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Abstract

In this paper we use a hybrid Monte Carlo-Optimal quantization method to
approximate the conditional survival probabilities of a firm, given a structural
model for its credit default, under partial information.

We consider the case when the firm’s value is a non-observable stochastic
process (Vt)t≥0

and investors in the market have access to a process (St)t≥0
,

whose value at each time t is related to (Vs, s ≤ t). We are interested in
the computation of the conditional survival probabilities of the firm given the
“investor information”.

As an application, we analyze the shape of the credit spread curve for zero
coupon bonds in two examples.

Keywords: credit risk, structural approach, survival probability, partial informa-
tion, filtering, optimal quantization, Monte Carlo method.
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Introduction

In this paper we compute the conditional survival probabilities of a firm, in a market
that is not transparent to bond investors, by using both Monte Carlo and optimal
quantization methods. This allows us to analyze the credit spread curve under partial
information in some examples, in order to investigate the degree of transparency and
riskiness of a firm, as viewed by bond-market participants.

To introduce the problem, recall that most of the bonds traded in the market are
corporate bonds and treasury bonds, that are consequently subject to many kinds
of risks, such as market risk (due for example to changes in the interest rate), coun-
terparty risk and liquidity risk. One of the main challenges in credit risk modeling
is, then, to quantify the risk associated to these financial instruments.

The methodology for modeling a credit event can be split into two main ap-
proaches: the structural approach, introduced by Merton in 1974 and the reduced
form approach (or “intensity based”), originally developed by Jarrow and Turnbull
in 1992.

The structural approach consists in modeling the credit event as the first hitting
time of a barrier by the firm value process.

In reduced form models the default intensity is directly modeled and it is given
by a function of latent state variables or predictors of default.

The first approach, in which we are interested, is intuitive by the economic point
of view, but it presents some drawbacks: the firm value process can not be easily
observed in practice, since it is not a tradeable security, and a continuous firm’s
value process implies a predictable credit event, leading to unnatural and undesirable
features, such as null spreads for surviving firms for short maturities.

Despite the apparent difference between the two models (see, e.g., Jarrow and
Protter, 2004), some recent results, starting from the seminal paper Duffie and Lando
(2001), have unified the two approaches by means of information reduction. We
consider, then, a structural model under partial information, in which investors can
not observe the firm value process, but they have access to another process whose
value is related to the firm value process. We show in two examples that yield spreads
for surviving firms are strictly positive at zero maturity, since investors are uncertain
about the nearness of the current firm value to the trigger level at which the firm
would declare default. The shape of the term structure of credit spreads may be
useful, then, in practice to estimate the degree of transparency and of riskiness of a
firm, from the investors’ point of view.

We show that the computation of the conditional survival probabilities under
partial information leads to a nonlinear filtering problem involving the conditional
survival probabilities under full information. These former quantities are approxima-
ted by a Monte Carlo procedure, while the filter distribution is estimated by optimal
quantization.

The paper is organized as follows. In the first section, we present the market
model and we decompose our problem into two problems (P1) and (P2), that are,
respectively, the computation of conditional survival probability in a full information
setting and the approximation of the filter distribution. Section 2 and Section 3 are
devoted to the solution of the previous two problems. We provide error estimates
in Section 4 and, finally, in Section 5 we present two numerical examples concerning
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the application to credit risk.

1 Market model and problem definition

Let us consider a probability space (Ω,F ,P), representing all the randomness of our
economic context.
For the moment we concentrate our attention on the “real world” probability measure
P and on a single firm model, in which the company is subject to default risk and
we use a structural approach to characterize the default time.
The process representing the value of the firm, given for example by its value of
financial statement, is denoted by (Vt)t≥0 and we suppose it can be modeled as the
solution of the following stochastic differential equation

{
dVt = b(t, Vt)dt + σ(t, Vt)dWt,

V0 = v0,
(1.1)

where the functions b : [0,+∞)×R → R and σ : [0,+∞)×R → R are Lipschitz in x
uniformly in t and W is a standard one-dimensional Brownian motion. We suppose
that σ(t, x) > 0 for every (t, x) ∈ [0,+∞) × R.
In our setting the process V is non observable (it is also known as state or signal),
but investors have access to the values of another stochastic process S, providing
noisy information about the value of the firm, that can be thought, for example, as
the price of an asset issued by the firm.
This observation process follows a diffusion of the type

{
dSt = St

[
ψ(Vt)dt + ν(t)dWt + δ(t)dW̄t

]
,

S0 = s0,
(1.2)

where ψ is locally bounded and Lipschitz, ν and δ are deterministic functions and W̄
is a one-dimensional Brownian motion independent of W . Note that in this model
the return on S is a (nonlinear) function of V .

Finally, following a structural approach, we define the default of the company as

τ := inf {t ≥ 0 : Vt ≤ a} , (1.3)

where as usual inf ∅ = +∞ and for a given constant parameter a ∈ R, 0 < a < v0.
In numerical examples we will consider models where Vt ∈ (0,+∞) (eventually

by stopping the process V at the default time τ by considering the process (Vt∧τ )t).
We will deal with two different filtrations, representing different levels of in-

formation available to agents in the market and we suppose that they satisfy the
usual hypotheses: a filtered probability space (Ω,F , (Ft)t≥0,P) satisfies the usual
hypotheses if F0 contains all P-null sets and if the filtration is right-continuous.

The first and basic information set is the “default-free” filtration, the one gene-
rated by the observation process S, which we will denote, for each t ≥ 0,

FS
t := σ(Ss, 0 ≤ s ≤ t)

and the second one is the full information filtration (Gt)t≥0, i.e., the information
available for example to a small number of stock holders of the company, who have
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access to S and V at each time t. In our case, the full information filtration is the
one generated by the stochastic pair process (W,W̄ ). In conclusion we have

FS
t ( Gt, ∀ t ≥ 0,

and we observe that the following immersion property holds (see for example Coculescu,
Geman and Jeanblanc, 2008 for an analogous analysis):

Lemma 1.1. Any (FS
t )t-local martingale is a (Gt)t-local martingale. We will say,

then, that filtration (FS
t )t is immersed in the full filtration (Gt)t.

For a fixed s ≥ 0 we observe the process S from 0 to s and we suppose that the
default τ occurs after s, so that,

τ = inf{t > s : Vt ≤ a}.
Suppose now that a finite time horizon T is fixed. For a given t, such that s < t < T ,
our aim is to compute the following key quantity

11{τ>s}P

(
inf

s≤u≤t
Vu > a

∣∣∣FS
s

)
. (1.4)

We will see in the following Section 5 how this quantity plays a fundamental role
(if computed under a pricing measure) in the computation of credit spreads for zero
coupon bonds.

1.1 Reduction to a nonlinear filtering problem

Using the law of iterated conditional expectations, the Markov property of V and
the independence between W and W̄ , we find, for each (s, t) ∈ R+ × R+, s < t,

P

(
inf

s≤u≤t
Vu > a

∣∣∣FS
s

)
= E

[
P

(
inf

s≤u≤t
Vu > a

∣∣∣Gs

) ∣∣∣FS
s

]

= E

[
P

(
inf

s≤u≤t
Vu > a

∣∣∣Vs

) ∣∣∣FS
s

]

= E
[
F (s, t, Vs)|FS

s

]
, P−a.s. (1.5)

where, for every x ∈ R,

F (s, t, x) := P

(
inf

s≤u≤t
Vu > a

∣∣∣Vs = x

)
. (1.6)

Finally,

(P1) if we compute F (s, t, x) for every x ∈ R, which is now a conditional survival
probability given the full filtration, and

(P2) if we obtain the filter distribution at time s, i.e., the conditional distribution
of Vs given FS

s , ΠVs|FS
s
,

then we are done, since it suffices to compute the integral

E
[
F (s, t, Vs)|FS

s

]
=

∫ ∞

−∞
F (s, t, x)ΠVs |FS

s
(dx)

=

∫ ∞

a
F (s, t, x)ΠVs|FS

s
(dx).

It remains to solve the two “intermediate problems” (P1) and (P2). Let us consider
first problem (P2).
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2 Approximation of the filter by optimal quantization

Let us recall first some facts about optimal vector quantization.

2.1 A brief overview on optimal quantization

Consider an Rd-valued random variable X defined on a probability space (Ω,A,P)
with finite r-th moment and probability distribution PX . Quantizing X on a given
grid Γ = {x1, · · · , xN} consists in projecting X on the grid Γ following the closest
neighbor rule. The induced mean Lr-error

‖X − ProjΓ(X)‖r = ‖ min
1≤i≤N

|X − xi|‖r

is called the Lr-mean quantization error and the projection of X on Γ, ProjΓ(X), is
called the quantization of X. As a function of the grid Γ the Lr-mean quantization
error is continuous and reaches a minimum over all the grids with size at most N .
A grid Γ⋆ minimizing the Lr-mean quantization error over all the grids with size at
most N is called an Lr-optimal quantizer.

Moreover, the Lr-mean quantization error goes to 0 as the grid size N → +∞
and the convergence rate is ruled by Zador theorem:

min
Γ, |Γ|=N

‖X − ProjΓ(X)‖r = Qr(PX)N−1/d + o
(
N−1/d

)

where Qr(PX) is a nonnegative constant. We shall say no more about the basic
results on optimal vector quantization. For a complete background on this field we
refer to Graf and Luschgy (2000).

The first application of optimal quantization method to numerical probability
appears in Pagès (1997). It consists in estimating Ef(X) (it may also be a conditional
expectation) by

Ef
(
ProjΓ⋆(X)

)
=

N∑

i=1

f(x⋆,i) pi (2.1)

where Γ⋆ = {x⋆,1, · · · , x⋆,N} is an Lr-optimal grid for X and pi = P
(
ProjΓ⋆(X) =

x⋆,i
)
. The induced quantization error estimate depends on the regularity of the func-

tion f .

• If f : Rd 7→ R is Lipschitz continuous and r ≥ 2, then

|Ef(X) − Ef
(
ProjΓ⋆(X)

)
| ≤ E|f(X) − f

(
ProjΓ⋆(X)

)
|

≤ [f ]Lip‖X − ProjΓ⋆(X)‖1

≤ [f ]Lip‖X − ProjΓ⋆(X)‖2.

• If the derivative Df of f is Lipschitz and r ≥ 2, then, for any optimal grid Γ⋆, we
have

|Ef(X) − Ef
(
ProjΓ⋆(X)

)
| ≤ [Df ]Lip‖X − ProjΓ⋆(X)‖2

2.

How to compute numerically quadratic optimal quantizers or Lr-optimal (or
stationary) quantizers in general, the associated weights and Lr-mean quantization
errors is an important issue from the numerical point of view. Several algorithms
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are used in practice. In the one dimensional framework, the Lr-optimal quantizers
are unique up to the grid size as soon as the density of X is strictly log-concave. In
this case the Newton algorithm is a commonly used algorithm to carry out the Lr-
optimal quantizers when closed or semi-closed formulas are available for the gradient
and the hessian matrix.

When the dimension d is greater than 2, on the contrary, the Lr-optimal grids
are not uniquely determined and all Lr-optimal quantizers search algorithms are
based on zero search recursive procedures like Lloyd’s I algorithms (or generalized
Lloyd’s I algorithms which are the natural extension of the quadratic case), the
Competitive Learning Vector Quantization (CLVQ) algorithm (see Gersho and Gray,
1992), stochastic algorithms (see Pagès, 2008, and Pagès and Printems, 2003), etc.
From now on we consider quadratic optimal quantizers.

2.2 Estimation of the filter

We focus now on problem (P2) and we present here a solution based on optimal
quantization, as suggested in Pagès and Pham (2005).
For an overview on nonlinear filtering problems in interest rate and credit risk mo-
dels we refer to Frey and Runggaldier (2009) and references therein and, focusing on
filtering theory in credit risk, we also have to mention the seminal papers Kusuoka
(1999) and Nakagawa (2001).

We consider a general discrete time setting, in which we recall the relevant for-
mulas and the desired approximation of the filter (see, e.g., Pagès and Pham, 2005
and Pham, Runggaldier and Sellami, 2005, for a detailed background). We introduce
a probability space (Ω,A,P) (notice that P is not the same measure we considered
in Section 1, but for simplicity we will use the same notation) and we suppose that:

• the signal process (Xk)k∈N
is a finite-state Markov chain taking values in

the space E, with known probability transition, from time k − 1 to time k,
Pk(xk−1,dxk), k ≥ 1, and given initial law µ, and

• the observation process is an Rq-valued process (Yk)k∈N
such that Y0 = y0 and

the pair (Xk, Yk)k∈N
is a Markov chain.

Furthermore, we suppose that for all k ≥ 1

(H) the law of Yk conditional on (Xk−1, Yk−1,Xk) admits a density

yk 7→ gk(Xk−1, Yk−1,Xk, yk),

so that the probability transition of the Markov chain (Xk, Yk)k∈N
is given by

Pk(xk−1,dxk)gk(xk−1, yk−1, xk, yk)dyk, with initial law µ(dx0)δ0(dy0).

In this discrete time setting we are interested in computing conditional expecta-
tions of the form

ΠY,nf := E [f(Xn)|Y1, . . . , Yn] ,

for suitable functions f defined on E, i.e., we are interested in computing at some
time n the law ΠY,n of Xn given the past observation Y = (Y1, . . . , Yn). Having fixed
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the observation Y = (Y1, . . . , Yn) = (y1, . . . , yn) =: y we will write Πy,n instead of
ΠY,n.

It is evident that in the case when the state space of the signal consists of a
finite number of points, the filter is characterized by a finite-dimensional vector: if
for example each Xk takes values in a set {x1

k, . . . , x
Nk

k } (as in the case where we
quantize a process X at discrete times tk, k = 0, · · · , n with grids of size Nk), then
the discrete time filter distribution will be fully determined by the Nk-vector with
components

Πi
Y,k = P

(
Xk = xi

k|Y1, . . . , Yk

)
, i = 1, . . . , Nk.

It is for this reason that, following Pagès and Pham (2005), we apply optimal quanti-
zation results in order to obtain a spatial discretization, on a grid Γk = {x1

k, . . . , x
Nk

k },
of the state Xk, k = 0, . . . , n, and to characterize the filter distribution by means of
the finite number of points {x0, x

1
1, . . . , x

N1

1 , x1
2, . . . , x

N2

2 , . . . , x1
n, . . . , x

Nn
n } making up

the grids (Γk)k.
In what follows we recall the basic recursive filtering equation, that we will use

in our numerics to approximate the filter. By applying the Markov property of X
and (X,Y ) and Bayes’ formula, we find:

Πy,nf =
πy,nf

πy,n11
, (2.2)

where πy,n is the un-normalized filter, defined by

πy,nf =

∫
· · ·
∫
f(xn)µ(dx0)

n∏

k=1

gk(xk−1, yk−1, xk, yk)Pk(xk−1,dxk). (2.3)

Equivalently, we recall the following recursive formula, that can be directly obtained
as well by applying Bayes’ formula and the Markov property:

Πy,k(dxk) ∝
∫
gk(xk−1, yk−1, xk, yk)Pk(xk−1,dxk)Πy,k−1(dxk−1),

where now y in Πy,k−1 represents the realization of the vector (Y1, . . . , Yk−1) and we
do not have equality because we need to re-normalize.
Now for any k ∈ {1, · · · , n} note that

πy,kf = E
(
f(Xk)

k∏

i=1

gi(Xi−1, yi−1,Xi, yi)
)
.

Therefore, introducing the natural filtration of X, (FX
k )k∈N

, we have

πy,kf = E

(

E

(
f(Xk)

k∏

i=1

gi(Xi−1, yi−1,Xi, yi)|FX
k−1

))

= E

(

E
(
f(Xk)gk(Xk−1, yk−1,Xk, yk)|FX

k−1

) k−1∏

i=1

gi(Xi−1, yi−1,Xi, yi)

)

= E

(

Hy,k(f(Xk−1))

k−1∏

i=1

gi(Xi−1, yi−1,Xi, yi)

)

, (2.4)
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whereHy,k, k = 1, . . . , n, is a family of bounded transition kernels defined on bounded
measurable functions f : E → R by:

Hy,kf(xk−1) := E [f(Xk)gk(xk−1, yk−1,Xk, yk)|Xk−1 = xk−1]

=

∫
f(xk)gk(xk−1, yk−1, xk, yk)Pk(xk−1,dxk), (2.5)

with xk−1 ∈ E. For every x ∈ E, furthermore, we have

Hy,0f(x) := πy,0f = E [f(X0)] =

∫
f(x0)µ(dx0).

It follows, then, from (2.4) that

πy,kf = πy,k−1Hy,kf, k = 1, . . . , n, (2.6)

so that we finally obtain the recursive expression

πy,n = Hy,0 ◦Hy,1 ◦ · · · ◦Hy,n.

In order to obtain the discrete time approximation of the desired filter ΠVs|FS
s
,

that is needed to solve (P2), we now fix a time discretization grid t0 = 0 < · · · <
tn = s in the interval [0, s] and we apply the previous results by working with the
corresponding quantized process V̂ (we identify X with V and Y with S).

Before focusing on the discrete time filter approximation, let us make the follow-
ing remark concerning the conditional law of St given ((Vu)u∈[s,t], Ss). This will be
useful to be sure that in our case hypothesis (H) is verified.

Remark 2.1. Let s ≤ t. Using the form of the solution of the SDE (1.2)

St = Ss exp

(∫ t

s

(
ψ(Vu) − 1

2
(ν2(u) + δ2(u))

)
du+

∫ t

s
ν(u)dWu +

∫ t

s
δ(u)dW̄u

)
,

we notice that
L
(
St|(Vu)s≤u≤t, Ss

)
= LN(ms,t;σ

2
s,t), (2.7)

where

ms,t = log(Ss)+

∫ t

s

(
ψ(Vu)− 1

2
(ν2(u)+ δ2(u))− ν(u)

b(u, Vu)

σ(u, Vu)

)
du+

∫ t

s

ν(u)

σ(u, Vu)
dVu

and

σ2
s,t =

∫ t

s
δ2(u)du.

LN(m;σ2) stands for the lognormal distribution with mean m and variance σ2.

Now, suppose that we temporarily have a time discretization grid from 0 to t:
u0 = 0 < u1 < · · · < um = t. For m large enough we can estimate the mean
and the variance appearing in Equation (2.7) by using an Euler Scheme. When the
estimations of the mean ms,t and variance σ2

s,t between two discretization steps are
respectively denoted by mk and σ2

k we have:

L
(
Sk|Vk−1, Sk−1, Vk

)
= LN(mk;σ

2
k) (2.8)
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with

mk = logSk−1 +

(
ψ(Vk−1) −

1

2

(
ν2(uk−1) + δ2(uk−1)

)
− ν(uk−1)

b(uk−1, Vk−1)

σ(uk−1, Vk−1)

)
∆k

+
ν(uk−1)

σ(uk−1, Vk−1)
∆Vk;

σ2
k = δ2(uk−1)∆k,

where Sk := Suk
; Vk := Vuk

; ∆Vk = Vk − Vk−1; ∆k = uk − uk−1. Recall that the
density of the lognormal distribution with mean m and variance σ2, LN(m;σ2), reads

f(x;m,σ2) =
1

σx
√

2π
e
− 1

2σ2 (log x−m)2
.

We finally notice, then, that the density of Sk given (Vk−1, Sk−1, Vk) only depends
on (Vk−1, Sk−1, Vk).

Remark 2.2. In the specific case where

{
dVt = µVtdt+ σVtdWt, V0 = v0,

dSt = µStdt + σStdWt + δStdW̄t, S0 = s0,

we directly deduce from Remark 2.1 that for every s ≤ t

L
(
St|(Vu)s≤u≤t, Ss

)
= LN

(
log
(SsVt

Vs

)
− 1

2
δ2(t− s); δ2(t− s)

)
.

⊲ Estimation of the filter. The method is already studied in Pagès and Printems
(2003) and consists first in quantizing for every time step tk the random variable Vk

by considering
V̂k = ProjΓk

(Vk), k = 0, · · · , n, (2.9)

where for every k, Γk is a grid of Nk points vi
k, i = 1, · · · , Nk to be optimally chosen

and where ProjΓk
denotes the closest neighbor projection on the grid Γk.

Owing to Equation (2.6) our aim is to estimate the filter using an approximation of
the probability transition Pk(vk−1, dvk) of Vk given Vk−1. These probability transi-
tions are approximated by the probability transition matrix p̂k := (p̂ij

k ) of V̂k given

V̂k−1:

p̂
ij
k = P(V̂k = v

j
k|V̂k−1 = vi

k−1), i = 1, · · · , Nk−1, j = 1, · · · , Nk. (2.10)

Then, following Equation (2.5), by fixing the observation y := (y0, · · · , yk) (for
notational simplicity we indicate, as previously in the general case, the observations
of S by y), we estimate the transition kernel matrix Hy,k by the quantized transition

kernel Ĥy,k given by

Ĥy,k =

Nk∑

j=1

Ĥ
ij
y,kδvi

k−1
, i = 1, · · · , Nk−1, k = 1, · · · , n,
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where

Ĥ
ij
y,k = gk(v

i
k−1, yk−1, v

j
k, yk)p̂

ij
k , i = 1, · · · , Nk−1, j = 1, · · · , Nk

and where the vj
k’s, j = 1, · · · , Nk are the (quadratic) optimal quantizers of Vk. We

also estimate Hy,0 by

Ĥy,0 =

N0∑

i=1

P(V̂0 = vi
0) δvi

0
.

This leads to the following forward induction to estimate πy,n:

π̂y,0 = Ĥy,0, π̂y,k = π̂y,k−1Ĥy,k, k = 1, · · · , n, (2.11)

or, equivalently,





π̂y,0 = Ĥy,0

π̂y,k =
(∑Nk−1

i=1 Ĥ
ij
y,kπ̂

i
y,k−1

)

j=1,··· ,Nk

, k = 1, · · · , n.

Finally, we estimate the desired filter at time tn = s by

Π̂y,nf =
π̂y,nf

π̂y,n11
. (2.12)

⊲ Estimation of the conditional survival probability. Owing to Equation
(1.5) we use optimal quantization to estimate the P

(
infs≤u≤t Vu > a|FS

s

)
on the set

{τ > s} by
Nn∑

i=1

F (s, t, vi
n) Π̂i

y,n (2.13)

where vi
n, i = 1, · · · , Nn is the quadratic optimal grid of the process V at time tn = s,

Π̂i
y,n is the i-th coordinate of the optimal filter Π̂y,n given in (2.12) and, for every

i, F (s, t, vi
n) is defined as in (1.6). Note that this last function has in general no

explicit expression. In such case, we will estimate it by Monte Carlo as specified in
the next section.

3 Approximation by Monte Carlo of survival probabil-

ities under full information

The aim of this section is to solve problem (P1), i.e., to compute, for each pair of
positive values (s, t), s ≤ t ≤ T ,

P

(
inf

s≤u≤t
Vu > a

∣∣∣Vs

)
= E

(
11{infs≤u≤t Vu>a}|Vs

)
, (3.1)

where in our general setting the firm value V follows a priori a diffusion of the type
(1.1). Notice that in the specific case where V is a geometric Brownian motion there
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exists a closed-formula, that we recall below.
If

dVt = µVtdt+ σVtdWt, V0 = v0,

then

P

(
inf

s≤u≤t
Vu > a|Vs

)
= Φ(h1(Vs, t− s)) −

(
a

Vs

)σ−2(r−σ2/2)

Φ(h2(Vs, t− s)) (3.2)

where

h1(x, u) =
1

σ
√
u

(
log
(x
a

)
+

(
µ− 1

2
σ2

)
u

)
,

h2(x, u) =
1

σ
√
u

(
log
(a
x

)
+

(
µ− 1

2
σ2

)
u

)

and where Φ(x) =
1√
2π

∫ x

−∞
e−u2/2du is the cumulative distribution function of the

standard Gaussian law (see for example Borodin and Salminen, 2002 or Revuz and
Yor, 1999).

Since in general we cannot use directly the result in Equation (3.2), we have to
resort to an approximation method. We will adopt the “regular Brownian bridge
method”. However, note that many other methods can be used to estimate these
probabilities, such as in Kahalé (2007), where the crossing probabilities are calculated
via Schwartz distributions in the specific case of drifted Brownian motion and in
Linetsky (2004), where the survival probabilities and hitting densities relative to the
CIR, the CEV and to the OU diffusions are expressed as infinite series of exponential
densities:

Pv0
(τ > t) =

∞∑

n=1

cne
−λnt, t > 0, (3.3)

where 0 < λ1 < λ2 < · · · < λn → ∞ as n → ∞ and (cn)n are explicitly given
in terms of the solution of the Sturm-Liouville equation and the eigenvalues of the
Sturm-Liouville problem.

In order to find an approximated solution to problem (P1) by means of the re-
gular Brownian bridge method, we focus on the interval [s, t] and we discretize it by
means of u0 = s < u1 < · · · < t = uN . We denote by V̄ the continuous Euler scheme
relative to V .

The regular Brownian bridge method is connected to the knowledge of the distri-
bution of the minimum (or the maximum) of the continuous Euler scheme V̄ relative
to the process V over the time interval [s, t], given its values at the discrete time
observation points s = u0 < u1 < · · · < uN = t (see, e.g., Pagès, 2008).

Lemma 3.1.

L
(

min
u∈[s,t]

V̄u|V̄uk
= vk, k = 0, · · · , N

)
= L

(
min

k=0,··· ,N−1
G−1

vk ,vk+1
(Uk)

)
(3.4)
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where (Uk)k=0,··· ,N−1 are i.i.d random variables uniformly distributed over the unit
interval and G−1

x,y is the inverse function of the conditional distribution function Gx,y,
defined by

Gx,y(u) = exp
(
− 2N

(t− s)σ2(x)
(u− x)(u− y)

)
11{min(x,y)≥u}.

Notice that we have omitted the dependence on time in σ.

Recall that for a given time discretization grid uk := s+ k(t−s)
N , k = 0, · · · , N , on

the set [s, t], the continuous Euler scheme relative to the process V is defined by

V̄u = V̄u + b(u, V̄u)(u− u) + σ(u, V̄u)(Wu −Wu), V̄s = vs,

with u = uk if u ∈ [uk, uk+1). We deduce from the previous lemma the following
result.

Proposition 3.2.

P

(
min

s≤u≤t
V̄u > a

∣∣V̄s

)
= E

(
N−1∏

k=0

GV̄uk
,V̄uk+1

(a)
∣∣V̄s

)

.

Proof. We have (recall that V̄s = V̄u0
)

P

(
min

s≤u≤t
V̄u > a

∣∣V̄s

)
= E

(
P

(
min

s≤u≤t
V̄u > a

∣∣V̄uk
, k = 0, . . . , N

) ∣∣V̄s

)

= E

(
11{min0≤k≤N V̄ui

>a} exp
(
− 2N

t−s

∑N−1
k=0

(V̄uk
−a)(V̄uk+1

−a)

σ2(V̄uk
)

)∣∣V̄s

)

= E

(
N−1∏

k=0

11{V̄uk
>a;V̄uk+1

>a} exp
(
− 2N

t−s

(V̄uk
−a)(V̄uk+1

−a)

σ2(V̄uk
)

)∣∣V̄s

)

= E

(
N−1∏

k=0

GV̄uk
,V̄uk+1

(a)
∣∣V̄s

)
,

which gives the announced result.

By using Proposition 3.2, we estimate the survival probability under full information

P

(
inf

s≤u≤t
V̄u > a

∣∣V̄s = v

)

by the following Monte-Carlo procedure:

• Time grid specification. Fix u0 = s < u1 < · · · < t = uN , the set of N + 1
points for the (discrete time) Euler scheme in the interval [s, t];

• Trajectories simulation. Starting from v and having fixed M (number of Monte
Carlo simulations), for j = 1, . . . ,M , simulate the discrete path (V̄ j

uk
)k=0,...,N ;

• Computation of the survival probability. For j = 1, . . . ,M , compute (recall
that, for every j, V̄ j

u0
= v)

p
j
s,t(v; a) :=

N−1∏

k=0

G
V̄ j

uk
,V̄ j

uk+1

(a). (3.5)
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• Monte Carlo procedure. Finally, apply the Monte-Carlo paradigm and get the
following approximating value

P

(
inf

s≤u≤t
V̄u > a

∣∣∣V̄s = v

)
≈
∑M

j=1 p
j
s,t(v; a)

M
. (3.6)

As a consequence, combining formulas (2.13) and (3.6) leads to the following
hybrid Monte Carlo - optimal quantization formula on the set {τ > s}

P

(
inf

s≤u≤t
Vu > a

∣∣∣FS
s

)
≈ 1

M

M∑

j=1

Nn∑

i=1

p
j
s,t(v

i
n; a) Π̂i

y,n (3.7)

where pj
s,t(· ; a) was introduced in (3.5).

4 The error analysis

We now focus on the error done by approximating P

(
inf

s≤u≤t
Vu > a

∣∣∣FS
s

)
by

1

M

M∑

j=1

Nn∑

i=0

p
j
s,t(v

i
n; a) Π̂i

y,n.

We distinguish three types of error. The first error is induced by the approximation
of the filter Πy,n appearing in Equation (2.2) by Π̂y,n, defined in (2.12). The second
one is the error deriving from the approximation of

P

(
inf

s≤u≤t
Vu > a

∣∣Vs = v

)
by P

(
inf

s≤u≤t
V̄u > a

∣∣V̄s = v

)
,

where V̄ is the (continuous) Euler scheme relative to the process V . The last one
is the error arising from the approximation of the survival probability under full
information by means of Monte Carlo simulation.

Note that in the case when Equation (1.1) admits an explicit solution, as in the
Black-Scholes model, there is no need to use an Euler scheme, so that the second
kind of error has no more to be taken into account.

⊲ Filter approximation error. In order to have some upper bound of the quanti-
zation error estimate of Πy,nF (s, t, ·) let us make the following assumptions, as done
in Pagès and Pham (2005). Notice that they are stated in the more general setting
of Section 2.2, so that we have to identify V with X and S with Y .

(A1) The transition operators Pk(x, dy) of Xk given Xk−1, k = 1, · · · , n are Lips-
chitz.

Recall that a probability transition P on E is C-Lipschitz (with C > 0) if for
any Lipschitz function f on E with ratio [f ]Lip, Pf is Lipschitz with ratio [Pf ]Lip ≤
C[f ]Lip. Then, one may define the Lipschitz ratio [P ]Lip by

[P ]Lip = sup
{ [Pf ]Lip

[f ]Lip
, f a nonzero Lipschitz function

}
< +∞.
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If the transition operators Pk(x, dy), k = 1, · · · , n are Lipschitz, it follows that

[P ]Lip := max
k=1,··· ,n

[Pk]Lip < +∞.

(A2) (i) For every k = 1, · · · , n, the functions gk (recall hypothesis (H)) are
bounded on E × Rq × E × Rq and we set

Kn
g := max

k=1,··· ,n
‖gk‖∞.

(ii) For every k = 1, · · · , n, there exist two positive functions [g1
k]Lip and

[g2
k]Lip defined on Rq ×Rq so that for every x, x′, x̂, x̂′ ∈ E and y, y′ ∈ Rq,

|gk(x, y, x
′, y′)−gk(x̂, y, x̂

′, y′)| ≤ [g1
k]Lip(y, y

′) |x−x̂|+[g2
k]Lip(y, y

′) |x′−x̂′|.

The following result gives the error bound of the estimation of the filter (see Pagès
and Pham, 2005, for details of the proof).

Theorem 4.1. Suppose that Assumptions (A1) and (A2) hold true. For eve-
ry bounded Lipschitz function F on E and for every n-tuple of observations y =
(y1, · · · , yn), we have for every p ≥ 1,

|Πy,nF − Π̂y,nF | ≤
Kn

g

φn(y) ∨ φ̂n(y)

n∑

k=0

Bn
k(F, y, p) ‖Xk − X̂k‖p (4.1)

with
φn(y) := πy,n1, φ̂n(y) := π̂y,n1

and

Bn
k (F, y, p) := (2 − δ2,p)[P ]n−k

Lip [F ]Lip + 2

(‖F‖∞
Kg

(
[g1

k+1]Lip(yk, yk+1) + [g2
k]Lip(yk−1, yk)

)

+ (2 − δ2,p)
‖F‖∞
Kg

n∑

j=k+1

[P ]j−k−1
Lip

(
[g1

j ]Lip(yj−1, yj) + [P ]Lip[g
2
j ]Lip(yj−1, yj)

))
.

(Convention: g0 = gn+1 ≡ 0 and δn,p is the usual Kronecker symbol).

⊲ Error induced by the Euler scheme. We here refer to Gobet (1998), in which
the author starts by investigating the case of a one-dimensional diffusion and to the
successive related article Gobet (2000) for the multidimensional case. In the two
papers the considered diffusion has homogeneous coefficients b and σ. We start by
recalling here some important convergence results we find therein, we will then adapt
these results to our case.

Suppose that X is a diffusion taking values in R, with X0 = x, and define τ ′ as
the first exit time from an open set D ⊂ R:

τ ′ := inf {u ≥ 0 : Xu 6∈ D} .

Let τ ′c denotes the exit time from the domain D of the continuous Euler process
X̄ . In order to give the error bound in the approximation of Ex

(
11{τ ′>t}f(Xt)

)
by

Ex

(
11{τ ′

c>t}f(X̄t)
)

the following hypotheses are needed:
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(H1) b is a C∞
b (R,R) function and σ is in C∞

b (R,R),

(H2) there exists σ0 > 0 such that ∀x ∈ R, σ(x)2 ≥ σ2
0 (uniform ellipticity),

(H3) Px

(
inft∈[0,T ]Xt = a

)
= 0.

The following proposition states that, under hypothesis (H3), the approximation
error goes to zero as the number of time discretization steps goes to infinity.

Proposition 4.2 (Convergence). Suppose that b and σ are Lipschitz, D = (a,+∞)
and that (H3) holds. If f ∈ C0

b (D̄,R) then,

lim
N→+∞

∣∣∣Ex[11{τ ′
c>T}f(X̄T )] − Ex[11{τ ′>T}f(XT )]

∣∣∣ = 0.

Note that in the homogeneous case, when D = (a,+∞), a sufficient condition in
order for (H3) to hold is

σ(X0) 6= 0. (4.2)

On the other hand, the rate of convergence is given by the following

Proposition 4.3 (Rate of convergence). Under hypotheses (H1) and (H2), if
f ∈ C1

b (D̄,R), then there exists an increasing function K(T ) such that

∣∣∣Ex[11{τ ′
c>T}f(X̄T )] − Ex[11{τ ′>T}f(XT )]

∣∣∣ ≤ 1√
N
K(T )||f ||(1)D ,

where ||f ||(1)D =
∑1

j=0 supx∈D |f (j)(x)|.

Remark 4.4. One notes that the two previous propositions still hold when the
diffusion coefficients are in-homogeneous, as in our general setting, by replacing
Hypotheses (H1), (H2), (H3) by (I) and (J) :

(I) b and σ are C∞
b functions with respect to both arguments t and v, with uni-

formly bounded partial derivatives with respect to v,

(J) σ is uniformly elliptic, i.e., ∃α > 0 such that σ2(t, v) ≥ α,∀(t, v) ∈ [0, T ] × R

and σ(0, v0) 6= 0.

⊲ Error induced by Monte Carlo approximation. This error comes from the

estimation of P
(
mins≤u≤t V̄u > a

∣∣V̄s = vi
s

)
= E

(∏N−1
k=0 GV̄uk

,V̄uk+1
(a)
∣∣V̄s = vi

s

)
, for

every i = 1, · · · , Ns, by ∑M
j=1 p

j
s,t(v

i
s; a)

M
,

where pj
s,t(· ; a) is defined in (3.5). We have for every i = 1, · · · , Ns,

∥∥∥E
(N−1∏

k=0

GV̄uk
,V̄uk+1

(a)
∣∣V̄s = vi

s

)
−
∑M

j=1 p
j
s,t(v

i
s; a)

M

∥∥∥
2

= O
( 1√

M

)
. (4.3)
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By adapting the previous results to our case, namely by identifying V with X

and S with Y , one deduces an error bound for the estimation of Πy,nF (s, t, ·) by

Π̂y,nFMN (s, t, x), where FMN (s, t, x) is a Monte Carlo estimation of F (s, t, ·) of size
M , based on a time discretization grid, between s and t, of size N .

Theorem 4.5. Suppose that the Assumptions of Theorem 4.1 and Proposition 4.3
hold. Then

|Πy,nF (s, t, ·) − Π̂y,nFMN(s, t, ·)| ≤
Kn

g

φn(y) ∨ φ̂n(y)

n∑

k=0

Bn
k(F (s, t, ·), y, p) ‖Vk − V̂k‖p

+ O
(

1√
N

)
+ O

(
1√
M

)
,

where n is the dimension of the observation vector y, N stands for the size of the time
discretization grid for the Euler scheme from s to t and M is the number of Monte
Carlo trials. Furthermore, Kn

g , φn(y), φ̂n(y) and Bn
k , k = 0, . . . , n, are introduced in

Theorem 4.1.

Proof. We have

|Πy,nF (s, t, ·) − Π̂y,nFMN (s, t, ·)| ≤ |Πy,nF (s, t, ·) − Π̂y,nF (s, t, ·)|
+ |Π̂y,nF (s, t, ·) − Π̂y,nFMN(s, t, ·)|.

The error bound of the first term on the right-hand side of the above inequality is
given by Theorem 4.1. As concerns the last term we have

|Π̂y,nF (s, t, ·) − Π̂y,nFMN(s, t, ·)| =
∣∣∣

Ns∑

i=1

Π̂i
y,n(F (s, t, vi

s) − FMN(s, t, vi
s))
∣∣∣

≤ sup
v∈R

|F (s, t, v) − FMN (s, t, v)|
Ns∑

i=1

Π̂i
y,n

= sup
v∈R

|F (s, t, v) − FMN (s, t, v)|.

On the other hand, we have for every v ∈ R

|F (s, t, v) − FMN (s, t, v)| ≤
∣∣∣Pv(τ > t) − Ev

(N−1∏

k=0

GV̄uk
,V̄uk+1

(a)
)∣∣∣

+
∥∥∥Ev

(N−1∏

k=0

GV̄uk
,V̄uk+1

(a)
)
−
∑M

j=1 p
j
s,t(v; a)

M

∥∥∥
2
.

We then deduce from Proposition 4.3 and from Equation (4.3) that

|F (s, t, v) − FMN(s, t, v)| ≤ O
(

1√
N

)
+ O

(
1√
M

)
,

which completes the proof.
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Remark 4.6. (About the hypotheses of Theorem 4.5) We consider the case when
V is a time homogeneous diffusion.
⊲ It is straightforward, by using Remark 2.1, to prove that Assumption (A2) is
fulfilled.
⊲ If we suppose that the coefficients b and σ of the diffusion V are Lipschitz, we
show, by using the Euler scheme relative to V , that Hypothesis (A1) holds true.
⊲ As concerns the Lipschitz property of the function F (s, t, ·), it follows from Propo-
sition 2.2.1 in Gobet (1998), in the case when the coefficients of the diffusion satisfy
Hypotheses (H1) and (H2) and for t > s.

5 Numerical results

In the numerical experiments we deal with the estimation of the credit spread for
zero coupon bonds. We fix s and, given the observations of S from 0 to s, we estimate
the spread curve for different maturities t (t > s).

The credit spread is the difference in yield between a corporate bond and a risk-
less bond (treasury bond) with the same characteristics. It can be seen as a measure
of the riskiness relative to a corporate bond, with respect to a risk-free bond. If we
suppose for simplicity that the face value is equal to 1 and the recovery rate is zero,
the credit spread under partial information from time s to maturity t, S(s, t), equals
(see Bielecki and Rutkowski, 2004 and Coculescu, Geman and Jeanblanc, 2008)

S(s, t) = − log
(
Q(infs<u≤t Vu > a|FS

s )
)

t− s
,

where Q is a martingale measure equivalent to P. We suppose that the market is
complete, so that Q is unique.

We will consider two models for the dynamics of the firm value V : the Black-
Scholes one and a CEV (Constant Elasticity of Variance) model. In both cases we
fix s = 1 and we estimate the spreads, given the observed trajectory of S from 0 to s,
for different maturities varying 0.1 by 0.1 from 1.1 to 11 (the time unit is expressed,
e.g., in years). We set the number n of discretization points over [0, s] equal to 50
and for every k = 1, · · · , n, the quantization grid size Nk is set to 60, with N0 = 1.
The number of Euler discretization steps N equals 50 for t varying 0.1 by 0.1 from
1.1 to 3.0 and N = 100 for t varying 0.1 by 0.1 from 3.1 to 11.0. The number of
Monte Carlo trials M is set to 300000. In the quantization phase we obtain the
optimal grid by carrying out 80 Lloyd’s I procedures.

⊲ The Black-Scholes model. We consider the following model for the firm value’s
and the observed process’ dynamics:

{
dVt = Vt(rdt+ σdWt), V0 = v0,

dSt = St(rdt + σdWt + δdW̄t), S0 = v0,
(5.1)

with r = 0.03, σ = 0.05, v0 = 86.3. The barrier a is fixed to 76 and δ = 0.1. We
have, in particular,

dSt

St
=
dVt

Vt
+ δdW̄t, (5.2)

meaning that the return on S is the return on V affected by a noise.
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Remark 5.1. a) Since V is not traded in the market, the return on V is not
necessarily equal to the interest rate r. We have set the return on V to be equal to
r in order to have a good economic interpretation of the model.
b) Note that in this particular case all the hypotheses of Theorem 4.5 are satisfied.

Numerical results are presented in Figures 1 and 2. Figure 1 is relative to the
partial information case, so that three trajectories of the observed process S and the
corresponding credit spreads are depicted. Figure 2, on the contrary, concerns the
full information case, namely we suppose that we can observe different trajectories
of V , that are drawn on the left, and we compute the corresponding credit spreads,
that are shown on the right.

Remark that in this setting we deduce from (5.1) that

St = Vte
− 1

2
δ2t+δW̄t .

The correlation coefficient is then given for every t by

ρ(t) :=

√
eσ

2t − 1

e(σ
2+δ2)t − 1

,

meaning that the firm value V is positively correlated to the observation process S.
Observe that when σ < δ, ρ(t) is a strictly decreasing function and goes to 0 as t goes
to infinity. This tell us that the a posteriori information on V given S decreases as
the maturity t increases. This is what we observe in the spreads curves from Figures
1 and 2, since for large maturities the spreads values almost coincide for analogous
trajectories.

Figure 1: Three trajectories of the observed process S (on the left) and the corresponding
spreads (on the right).

First of all, we notice that the short term spreads under partial information,
being the default time totally inaccessible, do not vanish, as it is the case in the full
information model. Moreover, since Vt and St are positively correlated, it is expected
that the more the trajectory of S behaves “badly”, the higher the short term spreads
are, as shown in Figure 1.
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Figure 2: Three trajectories of the value process in the full information case (on the left)
and the corresponding spreads (on the right).

In the full information setting the short term spreads are always equal to zero,
but in “bad” situations (for example in the case of the blue trajectory on the left-
hand side of Figure 2) the medium term spreads can be higher than in the partial
information model.

The credit spreads under partial information can, then, be considered as good
indicators of the transparency of a firm as viewed by bond-market participants.

⊲ The CEV model. We suppose that the firm value’s and the observed process’
dynamics are given by

{
dVt = Vt(µdt+ γV

β
t dWt), V0 = v0,

dSt = St(rdt + σdWt + δdW̄t), S0 = v0,
(5.3)

where µ = r = 0.03, γ = 744.7 (it is chosen so that the initial volatility equals 0.10),
β = −2 (notice that in this case one of the characteristics of the model is that the
leverage effect holds: a firm value process increase implies a decrease in the variance
of the price process return), σ = 0.05, δ = 0.1, v0 = 86.3.

Remark 5.2. Since in this situation the firm value process reaches zero with a
positive probability (see, e.g., Jeanblanc and Yor, 2009), we have to work with the
stopped process (Vτ∧t)t.

Numerical results are presented in Figure 3, where three trajectories of the ob-
served process S and the corresponding spreads are depicted. We first notice that
the spreads in this example are higher than the ones in the previous example. This
is due to the fact that in this case the observed process S is more volatile, as it can
be seen from Figure 3, compared to Figure 1.

Secondly, we remark, as in the previous example, that the more the trajectory
of S behaves “badly”, the higher the short term spreads are, as shown in Figure 3.

Moreover, notice that the spread curves corresponding to the two worst S trajec-
tories seem to cross, however a zoom in the graph shows that it is not the case and
that the blue curve is always above the red one. This can be explained by noticing
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that the model we use keeps the memory of all the observed path and that the blue
trajectory of S is globally worse than the red one.
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Figure 3: Three trajectories of the observed process S in the CEV model (on the left) and
the corresponding spreads (on the right).

We end this section by pointing out some general facts concerning the methodo-
logy we have used.

Remark 5.3. a) The most important fact from the numerical point of view is
that, as soon as the process V is quantized over [0, s], the survival probability
Q(infs≤u≤t Vu > a|FS

s ) is estimated for every maturity t > s without modifying
the optimal quantization grid of V .
b) Notice also that this method works as soon as the process V can be quantized.
c) Dealing with the computation of credit spread we have to work under the prob-
ability Q. In the case where S is traded in the market the drift under the measure
Q is equal to r and we do not need to know the function ψ in order to estimate the
survival probability. When the observed process is not traded in the market, on the
contrary, and if we are not interested in the computation of the credit spreads, the
survival probability can be computed under the historical probability P, so that the
function ψ is exploited.
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