e. γ. Using the normalization of variables

as introduced by Caballe and Santos [11], we then define a BGP as follows:

K1(t) = k1(t)e
γt, K2(t) = k2(t)e

γt, C(t) = c(t)eγt, P1(t) = p1(t)e
γpt and

7
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P2(t) = p2(t)e
γpt, for all t ≥ 0, with k1(t), k2(t), c(t), p1(t) and p2(t) the

stationarised values for K1(t), K2(t), C(t), P1(t) and P2(t). Substituting

these new variables into the dynamical system (9) gives γp = −σγ. As usual

along a BGP prices decrease at a constant rate which is equal to the growth

rate of physical capital divided by the elasticity of intertemporal substitution

in consumption.

3 Endogenous growth: existence and multiplicity

of stationary BGP and local dynamics

The stationary balanced growth rates and the levels for the stationarised

variables consistent with the BGP, c̄, k̄1, k̄2 p̄1, p̄2 and π̄ = p̄2/p̄1, are derived

from the equilibrium set of the dynamical system (9) which becomes

ṗ1 = p1(ρ+ σγ − r1(π, k)) (11)

ṗ2 = p2(ρ+ σγ − r2(π, k)) (12)

k̇1 = (α11 − γ)k1 + α12k2 − p
−1/σ
1 (13)

k̇2 = α21k1 + α22k2 − γk2. (14)

and the transversality conditions are now stated as follows:

lim
t→+∞

p1(t)k1(t)e
[γ(1−σ)−ρ]t = lim

t→+∞
p2(t)k2(t)e

[γ(1−σ)−ρ]t = 0 (15)

We introduce the following restriction in order to satisfy these boundary

conditions:

Assumption 2. ρ− γ(1 − σ) > 0

3.1 Stationary balanced growth path

The equilibrium point of the system (11)-(14) determines the stationary

BGP. It is an at-least one dimensional manifold in (γ, p1, p2, k1, k2). Using

(11) and (12), we get r1(π, k) = r2(π, k) = r(π, k) and

γ = r(π,k)−ρ
σ

(16)

where 0 < γ < r from the transversality conditions.
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Lemma 2. A stationary balanced growth rate γ̄ = (r̄−ρ)/σ is obtained from

a stationary rental rate r̄ which is a solution of

F(r) = G(r) (17)

with F(r) = σβ21β̃r
µ, G(r) = [β11(σ − 1) + β12]r + ρ(β11 − β12) and

β̃ =
(

(β∗1)β12+b2(β∗2)β21−b1
)−1/(β12b1+β21b2)

, µ = 1 + β12+β21+b2−b1
β12b1+β21b2

(18)

Proof. See Appendix 6.2.

Let us define the following values:

r∗ =
(

β11(σ−1)+β12

µσβ21β̃

)
1

µ−1
, ρ∗ = (1−µ)[β11(σ−1)+β12 ]

µ(β11−β12)
r∗ (19)

When ρ = ρ∗, r∗ is a tangency point between F(r) and G(r). Consider also

ρ1 = (1 − σ)
(

β21

β12
β̃
)1/(1−µ)

, ρ2 =
(

β21

β11
β̃
)1/(1−µ)

(20)

Note that as ρ1 can be negative and the difference ρ2−ρ1 can be positive or

negative, we will denote ρ∗1 = max{0,min{ρ1, ρ2}} and ρ∗2 = max{ρ1, ρ2}.

Note also that if σ ≥ 1, ρ∗1 = 0 and ρ∗2 = ρ2. Let us finally introduce

µ1 = β11(σ−1)+β12

σβ11
, µ2 = β11(σ−1)+β12

σβ12

(21)

From all this, we now study the existence of a stationary balanced growth

rate. We first provide conditions for multiplicity.

Theorem 1. Let σ̂ = (β11 − β12)/β11. Under Assumptions 1-2, there exist

two stationary balanced growth rates 0 < γ̄1 < γ̄2 if and only if one of the

following sets of conditons holds:

i) β11 < β12, µ ∈ (µ2, µ1) ⊂ (1,+∞) and ρ ∈ (ρ∗2, ρ
∗);

ii) β11 > β12, σ ≥ σ̂, µ ∈ (µ1, µ2) ⊂ (0, 1) and ρ ∈ (ρ∗2, ρ
∗);

iii) β11 > β12, σ ∈ (0, σ̂], µ ∈ (µ2, µ1) ⊂ (−∞, 0) and ρ ∈ (ρ∗, ρ∗1).

Proof. See Appendix 6.3.

Theorem 1 shows that multiple stationary balanced growth rates arise in

both configurations for the capital intensity difference at the private level.

Note however that if the amount of externalities is the same in both sectors,

i.e. b1 = b2 = b > 0, or if there is no externality in the final good sector,

9
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i.e. b1 = 0, or if the Lucas [19] formulation for the accumulation law of the

human capital sector is assumed, i.e. b2 = β22 = 0, cases ii) and iii) can-

not occur. However, multiple stationary BGPs are still a possible outcome

through case i) as shown in the following corollary:

Corollary 1. Under Assumptions 1-2, there exist two stationary balanced

growth rates 0 < γ̄1 < γ̄2 if one of the following sets of conditions holds:

i) b1 = b2 = b > 0, β11 < β12, µ ∈ (µ2, µ1) ⊂ (1,+∞) and ρ ∈ (ρ∗2, ρ
∗);

ii) b1 = 0, b2 > 0, β11 < β12, µ ∈ (µ2, µ1) ⊂ (1,+∞) and ρ ∈ (ρ∗2, ρ
∗);

iii) b1 > 0, b2 = β22 = 0, µ ∈ (µ2, µ1) ⊂ (1,+∞) and ρ ∈ (ρ∗2, ρ
∗).

Proof. See Appendix 6.4.

On the one hand, Corollary 1-ii) shows that the existence of multiple

stationary BGPs does not require externalities in the final good sector pro-

vided there are external effects in the human capital sector. This conclusion

is similar to the one obtained by Mattana et al. [20].10 On the other

hand, Corollary 1-iii) proves that multiple stationary BGPs also arise if the

accumulation of human capital does not depend on physical capital and ex-

ternalities provided there are external effects in the final good sector. This

conclusion is similar to the one obtained by Garćıa-Belenguer [15].

Simple conditions for the existence and uniqueness of a stationary bal-

anced growth rate are now stated in the following Theorem.11

Theorem 2. Under Assumptions 1-2, there exists a unique stationary bal-

anced growth rate γ̄ > 0 if and only if one of the following sets of conditons

holds:

i) σ ≥ 1 and ρ < ρ∗2 = ρ2;

ii) σ ∈ (0, 1), and ρ ∈ (ρ∗1, ρ
∗
2).

Proof. See Appendix 6.5.

10See also Chamley [12].
11Without externalities, i.e. if b1 = b2 = 0, r =

ˆ

(β∗
1 )β12(β∗

2 )β21
˜

1
β12+β21 is the unique

stationary value for the rental rate of capital so that there exists a unique stationary BGP

(see d’Autume and Michel [1], Caballe and Santos [11], Rebelo [27]).
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Theorems 1 and 2 can be summarized by the following Table:

r

F

r

F

r

F

r

F

r

F

µ < 0 µ = 0 µ ∈ (0, 1) µ = 1 µ > 1

r

G

1 1 1 1 1 or 2
β11 < β12, σ ≥ 0

r

G

1 1 1 or 2 1 1
β11 > β12, σ > σ̂

r

G

1 0 1 1 1
β11 > β12, σ = σ̂

r

G

1 or 2 1 1 1 1
β11 > β12, σ ∈ [0, σ̂)

Table 1: Existence of stationary BGP: uniqueness vs. multiplicity

In order to clarify the implications of our results, we provide in Figures 1

and 2 geometrical illustrations of some cases covered in Theorems 1 and 2.

Figure 1: 1 > b1 − b2 > 0.
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Figure 2: b1 − b2 < 0.

3.2 Local dynamics

Linearizing the dynamical system (11)-(14) around a stationary BGP gives

the characteristic polynomial.

Proposition 2. Under Assumptions 1-2, let r̄ be a solution of equation (17),

γ̄ = (r̄ − ρ)/σ and δ̄ = r̄ − γ̄ > 0. Consider also G(r) and µ respectively

defined by equations (17) and (18). The characteristic polynomial is

g(λ) = λ4 − T (r̄)λ3 + S(r̄)λ2 −D(r̄)λ+ Σ(r̄) = 0

with Σ(r̄) = 0,

D(r̄) = −δ̄ r̄
1−µ[r̄−γ̄(β11−β12)](β12b1+β21b2)[G(r̄)(µ−1)+ρ(β11−β12)]

(β11−β12)2σβ21β̃
≡ δ̄D̃(r̄)

T (r̄) = 2δ̄ − r̄ (b2−b1)
(β11−β12)2

+ δ̄[γ̄(β12b1+β21b2)+δ̄b1]

β21β̃r̄µ
≡ 2δ̄ + T̃ (r̄)

S(r̄) = δ̄(T (r̄) − δ̄) + δ̄−1D(r̄) + Y(r̄) ≡ δ̄(T̃ (r̄) + δ̄) + D̃(r̄) + Y(r̄)

and
Y(r̄) = r̄1−µ

(

1−σ
σ

) [r̄−γ̄(β11−β12)][γ̄(β12b1+β21b2)+δ̄b1]

(β11−β12)β21β̃

Proof. See Appendix 6.6.

As Σ(r̄) = 0, one eigenvalue, say λ4 = 0, is equal to zero. This property

comes from the fact that we consider the dynamical system (11)-(14) which

has been stationarised. Then, we get λ1 + λ2 + λ3 = T (r̄), λ1λ2 + λ1λ3 +

λ2λ3 = S(r̄) and λ1λ2λ3 = D(r̄).
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In the current economy, there are two capital goods whose initial values

are given. Any solution of the dynamical system (11)-(14) that converges

to a stationary BGP γ̄, i.e. to the associated steady state (k̄1, k̄2, p̄1, p̄2) ≡

(k̄, p̄), and that satisfies the transversality conditions (15) is an equilibrium

path. Therefore, given (k1(0), k2(0)), if there is more than one set of initial

prices (p1(0), p2(0)) in the stable manifold of the steady state under consid-

eration, the equilibrium path from (k1(0), k2(0)) will not be unique. Since

one root is always equal to zero, if the Jacobian matrix has at least two roots

with negative real parts, there will be a continuum of converging paths and

thus a continuum of equilibria. The stationary BGP γ̄, or the steady state

(k̄, p̄), is then said to be locally indeterminate. In this case, we distinguish

two kinds of local indeterminacy:

- a local indeterminacy of order 2 in which the stable manifold is two

dimensional. All the converging equilibrium are then obtained from a pro-

jection of the three dimensional dynamical system defined by equations (11)-

(14) on the two dimensional subspace corresponding to the stable manifold.

- a local indeterminacy of order 3 in which the stable manifold is three

dimensional. All the converging equilibrium are then directly obtained in

the original three dimensional dynamical system.

Such a distinction has important consequences. We know indeed since

Woodford [30] that local indeterminacy is a sufficient condition for the exis-

tence of sunspot equilibria. However, this conclusion relies on the assump-

tion that all the characteristic roots are stable. Within such a framework,

Woodford is able to exploit the (local) linear approximation of the dynami-

cal system to prove his result. The problem comes from the fact that when

there exist unstable roots, the consideration of the linear approximation

does not provide correct conclusions. Indeed, it has been proved by Bloise

[8] that when non-linearities are taken into account, sunspot equilibria can-

not be constructed on the local stable manifold. Bloise then shows that the

existence of sunspot equilibria on a full dimensional set can be obtained but

requires more restrictive assumptions.12

12See also Bloise and Magris [9] for some application of this result to a cash-in-advance

economy with capital accumulation.
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Definition 1. If the locally stable manifold of the stationary BGP γ̄ has

dimension n greater than 1, then γ̄ is said to be locally indeterminate. More

precisely, we will say that γ̄ is locally indeterminate of order 2 if n = 2 or

locally indeterminate of order 3 if n = 3.

If a stationary BGP γ̄ is not locally indeterminate then we call it lo-

cally determinate. This terminology will cover two different configurations:

saddle-point stability in which there exists one unique converging equilib-

rium path or local instability. In this latter case either there exists some

equilibrium path converging toward some periodic cycle or the externalities

are such that there does not exist any equilibrium path.13

Beside the occurrence of local indeterminacy, as multiple BGPs can exist,

global indeterminacy is also a possible outcome of our model. When two

distinct BGPs γ̄1 and γ̄2 exist, from a given initial condition for physical and

human capital, two distinct equilibrium paths converging towards different

long-run positions can indeed coexist. The following definition provides a

precise characterization for this configuration.

Definition 2. Consider an equilibrium path (k∗1(t), k
∗
2(t), p∗1(t), p

∗
2(t)) con-

verging to a BGP γ̄1 from a given initial condition (k1(0), k2(0)).

Global indeterminacy emerges if there exists another equilibrium path

(k1(t), k2(t), p1(t), p2(t)) starting from the same initial condition but con-

verging to a different BGP γ̄1 6= γ̄2.

Global indeterminacy can emerge in various configurations:

i) when the two BGPs are saddle-point stable,14 or

ii) when one BGP is saddle-point stable while the other is locally inde-

terminate of order 2 or 3, or

iii) when one BGP is locally indeterminate of order 2 while the other is

locally indeterminate of order 3.

13See Santos [29].
14We cannot get two saddle point stable stationary BGPs. Such a configuration can

occur if the equilibrium is given by singular ordinary differential equations, or differential

algebraic equations with singularities, in which, infinite eigenvalues may exist.
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Local and global indeterminacy are then closely related. We will be particu-

larly interested in the third configuration as there does not exist in the litera-

ture any illustration characterized by such a strong indeterminacy property.

4 Local and global indeterminacy of BGP

In order to simplify notations, a stationary balanced growth equilibrium will

be defined in the rest of the paper by a pair (r̄, γ̄) such that F(r̄) = G(r̄)

and γ̄ = (r̄ − ρ)/σ. Our aim is to study the local stability properties of

the stationary balanced growth rate exhibited in Section 3.1. The main

difficulty comes from the fact that multiple BGPs can co-exist.

As a benchmark case, consider the formulation without external effects,

i.e. b1 = b2 = 0, which leads to an optimal growth model. Of course local

and global indeterminacy are ruled out. Endogenous growth occurs however

as there exists one unique stationary balanced growth rate provided the

discount factor ρ is small enough (see footnote 11 and Theorem 2). The

characteristic polynomial becomes

g(λ) = (λ− δ̄)(λ2 − δ̄λ+ D̃0(r̄)) = 0 with D̃0(r̄) = − r̄[r̄−γ̄(β11−β12)](β12+β21)
(β11−β12)2

< 0

It follows that one characteristic root is negative and two characteristic roots

are positive, with one equal to δ̄. The balanced growth path is saddle-point

stable regardless of the factor intensity difference. This result corresponds

to that obtained by d’Autume and Michel [1] and Bond et al. [10].

When external effects are considered, this saddle-point property may no

longer hold and local indeterminacy becomes a possible outcome. Moreover,

if multiplicity holds, we need to compare the properties of two stationary

BGPs. The following fundamental Lemma provides some links between the

product of characteristic roots D(r) and the slopes of F(r) and G(r) at the

stationary BGP. This result is the central argument of our stability analysis.

Lemma 3. Under Assumptions 1-2, consider r∗ and ρ∗ as defined by equa-

tions (29). Then if r̄ = r∗, D(r̄) = 0 and for any r̄ 6= r∗, D(r̄) < (>)0 if

and only if F ′(r̄) − G′(r̄) > (<)0.

Proof. See Appendix 6.7.
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This lemma also allows to provide a set of necessary conditions for the

occurrence of local indeterminacy of order 3 for a given BGP (r̄, γ̄). Indeed,

the existence of three characteristic roots with a negative real part requires

T (r̄) < 0, S(r̄) > 0 and D(r̄) < 0. As Assumptions 1-2 imply [r̄ − γ(β11 −

β12)] > 0, we easily derive from Proposition 2 the following result:

Lemma 4. Under Assumptions 1-2, consider a stationary BGP as given by

(r̄, γ̄). Necessary conditions for the existence of local indeterminacy of order

3 are: b1 − b2 < 0, F ′(r̄) − G′(r̄) > 0 and (1 − σ)/(β11 − β12) > 0.

The third condition implies that the existence of local indeterminacy of

order 3 can only be obtained in two particular configurations concerning

the elasticity of intertemporal substitution in consumption and the physical

capital intensity difference across the two sectors, namely:

i) when the elasticity of intertemporal substitution in consumption is

lower than one, i.e. 1/σ < 1, and the human capital sector is more intensive

in physical capital than the final good sector, i.e. β11 < β12, or

ii) when the elasticity of intertemporal substitution in consumption is

larger than one, i.e. 1/σ > 1, and the final good sector is more intensive in

physical capital than the human capital sector, i.e. β11 > β12.

Let us provide now the local stability analysis of the BGP. We start by a

simple benchmark formulation with a logarythmic utility function in which

only a local indeterminacy of order 2 can occur.

4.1 A benchmark formulation with unitary intertemporal

elasticity of substitution

If the intantaneous utility function u(c) is logarythmic, i.e. σ = 1, the in-

tertemporal elasticity of substitution is unitary and we derive from Propo-

sition 2 that Y(r̄) = 0 and S(r̄) = δ̄(T̃ (r̄) + δ̄) + D̃(r̄). The characteristic

polynomial can be simplified as

g(λ) = (λ− δ̄)
[

λ2 − λ(T̃ (r̄) + δ̄) + D̃(r̄)
]

= 0

and one root is thus equal to δ̄ > 0 while the sign of the two other roots

depends on the signs of D̃(r̄) and T̃ (r̄)+ δ̄. Local indeterminacy is obtained
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if D̃(r̄) > 0 and T̃ (r̄) + δ̄ < 0,15 while saddle-point stability follows from

D̃(r̄) < 0. The sign of D̃(r̄) can be easily analysed from Lemma 3. The sign

of T̃ (r̄)+ δ̄ depends on the Cobb-Douglas technological exponents. It follows

indeed that T̃ (r̄) + δ̄ will be positive if b2 − b1 < 0 and can be negative if

b2 − b1 > 0 and the capital intensity difference at the private level β11 − β12

is close enough to zero. A necessary condition for local indeterminacy is

then b2 − b1 > 0.

Note from (30) that the bound ρ1 cannot be defined so that ρ∗2 = ρ2.

Moreover, when ρ∗, as defined by equation (29), satisfies r∗ − ρ∗ > 0, we

necessarily have ρ2 < ρ∗.

Theorem 3. Under Assumptions 1-2, let σ = 1 and δ = r − γ. When µ ≤

1, any steady state is locally determinate regardless of the factor intensity

difference. On the contrary, when µ > 1 the following cases hold:

1 - Let β11 < β12, i.e. the final good is intensive in human capital at the

private level. Then:

i) If µ ∈ (1, β12/β11), the steady states (r̄1, γ̄1) and (r̄2, γ̄2) are such

that γ̄2 > γ̄1 and (r̄1, γ̄1) is locally indeterminate of order 2 if and only if

b2 > b1, T̃ (r̄1) + δ̄1 < 0 and ρ ∈ (ρ2, ρ
∗),16 while (r̄2, γ̄2) is saddle-point

stable for any ρ < ρ∗.

ii) If µ ≥ β12/β11 and ρ < ρ2, the unique steady state (r̄, γ̄) is saddle-

point stable.

2 - If β11 > β12, i.e. the final good is intensive in physical capital at the

private level, and ρ < ρ2, then the unique steady state (r̄, γ̄) is saddle-point

stable.

Proof. See Appendix 6.8.

This Theorem, and its illustration on the bifurcation diagram in Figure

3, shows that with logarythmic preferences, local indeterminacy can only

appear in presence of multiple stationary BGPs when the final good is in-

tensive in human capital at the private level. This condition is the same

15A positive value for T̃ (r̄) + δ̄ implies local instability of the steady state. Note also

that crossing the frontier T̃ (r̄) + δ̄ = 0 with D̃(r̄) > 0 implies the generic existence of a

Hopf bifurcation and periodic cycles.
16(r̄1, γ̄1) no longer exists as soon as ρ ≤ ρ2.
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Figure 3: Bifurcation diagram for σ = 1, β22 = 0.1, b2 = 1, and ρ = 0.39072. The

left panel shows curves β11 = β12, b1 = b2, µ = µ1 > 1, ρ = ρ∗ and ρ = ρ2 which

separate several stability regions: in N there is no BGP, in S1 there is a unique

saddle point stable BGP, and in regions (S1, S0) and (S1, S2) there are two BGP’s,

where γ
1

is saddle-point stable and γ
2

is unstable (S0) or locally indeterminate of

order 2 (S2). The right panel zooms the bottom left corner of the left panel.

as the one obtained by Bond et al. [10] in a similar two-sector model with

taxes and by Benhabib et al. [6], Mino [21] or Nishimura and Venditti [25] in

a similar two-sector model with sector specific externalities. Note however

that contrary to these papers, we give conditions for the existence of multiple

stationary BGPs and we show with Theorem 3 that local and global inde-

terminacy are closely related since a two-dimensional stable manifold only

appears in the presence of two stationary balanced growth rates. It is worth

noting then that with a unitary elasticity of intertemporal substitution in

consumption, economies with two stationary BGPs can be characterized by

a poverty trap. Indeed, when stable, the low growth BGP γ̄1 is locally

indeterminate while the high growth BGP γ̄2 is saddle-point stable.

In the next section we extend these results to the general case of a non

unitary intertemporal elasticity of substitution for consumption.

4.2 A general formulation

In the general case σ > 0 with σ 6= 1, we will prove that local and global

indeterminacy can appear for any capital intensity configuration, i.e. if the
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final good is intensive in physical capital at the private level, or if the final

good is intensive in human capital at the private level.

Contrary to the previous section, the analysis is more difficult since the

characteristic polynomial of degree 3 does not have a trivial root. The local

dynamic properties of the stationary BGP will of course depend on the sign

of D(r̄), S(r̄) and T (r̄). D(r̄) can be easily analysed from Lemma 3. The

sign of T (r̄) depends on the Cobb-Douglas exponents: T (r̄) will be positive

if b2 − b1 < 0 and can be negative if b2 − b1 > 0 and the capital intensity

difference at the private level β11 − β12 is close enough to zero. The sign

of the difference D(r̄)−S(r̄)T (r̄) will also appear to be very important but

remains difficult to study. Note however that from Proposition 2 we have

D(r̄) − S(r̄)T (r̄) = −(δ̄ + T̃ (r̄))D̃(r̄) − T (r̄)
[

δ̄(δ̄ + T̃ (r̄)) + Y(r̄)
]

(22)

It follows that when D̃(r̄), Y(r̄) and T̃ (r̄) are positive, the difference D(r̄)−

S(r̄)T (r̄) is negative.

Note finally that Definition 1, which provides a distinction between lo-

cal indeterminacy of order 2 and local indeterminacy of order 3, allows to

simplify the exposition of the results. Indeed, it will be easy to see in the

following Theorems that as soon as the conditions for local indeterminacy

of order 2 do not hold, the stationary BGP is locally unstable. Similarly, as

soon as the conditions for local indeterminacy of order 3 do not hold, the

stationary BGP is saddle-point stable.

We start by the configuration in which the final good is intensive in

human capital at the private level.

Theorem 4. Under Assumptions 1-2, let β11 < β12, and consider the

bounds µ1, µ2 as defined by (28). Then the following cases hold:

1 - Assume first that σ > 1.

i) If µ ≤ 1 and ρ < ρ∗2, the steady state (r̄, γ̄) is locally unstable.

ii) Let µ ∈ (1, µ1).

a) When ρ ∈ (ρ∗2, ρ
∗), the steady states (r̄1, γ̄1) and (r̄2, γ̄2) are such

that γ̄2 > γ̄1 and (r̄1, γ̄1) is locally indeterminate of order 2 if b2 > b1

and T (r̄1) < 0, or T (r̄1) > 0 and D(r̄1) − S(r̄1)T (r̄1) > 0, while (r̄2, γ̄2)

is locally indeterminate of order 3 if and only if b2 > b1, T (r̄2) < 0 and
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D(r̄2) − S(r̄2)T (r̄2) > 0.

b) When ρ ≤ ρ∗2, (r̄, γ̄) is locally indeterminate of order 3 if and only

if b2 > b1, T (r̄) < 0 and D(r̄) − S(r̄)T (r̄) > 0.

iii) Let µ ≥ µ1 and ρ < ρ∗2. (r̄, γ̄) is locally indeterminate of order 3 if

and only if b2 > b1, T (r̄) < 0 and D(r̄) − S(r̄)T (r̄) > 0.

2 - Assume now that σ < 1.

i) Let µ ≤ 1 and ρ ∈ (ρ∗1, ρ
∗
2). (r̄, γ̄) is locally indeterminate of order 2 if

and only if D(r̄) − S(r̄)T (r̄) > 0.

ii) Let µ ∈ (1, µ2) and ρ ∈ (ρ∗1, ρ
∗
2). (r̄, γ̄) is locally indeterminate of

order 2 if b2 > b1 and T (r̄) < 0, or T (r̄) > 0 and D(r̄) − S(r̄)T (r̄) > 0.

iii) Let µ ∈ (µ2, µ1).

a) When ρ ∈ (ρ∗2, ρ
∗), the steady states (r̄1, γ̄1) and (r̄2, γ̄2) are such

that γ̄2 > γ̄1 and (r̄1, γ̄1) is locally indeterminate of order 2 if b2 > b1 and

T (r̄1) < 0, or T (r̄1) > 0 and D(r̄1) − S(r̄1)T (r̄1) > 0, while (r̄2, γ̄2) is

saddle-point stable.

b) When ρ ∈ (ρ∗1, ρ
∗
2] and σ ∈ (1− (β12/β11)

1/(1−µ), 1), (r̄, γ̄) is saddle-

point stable.

c) When ρ ∈ (ρ∗1, ρ
∗
2] and σ ∈ (0, 1 − (β12/β11)

1/(1−µ)), (r̄, γ̄) is lo-

cally indeterminate of order 2 if b2 > b1 and T (r̄) < 0, or T (r̄) > 0 and

D(r̄) − S(r̄)T (r̄) > 0.

iv) If µ ≥ µ1 and ρ ∈ (ρ∗1, ρ
∗
2), (r̄, γ̄) is saddle-point stable.

Proof. See Appendix 6.9.

Theorem 4 shows that the local stability properties are sensitive with re-

spect to the elasticity of intertemporal substitution in consumption. When

the elasticity is less than unity, i.e. 1/σ < 1, external effects such that µ ≤ 1

imply local instability. Following Santos [29] this means that there may not

exist any equilibrium path.17 On the contrary, when externalities are such

that µ > 1, local and global indeterminacy can occur. An interesting new

result is provided by case 1−ii)a) in which two distinct locally indeterminate

stationary BGPs can co-exist. Such a globally indeterminate configuration

has never been illustrated previously. Moreover, and contrary to the config-

17There is a BGP only if (k1(0), k2(0)) belong to a particular one-dimensional manifold.
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uration 1-i) in Theorem 3, the high growth BGP γ̄2 can be more attractive

than the low growth BGP γ̄1 as it can be locally indeterminate of order 3

while the other is locally indeterminate of order 2. In this case, the poverty

trap can be avoided by choosing an adequate equilibrium path. Note how-

ever that the high growth BGP γ̄2 can also be saddle-point stable while the

low growth BGP γ̄1 is locally indeterminate of order 2. In such a case the

poverty trap cannot be avoided. These configurations are illustrated in the

following figure:

Figure 4: Bifurcation diagram for σ = 1.15 > 1, β22 = 0.66, b2 = 1, and ρ = 0.165.

The labels for the curves and regions are as in figure 3. (S2, S3) is a new case where

γ
1

is indeterminate of order 2 and γ
2

is indeterminate of order 3.

When the elasticity of intertemporal substitution is on the contrary

greater than unity, i.e. 1/σ > 1, local and global indeterminacy are com-

patible with both µ ≤ 1 and µ > 1. However, when global indeterminay

arises, one stationary balanced growth path is necessarily saddle-point sta-

ble. Moreover, global indeterminacy is now intimately related to the exis-

tence of a poverty trap as in the case of Theorem 3. When stable, the low

growth BGP γ̄1 is locally indeterminate while the high growth BGP γ̄2 is

saddle-point stable.
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We consider finally the configuration in which the final good is intensive

in physical capital at the private level.

Theorem 5. Under Assumptions 1-2, let β11 > β12, and consider the

bounds µ1, µ2 as defined by (28). Then the following cases hold:

1 - Assume first that σ > 1.

i) Let µ ≤ µ1 and ρ < ρ∗2. (r̄, γ̄) is locally indeterminate of order 2 if

and only if D(r̄) − S(r̄)T (r̄) > 0.

ii) Let µ ∈ (µ1, 1).

a) When ρ ∈ (ρ∗2, ρ
∗), the steady states (r̄1, γ̄1) and (r̄2, γ̄2) are such

that γ̄2 > γ̄1 and (r̄1, γ̄1) is saddle-point stable, while (r̄2, γ̄2) is locally inde-

terminate of order 2 if and only if D(r̄2) − S(r̄2)T (r̄2) > 0.

b) When ρ ≤ ρ∗2, (r̄, γ̄) is locally indeterminate of order 2 if and only

if D(r̄) − S(r̄)T (r̄) > 0.

iii) If µ ≥ 1 and ρ < ρ∗2, (r̄, γ̄) is saddle-point stable.

2 - Assume now that σ < 1.

i) If µ < 1, any steady state is locally determinate.

ii) Let µ ≥ 1 and ρ ∈ (ρ∗1, ρ
∗
2). (r̄, γ̄) is locally indeterminate of order 3

if and only if b2 > b1, T (r̄) < 0 and D(r̄) − S(r̄)T (r̄) > 0.

Proof. See Appendix 6.10.

When compared with Theorem 4, Theorem 5 shows that there exists a

complementarity between the previous case with a final good intensive in

human capital at the private level and the current case with a final good

intensive in physical capital at the private level. When the elasticity of

intertemporal substitution in consumption is less than unity, the existence

of sunspot equilibria requires external effects with µ < 1 while if µ ≥ 1, the

steady state is always saddle-point. On the contrary, when the elasticity of

substitution is greater than unity, local indeterminacy is compatible with

external effects such that µ ≥ 1. Note however that in this case, uniqueness

of the stationary balanced growth rate is always satisfied.

Moreover, contrary to Theorem 4, when 1/σ < 1, global indeterminacy is

always associated with a high growth BGP γ̄2 which is more attractive than

the low growth BGP γ̄1 as it is locally indeterminate of order 2 while the

22

ha
ls

hs
-0

04
08

01
8,

 v
er

si
on

 1
 - 

28
 J

ul
 2

00
9



other is saddle-point stable. Here the poverty trap can always be avoided

by choosing an adequate equilibrium path. Considering Theorems 3, 4 and

5 in perspective, we then derive the following conclusion:

Corollary 2. Under Assumptions 1-2, global indeterminacy is always asso-

ciated with the existence of a poverty trap when 1/σ ≥ 1, i.e. there exists a

set of initial conditions of positive measure from which the equilibrium path

converges to the low growth BGP. On the contrary, when 1/σ < 1, global

indeterminacy can be characterized by a high growth BGP which is more

attractive than the low growth BGP, i.e. there exists a set of initial condi-

tions of positive measure from which the equilibrium path converges to the

high growth BGP. This is always the case when the final good is intensive

in physical capital at the private level, i.e. β11 > β12.

This corollary shows that a poverty trap always exists when the elas-

ticity of intertemporal substitution in consumption is larger than unity, i.e.

1/σ ≥ 1. Indeed, the high growth BGP is saddle-point stable while the low

growth BGP is locally indeterminate of order 2. This conclusion is drasti-

cally different from the one obtained by Garćıa-Belenguer [15] who shows

that poverty traps occur when the elasticity of intertemporal substitution is

lower than unity.

Corollary 2 shows however that when 1/σ < 1, the poverty trap can be

avoided as the high growth BGP is either locally indeterminate of order 3 or

saddle-point stable while the low growth BGP is respectively either locally

indeterminate of order 2 or totally unstable. In this case, the dimension

of the set of initial conditions from which the equilibrium path converges

towards the high growth BGP can be larger than these of the set of initial

conditions from which the equilibrium path converges to the low growth

BGP. In other words, for given initial levels of physical and human capital,

there can exist a set of initial prices giving rise to equilibrium paths converg-

ing to the high growth BGP whose positive measure is larger than these of

the set of initial prices giving rise to equilibrium paths converging to the low

growth BGP. However a poverty trap may still exist when β11 < β12 if the

high growth BGP is saddle-point stable. Figure 4 precisely illustrates a case
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with in which β11 < β12 and the high growth BGP is either indeterminate

of order 3 or saddle point stable and the low growth BGP is indeterminate

of order 2. Note that the last configuration is much more robust.

5 Concluding comments

We have studied the dynamics of a two-sector endogenous growth model

with physical and human capital accumulation and economy-wide external

effects in the production function of both sectors. Local and global inde-

terminacy have been discussed through the existence of multiple stationary

balanced growth paths and through the local stability analysis of each long

run position.

We have shown that two stationary balanced growth paths easily arise

for a large set of parameters configurations which includes both signs for the

capital intensity difference at the private level and values of the elasticity of

intertemporal substitution in consumption lower or larger than unity. We

have also proved that for a given stationary solution, two kinds of local in-

determinacy can occur: a local indeterminacy of order 2 in which the stable

manifold has dimension 2, and a local indeterminacy of order 3 in which the

stable manifold has dimension 3. This last case is particularly interesting as

we prove that in a configuration with two stationary solutions, one can be

locally indeterminate of order 2 while the other is locally indeterminate of

order 3. This type of generalized local and global indeterminacy has never

been illustrated in the literature. Moreover, we have shown that local inde-

terminacy can be obtained independently of the sign of the capital intensity

difference at the private level and the value of the elasticity of intertemporal

substitution in consumption. From this point of view, we show that in our

model, local and global indeterminacy are more robust properties than in

most of the models considered in the literature.

Finally, we have discussed our main conclusions in terms of their implica-

tions for development economics. We have proved that global indeterminacy

is always associated with the existence of a poverty trap when the elasticity

of intertemporal substitution in consumption is larger than unity.
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6 Appendix

6.1 Proof of Lemma 1

From (4), we have
Kij/Yj ≡ aij = Pjβij/Ri

We call aij the input coefficient from the private viewpoint. Denoting A =

[aij ], Y = (Y1, Y2)
′ and K = (K1,K2)

′, it follows from (4)-(5) that AY = K.

Moreover, denoting

P =

(

P1 0

0 P2

)

and R =

(

R1 0

0 R2

)

we have A = R−1BP . It follows from the constant returns to scale property

of the individual technologies that the final good is intensive in physical

(human) capital at the private level, i.e. a11/a21 > (<)a12/a22, if and only

if β11 − β12 > (<)0. Moreover under Assumption 1, A is invertible and

Y = A−1K ≡

(

α11 α12

α21 α22

)

K =

(

R1
ψ11

P1
R2

ψ12

P1

R1
ψ21

P2
R2

ψ22

P2

)(

K1

K2

)

(23)

From this we get the optimal private allocations

Kij =
βij

Ri
(ψj1R1K1 + ψj2R2K2) , for i, j = 1, 2

which are linear functions of the total private amounts of the two capital

stocks. The result follows from using again (4) and the fact that the private

returns to scale are constant. �

6.2 Proof of Lemma 2

Let k = k1/k2 = K1/K2. Proposition 1 and equation (12) give

π =
[

(β∗1/β
∗
2)kb1−b2

]1/(β12+β21)
(24)

Substituting this into equation (10) gives
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r =
[

(β∗1)β12(β∗2)β21kβ12b1+β21b2
] 1

β12+β21 (25)

Moreover, after solving equations (13) and (14) we get:

σβ21r = π
k [(β11(σ − 1) + β12)r + ρ(β11 − β12)] (26)

Considering (24) and (25), we derive

π
k =

[

(β∗1)β12+b2(β∗2)β21−b1r−(β12+β21+b2−b1)
]1/(β12b1+β21b2)

Substituting this into (26) finally gives the result. �

6.3 Proof of Theorem 1

Note first that F(r) is monotone increasing (decreasing) if and only if µ > 0

(µ < 0) and concave (convex) if and only if µ ∈ (0, 1) (µ ∈ (−∞, 0) ∪

(1,+∞)). Moreover

µ > 0 ⇔ β12(1 + b1) + β21(1 + b2) > b1 − b2 (27)

µ > 1 ⇔ β12 + β21 > b1 − b2 (28)

When the final good is intensive in human capital at the private level, i.e.

β11 < β12, G(r) is monotone increasing for any value of σ > 0. On the

contrary, denoting σ̂ = (β11 − β12)/β11, when the final good is intensive

in physical capital at the private level, i.e. β11 > β12, G(r) is monotone

increasing (decreasing) if and only if σ > σ̂ (σ ∈ (0, σ̂)). Our strategy for

studying the existence and multiplicity of stationary BGPs is based on the

properties of these two functions. Indeed if F(r) and G(r) have opposite

slopes, there exists at most one stationary balanced growth rate. Some

boundary conditions can then guarantee existence. On the contrary, if both

F(r) and G(r) have positive or negative slopes, we can find a tangency

point between these two functions by solving simultaneously F(r) = G(r)

and F ′(r) = G′(r) with respect to r and ρ. This gives the following values:

r∗ =
(

β11(σ−1)+β12

µσβ21β̃

)
1

µ−1
, ρ∗ = (1−µ)[β11(σ−1)+β12 ]

µ(β11−β12)
r∗ (29)

When ρ = ρ∗, r∗ is a tangency point between F(r) and G(r). Additional

conditions on the parameters of the model that will be necessary to get

admissible values for r∗ and ρ∗ are straightforward from (29), namely:

i) µ > 1 and β12 > β11, or
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ii) µ ∈ (0, 1) and β12 ∈ (β11(σ − 1), β11), or

iii) µ < 0 and β12 < β11(σ − 1).

When such an admissible tangency point exists, we define the corresponding

growth rate as γ∗ = (r∗ − ρ∗)/σ. Under Assumption 2, as γ = (r − ρ)/σ,

the long run real rate of return should verify the condition ρ− (1−σ)r > 0.

Moreover, since γ > 0 we need to have r > ρ. It follows that r is defined over

(ρ,+∞) when σ ≥ 1 while it is defined over (ρ, ρ/(1 − σ)) when σ ∈ (0, 1).

These restrictions allow to define lower and upper bounds for the discount

factor ρ. Indeed, solving simultaneously F(ρ/(1 − σ)) = G(ρ/(1 − σ)) and

F(ρ) = G(ρ) with respect to ρ gives respectively

ρ1 = (1 − σ)
(

β21

β12
β̃
)1/(1−µ)

, ρ2 =
(

β21

β11
β̃
)1/(1−µ) (30)

Note that ρ1 can be negative and the difference ρ2 − ρ1 can be positive or

negative.

From all these results, we now study the existence and uniqueness of a

stationary balanced growth rate. Let us define

µ1 = β11(σ−1)+β12

σβ11
, µ2 = β11(σ−1)+β12

σβ12

(31)

i) When β11 < β12, we get µ1 > µ2 > 1. For any value of σ > 0, G(r) is

monotone increasing. Multiple solutions for equation (17) can only arise if

F(r) is also increasing, i.e. when µ > 0. In this case, when ρ = ρ∗, r∗ is a

tangency point between F(r) and G(r). Therefore multiplicity will hold in

the following cases:

a) If σ ≥ 1, we need to have r∗ > ρ∗, i.e. µ ∈ (1, µ1). Recall that with

µ > 1, F(r) is convex with limr→+∞F ′(r) = +∞ and thus limr→+∞[F(r)−

G(r)] > 0. Since β11 < β12, we have limρ→+∞ G(0) = −∞. Then, when

ρ > ρ∗, F(r) lies above G(r) and no intersection occur. When ρ = ρ∗, the

tangency point r∗ is the unique solution of equation (17). When ρ < ρ∗, two

solutions can occur provided ρ is not too small. Indeed from the restriction

r > ρ we have to consider the solution of F(ρ) = G(ρ) with respect to ρ.

We get ρ2 as defined by (30) and a condition for multiplicity is ρ ∈ (ρ2, ρ
∗).

b) If σ ∈ (0, 1), we need to have r∗ > ρ∗ and r∗ < ρ∗/(1 − σ), i.e.

µ ∈ (µ2, µ1). When ρ > ρ∗, F(r) lies above G(r) and no intersection occur.

When ρ = ρ∗, the tangency point r∗ is the unique solution of equation (17).
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When ρ < ρ∗, from the restrictions r > ρ and r < ρ/(1 − σ), we have to

consider ρ2 and the solution of F(ρ/(1−σ)) = G(ρ/(1− σ)) with respect to

ρ. We get ρ1 as defined by (30). Now we define ρ∗1 = max{0,min{ρ1, ρ2}}

and ρ∗2 = max{ρ1, ρ2}. Two solutions will occur provided ρ ∈ (ρ∗2, ρ
∗).

Result i) is obtained from the restriction µ ∈ (µ2, µ1).

When β11 > β12, G(r) is monotone increasing if σ ≥ (β11 −β12)/β11 ≡ σ̂

and monotone decreasing if σ < σ̂. Multiple solutions for equation (17)

can only arise if F(r) and G(r) are both increasing or decreasing, and the

tangency point is into the domain of definition.

ii) Consider first the case σ ≥ σ̂ in which 0 < µ1 < µ2 < 1. Multiplicity

then requires µ > 0.

a) If σ ≥ 1, we need to have r∗ > ρ∗, i.e. µ ∈ (µ1, 1). As in case i)a),

multiplicity is obtained under ρ ∈ (ρ∗2, ρ
∗).

b) If σ ∈ [σ̂, 1), we need to have r∗ > ρ∗ and r∗ < ρ∗/(1 − σ), i.e.

µ ∈ (µ1, µ2). As in case i)b), multiplicity is obtained under ρ ∈ (ρ∗2, ρ
∗).

Result ii) is obtained from the restriction µ ∈ (µ1, µ2).

iii) Consider finally the case σ ∈ (0, σ̂] in which µ2 < µ1 < 0. Multiplicity

then requires µ < 0. We also need to have r∗ > ρ∗ and r∗ < ρ∗/(1 − σ), i.e.

µ ∈ (µ2, µ1). Since β11 > β12, we have limρ→+∞ G(0) = +∞. Then, when

ρ < ρ∗, F(r) lies above G(r) and no intersection occurs. When ρ = ρ∗, the

tangency point r∗ is the unique solution of equation (17). When ρ > ρ∗, two

solutions can occur provided ρ is not too big. From the restrictions r > ρ

and r < ρ/(1 − σ), we have to consider ρ1 and ρ2 as defined by (30). Two

solutions will occur provided ρ ∈ (ρ∗, ρ∗1). �

6.4 Proof of Corollary 1

i) Assume that b1 = b2 = b > 0. We derive from (28) that µ > 1. It follows

therefore from Theorem 1 that two stationary BGPs exist if β11 < β12,

µ ∈ (µ2, µ1) ⊂ (1,+∞) and ρ ∈ (ρ∗2, ρ
∗).

ii) Assume that b1 = 0 and b2 ∈ (0, 1). We derive from (28) that µ > 1 and

the same conclusions as in case i) hold.

iii) Assume that b1 ∈ (0, 1), b2 = 0 and β22 = 0. We derive µ = (1+β12)/b1 >

1. It follows therefore from Theorem 1 that two stationary BGPs exist if
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µ ∈ (µ2, µ1) ⊂ (1,+∞) and ρ ∈ (ρ∗2, ρ
∗). �

6.5 Proof of Theorem 2

i) Consider the case σ ≥ 1. Recall that the domain of definition of r is

(ρ,+∞). For any value of σ ≥ 1, G(r) is monotone increasing. We will

discuss the different configurations depending on the sign of β11 −β12. Note

that for any sign of this capital intensity difference, F(r) is non increasing

when µ ≤ 0. It follows that if µ ≤ 0, there exists a unique solution for

equation (17) provided F(ρ) > G(ρ), i.e. ρ < ρ∗2 = ρ2, with ρ2 as defined by

(30).

a) Let β11 < β12. When µ ∈ (0, 1], F(r) is increasing and concave with

limr→+∞F ′(r) = 0. It follows that limr→+∞[F(r)− G(r)] < 0. Therefore if

µ ≤ 1, there exists a unique solution for equation (17) provided F(ρ) > G(ρ),

i.e. ρ < ρ∗2. If on the contrary µ > 1, r∗ is a tangency point between

F(r) and G(r) when ρ = ρ∗. The interiority condition is r∗ > ρ∗, i.e.

µ < µ1. If this inequality is satisfied, we know from Theorem 1 that existence

and uniqueness will hold as soon as ρ < ρ∗2. If the interiority condition

does not hold, i.e. µ ≥ µ1, note that F(r) is increasing and convex with

limr→+∞[F(r)−G(r)] > 0. Then there exists a unique solution for equation

(17) provided F(ρ) < G(ρ). Since µ > 1, this gives again the condition

ρ < ρ∗2.

b) Let β11 > β12. When µ ∈ (0, 1), r∗ is a tangency point between

F(r) and G(r) when ρ = ρ∗ provided the interiority condition r∗ > ρ∗ is

satisfied, i.e. 1 > µ > µ1. In this case, Theorem 1 implies that existence

and uniqueness will hold as soon as ρ < ρ∗2. If the interiority condition does

not hold, i.e. µ ≤ µ1, F(r) is concave with limr→+∞[F(r) − G(r)] < 0.

Existence and uniquenes hold when F(ρ) > G(ρ), i.e. ρ < ρ∗2. Finally if

µ > 1, F(r) is convex with limr→+∞[F(r) − G(r)] > 0. There exists a

unique stationary balanced growth rate if F(ρ) < G(ρ). Since µ ≥ 1, this

gives again ρ < ρ∗2.

ii) We have now to consider the case σ ∈ (0, 1). Recall that the domain of

definition of r is (ρ, ρ/(1 − σ)). If β11 < β12, G(r) is monotone increasing
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for any σ ∈ (0, 1). The same results as in the previous configurations i)-a)

hold except the fact that since r ∈ (ρ, ρ/(1 − σ)), existence and uniqueness

require F(ρ) > G(ρ) and F(ρ/(1 − σ)) < G(ρ/(1 − σ)). The restriction on

the discount factor then becomes ρ ∈ (ρ∗1, ρ
∗
2). If on the contrary β11 > β12,

G(r) is monotone increasing if σ ≥ σ̂ and monotone decreasing if σ < σ̂.

When σ ≥ σ̂, the same results as in the previous configurations i)-b) hold

with ρ ∈ (ρ∗1, ρ
∗
2). We need therefore to study the case σ ∈ (0, σ̂). When

µ ≤ 0, F(r) is also non increasing. Then r∗ is a tangency point between

F(r) and G(r) when ρ = ρ∗ provided the interiority conditions r∗ > ρ∗

and r∗ < ρ∗/(1 − σ) are satisfied, i.e. µ ∈ (µ2, µ1). In this case, Theorem

1 implies that existence and uniqueness will hold as soon as ρ ∈ (ρ∗1, ρ
∗
2).

If on the contrary the interiority conditions are not satisfied, we obtain

the following conditions: if µ ≤ µ2, existence and uniqueness hold when

F(ρ) < G(ρ) and F(ρ/(1 − σ)) > G(ρ/(1 − σ)). Since µ < 0 this gives

again ρ ∈ (ρ∗1, ρ
∗
2). On the contrary, if 0 > µ ≥ µ1, existence and uniqueness

hold when F(ρ) > G(ρ) and F(ρ/(1 − σ)) < G(ρ/(1 − σ)), i.e. ρ ∈ (ρ∗1, ρ
∗
2).

Finally, if µ ≥ 0 F(r) is non decreasing and existence and uniqueness will

hold when F(ρ) < G(ρ) and F(ρ/(1 − σ)) > G(ρ/(1 − σ)), i.e. ρ ∈ (ρ∗1, ρ
∗
2).

�

6.6 Proof of Proposition 2

Let k = k1/k2. Linearizing the dynamical system (11)-(14) around a sta-

tionary BGP gives the Jacobian matrix

J =

(

J11 J12

Ja21 + Jb21 + Jc21 J22

)

(32)

with

J11 =

(

r − α11 −α21

−α12 r − α22

)

, J12 = −r





θ11
p1
k1

θ21
p1
k2

θ12
p2
k1

θ22
p2
k2



 ,

Ja21 =
1

r





k1
p1
α2

11 + k2
p2
α2

12
k1
p1
α11α21 + k2

p2
α12α22

k1
p1
α11α21 + k2

p2
α12α22

k1
p1
α2

21 + k2
p2
α2

22
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Jb21 = −

(

k1
p1
α11 + k2

p1
α12 0

0 k1
p2
α21 + k2

p2
α22

)

, Jc21 =

(

1
σp

−
1+σ

σ
1 0

0 0

)

and

J22 =





α11θ11 + α12θ12k
−1 + α11 − γ α12θ22 + α11θ21k + α12

α21θ11 + α22θ12k
−1 + α21 α22θ22 + α21θ21k + α22 − γ





For i = 0, 1, 2, 3, let κi(r̄) be the sum of the principal minors of order 4 − i

of the Jacobian matrix (32) evaluated at some steady state r̄. Some tedious

computations available upon request allow to simplify the expressions of

each κi(r̄) and to provide the results of the Proposition with T (r̄) = κ1(r̄),

S(r̄) = κ2(r̄), D(r̄) = κ3(r̄) and Σ(r̄) = κ4(r̄). �

6.7 Proof of Lemma 3

The tangency point r∗ and the corresponding value ρ∗ are defined as the

solutions of the following system

F(r∗) = G(r∗), F ′(r∗)G′(r∗)

Since G(r) is linear and F(r) is parabolic we can write

F(r∗) = rG′(r∗) + ρ(β11 − β12), F ′(r∗) = µF(r∗)
r∗ = G′(r∗)

It follows that µG(r∗) = r∗G′(r∗). Consider now the term between brackets

into the expression of D(r) given in Proposition 2. We have

G(r∗)(µ− 1) + ρ(β11 − β12) = rG′(r∗) − G(r∗) + ρ(β11 − β12) = 0

Moreover, for any r̄ 6= r∗, we have

G(r̄)(µ− 1) + ρ(β11 − β12) = r̄ (F ′(r̄) − G′(r̄))

Under Assumptions 1-2, [r̄ − γ(β11 − β12)] > 0 and the result follows. �

6.8 Proof of Theorem 3

Let σ = 1.

1 - We start by the case β11 < β12. Theorem 2 shows that when µ ≤ 1 and

ρ < ρ2, the unique steady state r̄ is such that F ′(r̄) − G′(r̄) < 0 while r̄ is

such that F ′(r̄) − G′(r̄) > 0 when µ ≥ β12/β11 and ρ < ρ2. Consider now
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Theorem 1 with µ ∈ (1, β12/β11) and ρ < ρ∗. When ρ ∈ (ρ2, ρ
∗), denote the

two steady states r̄1, r̄2 such that r̄1 < r̄2. We then have F ′(r̄1)−G′(r̄1) < 0

and F ′(r̄2) − G′(r̄2) > 0. When ρ ∈ (0, ρ2], there is one unique steady state

r̄2 such that F ′(r̄) − G′(r̄2) > 0. We then prove the three different cases:

i) When µ ≤ 1 and ρ < ρ2, D̃(r̄) > 0. Moreover from equation (28) we

necessarily have b2 − b1 < 0. It follows that T̃ (r̄) > 0 and thus T̃ (r̄) + δ̄ > 0

so that the steady state is locally unstable.

ii) When µ ∈ (1, β12/β11), we have D̃(r̄1) > 0 as long as ρ ∈ (ρ2, ρ
∗) and

local indeterminacy of order 2 holds if and only if T̃ (r̄1) + δ̄1 < 0. On the

contrary, for any ρ ∈ (0, ρ∗), D̃(r̄2) < 0 and (r̄2, γ̄2) is saddle-point stable.

iii) Finally, when µ ≥ β12/β11 and ρ < ρ2, D̃(r̄) < 0 and saddle-point

stability holds.

2 - Consider now the case β11 > β12. From Theorem 2 and Table 1, we

derive that when µ ≤ β12/β11 and ρ < ρ2, the unique steady state r̄ is such

that F ′(r̄)−G′(r̄) < 0 while r̄ is such that F ′(r̄)−G′(r̄) > 0 when µ ≥ 1 and

ρ < ρ2. On the contrary Theorem 1 shows that when µ ∈ (β12/β11, 1) and

ρ ∈ (ρ2, ρ
∗), the two steady states r̄1, r̄2 are such that F ′(r̄1) − G′(r̄1) < 0

and F ′(r̄2)−G′(r̄2) > 0. When ρ ∈ (0, ρ2], the unique steady state r̄2 is such

that F ′(r̄2) − G′(r̄2) > 0. We then prove the three different cases:

i) When µ ≤ β12/β11 and ρ < ρ2, D̃(r̄) > 0 and from equation (28) we

necessarily have b12+b21 < 0. It follows that T̃ (r̄) > 0 and thus T̃ (r̄)+ δ̄ > 0

so that the steady state is locally unstable.

ii) When µ ∈ (β12/β11, 1), we have D̃(r̄1) > 0 as long as ρ ∈ (ρ2, ρ
∗) and

for any ρ ∈ (0, ρ∗), D̃(r̄2) < 0. Since b2 − b1 < 0, it follows that (r̄1, γ̄1) is

locally unstable while (r̄2, γ̄2) is saddle-point stable.

iii) Finally, when µ ≥ 1 and ρ < ρ2, D̃(r̄) < 0 and saddle-point stability

holds. �

6.9 Proof of Theorem 4

We will use the following Proposition from Barinci and Drugeon [3] which

provides a set of useful criteria for assessing the local determinacy / indeter-

minacy of intertemporal equilibria in economies described by 3-dimensional
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continuous-time dynamical systems.

Proposition 3. Consider an economy locally described by a characteristic

polynomial of degree 3 such that

g(λ) = λ3 − T λ2 + Sλ−D

The dimension of the local stable manifold is as follows:

i) for T < 0, if D < 0 and D > ST , there are three eigenvalues with

negative real parts;

ii) for T < 0 and D > 0 or for T > 0, D > 0 and D > ST , there are

two eigenvalues with negative real parts;

iii) for T < 0, if D < 0 and D < ST or, for T > 0, if D < 0, there is

one eigenvalue with negative real part;

iv) for T > 0, if D > 0 and D < ST , there is no eigenvalue with negative

real part.

We now prove Theorem 4. Let β11 < β12 and recall that

D(r̄) − S(r̄)T (r̄) = −(δ̄ + T̃ (r̄))D̃(r̄) − T (r̄)
[

δ̄(δ̄ + T̃ (r̄)) + Y(r̄)
]

(33)

Depending on the value of σ and µ, the proof is derived from Theorems

1-2, Lemma 3, Propositions 2-3 and equation (33). We will only give a

detailled argument for case 1 of Theorem 4. Consider the bounds µ1, µ2 as

defined by (28).

1 - Assume first that σ > 1. From Proposition 2 we derive Y(r̄) > 0.

i) If µ ≤ 1 and ρ < ρ∗2, then D(r̄) > 0. Moreover, we get from equa-

tion (28) that b2 − b1 is necessarily negative so that T̃ (r̄) > 0. It follows

that T (r̄) > 0, S(r̄) > 0 and, from equation (33), D(r̄) − S(r̄)T (r̄) < 0.

Proposition 3 implies that (r̄, γ̄) is locally unstable.

ii) Let µ ∈ (1, µ1) and consider Theorem 1 and Lemma 3. When ρ ∈

(ρ∗2, ρ
∗), the steady states (r̄1, γ̄1) and (r̄2, γ̄2) are such that: D(r̄1) > 0

and D(r̄2) < 0. Proposition 3 implies that (r̄1, γ̄1) is locally indeterminate

of order 2 if T (r̄1) < 0, or T (r̄1) > 0 and D(r̄1) − S(r̄1)T (r̄1) > 0, while

(r̄2, γ̄2) is locally indeterminate of order 3 if and only if T (r̄2) < 0 and

D(r̄2) − S(r̄2)T (r̄2) > 0. When ρ ≤ ρ∗2, the unique remaining steady state

(r̄, γ̄) is such that D(r̄) < 0. The result follows from Proposition 3.

36

ha
ls

hs
-0

04
08

01
8,

 v
er

si
on

 1
 - 

28
 J

ul
 2

00
9



iii) If µ ≥ µ1 and ρ < ρ∗2, then D̃(r̄) < 0. The result follows from

Proposition 3.

2 - Assume now that σ < 1. From Proposition 2 we derive Y(r̄) < 0.

i) If µ ≤ 1 and ρ ∈ (ρ∗1, ρ
∗
2), we have T̃ (r̄) > 0 and D(r̄) > 0.

ii) If µ ∈ (1, µ2) and ρ ∈ (ρ∗1, ρ
∗
2), we have D(r̄) > 0.

iii) Let µ ∈ (µ2, µ1). When ρ ∈ (ρ∗2, ρ
∗), the steady states (r̄1, γ̄1) and

(r̄2, γ̄2) are such that: D(r̄1) > 0 and D(r̄2) < 0. When ρ ∈ (ρ∗1, ρ
∗
2], consider

the bounds ρ1 and ρ2 defined by equations (30). The unique remaining

steady state (r̄, γ̄) is such that D(r̄) < 0 or D(r̄) > 0 depending on whether

the difference ρ2 − ρ1 is positive or negative. The result follows from the

fact that ρ2 − ρ1 > 0 if and only if σ > 1 − (β12/β11)
1/(1−µ).

iv) If µ ≥ µ1 and ρ ∈ (ρ∗1, ρ
∗
2), we have D(r̄) < 0. �

6.10 Proof of Theorem 5

Let β11 > β12. We proceed as in the proof of Theorem 4. Depending on

the value of σ and µ, the results are derived from Theorems 1-2, Lemma 3,

Propositions 2-3 and equation (33).

1 - Assume first that σ > 1. From Proposition 2 we derive Y(r̄) < 0.

i) If µ ≤ µ1 and ρ < ρ∗2, we have T̃ (r̄) > 0 and D(r̄) > 0.

ii) If µ ∈ (µ1, 1), we have T̃ (r̄) > 0. When ρ ∈ (ρ∗2, ρ
∗), the steady states

(r̄1, γ̄1) and (r̄2, γ̄2) are such that: D(r̄1) < 0 and D(r̄2) > 0. When ρ ≤ ρ∗2,

the unique remaining steady state (r̄, γ̄) is such that D(r̄) > 0.

iii) If µ ≥ 1 and ρ < ρ∗2, we have D(r̄) < 0.

2 - Assume now that σ < 1. From Proposition 2 we derive Y(r̄) > 0.

i) If µ < 1, we necessarily have T̃ (r̄) > 0. Therefore any steady state

will be either saddle-point stable if D(r̄) < 0 or locally unstable if D(r̄) > 0

since in this case we have S(r̄) > 0 and D(r̄) − S(r̄)T (r̄) < 0.

ii) If µ ≥ 1 and ρ ∈ (ρ∗1, ρ
∗
2), we have D(r̄) < 0. �
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