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Environmental policy, education and growth: A

reappraisal when lifetime is finite

Xavier Pautrel∗†

October 1, 2009

Abstract

This article demonstrates that when finite lifetime is introduced in a Lucas (1988)
growth model where the source of pollution is physical capital, the environmental policy
may enhance the growth rate of a market economy, while pollution does not influence
educational activities, labor supply is not elastic and human capital does not enter the
utility function. The result arises from the “generational turnover effect” due to finite
lifetime. It remains valid under conditions when the education sector uses final output
besides time to accumulate human capital. Nevertheless, it does no longer hold when the
source of pollution is output.

Furthermore, this article demonstrates that ageing reduces the positive influence of the
environmental policy when growth is driven by human capital accumulation à la Lucas
(1988) and lifetime is finite. It also confirms for finite lifetime the result found by Vellinga
(1999) with a single representative agent: environmental care does not influence optimal
growth when utility is additive and pollution does not influence the ability of agents to be
educated.

Keywords : Growth; Environment; Overlapping generations; Human capital;

∗Nantes Atlantique Université, Laboratoire d’Économie et de Management de Nantes, Institut d’Économie
et de Management de Nantes - iae, Chemin de la Censive du Tertre, BP 81307, 44313 Nantes Cedex 3, France.
Mail: xavier.pautrel@univ-nantes.fr

†I thank Fabien Tripier for a stimulating discussion about a previous version of this paper and Yan Rebillé
for helpful comments. The usual disclaimer applies. This working paper is a revised version of the FEEM
Working paper 216 (July 2008).

1

ha
l-0

04
23

20
1,

 v
er

si
on

 1
 - 

9 
O

ct
 2

00
9



1 Introduction

While the link between environment and growth has already been extendedly investigated (see

Xepapadeas, 2005; Brock and Taylor, 2005), conclusions about the influence of the environ-

mental policy on economic growth remain open. The purpose of this article is to contribute

to the debate, by re-examining the influence of the environmental policy on human capital

based-growth when finite lifetime is taken into account. It demonstrates that finite lifetime

introduces a new channel of transmission between the environment and economic performances

based on the turnover of generations.

Most of the industrialized countries are now becoming knowledge- and education-based

economies using more and more human capital instead of physical capital to produce. And

education played a major role in the industrialization of the South-East Asian countries during

7os and 80s decades.1 Nevertheless, few theoretical works investigate environmental issues in

a framework where human capital is the engine of growth and economic prosperities.2 A note-

worthy exception is the seminal article by Gradus and Smulders (1993). In a model à la Lucas

(1988) where pollution originates from physical capital, they demonstrate that the environment

never influences the steady-state growth rate except when pollution affects education activities.3

This result comes from the fact that the growth rate of consumption relies on the after-tax in-

terest rate and the rate of time preferences and that the tax-rate is invariant with pollution tax

in the steady-state when labor supply is inelastic. When the environmental taxation increases,

1See World Bank (1993) for empirical evidence of this role. Grimaud and Tournemaine (2007) point out
this role to justify the need to investigate the link between environment and growth through the channel of
education.

2Here, we do not deal with the major question of climate change and we do not integrate non-renewable
resources in the analysis. See Schou (2000, 2002) and Grimaud and Rouge (2005, 2008) for authors who
investigate environmental policy and growth in the presence of non-renewable resources and endogenous growth.
Note also that there exists an important literature on the impact of environmental policy on growth, even if
the contributions do not deal with human capital accumulation: on the double dividend, see Bovenberg and
Smulders (1995, 1996), Bovenberg and de Mooij (1997); for contributions using OLG model, see Ono (2002,
2003)(discrete time model) or Bovenberg and Heijdra (1998, 2002) (continuous time Yaari-Blanchard model)
amongst others.

3More precisely, they assume that pollution depreciates the stock of human capital. van Ewijk and van
Wijnbergen (1995) consider that pollution reduces the ability to train .
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the after-tax interest rate reduces and becomes lower than the returns to human capital. Con-

sequently, the investment in physical capital drops in favor to human capital accumulation.

Final production becomes more intensive in human capital and the allocation of human capital

in production diminishes. This mechanism perpetuates until the after-tax interest rate backs

to its initial value equal to the rate of returns in human capital accumulation. Because the

aggregate consumption growth in the steady-state relies only on the after-tax interest rate, it

is not modified by the higher pollution tax.

Assuming that labor supply is elastic and pollution originates from the stock of physical

capital, Hettich (1998) finds a positive influence of the environmental policy on human capital

accumulation, in a Lucas’ setting. The increase in the environmental tax compels firms to

increase their abatement activities at the expense of the household’s consumption. To coun-

teract this negative effect, households substitute leisure to education and the growth rate rises.

Nevertheless, the author demonstrates that his result is very sensitive to the assumption about

the source of pollution. When pollution originates final output rather than physical capital, the

link between the environment and growth does not longer exist. By taxing output, a tighter

environmental policy reduces both the returns to physical capital and the wage rate which

contributes to the returns to education. The incentives of agents to invest more in education

vanish.

More recently, Grimaud and Tournemaine (2007) demonstrate that a tighter environmental

policy promotes growth, in a model combining R&D and human capital accumulation, where

education directly enters the utility function as a consumption good and knowledge from R&D

reduces the flow of pollution emissions. By increasing the price of the good whose production

pollutes the higher tax rate reduces the relative cost of education and therefore incites agents to

invest in human capital accumulation. Because education is the engine of growth, the growth

rises in the steady-state. As highlighted by the authors, the key assumption is the introduction

of the education as a consumption good in utility which lets the returns to education depen-

dent from the environmental policy. When education does not influence utility, the returns to
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education is exogenous and therefore is not affected by the policy.

In the present article, we re-examine the link between the environmental policy and growth

in a Lucas’ setting, assuming just that lifetime is finite. We use a Yaari (1965)-Blanchard

(1985) overlapping generations model where growth is driven by human capital accumulation

à la Lucas (1988) and pollution arises from physical capital.4 We study both the long-run

balanced growth path and the transition.

Our results are fourfold. First, we demonstrate that when lifetime is finite and physical

capital is the source of pollution, a tighter environmental policy enhances growth even if pol-

lution does not affect educational activities, labor supply is inelastic and human capital does

not enter the utility function. Indeed, finite lifetime introduces a turnover of generations which

disconnects aggregate consumption growth to the interest rate. This effect appears because at

each date a new generation is born and a cross-section of the existing population dies. Because

new agents born without financial assets, their consumption is lower than the average consump-

tion and therefore the “generational turnover effect” reduces the growth rate of the aggregate

consumption. This generational effect rises with the probability to die because on one hand

agents die at a higher frequency (that increases the generational turnover), and on the other

hand the propensity to consume out of wealth increases due to the shorter horizon. Because

the “generational turnover effect” leads the aggregate consumption growth to be higher than its

initial level while the after-tax interest rate remains unchanged, it incites agents to invest more

in human capital (the non-polluting factor) and therefore creates a growth-enhancing effect of

the environmental tax.

We also demonstrate that, in the presence of finite lifetime, the ageing of the population (a

4Following Gradus and Smulders (1993) and many other authors, we model pollution as a flow that originates
from production. It corresponds to pollutant emissions like, for example, untimely noise, or non-permanent
volatile organic compounds produced by the industry or generated by industrial process (like the use of solvents
in consumer and commercial products that corresponds to 28% of the total emissions of VOCs in Canada for
2000). Like (Hettich, 1998, p.292), one should make observe that the “flow” assumption (rather than the “stock”
assumption) does not modify the qualitative results along the Balanced Growth Path.

4

ha
l-0

04
23

20
1,

 v
er

si
on

 1
 - 

9 
O

ct
 2

00
9



lower probability to die) reduces the positive influence of the environmental policy on growth,

for the aforementioned reasons.

Second, when we relax the assumption that only time is required to be educated and we as-

sume that an education good is used as input in education activities, the “generational turnover

effect” continues to operate and the environmental policy enhances growth, only if the part of

the education good in human capital accumulation remains small. Otherwise, the crowding-out

effect leads the environmental policy to be harmful to growth.

Third, when the source of pollution is final output rather than physical capital, we demon-

strate that the environmental policy does not influence growth in the Lucas (1988) setting,

because the wage rate (that influences the returns to education) is also affected. As a result,

the substitution between physical capital and human capital is reduced and the “generational

turnover effect” does not prevent the economy from coming back to its initial level of after-tax

interest rate and of investment in education. When the education good is introduced, the neg-

ative influence of the environmental policy appears, for the reason mentioned in the previous

paragraph.

Finally, we demonstrate that the BGP optimal growth rate is independent from the envi-

ronmental care despite the finite lifetime. This is because the central planner internalizes the

“generational turnover effect” . Such a result is similar to the one found by Vellinga (1999)

with infinite lifetime and a single representative agent: environmental care does not influence

optimal growth when utility is additive and pollution does not influence the ability of agents

to be educated.

In section 2, we expose the model. Section 3 investigates the steady-state equilibrium.

Section 4 examines the transitional dynamics of the model and compare the transitional effects

of a tighter environmental policy on the economy when lifetime is finite and infinite, using

numerical simulations. Section 5 discusses results, assuming alternative assumptions about

production factors in education and the source of pollution. Section 6 examines optimal growth

and the optimal environmental tax. Section 7 concludes.

5

ha
l-0

04
23

20
1,

 v
er

si
on

 1
 - 

9 
O

ct
 2

00
9



2 The model

Let’s consider a Yaari (1965)-Blanchard (1985) overlapping generations model with human

capital accumulation and environmental concerns. Time is continuous. Each individual born

at time s faces a constant probability of death per unit of time λ ≥ 0. Consequently his life

expectancy is 1/λ. When λ increases, the life span decreases. At time s, a cohort of size λ is

born. At time t ≥ s, this cohort has a size equal to λe−λ(t−s) and the constant population is

equal to
∫ t

−∞
λe−λ(t−s)ds = 1. There are insurance companies and there is no bequest motive.5

The expected utility function of an agent born at s ≤ t is:6

∫ ∞

s

[log c(s, t)− ζ logP(t)] e−(̺+λ)(t−s)dt (1)

where c(s, t) denotes consumption in period t of an agent born at time s, ̺ ≥ 0 is the rate of

time preference and ζ > 0 measures the weight in utility attached to the environment, that is

environmental care.

The representative agent can increase his stock of human capital by devoting time to school-

ing, according to Lucas (1988):7

ḣ(s, t) = B [1− u(s, t)]h(s, t) (2)

where B is the efficiency of schooling activities, u(s, t) ∈]0, 1[ is the part of human capital

allocated to productive activities at time t for the generation born at s and h(s, t) is the stock

of human capital at time t of an individual born at time s. Note that we make no assumption

about the influence of pollution on individual human capital accumulation.

5The first assumption is made because here death may be interpreted as the termination of a family dynasty
and therefore adults who die do not care about what occurs beyond their death. The second assumption is
made to avoid unintented bequests.

6We use logarithmic utility for the sake of simplicity. In appendix D, we demonstrate that our results remain
valid when the intertemporal elasticity of substitution of the consumption is different from unity.

7In appendix B, we develop the model with a more general function of human capital accumulation whose
results are discussed in the following sections. For the ease of the exposition and the comprehension of the eco-
nomic mechanisms we choose to examine first the Lucas (1988) specification. Appendix B and B1 demonstrate
in details how the main results for this specification are obtained.
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Households face the following budget constraint:

ȧ(s, t) = [r(t) + λ] a(s, t) + u(s, t)h(s, t)w(t)− c(s, t) (3)

where a(s, t) is the financial wealth in period t and ω(t) represents the wage rate per effec-

tive unit of human capital u(s, t)h(s, t). In addition to the budget constraint, there exists a

transversality condition which must be satisfied to prevent households from accumulating debt

indefinitely:

lim
v→∞

[
as,ve

−(r+λ)(v−t)
]
= 0

The representative agent chooses the time path for c(s, t) and his working time u(s, t) by

maximizing (1) subject to (2) and (3). It yields

ċ(s, t) = [r − ̺] c(s, t) (4)

Integrating (3) and (4) and combining the results gives the consumption at time t of an agent

born at time s:

c(s, t) = (̺+ λ) [a(s, t) + ω(s, t)] (5)

where ω(s, t) ≡
∫∞

t
[u(s, ν)h(s, ν)w(ν)] e−

R ν
t
[r(ζ)+λ]dζdν is the present value of lifetime earning.

It also gives the equality between the rate of return to human capital and the effective rate of

interest:8

ẇ(t)

w(t)
+B = r(t) + λ (6)

Due to the simple demographic structure, all individual variables are additive across individuals.

Consequently, the aggregate consumption equals

C(t) =

∫ t

−∞

c(s, t)λe−λ(t−s)ds = (̺+ λ) [K(t) + Ω(t)] (7)

8The effective interest rate is the interest rate on the debt r plus the insurance premium λ the agent has to
pay when borrowing (Blanchard and Fisher, 1989).

7
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where Ω(t) ≡
∫ t

−∞
ω(s, t)λe−λ(t−s)ds is aggregate human wealth in the economy. The aggregate

stock of physical capital is defined by

K(t) =

∫ t

−∞

a(s, t)λe−λ(t−s)ds

and the aggregate human capital is

H(t) =

∫ t

−∞

h(s, t)λe−λ(t−s)ds, (8)

We assume that the human capital of an agent born at current date, h(t, t), is inherited from

the dying generation. Because the mechanism of intergenerational transmission of knowledge is

complex, we make the simplifying assumption that the human capital inherited from the dying

generation is a constant part of the aggregate level of human capital such that h(t, t) = ηH(t)

with η ∈]0, 1] (see Song, 2002).9

The productive sector is competitive. The representative firm produces the final good Y

with the following technology:

Y (t) = K(t)α
[∫ t

−∞

u(s, t)h(s, t)λe−λ(t−s)ds

]1−α

, 0 < α < 1

with Y (t) being the aggregate final output.
∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds is the amount of the

aggregate stock of human capital used in production.

Following Gradus and Smulders (1993), pollution flow is assumed to increase with the stock

of physical capital K and reduces with private abatement activities D (made by the firms and

which consumes final output one for one):

P(t) =

[
K(t)

D(t)

]γ

, γ > 0 (9)

We assume that the government implements an environmental policy to incite firms to

reduce their net flow of pollution. To do so, the government taxes the net flow of pol-

lution by the firms and transfers to them the fruit of the taxes to fund their abatement

9We assume that η could be equal to unity, that is the total aggregate level of human capital is inherited
from the dying generation. Because population is constant and normalized to unity, this assumption could be
viewed alternatively as the fact that the mean (or per capita) aggregate level of human capital is inherited from
the dying generation by each newborn.

8
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activities. Consequently, the representative firm under perfect competition pays a pollu-

tion tax on its net pollution P(t) and it chooses its abatement activities D(t) (whose cost

equals D(t)) and the amount of factors which maximize its profits π(t) = Y (t) − r(t)K(t) −

w(t)
[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds

]

−ϑ(t)P(t)−D(t)+T (t)p where ϑ(t) is the pollution tax rate

and T p(t) denotes transfers from the public sector with T p(t) = ϑ(t)P(t). The representative

firm takes as given these transfers and pays each production factor at its marginal productivity

to maximize profit:

r(t) = α
Y (t)

K(t)
− ϑ(t)γ

P(t)

K(t)

w(t) = (1− α)K(t)α
[∫ t

−∞

u(s, t)h(s, t)λe−λ(t−s)ds

]−α

(10)

D(t) = ϑ(t)γP(t) (11)

From equations (9) and (11), we obtain:

P(t) =

[

γ
ϑ(t)

K(t)

]−γ/(1+γ)

(12)

In the long-run, the net flow of pollution will be constant because K and D will evolve at the

same growth rate (see section 3 below ). As a result, from equation (12), the environmental tax

must rise over time because the physical capital stock accumulates over time (see Hettich, 1998).

Intuitively, ϑ(t) increases over time to encourage firms to increase abatement activities to limit

pollution which rises with the physical capital stock. Consequently, we define τ ≡ ϑ(t)/K(t),

the environmental tax normalized by the physical capital stock and we obtain:

P = Φ(τ)−γ (13)

D(t) = Φ(τ)K(t)

with Φ(τ) ≡ (γτ)1/(1+γ). Because τ is fixed by the government and therefore has no transitional

dynamics, P is independent of time.

9
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3 The general equilibrium and the balanced growth path

The final market clearing condition is:

Y (t) = C(t) + K̇(t) +D(t),

Differentiating (8) with respect to time and using the fact that u(s, t) = u(t),10 the aggregate

accumulation of human capital is:

Ḣ(t) = B [1− u(t)]H(t)− (1− η)λH(t) (14)

The first term in the right-hand side of the equation represents the increase in the aggregate

human capital due to the investment of each alive generation in education at time t. The

second term represents the loss of human capital due to the vanishing of dying generation net

from the intergenerational transmission of human capital. Indeed, on the one hand, a part λ

of the living cohort born at s with a stock of human capital equal to h(s, t)λe−λ(t−s) vanishes

reducing growth by λ
∫ t

−∞
h(s, t)λe−λ(t−s)ds = λH(t) when all generations are aggregated. On

the other hand, at the same time, a new cohort of size λ appears, adding λh(t, t) to growth,

with h(t, t) = ηH(t) and η ∈]0, 1] (see above). This net loss reduces the aggregate accumulation

of human capital.

Differentiating (7) with respect to time gives

Ċ(t)

C(t)
=

ċ(s, t)

c(s, t)
−

1

C(t)
[λC(t)− λc(t, t)] (15)

Aggregate consumption growth differs from individual consumption growth by the term into

brackets − [λC(t)− λc(t, t)] which represents what Heijdra and Ligthart (2000) called the “gen-

erational turnover effect”. This effect appears because at each date a cross-section of the existing

population dies (reducing aggregate consumption growth by λC(t)) and a new generation is

born (adding λc(t, t)). Because new agents born without financial assets, their consumption

10Using (10), the equalization of the rates of return given by equation (6) implies that the rate of return to
human capital is independent of s, therefore all individuals allocate the same effort to schooling: u(s, t) = u(t).

10
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c(t, t) is lower than the average consumption C(t) and therefore the “generational turnover

effect” reduces the growth rate of the aggregate consumption.

Using the expression of dK(t)/dt, dΩ(t)/dt and equation (4) we obtain (see appendix A):

Ċ(t)/C(t) = r(t)− ̺− (1− η)λ− ηλ(̺+ λ)K(t)/C(t) (16)

The generational effect rises with the probability to die λ: on one hand, agents die at a higher

frequency (that increases the generational turnover) and on the other hand the propensity to

consume out of wealth ̺ + λ increases due to the shorter horizon. Compared with the case

where there is no human capital accumulation, a new term η appears that captures the fact that

newborns inherit from the dying generation only a part η ∈]0, 1] of the aggregate human-wealth

(see appendix A) and not the total amount (like in Yaari (1965)-Blanchard (1985) model).

Using previous results,11 we can write the dynamics of the model as:

ẋ(t) = {[α− 1] (b(t)u(t))1−α − ̺−(1− η)λ− ηλ(̺+ λ)x(t)−1 + x(t)}x(t)

ḃ(t) = {B [1− u(t)]− (1− η)λ− (b(t)u(t))1−α + x(t) + Φ(τ)} b(t)

u̇(t) = {(α−1 − 1)B + (α−1 − 1)Φ(τ) +Bu(t)− (α−1 + η − 1)λ− x(t)}u(t)

(17)

where x(t) ≡ C(t)/K(t) and b(t) ≡ H(t)/K(t).

Along the balanced growth path, C, K, H, D and Y evolve at a common positive rate of

growth (denoted g⋆, where a ⋆ means “along the BGP” ) and the allocation of human capital

across sectors is constant. As a consequence, along the balanced growth path ẋ = ḃ = u̇ = 0,

x = x⋆, b = b⋆, u = u⋆ and g⋆ > 0.

Proposition 1. Under the conditions that along the Balanced growth path, the rate of growth

must be positive and can not exceed the maximum feasible rate, there exists a unique u⋆ ∈ ]u, ū[

(with u ≡ ̺+λ
B

, ū ≡ 1− (1−η)λ
B

, and 0 < u < ū < 1) solving Γ(u; τ) = 0 where Γ(u; τ) is defined

11See details of the calculation in appendix B and B1.
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as follows

Γ(u; τ) ≡ [Bu− λ− ̺]×
{[

α−1 − 1 + u
]
B + (α−1 − 1)Φ(τ)−

(
α−1 − 1 + η

)
λ
}

− ηλ(̺ + λ).

Furthermore, u⋆ is a decreasing function of τ denoted by U(τ) with U ′(τ) < 0, and the BGP

equilibrium is saddle-path stable.

Proof. See Appendix B, B1 and C. �

The conditions that along the BGP the rate of growth must be positive (here u⋆ < ū)

and can not exceed the maximum feasible rate of growth (here u⋆ > u) are conventional in the

Lucas (1988) human capital accumulation model.12 The negative influence of the environmental

taxation on u⋆ is explained below (after Proposition 3).

From (17), using the fact that along the BGP ḃ+ u̇ = 0, we can express the human capital

to physical capital ratio H/K along the balanced growth path as:

b⋆ =
[
α−1 (B − λ+ Φ(τ))

]1/(1−α)
U(τ)−1 > 0

The increase in the environmental tax leads the final production to be less intensive in physical

capital and more intensive in human capital because it increases the cost of physical capital:

b⋆ rises. The aggregate consumption to physical capital ratio C/K along the balanced growth

path is given by (see appendix B1):

x⋆ =
λη(̺+ λ)

BU(τ)− λ− ̺
> 0

and is an increasing function of the environmental tax rate.

Finally, the growth of the market economy along the BGP is:

g⋆ = B [1− U(τ)]− (1− η)λ. (18)

12See appendix B for details and the textbook by Barro and Sala-I-Martin (1995) for example.

12
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Proposition 2. When lifetime is finite, the environmental policy has a positive impact on the

Balanced growth path rate of growth driven by human capital accumulation à la Lucas (1988),

while pollution does not influence educational activities, labor supply is inelastic and human

capital does not enter the utility function.

Proof. It comes directly from proposition 1 and equation (18). �

Consequently, by assuming finite lifetime, it is possible to implement a win-win environ-

mental policy in a Lucas (1988) growth model. Furthermore, when the horizon extends (λ

decreases), the allocation of human capital into final production u⋆ drops: agents invest more

in human capital, as demonstrated in Appendix B1. And when lifetime is infinite, λ = 0, the

allocation of human capital into the production u⋆ is independent from τ along the balanced

growth path, but b⋆ and x⋆ are increasing functions of τ (see appendix B2.).

Proposition 3. The ageing of the population (a lower λ) reduces the influence of the envi-

ronmental policy on growth in the Lucas (1988) model with finite lifetime. When lifetime is

infinite, we find the conventional result of the Lucas (1988) model: the BGP rate of growth is

not affected by the environmental policy.

Proof. See Appendix B1 and B2. �

To understand the mechanisms that explain Propositions 1, 2 and 3, let us consider first

the case where lifetime is infinite (λ = 0) and there is a single representative household and

the “generational turnover effect” is absent. In such a case, the environmental policy, through

a tighter environmental tax, has two effects. First, a crowding-out effect, due to the rise of

abatement expenditures, reduces consumption and investment. Second, a factorial reallocation

effect leads to a production more intensive in human capital: there is a substitution of the

pollutant factor (physical capital) by the “clean” factor (human capital). Indeed, the rise of the

environmental tax lowers instantaneously the after-tax interest rate. The rewards to physical
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capital becomes lower than the rewards to human capital and agents instantaneously reallocate

their human capital in educational activities: u falls to equalize the returns between physical

capital accumulation and human capital accumulation. Human capital accumulation is boosted

while the growth rate of physical capital drops and output production becomes more intensive

in the non-pollutant factor of production: the human capital. Therefore, the human capital

to physical capital ratio b increases. As a result, the after-tax interest rate begins to increase

and gradually agents reallocate their ressources to physical capital (u gradually increases while

the substitution between physical capital and human capital continues because the after-tax

interest rate remains lower than the returns to human capital along the BGP equal to B). The

increase in b and u stops when the after-tax interest rate is back to its initial value B. That

occurs for the initial value of u⋆ and for a higher value of b (with respect to its initial value

b⋆). Because the aggregate consumption rate of growth only depends on the after-tax interest

rate, its after increasing tax value equals its inital value, and the growth rate of human capital

and physical capital remain unchanged. Note that u along the new BGP remains unchanged

with respect to its initial situation because otherwise the growth rate of human capital would

be different from the growth rate of consumption and physical capital and as a result b would

not be constant.13

When agents have finite lives (λ > 0), the tighter environmental policy has a third impact:

a “generational turnover effect” that affects the aggregate consumption rate of growth. In-

deed, with finite lifetime, the aggregate consumption rate of growth differs from the individual

consumption rate of growth r− ̺, by the “proportionnal” difference between average consump-

tion and consumption by newly born households [C(t)− c(t, t)] /C(t) (see equation 15). And

this difference, that reduces the aggregate consumption rate of growth, depends positively on

the physical capital to aggregate consumption ratio x−1 (that is for a given after-tax interest

rate, the aggregate consumption growth rises with x, see equation 16). It explains the positive

impact of the environnmental taxation of the BGP growth with finite lifetime. When b and u

13If u is higher than u⋆, human capital accumulation is lower than physical capital accumulation and therefore,
b decreases. As a result, the interest rate decreases and agents rise their investment in human capital: u reduces.
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increases after the shock and the after-tax interest rate back to its initial level, the individual

consumption rate of growth r − ̺ also back to its initial level, but it is not the case for the

aggregate consumption rate of growth. Indeed, the substitution of the physical capital by the

human capital increases the aggregate consumption to physical capital ratio x leading to an

aggregate consumption rate of growth (when lifetime is finite) higher than its initial value. In

order to restore the equalization of the growth rates along the BGP, the physical capital rate of

growth increases. Ceteris Paribus, the human capital to physical capital ratio b diminishes and

as a result the after-tax interest rate falls: agents allocate a part of their resources from final

output to human capital accumulation (u diminishes) and the interest rate back to its inital

value. As a result, the aggregate consumption growth, the physical capital and the human

capital growth are equalized and higher than their initial value along the new BGP equilib-

rium. The allocation of human capital into the manufacturing sector u along the new BGP

equilibrium is lower than its initial value: the environmental taxation reduced it.

The previous explanation enables us to understand Proposition 3. The longer the horizon

(the lower λ), the lower the negative influence of x on the aggregate consumption rate of growth

(see equation 16), that is the lower the difference between the aggregate consumption rate of

growth and the individual consumption rate of growth. Therefore, the lower the increase in

the physical capital and human capital accumulation to equalize the rates of growth along the

BGP. As a result, the lower the fall in u to obtain such an increase. For a given rise of the

environmental tax, the allocation of human capital to the output sector along the BGP (u⋆)

reduces less for a lower λ than for a higher λ.

4 The transitional dynamics

In this section we investigate the trajectory of the economy out of the steady-state using the

time-elimination method. We compare the influence of the environmental policy during the

transition both when lifetime is finite and when lifetime is infinite.

Due to the complexity of the model, we use numerical simulations to look at the transitional
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dynamics, and especially the transitional impact of the environmental tax. We calibrate the

model to obtain realistic values of the growth rate of GDP and the probability of death for the

US economy. From the World Development Indicators 2005 by the World Bank, life expectancy

was 77.4 years in 2003, the growth rate was 3.3% during the period 1990-2002 and a public

health expenditures as percentage of GDP was 6.55%. Since the expected lifetime is the reverse

of the probability of death per unit of time λ, we want λ to be close to 1/77.4 = 0.0128. We

adjust other variables to obtain such values for our benchmark case.

Table 1 summarizes the benchmark value of parameters and Table 2 summarizes the exercise

of comparative statics for log utility.

α η ̺ B γ λ(1) λ(2)

0.3 0.85 0.025 0.075 0.3 0.0128 0
(1) finite lifetime (2) infinite lifetime

Table 1. Benchmark value of parameters

Finite lifetime Infinite lifetime
λ = 0.0128 λ = 0.0200

τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1

g⋆ 3.32% 3.40% 2.29% 2.45% 5% 5%
P⋆ 3.82 2.25 3.82 2.25 3.82 2.25
u⋆ 0.5313 0.5206 0.6545 0.6323 1/3 1/3
r⋆(1) + λ 0.075 0.075 0.075 0.075 0.075 0.075
x⋆(2) 0.2009 0.3305 0.1872 0.3160 0.2268 0.3572
b⋆(3) 0.2532 0.5790 0.1774 0.4394 0.5073 1.0345
(1)αY/K − Φ(τ) (2)C/K (3)H/K

Table 2. The increase in the environmental tax along the BGP

Graph 1 and Graph 2 draw the temporal evolution of the main variables towards the new

steady-state when an unanticipated increase in the environmental tax is implemented by the

government, respectively for finite and infinite lifetime.

What differs between finite and infinite lifetime is mainly the size of the variations and the

fact that all variables tend towards a new steady-state value in the finite lifetime case. Let

consider this case to look at the out-of steady-state evolution of variables (Graph 2).
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First of all, an increase in the environmental taxation lowers instantaneously the after-

tax interest rate (Figure 4 in Graph 2) and drops the growth rate of physical capital which

becomes negative (Figure 8 in Graph 2). Because the returns to education becomes higher,

agents allocate their resource towards human capital accumulation: the allocation of human

capital into the manufacturing sector falls (Figure 1 in Graph 2) while the growth rate of

human capital jumps (Figure 7 in Graph 2). The manufacturing sector becomes more intensive

in human capital and the ratio human capital to physical capital (b) rises (Figure 2 in Graph 2).

The fall in u and the increase in b contributes to rise the interest rate and reduces the incentives

of agents to allocate human capital into the educational sector: u rises while the increase in the

human capital physical capital ratio decelerates. This continues up to the after-tax interest rate

comes to its initial value (equal to B). While the allocation of human capital into production

and the growth rates of the physical capital, the human capital, consumption and final output

back to their initial steady-state value when the lifetime of agents is infinite (see Graph 1), this

is not the case when the lifetime is finite because the difference between aggregate consumption

and consumption by newly born household is reduced because it depends on x−1 (Figure 6 called

“Diff Intergen” Graph 2). As explained at the end of section 3, that leads agents to allocate

more human capital into the educational sector (u⋆ is lower) and that promotes human capital

accumulation, aggregate consumption growth and aggregate output growth along the new BGP

equilibrium (see Figures 7,8,9,10 Graph 2).14

5 Discussion

In the previous sections, we demonstrated that the “generational turnover effect” , due to the

appearance of newborn at each date and the death of a part of the population, leads to a

positive impact of the environmental policy in the Lucas (1988) model without assuming that

14Remark that the externality in the aggregate human capital accumulation due to the generational turnover
(1 − η)λH(t) is not required to obtain our result. Letting η = 1 in the expression of Γ(u; τ) (in Proposition
1), the allocation of human capital into production u⋆ remains negatively influenced by the environmental tax.
The only effect is a higher growth rate along the BGP.
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a better environmental quality enhances ability to learn, that labor supply is elastic or that

education enters the utility function as a consumption good.

Nevertheless, according to empirical evidence, education is not only the fruit of a private time

investment. It requires either physical capital (see for example King and Rebelo, 1990) or public

expenditures (see for example Glomm and Ravikumar, 2001). Furthermore, as highlighted by

Hettich (1998), the assumption about the source of pollution may completely change the impact

of the environmental policy on growth. Do our results continue to hold when the technology in

the educational sector is modified in such a way and/or when an alternative source of pollution

is introduced?

5.1 Education good in human capital accumulation

Following Rebelo (1991), we consider that, besides time, education requires an educational

input produced with physical and human capital. To simplify things we suppose that it is

produced in the same way than the final output. The fact that households buy an educational

input will modify their decisions to invest their time to educational activities and the influence

of the environmental policy on human capital accumulation and growth.

At time t, each agent born at s ≤ t buy z(s, t) units of final output which increase the

productivity of the time that they invest in education, such as:

ḣ(s, t) = B [(1− u(s, t))h(s, t)]1−δ z(s, t)δ (19)

with δ ∈ [0, 1[,15 and

ȧ(s, t) = [r(t) + λ] a(s, t) + u(s, t)h(s, t)w(t)− c(s, t)− z(s, t)

Utility maximization implies that u(s, t) and the ratio
z(s, t)

h(s, t)
are independent from s (con-

veniently, we denote z̃(t) ≡
z(s, t)

(1− u(s, t))h(s, t)
). Furthermore, it gives (see appendix B)

z̃(t) =
δ

1− δ
w(t) (20)

15When δ = 0, we obtain the Lucas (1988) human capital accumulation of the previous sections. The
demonstration is detailed in appendix B.
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and the equalization of the returns to education

(1− δ)
˙w(t)

w(t)
+B(1− δ)1−δδδw(t)δ = r(t) + λ

The aggregate accumulation of human capital is then written as

Ḣ(t) = B(1− u(t))z̃(t)δ − (1− η)λ

The amount of final output used as educational good is Z(t) ≡

∫ t

−∞

z(s, t)λe−λ(t−s)ds = z̃(t)(1−

u(t))H(t) from previous results. Consequently, from (20) it can be expressed as a function of

final output:

Z(t) = ∆

(
1− u(t)

u(t)

)

Y (t)

with ∆ ≡ δ(1−α)
1−δ

, and the market clearing condition becomes:

(

1 + ∆

(

1−
1

u(t)

))

Y (t) = K̇(t) + C(t) + Φ(τ)K(t)

Consequently, the dynamical system is summarized by (see Appendix B)

ẋ(t) =

{[

α−

(

1 + ∆

(

1−
1

u(t)

))]

(b(t)u(t))1−α − ̺−(1− η)λ− ηλ(̺+ λ)x(t)−1 + x(t)

}

x(t)

ḃ(t) =
{
(1− u(t))B∆δ(b(t)u(t))−αδ

−(1− η)λ+ x(t) + Φ(τ)−

(

1 + ∆

(

1−
1

u(t)

))

(b(t)u(t))1−α

}

b(t)

u̇(t) =
{
[α−1 − 1 + u(t)]B∆δ(b(t)u(t))−αδ + ((α(1− δ))−1 − 1)Φ(τ)

+∆

[(

1−
1

u(t)

)

−
1

1− α

]

(b(t)u(t))1−α − ((α(1− δ))−1 + η − 1)λ− x(t)

}

u(t)

Along the steady-state, from the last equation of the dynamical system, we obtain

(1− δ)B∆δ(b⋆u⋆)−αδ = α(b⋆u⋆)1−α − Φ(τ) + λ (21)

where the left-hand side is the returns to human capital accumulation along the BGP and the

right-hand side is the effective interest rate (the returns to physical capital accumulation), also
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evaluated along the BGP. This relation states b⋆u⋆ as an increasing function of τ (dΦ(τ)/dτ >

0), denoted by R(B, τ) with dR(B, τ)/dτ > 0 and dR(B, τ)/dB > 0. The two remaining

equations of the dynamical system evaluated at the steady-state (ẋ(t) = 0 and ḃ(t) = 0) enable

us to write the following proposition.

Proposition 4. [Generalization of Proposition 1 for δ ∈ [0, 1[.] Under the conditions

that along the Balanced growth path, the rate of growth must be positive and can not exceed

the maximum feasible rate, there exists a unique u⋆ ∈ ]uδ, ūδ[ with (uδ ≡ δ + ̺+λ
B∆δR(B,τ)−αδ ,

ūδ ≡ 1− (1−η)λ
B∆δR(B,τ)−αδ , and 0 < uδ < ūδ < 1), solving Γδ(u; τ) = 0 where Γδ(u; τ) is defined as

follows

Γδ(u; τ) ≡
[
(u− δ)B∆δR(B, τ)−αδ − λ− ̺

]
×

{

(u− δ)B∆δR(B, τ)−αδ − ηλ+
(1− α)(u⋆ − δ)

(1− δ)u
R(B, τ)1−α

}

− ηλ(̺ + λ)

with R(B, τ) = b⋆u⋆ solution of equation (21). The BGP equilibrium is saddle-path stable.

Proof. See Appendix B and C. �

The aggregate growth rate in the economy is given by:

g⋆ = B(1− u⋆)∆δR(B, τ)−αδ − (1− η)λ

Conversely to the case where only time is used as input in education, here the influence of the

environmental taxation on the allocation of time in education u⋆ is not clear-cut. When lifetime

is infinite (λ = 0), we demonstrate that u⋆ rises with τ (see Appendix B2), because the tighter

environmental policy not only crowds-out consumption and physical capital accumulation, but

also the part of output allocated to the education sector Z. As a result, the rewards to education

falls below its initial value and the agents reallocate their time to production to compensate

the decrease in their consumption. When lifetime is finite (λ > 0), the aforementioned effect

exists besides the “generational turnover effect” which operates in the opposite way. Is the

“generational turnover effect” high enough to compensate or to offset the crowding-out effect?
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That is the question we investigate in the following, using numerical simulations because the

global impact of the environmental tax is very cumbersome to derive analytically.

Especially, we look at the impact of an increase in environmental taxation for different values

of δ, the part of the education good in human capital accumulation, insofar as we demonstrated

that the environmental policy enhances growth when only time is used as input for education

(that is δ = 0) and because we expect that environmental policy is harmful for growth when

only final output is used to increase human capital (that is δ = 1).16 We report results in table

3.17

Table 3. Impact of the environmental policy according to δ.

δ = 0.01 δ = 0.06 δ = 0.1 δ = 0.5
τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.065

g⋆ 2.92% 2.99% 1.8766% 1.8821% 1.3825% 1.3378% 0.4071% 0.0205%
P⋆ 3.82 2.25 3.82 2.25 3.82 2.25 3.82 2.48
u⋆ 0.5663 0.5556 0.6812 0.6750 0.7480 0.7478 0.9362 0.9747
r⋆ + λ 0.0711 0.0709 0.0610 0.0600 0.0562 0.0546 0.0470 0.0419
x⋆ (C/K) 0.19061 0.3187 0.1645 0.2874 0.1530 0.2736 0.1295 0.2051
b⋆ (H/K) 0.2198 0.5183 0.1461 0.3745 0.1181 0.3156 0.0725 0.1484

︸ ︷︷ ︸ ︸ ︷︷ ︸

Positive effect on growth Negative effect on growth

The first insight of our simulations is that the positive effect of the environmental policy

due to finite lifetime exists, for the parameters values chosen. The second insight is that this

positive effect offsets the crowding-out effect only if the part of the education good in human

capital accumulation (δ) is small enough.

Consequently, it comes the following proposition.

Proposition 5. Proposition 2 still holds when an education good (produced with human and

physical capital) is introduced in the technology of education, only if the part of this education

good in human capital accumulation is small enough.

16In such a case, the technology to accumulate human capital is similar to the technology of final output
production and physical capital accumulation except the parameter B (see equation 19).

17Note that in our numerical simulation, when δ = 0.5, u⋆ /∈]uδ, ūδ[ and g⋆ < 0 when τ > 0.065.
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Proof. See numerical simulations above. �

The economic mechanisms behind this result are similar to those previously stated (See

Graph 3 and Graph 4 for the transitional dynamics). In the presence of an education good

produced with final output, the tighter environmental tax leads to a further crowding-out effect

that reduces the amount of education good in human capital accumulation. When the relative

part of this education good in the human capital accumulation (with respect to the time of

education) becomes important, this crowding-out effect offsets the positive effect arising from

the finite lifetime and the “generational turnover effect” . The BGP rate of growth drops.

5.2 Alternative specification of pollution

As demonstrated by Hettich (1998), the specification of pollution may modify the impact of the

environmental taxation on growth. In a Uzawa-Lucas (1988) model with elastic labor supply,

he finds that the environmental taxation enhances growth when the source of pollution is the

stock of physical capital. Nevertheless, assuming that the source of pollution is rather final

output, he obtains no effect of the environmental taxation. Indeed, when final production is

the source of pollution, the environmental tax not only impacts the interest rate, but also the

wage rate, erasing the positive effect which transits through the elastic labor supply. In this

section, we re-examine our previous results assuming that the source of pollution is final output

rather than physical capital.

In this case, we have

P(t) =

[
Y (t)

D(t)

]γ

Therefore, profit maximization in the final output production leads to

r(t) =

(

1− ϑ(t)γ
P(t)

Y (t)

)

α
Y (t)

K(t)

w(t) =

(

1− ϑ(t)γ
P(t)

Y (t)

)

(1− α)K(t)α
[∫ t

−∞

u(s, t)h(s, t)λe−λ(t−s)ds

]−α
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and

D(t) = ϑγP(t)

Defining τ̂ ≡ ϑ(t)/Y (t), the environmental tax normalized by the final output production we

obtain:

P = Φ(τ̂)−γ

D(t) = Φ(τ̂)Y (t)

with Φ(τ̂) ≡ (γτ̂)1/(1+γ).

The final market clearing condition becomes:

[1− Φ(τ̂)]Y (t) = C(t) + K̇(t)

and the dynamical system is, for δ ∈ [0, 1[:

ẋ(t) =

{[

(1− Φ(τ̂)) (α− 1)−∆

(

1−
1

u(t)

)]

(b(t)u(t))1−α

−̺− (1− η)λ− ηλ(̺+ λ)x(t)−1 + x(t)
}

x(t)

ḃ(t) =
{
B(1− u(t))[∆(b(t)u(t))−α]δ − (1− η)λ

−

(

1− Φ(τ̂) + ∆

(

1−
1

u(t)

))

(b(t)u(t))1−α + x(t)

}

b(t)

u̇(t) =
{

α−1
[
(1− δ)B∆δ(b(t)u(t))−αδ − α(1− Φ(τ̂))(b(t)u(t))1−α − λ

]
− ḃ/b

}

u(t)

Along the BGP we have u̇ = 0 and we obtain the equalization of returns

(1− δ)B∆δ(b⋆u⋆)−αδ = (1− Φ(τ̂))α(b⋆u⋆)1−α + λ (22)

This relation states b⋆u⋆ as an increasing function of τ̂ denoted by R̂(B, τ̂) with dR̂(B, τ̂)/dτ̂ >

0 and dR̂(B, τ̂)/dB > 0, for δ ∈ [0, 1[. Finally using ẋ = 0 and ḃ = 0, we find that there exists
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a unique u⋆ ∈]uδ, ūδ[ solution of Υδ(u; τ̂) = 0 where Υδ(u; τ̂) is defined as (see Appendix E):

Υδ(u; τ̂) ≡
[

(u− δ)B∆δR̂(B, τ̂)−αδ − ̺− λ
]

×
{[

u− δ + (α−1 − 1)(1− δ)
]
B∆δR̂(B, τ̂)−αδ − (α−1 − 1 + η)λ

+
(1− u)(1− α)δ

(1− δ)u
R̂(B, τ̂)1−α

}

− ηλ(̺ + λ) (23)

When δ = 0, the term ∆δR̂(B, τ̂)−αδ reduces to unity and the last term into braces van-

ishes. The expression of Υδ(u; τ̂) becomes independent from δ and τ̂ . It comes the following

proposition.

Proposition 6. When final output is the source of pollution, the allocation of human capital

to education is independent from the environmental tax level and Proposition 2 does no longer

hold: the environmental policy does not affect growth in the long-run, even with finite lifetime.

Proof. See Appendix E. �

This result comes from the fact that the tighter environmental policy affects both the re-

wards to physical capital accumulation and the wage rate (that influences the rewards to human

capital accumulation). When τ̂ rises, agents allocate instantaneously more resources to human

capital accumulation and the human capital to physical capital ratio (b) increases (see Figure

2 Graph 5). Nevertheless, the decrease in the wage rate (see Figure 5 Graph 5) limits the gap

between the returns to human capital and the returns to physical capital: the substitution of

the physical capital by the human capital is less important with respect to the case where only

physical capital is a polluting factor. As a result, the physical capital stock drops less than

the aggregate consumption (that decreases due to the crowding-out effect): the aggregate con-

sumption to physical capital output ratio (x) reduces conversely to the case where only physical

capital is the source of pollution (see Figure 3 Graph 5). As a result the intergenerational effect

(that depends on x−1) rises (see Figure 6 Graph 5) and it reinforces the drop of the aggregate

consumption growth. Finally, the wage rate stabilizes to a lower value, the increase in b rises

the interest rate and leads agents to reallocate a part of their human capital to production, u

24

ha
l-0

04
23

20
1,

 v
er

si
on

 1
 - 

9 
O

ct
 2

00
9



increases and backs to its initial value, like the effective interest rate r + λ, the aggregate con-

sumption to physical capital ratio x, the aggregate consumption growth and the “generational

turnover effect” as well (see Graph 5). The rise of the environmental tax has no permanent

impact on growth because both production factors are affected by the environmental taxation

and the substitution between physical capital and human capital is limited.

Nevertheless, when we consider the case where the output is used in the educational sector

(δ > 0), the environmental tax influences the decision to be educated and therefore the BGP rate

of growth (see equation 23). Because it is difficult to find analytically whether the environmental

tax τ̂ influences the decision to be educated u⋆ positively or negatively (see Appendix E), we

make a numerical simulation using the calibration of section 4. We report results in table 4.

Table 4. Impact of the environmental policy according to δ.

δ = 0.01 δ = 0.06 δ = 0.1 δ = 0.5
τ̂ = 0.01 τ̂ = 0.1 τ̂ = 0.01 τ̂ = 0.1 τ̂ = 0.01 τ̂ = 0.1 τ̂ = 0.01 τ̂ = 0.1

g⋆ 2.8968% 2.8951% 1.8762% 1.8673% 1.4001% 1.3872% 0.6116% 0.5610%
P⋆ 3.82 2.25 3.82 2.25 3.82 2.25 3.82 2.25
u⋆ 0.5710 0.5704 0.6828 0.6837 0.7474 0.7489 0.9183 0.9228
r⋆ + λ 0.07116 0.07114 0.06129 0.06121 0.05674 0.05661 0.04919 0.04871
x⋆ (C/K) 0.16660 0.16662 0.14628 0.14625 0.1364 0.1362 0.1228 0.1216
b⋆ (H/K) 0.1712 0.1887 0.1102 0.1193 0.0874 0.0945 0.0543 0.0577

From this Table, the following proposition holds:

Proposition 7. When final output is the source of pollution and is used as education good in

human capital accumulation, for the parameter values chosen, numerical simulations indicate

that the environmental taxation negatively affects long-run human capital accumulation when

lifetime is finite.

Proof. See Table 4. �

The explanation of this result is similar to the explanation of the negative impact of a tighter

environmental policy when physical capital is the only source of pollution and the part of final
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output in education is high. The output used in human capital accumulation is crowded-out=

by the tighter environmental tax. That leads to a global detrimental effect of the environmental

policy on the BGP rate of growth.

6 Optimal growth

In the market economy analyzed in previous sections, there are two types of externalities.

The first one comes from environmental preference and the source of pollution. The second

one is related to finite lifetime that disconnects aggregate consumption and aggregate human

capital growth to individual consumption and individual human capital growth. With no

public intervention, final producers do not internalize the negative impact of their pollution

flow on utility and they would pollute so much that the environmental quality would decline

to unsustainable low levels. Environmental policy is needed to prevent such an occurence.

Furthermore, in his decision to educate and to consume, an individual does not take into account

the effects of the intergenerational transmission of knowledge in his return to education (and

on the aggregate consumption rate of growth) and therefore he invests in education and saves

insufficiently. Consequently, the government must also implement a policy to take into account

the “generational turnover effect” .

In this section we examine the centralized economy when the source of pollution is the

physical capital stock and education only requires time (δ = 0), restricting our attention (i) to

the influence of environmental care on optimal growth (in the vein of Vellinga, 1999) and (ii)

to the expression of the optimal environmental tax implemented by the government to put the

net flow of pollution to its optimal level along the BGP.18

The objective of the social planner consists in maximizing the social welfare function taking

into account the intertemporal evolution of the aggregate physical and human capitals. We can

18For the sake of simplicity and clearness, here we do not study the implementation of the optimum, that
is we do not integrate the additional tools (besides the optimal environmental policy) that lead the BGP at
equilibrium to be optimal. Moreover, we do not investigate the welfare gains or costs supported by the agents
during the transition, when the BGP optimal environmental tax is implemented. That would required a separate
paper.
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write the program as follows (see appendix F for the complete demonstration):

maxc(s,t),u(s,t),D(t)

∫ ∞

0

{∫ t

−∞
U [c(s, t),P(t)]λe−λ(t−s)ds

}

e−̺tdt

K(t),H(t),h(s,t)

s.t. K̇(t) = K(t)α[
∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds]1−α −

∫ t

−∞
c(s, t)λe−λ(t−s)ds−D(t)

Ḣ(t) =
∫ t

−∞
{B[1− u(s, t)]− (1− η)λ}h(s, t)λe−λ(t−s)ds

H(t) =
∫ t

−∞
h(s, t)λe−λ(t−s)ds

P(t) = (K(t)/D(t))γ

K(t) > 0, H(t) > 0, K0 and H0 given,

(24)

with U (c(s, t),P(t)) defined by equation (1). The resolution of this program gives the value of

the allocation of human capital to production in the long-run:

u⋆
c =

̺

B
∈]0, 1[

and the expression of the growth rate along the BGP is:

g⋆
c = B − ̺− λ(1− η) (25)

We find the results of the Lucas (1988) model with no externality and the following proposition

holds:

Proposition 8. We obtain with finite lifetime the same result found by Vellinga (1999) with

infinite lifetime and a single representative agent: when preferences are additive and the ability

of agents to learn is independent of pollution, the environmental care does not influence the

optimal growth rate at the steady-state.

Proof. See equation (25). �

The optimal growth rate, along the BGP, does not depend on the long-run flow of pollution

and on the environmental care ζ because the central planner internalizes the turnover of gen-

eration and therefore nullifies the impact of the pollution on the balanced growth rate found
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in the decentralized economy (see appendix F).

The optimal environmental tax implemented by the government to obtain the optimal net

flow of pollution is:

ϑop(t) = K(t)
(ζγ)1+γ

γ
x(t)1+γ

Like in Hettich (1998), it evolves through time as a same rate than the physical capital (the

source of pollution) and it positively depends on environmental care (ζ) and the aggregate con-

sumption to physical capital ratio x. Denoting τ op, the optimal environmental tax normalized

by the physical capital stock, we obtain that when the govenment chooses τ op equal to

τ op|BGP =
(ζγ)1+γ

γ

(
(1− α) [B − (1− η)λ] + α̺

α− (1− α)ζγ

)1+γ

(26)

along the BGP, the net flow of pollution is at its optimal level.

The optimal environmental tax along the BGP is positively influenced by the environmental

concern of individuals (ζ), as expected. It is also positively affected by the efficiency of the time

invested in education (B) and the subjective time preference (̺). Finally, the optimal environ-

mental tax diminishes with the probability of death (λ): the ageing of population (lower λ)

leads to a higher optimal environmental tax because older people are the one who accumulated

more physical capital (the source of polution) than younger people.

One should make observe that, when liftime is infinite (λ = 0), that is when there is a single

representative agent, the optimal environmental tax τ op|BGP is sufficient as the only policy

instrument to maximize welfare.

7 Conclusion

This article demonstrates that, if finite lifetime is taken into account, a win-win environmental

policy may be implemented in an economy where growth is driven by human capital accumula-

tion à la Lucas (1988) and the source of pollution is physical capital, while pollution does not

28

ha
l-0

04
23

20
1,

 v
er

si
on

 1
 - 

9 
O

ct
 2

00
9



influence educational activities, labor supply is not elastic and human capital does not enter

the utility function. This is because finite lifetime and the appearance of newborns at each

date creates a turnover of generations which disconnects the aggregate consumption growth

to the after-tax interest rate. We show that, in the presence of finite lifetime, the ageing of

the population (a lower probability to die) reduces the positive influence of the environmental

policy on growth.

We also demonstrate that when time is not the single production factor in education, the

environmental policy promotes growth only if time remains the predominant factor. Otherwise,

the crowding-out effect of the tighter environmental policy dominates the “generational turnover

effect” and growth diminishes.

When the source of pollution is final output rather than physical capital and time is the

single factor in education, we demonstrate that the environmental tax does not affect growth in

the steady-state, despite the “generational turnover effect” . Nevertheless, if the education good

is introduced, the negative influence of the environmental policy appears because the education

good is crowded-out by the tighter environmental policy.

Finally, we demonstrate that BGP optimal growth rate is independent from the environ-

mental care despite the finite lifetime. This is because the central planner internalizes the

“generational turnover effect” . Such a result is similar to the one found by Vellinga (1999)

with infinite lifetime and a representative agent that environmental care does not influence

optimal growth when utility is additive and pollution does not influence the ability of agents

to be educated.
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Graph 1. Infinite lifetime (source of pollution K) 
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Graph 2. Finite lifetime (source of pollution K, !=0) 
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Graph 3. Finite lifetime (source of pollution K ; !=0.01) 
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Graph 4. Finite lifetime (source of pollution K ; !=0.1) 
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Graph 5. Finite lifetime (source of pollution Y ; !=0) 
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Remark: In the following appendix, references to equations without the prefix A are references to
the equations in the body of the paper.

Appendix A

This appendix demonstrates how the growth rate of the aggregate consumption in equation (16) is
obtained.

Because the individual accumulation of human capital at time ζ by an agent born at s ≤ ζ is
gh(s, ζ) ≡ ḣ(s, ζ)/h(s, ζ) = B[1 − u(s, ζ)] (from equation 2), the level of human capital of this agent
at time ν ≥ 0 is

h(s, ν) = h(s, s) exp

[∫ ν

s
gh(s, ζ)dζ

]

We assumed that when an agent born at time s, he inherits a part η ∈]0, 1] of the aggregate level of
human capital H(s):

h(s, s) ≡ ηH(s)

and the aggregate human capital evolves such that

H(s) = H(0) exp

[∫ s

0
gH(s, ζ)dζ

]

with

gH(s, ζ) ≡ Ḣ(s, ζ)/H(s, ζ) = gh(s, ζ)− (1− η)λ

is the growth rate of the aggregate human capital. Recalling that u(s, ζ) = u(ζ), that is gH(s, ζ) =
gH(ζ) and gh(s, ζ) = gh(ζ), we obtain

h(s, ν) = ηH(0) exp

[(∫ ν

0
gh(ζ)dζ

)

− (1− η)λ× s

]

As a result, the present value of lifetime earning

ω(s, t) ≡

∫ ∞

t
[u(s, ν)h(s, ν)w(ν)] exp

[

−

∫ ν

t
[r(ζ) + λ]dζ

]

dν

may be expressed as

ω(s, t) = ηH(0)e−(1−η)λsω̂(t)

with

ω̂(t) ≡
∫∞
t u(ν)w(ν) exp

[
−

∫ ν
t [r(ζ) + λ]dζ +

∫ ν
0 gh(ζ)dζ

]
dν

(A.1)
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As a consequence, the aggregate human wealth in the economy Ω(t) ≡
∫ t
−∞ ω(s, t)λe−λ(t−s)ds may be

expressed as

Ω(t) = ηH(0)ω̂(t)
∫ t
−∞ e−(1−η)λsλe−λ(t−s)ds

= ηH(0)ω̂(t)
∫ t
−∞ λeληs−λtds

= ληH(0)ω̂(t)

[
eληs−λt

λη

]t

−∞

that is

Ω(t) = H(0)e−(1−η)λtω̂(t)

From equation (A.1) (with s = t), we obtain that

ω(t, t) = ηH(0)e−(1−η)λtω̂(t) = ηΩ(t) (A.2)

Differentiating (7) with respect to time gives

Ċ(t)

C(t)
=

ċ(s, t)

c(s, t)
−

1

C(t)
[λC(t)− λc(t, t)]

that is, using (4)

Ċ(t) = [r(t)− ̺− λ]C(t) + λc(t, t)

From equation (5) and because agents born without non-human assets (a(t, t) = 0), we obtain

Ċ(t) = [r(t)− ̺− λ]C(t) + λ(̺+ λ)ω(t, t)

Using (A.2) and (7), we find

Ċ(t) = [r(t)− ̺− λ]C(t) + λ(̺+ λ)η

[
C(t)

̺+ λ
−K(t)

]

that is

Ċ(t) = [r(t)− ̺− (1− η)λ]C(t)− ηλ(̺+ λ)K(t) (16)

Appendix B

In this Appendix, we solve the “general case” where education originates from time-investment and
where at time t, each agent born at s buy z(s, t) units of final output which increase the productivity
of the time that they invest in education, such as:

ḣ(s, t) = B(1− u(s, t))1−δh(s, t)1−δz(s, t)δ, with δ ∈ [0, 1[ (19)
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When δ = 0, we obtain the Lucas (1988) model with the human capital accumulation given by equation
(2).

In the “general case” the program of the households is:

max
c(s,t),z(s,t),a(s,t),h(s,t),u(s,t)

∫∞
s [log c(s, t)− ζ logP(t)] e−(̺+λ)(t−s)dt

s.t. ȧ(s, t) = [r(t) + λ] a(s, t) + u(s, t)h(s, t)w(t)− c(s, t)− z(s, t)

ḣ(s, t) = B(1− u(s, t))1−δh(s, t)1−δz(s, t)δ

a(s, s, ) = 0 h(s, s) = ηH(s) > 0

The Hamiltonian of the program may be written as:

H = [log c(s, t)− ζ logP(t)] + π1(t) [(r(t) + λ)a(s, t) + u(s, t)h(s, t)w(t)− c(s, t)− z(s, t)]

+ π2(t)B(1 − u(s, t))1−δh(s, t)1−δz(s, t)δ

The F.O.C. are

∂H

∂c(s, t)
= 0 ⇒

1

c(s, t)
= π1(t) (A.3)

∂H

∂z(s, t)
= 0 ⇒ π1(t) = π2(t)δB(1− u(s, t))1−δ

(
z(s, t)

h(s, t)

)δ−1

(A.4)

∂H

∂u(s, t)
= 0 ⇒ π1(t)w(t) = π2(t)B(1− δ)(1− u(s, t))−δ

(
z(s, t)

h(s, t)

)δ

(A.5)

∂H

∂a(s, t)
= −π̇1(t) + (̺+ λ)π1(t) ⇒ π1(t)(r(t) + λ) = −π̇1(t) + (̺+ λ)π1(t) (A.6)

∂H

∂h(s, t)
= −π̇2(t) + (̺+ λ)π2(t) ⇒

π1(t)w(t)u(s, t) + π2(t)B(1− δ)(1− u(s, t))1−δ

(
z(s, t)

h(s, t)

)δ

= −π̇2(t) + (̺+ λ)π2(t) (A.7)

First of all, equation (A.5) implies that the ratio z(s,t)
(1−u(s,t))h(s,t) is independent from s and equation

(A.7) implies that u(s, t) is independent from s. Consequently, the ratio z(s,t)
h(s,t) is independent from s.

Conveniently, we denote z̃(t) ≡ z(s,t)
(1−u(s,t))h(s,t) .

From (A.3) and (A.6), we obtain

ċ(s, t) = (r(t)− ̺)c(s, t) (A.8)

Equations (A.4) and (A.5) give:

z̃(t) =
δ

1− δ
w(t) (20)
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And from equations (A.4) and (A.7):

π̇2(t)

π2(t)
= ̺+ λ−B [1− δ] z̃(t)δ

Differentiating (A.5) with respect to time, we obtain:

π̇1(t)

π1(t)
+

ẇ(t)

w(t)
=

π̇2(t)

π2(t)
+ δ

˙̃z(t)

z̃(t)

Replacing by the expressions of π̇1(t)
π1(t)

and π̇2(t)
π2(t)

, it gives

ẇ(t)

w(t)
− δ

˙̃z(t)

z̃(t)
+B(1− δ)z̃(t)δ = r(t) + λ

which means that the returns to education must be equal to the returns to physical capital.
We can re-write this relation in terms of w(t) and r(t):

(1− δ)
ẇ(t)

w(t)
+B(1− δ)1−δδδw(t)δ = r(t) + λ (A.9)

From equations (10) and (20), it is possible to express z̃(t) in terms of Y (t):

z̃(t) =
δ

1− δ
(1− α)

Y (t)

u(t)H(t)

Now, we can write that the amount of final output used as educational good is

Z(t) ≡

∫ t

−∞
z(s, t)λe−λ(t−s)ds =

∫ t

−∞

(
z(s,t)

(1−u(s,t))h(s,t)

)

(1 − u(s, t))h(s, t)λe−λ(t−s)ds = z̃(t)(1 −

u(t))

∫ t

−∞
h(s, t)λe−λ(t−s)ds = z̃(t)(1− u(t))H(t).

Consequently:

Z(t) =
δ(1− α)

1− δ

(
1− u(t)

u(t)

)

Y (t),

the market clearing condition is written as:
(

1 +
(1− α)δ

1− δ

(

1−
1

u(t)

))

Y (t) = K̇(t) + C(t) + Φ(τ)K(t)

and the aggregate accumulation of human capital is:

Ḣ(t) =
[

B(1− u(t))z̃(t)δ − (1− η)λ
]

H(t)

Finally, from equations (A.9), (10) and the fact that
∫ t
−∞ u(s, t)h(s, t)λe−λ(t−s)ds = u(t)H(t)

because u(s, t) = u(t), we obtain

u̇(t)

u(t)
=

K̇(t)

K(t)
−

Ḣ(t)

H(t)
− α−1

[

r(t) + λ−B(1− δ)1−δδδ(b(t)u(t))−αδ
]
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Therefore, the dynamical system is summarized by

ẋ(t) =

{[

α−

(

1−∆

(
1

u(t)
− 1

))]

(b(t)u(t))1−α − ̺−(1− η)λ− ηλ(̺+ λ)x(t)−1 + x(t)

}

x(t)

ḃ(t) =
{
(1− u(t))B∆δ(b(t)u(t))−αδ

−(1− η)λ+ x(t) + Φ(τ)−

(

1−∆

(
1

u(t)
− 1

))

(b(t)u(t))1−α

}

b(t)

u̇(t) =
{[

α−1 − 1 + u(t)
]
B∆δ(b(t)u(t))−αδ +

(
(α(1− δ))−1 − 1

)
Φ(τ)

−∆

[(
1

u(t)
− 1

)

+
1

1− α

]

(b(t)u(t))1−α −
(
(α(1− δ))−1 + η − 1

)
λ− x(t)

}

u(t)

(A.10)

with ∆ ≡ (1−α)δ
1−δ .

The two last equations of the dynamical system (A.10) evaluated in the steady-state (ḃ(t) = 0 and
u̇(t) = 0) gives b⋆u⋆ as the solution of the following equality

(1− δ)B∆δ(b⋆u⋆)−αδ = α(b⋆u⋆)1−α − Φ(τ) + λ (21)

where the left-hand side is the returns to human capital accumulation along the BGP and the right-
hand side is the effective interest rate (the returns to physical capital accumulation, see equation
(A.9)),19 both evaluated along the BGP.

When δ ∈]0, 1[, the left-hand side is a decreasing function of b⋆u⋆ ∈]0,+∞[ with limb⋆u⋆→0 LHS =
+∞ and limb⋆u⋆→+∞ LHS = 0, and the right-hand side is an increasing function of b⋆u⋆ with
limb⋆u⋆→0 RHS = λ − Φ(τ) and limb⋆u⋆→+∞RHS = +∞. Consequently, the equality (21) defines
a unique b⋆u⋆ ∈]0,+∞[. Because δ ∈]0, 1[ and Φ′(τ) > 0, it is straightforward using the theorem of the
implict function that b⋆u⋆ is an increasing function of τ and B. When δ = 0, equation (21) becomes
B = α(b⋆u⋆)1−α − Φ(τ) + λ and defines an explicit expression for b⋆u⋆:

b⋆u⋆ =

(
B − λ+Φ(τ)

α

)1/(1−α)

b⋆u⋆ is always an increasing function of B and τ and is positive under the sufficient condition that the
returns to education B corrected by the probability of death λ is positive:

B − λ > 0 (A.11)

For convenience, we denote R(B, τ), the solution b⋆u⋆ of equality (21), with dR(B, τ)/dτ > 0 and
dR(B, τ)/dB > 0 for δ ∈ [0, 1[.

19See footnote 8 page 7, for the definition of the effective interest rate.
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Along the BGP, ẋ = ḃ = 0 defines x⋆ as follows:

x⋆ =
ηλ(̺+ λ)

αR(B, τ)1−α − Φ(τ)− ̺− (1− u⋆)B∆δR(B, τ)−αδ
(A.12)

Using equation (21) we can re-write (from the previous expression) x⋆ as a function X1(u
⋆, τ):

x⋆ = X1(u
⋆, τ) ≡

ηλ(̺+ λ)

(u⋆ − δ)B∆δR(B, τ)−αδ − λ− ̺

To obtain x⋆ > 0, we impose that

(u⋆ − δ)B∆δR(B, τ)−αδ > ̺+ λ (A.13)

ensuring that human capital will not be fully invested in human capital accumulation along the balanced
growth path:20

u⋆ > uδ, with uδ ≡ δ +
̺+ λ

B∆δR(B, τ)−αδ
∈]0, 1[ (C1)

This condition ensures that the growth rate of human capital does not exceed the maximum feasible
rate (when the total amount of human capital is allocated to education).

We also assume that the balanced growth path rate of growth g⋆ must be positive, that is (from
equation 14):

(1− u⋆)B∆δR(B, τ)−αδ > (1− η)λ (A.14)

This assumption imposes that the investment in education is positive (from equation 14):

u⋆ < ūδ, with ūδ ≡ 1−
(1− η)λ

B∆δR(B, τ)−αδ
∈]0, 1[ (C2)

Under conditions (C1)-(C2) the following inequality holds (by summing (A.13) and (A.14)):

(1− δ)B∆δR(B, τ)−αδ > ̺+ (2− η)λ, for δ ∈ [0, 1[ (A.15)

and enables us to demonstrate that uδ < ūδ.
Because η ∈]0, 1], conditions (C1)-(C2) impose (1−δ)B∆δR(B, τ)−αδ > ̺+λ > (1−η)λ (from the

inequality (A.15)), that is they imply a positive growth rate of individual consumption c(s, t) (see equa-
tions A.8 and 21). Finally, condition (A.11) is verified under conditions (C1)-(C2) (from the inequality

(A.15)). And limu⋆→uδ
χ1(u

⋆; τ) = +∞ and limu⋆→ūδ
χ1(u

⋆; τ) = ηλ(̺+λ)
(1−δ)B∆δR(B,τ)−αδ−(2−η)λ−̺

> 0.

20In the Lucas (1988)’s model (see page 23), the maximum feasible rate is B (with our notation), that is
g⋆ < B ⇔ u⋆ > 0. Here, conditions (C1)-(C2) ensure that the BGP growth rate of individual consump-
tion ċ(s, t)/c(s, t)|BGP is higher than the individual accumulation of human capital ḣ(s, t)/h(s, t)|BGP , that is
c(s, t)|BGP > 0 (see the denominator of equation A.12).
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From u̇(t) = 0, we can also define x⋆ as follows:

x⋆ =
[
α−1 − 1 + u⋆

]
B∆δR(B, τ)−αδ +AδΦ(τ)

−∆

(
α

1− α
+

1

u⋆

)

R(B, τ)1−α − (Aδ + η)λ (A.16)

with ∆ ≡ (1−α)δ
1−δ and Aδ ≡ (α(1−δ))−1−1 > 0, ∀δ ∈ [0, 1[. Using (21) and simplifying, we can express

x⋆ as a function X2(u
⋆, τ):

x⋆ = X2(u
⋆, τ) ≡ (u⋆ − δ)B∆δR(B, τ)−αδ − ηλ+

(1− α)(u⋆ − δ)

(1− δ)u⋆
R(B, τ)1−α (A.17)

It is straightforward that χ2(u
⋆; τ) is an increasing function of u⋆ and χ2(u

⋆; τ) > 0 for all u⋆ ∈]uδ, ūδ[
and δ ∈ [0, 1[.21 When δ = 0, it is straightforward that χ2(u

⋆; τ) is an increasing function of τ , but for
δ ∈]0, 1[, the influence of τ is unclear.

The BGP equilibrium is defined by χ1(u
⋆; τ) = χ2(u

⋆; τ) for u⋆ ∈]uδ, ūδ[. That is, there exists, for
δ ∈ [0, 1[, a unique u⋆ ∈]uδ, ūδ[, solution of Γδ(u; τ) = 0 with

Γδ(u; τ) ≡
[

(u− δ)B∆δR(B, τ)−αδ − λ− ̺
]

×
{

(u− δ)B∆δR(B, τ)−αδ − ηλ+
(1− α)(u⋆ − δ)

(1− δ)u
R(B, τ)1−α

}

− ηλ(̺+ λ)

and R(B, τ) is defined by equation (21).
It is straightforward that, for u⋆ ∈]uδ, ūδ[ (see conditions (C1)-(C2)), Γδ(uδ; τ) = −ηλ(̺+ λ) < 0

and Γδ(ūδ; τ) > 0.22 Because in the interval ]uδ, ūδ[, Γδ(u; τ) is a monotonic increasing function of u,
u⋆ solution of Γδ(u; τ) = 0 is unique. The influence of τ on u⋆ is not clear except when δ = 0.23

Appendix B1. The case δ = 0

In that case, ∆ = 0 and ∆δR(B, τ)−αδ = 1. The system (A.10) simplifies to:

ẋ(t) =
{
[α− 1] (b(t)u(t))1−α − ̺−(1− η)λ− ηλ(̺+ λ)x(t)−1 + x(t)

}
x(t)

ḃ(t) =
{
(1− u(t))B − (1− η)λ+ x(t) + Φ(τ)− (b(t)u(t))1−α

}
b(t)

u̇(t) =
{[

α−1 − 1 + u(t)
]
B +A0Φ(τ)− (A0 + η)λ− x(t)

}
u(t)

(17)

with A0 ≡ α−1 − 1 > 0.

21See appendix B1 below for a formal proof when δ = 0.
22Because

[
(1− δ)B∆δR(B, τ)−αδ − (2− η)λ− ̺

] [
(1− δ)B∆δR(B, τ)−αδ − λ

]
> ηλ(̺ + λ), we obtain

Γδ(ūδ; τ) > 0.
23See numerical simulations in the main text for δ 6= 0.
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Equation (21) gives the explicit expression of b⋆u⋆:

b⋆u⋆ =

(
B − λ+Φ(τ)

α

)1/(1−α)

with the condition

B > λ− Φ(τ) (A.18)

to ensure that the returns to education is sufficient to obtain its equalization with the effective interest
rate.

The existence condition (C1) becomes:

u⋆ > u with u ≡
̺+ λ

B
(C1| δ=0)

and the existence condition (C2) becomes:

u⋆ < ū with ū ≡ 1−
(1− η)λ

B
(C2| δ=0)

Under conditions (C1| δ=0)-(C2| δ=0), the inequality (A.15) holds (with δ = 0 and ∆δR(B, τ)−αδ =
1) and therefore 0 < u < ū < 1. Condition (A.18) is also verified and there exists a unique u⋆ ∈]u, ū[
solution of Γ(u; τ) = 0 where Γ(u; τ) is defined as follows:24

Γ(u; τ) ≡ [Bu− λ− ̺]× [(A0 + u)B +A0Φ(τ)− (A0 + η)λ]− ηλ(̺+ λ) = 0

with

Γ(u; τ) = −ηλ(̺+ λ) < 0

and

Γ(ū; τ) = [B − (2− η)λ− ̺]×
[
α−1 (B − λ) +A0Φ(τ)

]
− ηλ(̺+ λ) > 0

under conditions (C1| δ=0)-(C2| δ=0).
25

From the implicit function theorem, the influence of τ on u⋆ is given by u⋆′ = −∂Γ(u;τ)/∂τ
∂Γ(u;τ)/∂u . If

we note Γ(u; τ) = Γ1(u; τ) × Γ2(u; τ) − ηλ(̺ + λ), with Γ1(u; τ) ≡ Bu⋆ − λ − ̺ > 0 and Γ2(u; τ) ≡

(A0+u)B+A0Φ(τ)−(A0+η)λ > 0. Therefore u⋆′ = −AΦ′(τ)Γ1(u;τ)
B[Γ1(u;τ)+Γ2(u;τ)]

is negative and u⋆ is a decreasing
function of τ .

If we note g⋆′ ≡ dg⋆/dτ = −Bu⋆′, the effect of the environmental policy on growth with respect to
the horizon is given by dg⋆′/dλ.

Because g⋆′ = AΦ′(τ)
[

1 + Γ2(u;τ)
Γ1(u;τ)

]−1
, and ∂u⋆

∂λ = Γ2(u;τ)+(A0+η)Γ1(u;τ)
B[Γ1(u;τ)+Γ2(u;τ)]

> 0, and ∂Γ1(u;τ)
∂λ = (α−1 −

2+η) Γ1(u;τ)
Γ1(u;τ)+Γ2(u;τ)

> 0 (under the realistic sufficient condition α < 1/(2−η)) and ∂Γ2(u;τ)
∂λ = −(α−1−

2 + η) Γ2(u;τ)
Γ1(u;τ)+Γ2(u;τ)

< 0, we obtain that ∂Γ2(u;τ)/Γ1(u;τ)
∂λ = −2(α−1 − 2 + η)Γ2(u;τ)

Γ1(u;τ)
< 0 that is ∂g⋆′

∂λ > 0.

24Note that, under conditions (C1|
δ=0), the second term into brackets in the expression between the equality

sign is always positive for u⋆ ∈]u, ū[. As a proof:




A0B + ̺+ λ

︸ ︷︷ ︸

Bu

−A0λ− ηλ+A0Φ(τ)




 > 0.

25We obtain Γ(ū; τ) > 0 because α−1 (B − λ) [B − (2− η)λ− ̺] > ηλ(̺ + λ) and [B − (2− η)λ− ̺] ×
A0Φ(τ) > 0.
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Appendix B2. The case λ = 0

With infinite lifetime (λ = 0), the dynamical system (A.10) becomes:

ẋ(t) =

{[

α−

(

1 + ∆

(

1−
1

u(t)

))]

(b(t)u(t))1−α − ̺+ x(t)

}

x(t)

ḃ(t) =

{

(1− u(t))B∆δ(b(t)u(t))−αδ + x(t) + Φ(τ)−

(

1 + ∆

(

1−
1

u(t)

))

(b(t)u(t))1−α

}

b(t)

u̇(t) =
{[

α−1 − 1 + u(t)
]
B∆δ(b(t)u(t))−αδ +

(
(α(1− δ))−1 − 1

)
Φ(τ)− x(t)

+∆

[(

1−
1

u(t)

)

−
1

1− α

]

(b(t)u(t))1−α

}

u(t)

From u̇ = 0 and ḃ = 0, we obtain the equality between the returns to investment:

(1− δ)B∆δ(b⋆u⋆)−αδ = α(b⋆u⋆)1−α − Φ(τ)

that defines b⋆u⋆ as an increasing function of τ denoted R(B, τ) |λ=0. Using ẋ = ḃ = 0, we obtain the
expression of u⋆:

u⋆ = δ +
̺

B∆δ (R(B, τ) |λ=0)
−αδ

which is increasing in τ and the growth rate along the BGP is:

g⋆ = (1− δ)B∆δ (R(B, τ) |λ=0)
−αδ − ̺

Therefore, the environmental tax reduces the human capital accumulation along the BGP when lifetime
is infinite. When δ = 0, we find the solution of the Lucas (1988) model with logarithmic utility:
u⋆ = ̺/B and g⋆ = B − ̺.

Appendix C

The dynamical system (A.10) may be linearized around the steady-state and becomes:





ẋ(t)

ḃ(t)
u̇(t)



 = J ×





x(t)− x⋆

b(t)− b⋆

u(t)− u⋆





where J is the Jacobian matrix evaluated at the neighbourhood of the steady-state:

J ≡





J11 J12 J13
J21 J22 J23
J31 J32 J33
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with

J11 = ηλ(̺+ λ)x⋆−1 + x⋆ > 0

J12 =
−(1−α)2(u⋆−δ)

(1−δ)u⋆ R(B, τ)1−αx⋆/b⋆ < 0

J13 = −(1− α)R(B, τ)1−α
[
1−α
1−δ + α ∆

u⋆

]

x⋆/u⋆ < 0

J21 = b⋆ > 0
J22 = −αδ(1− u⋆)B∆δR(B, τ)−αδ − (1− α)

[
1−∆

(
1
u⋆ − 1

)]
R(B, τ)1−α < 0

J23 = − [1 + αδ(1/u⋆ − 1)]B∆δR(B, τ)−αδb⋆ − (1− αδ)
(
1−α
1−δ

)

R(B, τ)1−αb⋆/u⋆ < 0

J31 = −u⋆ < 0

J32 = −u⋆/b⋆
{

αδ(α−1 − 1 + u⋆)B∆δR(B, τ)−αδ + (1− α)∆
[
1
u⋆ +

α
1−α

]

R(B, τ)⋆1−α
}

< 0

J33 = B∆δR(B, τ)−αδ [u⋆ − δ + αδ(1− u⋆)] + α∆
(
1
u⋆ − 1

)
R(B, τ)1−α > 0

The determinant of the Jacobian matrix is

det(J ) = J22 (J11J33 − J13J31) + J32 (J21J13 − J23J11) + J12 (J31J23 − J33J21) < 0

because, under conditions (C1)-(C2) (inequality (A.15) holds),

J11J33−J13J31 = J11×

[
(1− u⋆)(1− α)αδ

u⋆(1− δ)
R(B, τ)1−α + (u⋆ − δ + αδ(1− u⋆))B∆δR(B, τ)−αδ

]

−
(1− α)(u⋆ − δ)x⋆

u⋆(1− δ)
R(B, τ)1−α > 0

J21J13−J23J11 =
b⋆

(1− δ)u⋆2
×
{

ηλ(̺+ λ)u⋆
(

δ(1− δ)B∆δR(B, τ)−αδ + (1− α)(1− αδ)R(B, τ)1−α

+(1− δ)(1− αδ)u⋆B∆δR(B, τ)−αδ
)

+ x⋆
[
α(1− δ)

(
α(1− α)(u⋆ − (1− α)δ)R(B, τ)1−α

+δu⋆x⋆B∆δR(B, τ)−αδ
)

+ αδ(1− α)2(1− δ)R(B, τ)1−α

+(1− αδ)(1− δ)u⋆2B∆δR(B, τ)−αδ
]}

> 0

J31J23 − J33J21 =
b⋆

(1− δ)u⋆

[

(1− α)(u⋆ − αδ)R(B, τ)1−α + (1− δ)δB∆δR(B, τ)−αδ
]

> 0

And the trace of the Jacobian matrix is

Trace(J ) = J11+J22+J33 = (u⋆−δ)∆δR(B, τ)−αδ+ηλ(̺+λ)x⋆−1+x⋆−
(1− α)(u⋆ − δ)

(1− δ)u⋆
R(B, τ)1−α

From equation (A.17) we have x⋆− (1−α)(u⋆−δ)
(1−δ)u⋆ R(B, τ)1−α = (u⋆−δ)B∆δR(B, τ)−αδ−ηλ > 0, therefore

the Trace of the Jacobian matrix is positive.
Because there are two control variables (u and x) and one state-variable (b), the negative determi-

nant and the positive trace of the Jacobian matrix imply that there are two positive eigenvalues and
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one negative eigenvalue. Therefore, the equilibrium is saddle-path stable.

Note that when δ = 0, we obtain

det(J ) = −(1− α)Bu⋆ (R(B, τ))1−α [
x⋆ + ηλ(̺+ λ)x⋆−1

]
< 0

and, using equation (A.17) and the inequality (A.15),

Trace(J ) = 2Bu⋆ − ηλ+ ηλ(̺+ λ)x⋆−1 > 0

Appendix D

In this appendix, we relax the assumption of logarithmic utility to show that this simplifying assump-
tion does not modify the qualitative results. We just give the main equations of model.

The expected utility of an agent born at s ≤ t becomes
∫ ∞

s

[c(s, t)P(t)−ζ ]1−1/σ − 1

1− 1/σ
e−(̺+λ)(t−s)dt

with σ 6= 1 the (positive) elasticity of intertemporal substitution.
The individual consumption of an agent born at s becomes

c(s, t) = Ψ(t)−1[a(s, t) + ω(s, t)]

where Ψ(t) ≡
∫∞
t e−(σ̺+λ)(ν−t)−(1−σ)

R ν
t

rµdµdν > 0 is the propensity to consume out of wealth.26

Similarly, we can express the aggregate consumption at time t:

C(t) =

∫ t

−∞
c(s, t)λe−λ(t−s)ds = Ψ(t)−1 [K(t) + Ω(t)]

The aggregate consumption growth rate (equation 16) becomes

Ċ(t) = [σ (r(t)− ̺)− (1− η)λ]C(t)− ηλΨ(t)−1K(t)

Finally, the dynamics of the economy is summarized by the following system (with respect to the case
where σ = 1, the intertemporal evolution of the propensity to consume out of wealth is added):

ẋ(t) =

{[

ασ −

(

1−∆

(
1

u(t)
− 1

))]

(b(t)u(t))1−α + (1− σ)Φ(τ)− σ̺− (1− η)λ−
ηλΨ(t)−1

x(t)
+ x(t)

}

x(t)

ḃ(t) =

{

(1− u(t))B∆δ(b(t)u(t))−αδ − (1− η)λ−

(

1−∆

(
1

u(t)
− 1

))

(b(t)u(t))1−α + x(t) + Φ(τ)

}

b(t)

u̇(t) =
{(

α−1 − 1 + u(t)
)
B∆δ(b(t)u(t))−αδ

+((α(1− δ))−1 − 1)Φ(τ)−∆

[
1

u(t)
+

α

1− α

]

−
(
(α(1− δ))−1 + 1− η

)
λ− x(t)

}

u(t)

Ψ̇(t) = −1 +
[
(1− σ)α(b(t)u(t))1−α − (1− σ)Φ(τ) + σ̺+ λ

]
Ψ(t)

26Ψ(t) > 0 insures that individual utility is bounded.
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where x(t) ≡ C(t)/K(t) and b(t) ≡ H(t)/K(t).

Along the balanced growth path, the propensity to consume out of wealth is constant, that is
Ψ̇(t) = 0 and as a consequence

Ψ⋆−1 = (1− σ)α(b⋆u⋆)1−α − (1− σ)Φ(τ) + σ̺+ λ > 0

In the same way than in appendix B, the second and the third equations of the dynamical system
evaluated along the BGP (u̇ = ḃ = 0) enable us to express b⋆u⋆ as an increasing function of B and τ ,
denoted R(B, τ) and defined by

(1− δ)B∆δ(b⋆u⋆)−αδ = α(b⋆u⋆)1−α − Φ(τ) + λ (21)

The two first equations evaluated along the BGP give a first expression of x⋆:

x⋆ = χσ
1 (u

⋆; τ) ≡
λη

[
(1− σ)αR(B, τ)1−α − (1− σ)Φ(τ) + σ̺+ λ

]

(u⋆ − (1− σ)− σδ)B∆δR(B, τ)−αδ − σ(̺+ λ)

Because x⋆ > 0, we impose a condition similar to condition (C1) (when σ = 1):

u⋆ > u
δ

with u
δ
≡ 1− σ + σ

(

δ +
̺+ λ

B∆δR(B, τ)−αδ

)

(C1|σ 6=1)

and because u
δ
≥ 0, we impose

σ ≤

[

1−

(

δ +
̺+ λ

B∆δR(B, τ)−αδ

)]−1

The left-hand side of this inequality being higher than unity, we just impose the sufficient condition
σ ≤ 1.27 This condition is similar to the one defined by Lucas (1988) page 23 (equation 27) according
to which: “[...] the model cannot apply at levels of risk aversion that are too low (that is, if the
intertemporal substituability of consumption is too high).”.28

Furthermore, the assumption g⋆ > 0 always imposes an upper-bound for u⋆ defined by equation
(C2)

u⋆ < ūδ with ūδ ≡ 1−
(1− η)λ

B∆δR(B, τ)−αδ
(C2)

with 0 < u
δ

< uδ < 1 because under conditions (C1|σ 6=1)-(C2), the inequality (A.15) always holds and
we assume σ ≤ 1.

27Note that most of the empirical studies about the elasticity of intertemporal substitution of consumption
estimate a value lower than unity. For recent references, seeYogo (2004) and Guvenen (2006).

28See also Heijdra and van der Ploeg (2002) page 461.
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Because the equation u̇(t) is the same than in the case where σ = 1 (see the system A.10), the
second expression of x⋆ from u̇ = 0 is the same than in the case σ = 1 and is given by

x⋆ = X2(u
⋆, τ) ≡ (u⋆ − δ)B∆δR(B, τ)−αδ − ηλ+

(1− α)(u⋆ − δ)

(1− δ)u⋆
R(B, τ)1−α (A.17)

with ∆ ≡ (1−α)δ
1−δ and Aδ ≡ (α(1− δ))−1 − 1 > 0, ∀δ ∈ [0, 1[.

The BGP equilibrium is defined by χσ
1 (u

⋆; τ) = χ2(u
⋆; τ), under conditions (C1|σ 6=1)-(C2) and

σ ≤ 1. That is, there exists, for δ ∈ [0, 1[ and σ ≤ 1, a unique u⋆ ∈]u
δ
, ūδ[, solution of Γσ

δ (u; τ) = 0
with

Γσ
δ (u; τ) ≡

[

(u− (1− σ)− σδ)B∆δR(B, τ)−αδ − σ(̺+ λ)
]

×
{

(u⋆ − δ)B∆δR(B, τ)−αδ − ηλ+
(1− α)(u⋆ − δ)

(1− δ)u⋆
R(B, τ)1−α

}

− ηλ
[
(1− σ)αR(B, τ)1−α − (1− σ)Φ(τ) + σ̺+ λ

]

It is straightforward that Γσ
δ (uδ

; τ) < 0 (because the first term into brackets in the right-hand side
of the equation is null) and Γσ

δ (ūδ; τ) > 0. Because in the interval ]u
δ
, ūδ[, Γ

σ
δ (u; τ) is a monotonic

increasing function of u, u⋆ solution of Γσ
δ (u; τ) = 0 is unique.

Note that, when λ = 0 (infinite lifetime) and δ = 0, we find the result of Lucas (1988) with CARRA
preferences: u⋆ = σ̺/B + 1− σ (with ̺/B < 1 to ensure u⋆ < 1 and σ < [1− ̺/B]−1 to ensure that
u⋆ > 0) and g⋆ = σ(B − ̺) > 0.

We just investigate the case δ = 0 for simplicity, the general case being cumbersome to study
analytically. The condition (C1|σ 6=1) becomes:

u⋆ > u with u ≡ 1− σ

(

1−
̺+ λ

B

)

(C1|{σ 6=1,δ=0})

with u > 0 imposes

σ <

(

1−
̺+ λ

B

)−1

Finally, condition (C2) becomes:

u⋆ < ū with ū ≡ 1−
(1− η)λ

B
(C2| δ=0)

with 0 < u < u < 1 because under conditions (C1|{σ 6=1,δ=0})-(C2| δ=0), the inequality (A.15) always

hol (with δ = 0 and ∆δR(B, τ)−αδ = 1) and we assume σ ≤ 1.
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Under the condition σ ≤ 1, there exists a unique u⋆ ∈]u, ū[, solution of Γσ(u; τ) = 0 with

Γσ(u; τ) ≡ [(u− (1− σ))B − σ(̺+ λ)]×
{[

α−1 − 1 + u
]
B +A0Φ(τ)− (A0 + η)λ

}
− λη [(1− σ)B + σ(λ+ ̺)] (A.19)

It is straightforward that Γσ(u; τ) < 0 (because the first term into brackets in the right-hand side of
the equation is null) and Γ(ū; τ)σ > 0. Because in the interval ]u, ū[, Γσ(u; τ) is a monotonic increasing
function of u, u⋆ solution of Γσ(u; τ) = 0 is unique. Furthermore, from the implicit function theorem,
u⋆ is a decreasing function of τ denoted Uσ(τ) ≡ u⋆, with dUσ(τ)/dτ < 0.

Because g⋆σ = (1− Uσ(τ))− (1− η)λ, the growth rate along the BGP increases with τ .

Appendix E

This appendix gives the proof of propositions 6. In the way similar to Appendix B, u⋆ is the solution
of Υδ(u; τ̂) = 0 where Υ(u; τ̂) is defined as:

Υδ(u; τ̂) ≡
[

(u− δ)B∆δR̂(B, τ̂)−αδ − ̺− λ
]

×
{[

u− δ + (α−1 − 1)(1− δ)
]
B∆δR̂(B, τ̂)−αδ − (α−1 − 1 + η)λ

+
(1− u)(1− α)δ

(1− δ)u
R̂(B, τ̂)1−α

}

− ηλ(̺ + λ) (A.20)

Because x⋆ > 0 (the human capital accumulation can not exceed the maximum feasible rate of
growth) and g⋆ > 0, conditions (C1)-(C2) and the inequality (A.15) hold here: u⋆ ∈]uδ, ūδ[.

In the way similar to Appendix B, we can demonstrate that Υδ(uδ; τ̂) = −ηλ(̺ + λ) < 0 and
Υδ(ūδ; τ̂) > 0. Because in the interval ]uδ, ūδ[, Υδ(u; τ̂) is a monotonic increasing function of u, u⋆ is
solution of Υ(u; τ̂) = 0 is unique.

When δ 6= 0, the influence of τ̂ on u⋆ is very cumbersome to obtain analytically, therefore we just
investigate the case δ = 0.

When δ = 0, u⋆ is the solution of Υδ(u; τ̂) | δ=0 = 0 where Υδ(u; τ̂) | δ=0 is given by (A.20) with

δ = 0 and ∆δR̂(B, τ̂)−αδ = 1:

Υδ(u; τ̂) | δ=0 ≡ [uB − ̺− λ]×
{[

u+ α−1 − 1
]
B − (α−1 − 1 + η)λ

}
− ηλ(̺+ λ)

Because Υδ(u; τ̂) | δ=0 is independent from τ̂ , u⋆ is independent from τ̂ . And g⋆ = B(1−u⋆)− (1− η)λ
is independent from τ̂ .

Appendix F

As noted by Calvo and Obstfeld (1988), the social welfare function, at time t = 0 is the sum of two
components. The first component captures the expected utilities of agents from each of the generations
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to be born, measured from the moment of birth. The second component captures expected utilities of
agents from each of those generations currently alive, over the remainder of their lifetimes, measured
from the time t = 0. The planner discount rate is equal to the pure time-preference ̺ to avoid problems
of time consistency (see Calvo and Obstfeld (1988) for more details). Consequently, welfare at t = 0 is

W0 =

∫ ∞

0

{∫ ∞

s
U [c(s, t),P(t)]λe−(̺+λ)(t−s)dt

}

e−̺sds

+

∫ 0

−∞

{∫ ∞

0
U [c(s, t),P(t)]λe−(̺+λ)t+λsdt

}

ds (A.21)

Note that the second term in the right-hand side is discounted by the planner at time 0, so we write it
as

∫ 0
−∞

{∫∞
0 U [c(s, t),P(t)]λe−λ(t−s)e−̺(t−0)dt

}
e−̺0ds. After changing the order of derivation, we can

write (A.21) as

W0 =

∫ ∞

0

{∫ t

−∞
U [c(s, t),P(t)]λe−λ(t−s)ds

}

e−̺tdt (A.22)

The program of the social planner is:

maxc(s,t),u(s,t),D(t)

∫ ∞

0

{∫ t
−∞[log c(s, t)− ζ logP(t)]λe−λ(t−s)ds

}

e−̺tdt

K(t),H(t),h(s,t)

s.t. K̇(t) = K(t)α[
∫ t
−∞ u(s, t)h(s, t)λe−λ(t−s)ds]1−α −

∫ t
−∞ c(s, t)λe−λ(t−s)ds−D(t)

Ḣ(t) =
∫ t
−∞ {B[1− u(s, t)]− (1− η)λ}h(s, t)λe−λ(t−s)ds

P(t) = (K(t)/D(t))γ

H(t) =
∫ t
−∞ h(s, t)λe−λ(t−s)ds

K(t) > 0,H(t) > 0,K0 and H0 given,

(24)

To solve (24), we define the Lagrangian:

L = e−̺t

{∫ t

−∞
[log c(s, t)− ζγ logK(t) + ζγ logD(t)]λe−λ(t−s)ds

}

+ π1(t)

{

K(t)α
[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds

]1−α

−

∫ t

−∞
c(s, t)λe−λ(t−s)ds−D(t)

}

+ π2(t)

{∫ t

−∞
{B[1− u(s, t)]− (1− η)λ}h(s, t)λe−λ(t−s)ds

}

+ v(t)

{

H(t)−

∫ t

−∞
h(s, t)λe−λ(t−s)ds

}

where π1 and π2 are the costate variables for an interior solution and v is the Lagrangian multiplier.
The necessary conditions are:

∂L

∂c(s, t)
= 0 ⇒ e−̺tc(s, t)−1 = π1(t) (A.23)
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∂L

∂u(s, t)
= 0 ⇒ π1(t)(1− α)K(t)α

[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds

]−α

= π2(t)B (A.24)

∂L

∂D(t)
= 0 ⇒ ζγe−̺t = π1(t)D(t) (A.25)

∂L

∂K(t)
= −π̇1(t) ⇒ ζγe−̺tK(t)−1+π1(t)αK(t)α−1

[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds

]1−α

= −π̇1(t)

(A.26)

∂L

∂H(t)
= −π̇2(t) ⇒ v(t) = −π̇2(t)

∂L

∂h(s, t)
= 0 ⇒ π1(t)(1− α)K(t)α

[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds

]−α

u(s, t)

+ π2(t) {B[1− u(s, t)]− λ(1− η)} − v(t) = 0 (A.27)

lim
t→∞

π1(t)K(t)e−̺t = 0 and lim
t→∞

π2(t)H(t)e−̺t = 0

First, (A.23) and (A.25) imply that c(s, t) is independent from s: c(s, t) = c(t). Consequently,
because C(t) =

∫ t
−∞ c(s, t)λeλ(t−s)ds, we have c(s, t) = C(t). Based on (A.22), we write the social

welfare function as

W0 =

∫ ∞

0
U [C(t),P(t)]e−̺tdt.

Equation (A.27) means that u(s, t) is also independent from s: u(s, t) = u(t). From equations (A.24)
and (A.27), we obtain

˙π2(t)

π2(t)
= λ(1− η)−B (A.28)

Equations (A.25) and (A.26) give:

˙π1(t)

π1(t)
=

D(t)

K(t)
− αK(t)α−1(u(t)H(t))1−α (A.29)

Differentiating (A.24) with respect to time and using the previous results, it becomes:

˙u(t)

u(t)
= α−1

(
˙π1(t)

π1(t)
−

˙π2(t)

π2(t)

)

−
˙H(t)

H(t)
+

˙K(t)

K(t)
(A.30)

Differentiating (A.23) with respect to time, we obtain:

˙C(t)

C(t)
= −

˙π1(t)

π1(t)
− ̺ (A.31)

53

ha
l-0

04
23

20
1,

 v
er

si
on

 1
 - 

9 
O

ct
 2

00
9



Furthermore, from (A.23) and (A.25), we obtain D(t) = ζγC(t) and we have

˙K(t)

K(t)
= K(t)α−1(u(t)H(t))1−α − (1 + ζγ)

C(t)

K(t)
(A.32)

and

˙H(t)

H(t)
= B(1− u(t))− (1− η)λ (A.33)

Along the Balanced Growth Path, from (A.31), (A.32) and (A.29), ẋ = 0 implies

(α− 1)(b⋆
cu

⋆
c)
1−α − ̺+ x⋆

c = 0 (A.34)

and from (A.32), (A.33) and (A.29), ḃ = 0 implies

B(1− u⋆
c)− λ(1− η) = (b⋆

cu
⋆
c)
1−α − (1 + ζγ)x⋆

c (A.35)

where a star denotes a variable along the BGP. Furthermore, with u̇ = 0, (A.29), (A.28) and (A.30)
give

α(b⋆
cu

⋆
c)
1−α − ζγx⋆

c = B − λ(1− η) (A.36)

that is the return to the accumulation of physical capital equal the return to accumulation of human
capital. Equations (A.35) and (A.36) give:

x⋆
c =

(1− α) [B − (1− η)λ] + α̺

α− (1− α)ζγ
(A.37)

x⋆
c is positif because K̇ > 0 requires that ζγ < (bu)1−α

x − 1 from equation (A.32). And using (A.34), it
implies that (α− (1− α)ζγ)x⋆

c > ̺. Replacing by the expression of x⋆
c found in equation (A.37), we

obtain

B − (1− η)λ− ̺ > 0 (A.38)

Subtracting (A.34) and (A.35) and using (A.36), we obtain the value of the allocation of human capital
to production in the long-run u⋆

c = ̺/B ∈]0, 1[, from (A.38). Finally, using the value of u⋆
c , the BGP

rate of growth in the centralized economy, g⋆
c = B− ̺−λ(1− η) > 0, does not depend on the long-run

flow of pollution and on the environmental care ζ.

It remains to calculate the optimal environmental tax, denoted ϑop. To obtain the expression of
this tax, we equalize the expression of the pollution in the market economy (equation 13) with the
expression of pollution in the centralized economy given by the ratio (K/D)γ . From (A.23), (A.25)

and (A.37), we obtain ϑop(t) = K(t) (ζγ)1+γ

γ x(t)1+γ , that is, denoted τ op the optimal tax normalized
by the physical capital stock:

τ op =
(ζγ)1+γ

γ
x(t)1+γ
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When the government chooses the environmental tax equal to

τ op|BGP =
(ζγ)1+γ

γ

(
(1− α) [B − (1− η)λ] + α̺

α− (1− α)ζγ

)1+γ

along the BGP, pollution is at its optimal level.
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