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ABSTRACT 

This study investigates the influence of observed explanatory factors and unobserved 
random effect (heterogeneity) on episode durations of travel-activity chain. A shared frailty 
semiparametric proportional hazard model is proposed to estimate the transition hazard of 
travel/activity states. The proposed model is applied on the travel and activity episode 
duration analysis during evening work-to-home commute using the household travel survey 
data collected in the city of Lyon in France in 2005-2006. The empirical results provide useful 
insights for the determinants of travel and activity episode durations for evening work-to-
home commute.        
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1 INTRODUCTION 

The understanding of complex travel/activity chaining behavior has been an important issue 
for transport system demand management and transport policy decision-making. The 
temporal rhythm of travel/activity chaining behavior reflects traveler’s daily mobility habit, 
which might be fundamental for the evaluation of transportation policy and the management 
of transport demand. The travel/activity chaining patterns might be influenced by many 
factors resulting from socio-demographic characteristics, transport supply and general urban 
characteristics. However, the type, timing and duration sequence visited in a travel-activity 
chain is basically based on individual’s schedule/reschedule process under uncertain 
environment. The effects of dependency between travel/activity episodes conducted in an 
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activity chain are often neglected. Moreover, the heterogeneity across population on the 
travel/activity pattern formation are general difficult to determine and hence less studied. 

The widely used methods for analyzing the effects of explanatory factors on activity 
durations are based on hazard models (Bhat 2000). However, most studies have focused on 
single activity episode duration analysis. Although these studies attempt to examine the 
affecting factors on activity duration, they neglected the importance of dependency between 
travels/activities conducted in the activity chain. Recently, the effects of dependency on 
activity durations have been increasingly studied. Popkowski Leszczyc and Timmermans 
(2002) utilized conditional and unconditional parametric competing risk models to investigate 
the effects of sociodemographic covariates on activity duration. Their study showed that 
activity durations depend not only on its type but also on the duration of activity previously 
conducted. Joly (2006) applied duration models to analyze the stability of individual’s daily 
travel time. He found that individual’s activity patterns have significant effects on the daily 
travel time. Ma et al. (2009) applied multistate non-homogeneous semi-Markov model to 
estimate the influence of covariates on travel and activity duration sequence. They found 
significant dependency effects between adjoining travel and activity episode over individual’s 
travel-activity chain. For the correlation of activity type choice and its duration, Bhat (1996b) 
proposed a generalized multiple durations proportional hazard model to capture 
endogenously the influence of entrance/exit activity type choice on activity durations. 
Pendyala and Bhat (2004) applied discrete-continuous simultaneous equation model to 
investigate the casual structure of activity timing and duration. Ettema et al. (1995) applied 
parametric competing risk model to examine the effects of temporal constraints on activity 
choice, timing and its duration. The found that spatiotemporal constraints are important 
determinants of individual’s activity type choice, timing and durations of activities in 
individual’s activity chain. 

Previous empirical studies showed that the heterogeneity has significant effects on 
activity durations, its negligence may have serious bias on duration hazard estimation (Bhat, 
1996a; Klein and Moeschberger, 2003). The specification of duration hazard function should 
take into account this effect. To this end, a random term representing the heterogeneity may 
be specified into parametric/non-parametric hazards functions. The heterogeneity can be 
assumed following some probability distribution or unspecified and then estimated non-
parametric approaches. For parametric heterogeneity distribution, Han and Hausman (1990) 
integrated a Gamma-distributed random term into the specification of hazard function. De 
John (1996) proposed a Weibull hazard function with a Gamma-distributed heterogeneity 
term to investigate the effects of covariates on individual’s vehicle holding durations. For non-
parametric heterogeneity, Bhat (1996a) specified parametric and non-parametric 
heterogeneity into the specification of hazard function to investigate affecting effects on 
shopping activity durations during individual’s returning home trips after work. He found that 
the specification of non-parametric baseline hazard with non-parametric heterogeneity has 
best fit to the survey data. Differently with proportional duration hazard model, Lee and 
Timmermans (2007) proposed a latent class accelerated hazard model for modelling the 
effects of heterogeneity on activity durations. They found significant heterogeneity effects in 
the baseline accelerate hazard model for activity durations conducted on weekday or 
weekends.    
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The aim of the present study is twofold: firstly, to examine the effects of affecting 
factors on duration sequence in travel-activity chains by considering the dependency 
between travels/activities conducted, and secondly, to investigate the influence of 
unobserved random effect (heterogeneity) on the duration sequence of travel and activity 
chain. The formation of individual’s travel-activity duration sequence is assumed following   
Markov renewal process. First, the basic assumptions of Markov renewal process are 
discussed. Then we propose a shared frailty semiparametric model to estimate transition 
hazard over travel/activity episodes. The shared frailty reflecting the heterogeneity effect is 
assumed following Gamma distribution. We apply the proposed model for the analysis of 
evening after-work returning home travel-activity duration sequence in the city of Lyon. We 
discuss the baseline hazard of travel and activity episode durations and the influence of its 
determinants and the heterogeneity across household. Finally, important findings are 
summarized and future extensions are discussed. 

 

2 MODEL FORMULATION 

2.1 Markov renewal model  
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Consider an ordered duration sequence of travel and activity participations, called travel-
activity pattern, conducted by an individual over a period of time. The travel-activity pattern 
represents the evolution of individual’s travel or activity participation over time. We assume 
possible activity choice is finite and identical for individuals under study. The formation of 
travel-activity pattern is assumed following semi-Markov process (Popkowski Leszczyc and 
Timmermans, 2002). The transition probability from one state to another is time-dependent, 
depending on affecting factors and the characteristics of its adjoining states. Let 

 be an observed travel-activity pattern conducted by an individual until a given 

censored time C, where n is the number of episodes in S. The episode represents the 
sojourn times of state without state transition within it. Each element  in S is 
characterized by its travel/activity type 

{ nssS ,...,1=

{ } 1),( ≥= kkkk tas
Aa∈  and its entering time of episode k. A is the set 

of possible travel/activity choices (work, leisure, shopping, etc.). We distinguish the sequence 
{(ak, tk): k ≥ 0} as a Markov renewal process, and the sequence ( ){ }ta  as a semi-Markov 
process. The schematic representation of Markov renewal process is shown in Fig. 1. We 
are interested in the estimation of transition hazard in the Merkov renewal process, which 
represents travel/activity type-specific duration hazards with multiple entrance/exit activity 
type choice.    

For transition hazards estimation, the survival data (travel/activity duration) is 
constructed for each of travel/activity episodes in individual’s travel-activity chain with 
competing risk (activity choice). As the transition hazard depends on its entrance and exit 
activity type, it is explicitly specified with respect to each pair of state transition. The duration 
of one episode  is assumed to be a continuous random variable following some 

probability distribution to be estimated. Based on the assumption of semi-Markov process, 
the probability distribution of travel/activity durations

kkk tt −=τ +1

kk tt −+1  in episode k satisfies: 
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),T(P),...,,T(P 11111 kkkkkkkk sjattssjatt =≤−==≤− ++++                                                   (1) 

where  is a continuous random variable representing the sojourn times in the kth episode. 
Let  represents the sojourns times in episode k since entering current state until 

time t. When one transition occurs, the sojourn time is evaluated with respect to the entering 
time  of current episode k. We call the time  elapsed from  to t as renewal time or 

sojourn time with respect to episode k. The distribution of  for 

Τ

k
k ttt −=τ )(

kt )(tkτ kt
)(tkτ 1,...,1 −= nk  is 

independent, conditional on the sequence visited by a Markov chain. The one-step transition 
hazard  at time t (renewal time ) from state i to state j at the end of kth 

episode is defined as:  
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where  is the state at renewal time . The transition rate  represents 

the changing rate of transition probability from state i to state j at renewal time . For 

simplification of notation,  is denoted as 

))(( ta k
ijτ )(tk

ijτ ))(( tk
ij

k
ij τλ

)(tk
ijτ

)(tk
ijτ τ  hereafter. Note that at the end of one 

travel/activity episode, current state change to one of independent competing states. As the 
distribution of sojourn times at each episode is assumed independent samples conditional on 
the states visited previously, the estimation of transition probability can then be casted into 
usual competing risk hazard modeling framework. The state transition hazard visited by 
Markov renewal process can be estimated by counting process methods (Gill, 1980; 
Dabrowska et al., 1994) or classical likelihood construction methods (Kalbfleisch and 
Prentice, 2002). Previous empirical studies suggested that parametric models might not be 
appropriate for activity duration estimation since its baseline hazard is usually irregular (Bhat, 
1996a). As for non-parametric hazard models, the lack of desired power in examining 
covariate effects on activity durations makes them less useful. The semiparametric model, 
namely proportional hazard model (Cox, 1972), constitutes a good candidate since it 
incorporates both a non-parametric baseline hazard term and a parametric function of 
covariates. The proportional hazard model assumes that the transition hazard is proportional 
to an arbitrary baseline hazard for the covariate values. As the travel-activity pattern may 
depend on unobserved factors resulting from individual’s variation or the influence from other 
members in household, the model should accommodate the unobservable random effects for 
transition hazard estimation. A widely used technique for modeling the heterogeneity is 
incorporating a random variable (frailty) in the specification of hazards function to explain 
unobservable common effects shared by the samples within the same group. With the 
shared frailty model, it provides a way to estimate the association between samples within a 
subgroup due to unobserved factors. As the inclusion of shared frailty in proportional hazard 
model needs to integrate out the frailty term of the likelihood function, the estimation of 
parameters is more complicated than usual proportional hazard model. The frailty term is 
assumed to follow some probability distributions, for which one-parameter Gamma 
distribution is most widely used in the literature (Duchateau and Janssen, 2008). Other 
probability distributions of the frailty term and detailed comparison can be found in 
(Hougaard, 2000). In the following, we construct the marginal likelihood function of shared 
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frailty term for travel-activity pattern analysis and discuss some characteristics of the shared 
frailty model. 

 

 

 

                                             

 
Fig. 1 Schematic representation of Markov renewal process 

 

2.2 Shared Gamma frailty semiparametric models for transition hazard 
estimation 

The survival data utilized for transition hazard estimation can be represented by a triplet of 
variables ( ), where  denotes a positive random variable, representing 

individual m’s sojourn times in state i until the next transition to state j for episode k.  

represents an indicator being 1 if the transition (k, i, j) is observed for individual m, 0 
otherwise. The triplet (k, i, j) denotes a transition from state i to state j at the end of kth 
episode.  denotes the covariate column vector of (k, i, j) of individual m. The proportional 

hazard model assumes that the hazard  of transition (k, i, j) of individual m is proportional 

to an unspecific baseline hazard  with respect to the covariates : 
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0, expτλ=τλ                                                                                              (3) 

where  is the column vector of parameters with respect to transition (k, i, j). The above 

model specification assumes that all relevant covariates are incorporated to explain the 
variation of transition hazard. However, the unobserved effects may influence the transition 
hazard in the renewal process. The basic idea of shared frailty model assumes that the 
individuals can be divided into some subgroups where the members share common risk 

k
ijβ
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effects. It reflects also the association between individuals within the same subgroup sharing 
unobservable environment. Given a transition (k, i, j), the shared frailty has a multiplicative 
effect on the transition hazard. Let k

ijmλ  denote the hazard with the frailty term for transition 

(k, i, j). Given an individual m of subgroup g, the transition hazard k
ijmλ  with the frailty  is 

defined by:     

k
ijgu

( ) ( ) ( ) k
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k
ij

k
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k
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k
ijm

k
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0, exp; τλ=τλ                                                                                    (4) 

where  is a random variable following some probability distribution. Note that the frailty 

term is transition-specific, representing possible variant effects of frailty term on the transition 
hazards. Moreover, the hazard ratio is proportional for members within the same subgroup. 

Let  denote the cumulative baseline hazard function with respect to the 

transition (k, i, j) within . For individuals in the subgroup g experiencing the transition (k, 
i, j), the survival function with the frailty  can be constructed as: 
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where  is the set of individuals in the subgroup g experiencing the transition (k, i, j). Let 

 denote the density function of the frailty u. The joint survival distribution can be 
obtained by integrating the frailty out with respect to its distribution  as (Klein and 

Moeschberger, 2003): 

k
ijgM
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ijg
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                                                                       (6) 

where  is the Laplace transform of the frailty u and [ ] [ ])(expLP
def

BUEB U −=

( k
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k
ijm

Mm

k
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k
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k
ijg

B βXX '
0, exp)(∑

∈

τΛ= )  the sum of cumulative hazards for all individuals in the 

subgroup g experiencing the transition (k, i, j). The Laplace transform is very convenient for 
the parameter and variance estimates since its first and second derivatives can be easily 
obtained. As for the frailty distribution, there are three usual parametric models in the 
literature: (1) Gamma distribution (Clayton, 1978; Oakes 1982; Klein 1992), (2) positive 
stable distribution (Hougaard, 1986a) and (3) inverse Gaussian distribution (Hougaard, 
1986b). As Hougaard (p246 in Hougaard 2000) argued that there is no single general 
distribution having all desired properties, the choice of the frailty distribution depends on the 
problems considered. Because we have no prior knowledge about the frailty distribution, the 
widely used one-parameter Gamma distribution is adopted. The advantage of one-parameter 
Gamma distribution resides on its computational convenience and identifiability. For the 
transition (k, i, j) and subgroup g, we assume the frailty  is an independent and identically 

distributed (i.i.d.) sample from one-parameter Gamma density function of mean 1 and 
variance : 
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where  is Gamma function. As the magnitude of dependency effect may depend on its 
occurred episode and entrance-exit transition states (i, j), the estimation of the frailty is 
treated separately with respect to each transition (k, i, j). Given a transition (k, i, j), the 
dependence of sojourn times data with Gamma frailty in subgroup g is measured by 
Kendall’s  with 

Γ

τ )2/( +θθ=τ  (for technique details see p.138-139 in Duchateau and 
Janssen (2008)). Therefore, if the variance θ  increases, the dependency effect becomes 
higher. By contrast, when the variance reduces to 0, the sojourn times data observed in one 
episode are independent. As the Kendall’s τ  of Gamma distribution is time-independent, the 
magnitude of the dependency over sojourn times is invariant.  

By applying the Laplace transform on the Gamma distribution, the joint survival 
function of Eq. (6) can be obtained as: 
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The above Gamma frailty survival function contains the parameters ,  and baseline 

hazard function  to be estimated. A frequent approach for the parameters estimation 

is based on maximizing marginal likelihood function. The marginal likelihood with respect to 
transition (k, i, j) for individuals within the subgroup g can be constructed as: 
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where  is event indicator for the occurrence of transition (k, i, j) of individual m, and k
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def
exp)(τΛ=Λ  denotes individual m’s cumulative hazard without the frailty 

term.  

As the direct maximization method is no longer applicable for semiparametric model 
due to the unspecific baseline hazard . Hence, we need firstly to construct likelihood 

function based on observed sojourn times data by considering the contribution of the frailty 
term. The estimates of parameters can then be iteratively achieved by Expectation-
Maximization (EM) algorithm, a frequently approach for the compute of MLE with unknown 
parameters or missing data. Note that several alternative estimation algorithms have been 
proposed (Hougaard, 2000). To construct the full likelihood function, the non-parametric 
cumulative baseline hazard with respect to transition (k, i, j) need to be estimated. Let  be 

the time of entering state i at kth episode for individual m and  the time of entering state i 

of kth episode and the next transition is (k, i, j). The Nelson-Aalen estimates of cumulative 
baseline hazard for the transition (k, i, j) is written as:  

)(0, τλk
ij

k
imt

k
ijmt

∑ ∫ ∑∈

τ

∈

δ
δ

=θτΛ
k
ijg

k
ijg

Mm
Ml

k
ij

k
ijl

k
il

k
ijm

g
k
ij

k
ij dr

r
r

u
0

'0, )exp()(
)(

),;(ˆ
βX

X                                                                 (10) 

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
7 

ha
l-0

04
77

69
5,

 v
er

si
on

 1
 - 

30
 A

pr
 2

01
0



A shared frailty semi-parametric Markov renewal model for time-use pattern analysis 
MA, Tai-Yu; JOLY, Iragaël ; RAUX, Charles  

where  is an indicator being 1 if the transition (k, i, j) is observed for individual m within 

, and 0 otherwise. Similarly,  is an indicator being 1 if individual l is being 

observed at risk within , and 0 otherwise. 

)(rk
ijmδ
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),[ rtt k
il

k
il +

As we assume that there is no parallel activity participation at same time, the 
transition hazard can be estimated by considering the other competing causes as censored 
data. The transition hazard at the end of state i of kth episode with competing causes 
(travel/activities) j can be written as: 

∑
∈
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where  denote the set of possible exit states at the end of kth episode, depending on its 

current state i and occupied kth episode.  

k
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3. ESTIMATION METHOD 

 
To estimate the parameters of the transition hazard over episodes, we need firstly to 
construct the full log-likelihood function with respect to each of episodes. The MLEs of 
parameters  and  gives the maximum of log-likelihood function. Given a transition (k, i, 

j), the full log-likelihood function of observed survival data ,  is 

constructed as the partial likelihood of proportional hazard model with the frailty term (Klein 
and Moeschberger, 2003): 
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The full log-likelihood function can be separated into two conditional log-likelihood functions 
as: 
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The first term represents the sum of logarithm of Gamma frailty distributions over all groups. 
The second term represents the sum of log-likelihood contribution without the frailty term. As 
the full log-likelihood function contains unknown parameter , the direct estimation based k

ijθ

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
8 

ha
l-0

04
77

69
5,

 v
er

si
on

 1
 - 

30
 A

pr
 2

01
0



A shared frailty semi-parametric Markov renewal model for time-use pattern analysis 
MA, Tai-Yu; JOLY, Iragaël ; RAUX, Charles  

on Newton-Raphson method cannot be applied. A widely utilized estimation method is based 
on Expectation-maximization (EM) algorithm (Klein, 1992; McLachlan and Krishnan, 1997). 
As the EM algorithm converges very slow and needs to construct large-size observed 
information matrix to obtain the variance of parameters, we apply penalized partial likelihood 
approach (Therneau et al., 2000) for our model estimation. It has been proved that the 
penalized partial likelihood approach obtains exact estimates as the EM algorithm with more 
rapid convergence. In practice, its computational package is available with free access in R 
(R Development Core Team, 2005). Hence, we apply this method for our model estimation. 
 

4. DATA DESCRIPTION 

 
The data used in this analysis is based on household mobility surveys recently available for 
the city of Lyon (2006) in France with sample size of 11234 households and 27573 
individuals, respectively. The questionnaire is designed to collect individual’s mobility 
information realized over 24 hours in the previous day for all household members of age at 
least 5 years. The data collected contains the mobility information in terms of 
origin/destination, starting/arrival time, trip purpose, transport mode etc. The daily travel and 
activity sequence is composed of numerous episodes of travels/activities, As the number of 
travel or activity episodes is large, we limit ourselves in analyzing travel-activity chain of 
workers conducted in the evening (after 4:00pm) after-work returning home commute.  

To investigate the heterogeneity effects on transition hazards across episodes, one 
Cox model with Gamma-distributed frailty term is specified for each of episodes in 
individual’s travel-activity chain. We assume that the transition hazard is influenced by 
unobserved household characteristics, reflecting the interaction effects of household 
members and the effects from other household covariates not included in the model. Note 
that unobserved effects can also be estimated based on individual level to capture 
individual’s variation across population (Bhat et al., 2004).  

For the covariate settings, previous empirical studies suggested important covariates 
for activity episode duration analysis (Bhat, 1996a, 1996b; Lee and Timmermans, 2007; Ma 
et al., 2009). Hence, individual’s socio-demographic, spatial and transport availability 
characteristics are taken into account. For socio-demographic characteristics, we select 
gender, household type, household income, employment status of two heads in the 
household and the number of young children less than 12 years of age in the household. For 
spatial and transport availability characteristics, the number of cars in household and the 
zonal density of household location are selected. Moreover, to investigate the effect of 
transportation system accessibility, two indicators are collected: distance to the nearest 
station of train/metro/tramway and distance to the nearest exchanger of motorway. Note that 
the distance is calculated as Eulerian distance from geographical zonal center to the nearest 
station/interchange of divided highway. The summary statistics of the covariates are listed in 
Table 1. As the duration of travel or activity previously conducted and the entering time of 
current travel/activity are important determinants of activity episode durations, these 
covariates are included in our model specification. The initial activity types for after-work 
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returning home commute are regrouped into four categories: 1. home, 2. maintenance 
activities (daily/weekly purchase, looking for a job, administration and health), 3. 
discretionary activities (walk, sports, culture and associative activities, out-of-home eating, 
visit to the family or to friends) and 4. other activities (Bhat and Misra, 1999). The regrouping 
of initial activity types is necessary in order to have enough samples to transition hazard 
estimation.  

The final dataset contains 5627 employed individuals and 7148 trips in individual’s 
after-work returning home commute. The observed trips for each of purposes in evening 
after-work trip-activity sequence are reported in Table 2. The sample shows that 77.8 percent 
of workers return home directly (after 4:00pm). The other workers conduct maintenance 
activity (8.7%), discretionary activity (4.3%) and other (9.2%) activity for the first non-travel 
activity episode (EP1). As there were few individuals conducting more than one trips for 
after-work commute, we limit our model estimation only for the first (travel) and the second 
(activity) episode.       

 

Table 1 Covariates definition and descriptive statistics 

Variable  Definition Mean 
 

S.E. 

 
Socio-demographic characteristics 

  

Gender Gender (1 if male, 0 female) 0.56  0.50 
Couple 1 if couple, 0 otherwise 0.84  0.36 
H_two_worker 1 if two heads of the household both have a job, 0 otherwise 0.63 0.48
H_income Household annual income: 1 under 10.000 €, 2 = 10.000–

20.000€, 3 = 20.001€–30.000€, 4 = 30.001€–40.000€, 5 = 
40.001€–60.000€, 6 = more than 60.000€ 

3.44 1.25

N_children The number of children less than 12 years of age in household 0.66  0.92 
 
Spatial and transport availability characteristics 

 

N_car The number of cars available in household 1.83  0.79 
Density Population density (1.000hab./km2) 4.61 6.71
Dist_I Distance to the nearest interchange of divided highway (by 

100m)  
40.73 43.75

Dist_P Distance to the nearest station of metro or tramway (by 100m) 27.86 26.92
 
Timing and duration characteristics of state/episode 

 

Duration_EPI Duration of travel or activity conducted in previous episode (in 
minute) 

N/A N/A

Entering_time Entering time of current state (in hours)  N/A N/A
Remark: 1. Motorway is defined as a road or highway in which two directions of traffic are separated 

by a central barrier or strip of land without direct access (neither stops, nor traffic lights). 
               2. The distance is calculated as the Euclidian distance of geographical centers between zone 

center and station/interchange of rail/road network. 
3.  The city of Lyon under study is divided into 148 zones, with median zone surface and 

zone density being 8.44 km2 and 16,065 habitants/km2, respectively 
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Table2 Number of employed individuals observed in 
sequential travel/activity episodes during evening 
work-to-home commute   

Type of activity EP1 EP2 EP3 EP4 
Home 4377 1003 190 33 

Maintenance 488 81 12 2 
Discretionary 243 58 15 2 

Other 519 98 15 4 
Total 5627 1240 232 41 

 

5. ESTIMATION RESULTS 

In this section, we provide Kaplan-Meier (KM) non-parametric estimator of baseline hazard 
for travel/activity episode durations to investigate its temporal rhythm. The travel/activity 
transition hazards are estimated for Cox proportional hazard models with and without 
Gamma frailty. The model estimation is conducted separately for each of travel/activity 
purposes. We present the estimation results and examine the heterogeneity effects on 
travel/activity duration over episodes.         

5.1 Baseline hazard   

As there is no prior information about parametric form of baseline hazard of activity duration, 
KM non-parametric method is applied. The non-parametric baseline hazard provides useful 
information to identify functional form for specifying parametric hazard function. It also 
reports temporal rhythm of activity duration. For one state transition (k, i, j), It is computed as 
the number of observed transition from state i to j at episode k in renewal time s divided by 
the number of individuals still at state i at episode k until s. The estimation method is similar 
as that utilized by Bhat (1996a). The KM baseline hazard functions for trip durations in the 
first episode are shown in Fig. 1 and Fig. 2. For home purpose, the baseline hazard shows 
quite irregular form with spikes at about 30-35, 45-50, 60-65, 75-80 and 90-95 minutes, 
indicating a general 15 minutes gaps between trips durations for returning home. For 
maintenance and discretionary activity participations, the baseline hazard reveals also non-
monotone trends with higher stopping probability at 30-35, 45-50 and 60-65 minutes. The 
results suggest that parametric hazard model may not be appropriate for transition hazard 
estimation for trip durations. When regarding the baseline hazards for activity episode 
durations at EP2, it indicates a general increasing trend in baseline hazards as activity 
durations increases (Fig. 2). For maintenance activity, the baseline hazard shows main 
spikes at 5-10, 30, 50, 70 and 90 minutes. The hazard increases rapidly after 90 minutes.  
The results indicate that temporal rhythm for maintenance activity participations for workers 
during returning home commute. For discretionary activity, the baseline hazard presents a 
temporal pattern with spikes for each 15-minute time interval. The hazard increases rapidly 
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after 170 minutes. Compared with maintenance activity, the results indicate that the 
durations of evening after-work discretionary activity is longer and presents a larger 
variability.  

 

 

 
Figure 1. Kaplan-Meier nonparametric baseline hazard for trip durations (home, first episode) 

 

 
Figure 2. Kaplan-Meier nonparametric baseline hazard for trip durations (maintenance 

activity (left), discretionary activity (right), first episode) 
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Figure 3 Kaplan-Meier nonparametric baseline hazards for maintenance and discretionary 

activity episode durations (second episode) 

 

5.2 Covariate effects 

In this section, we examine the effects of covariates on travel/activity episode durations 
conducted in individual’s evening after-work commute. Note that the estimators of 
parameters of proportional hazard model without the frailty reflect its proportional effects on 
baseline hazard. The relative magnitude of the effects is measured as  with 

 and  being the covariate values of individual i and j. If the heterogeneity is specified in 

hazard function, the hazard becomes non-proportional with respect the covariate values (Eq. 
(4)). To facilitate the discussion of covariate effects, we neglect the influence of 
heterogeneity across population in this section and discuss the effect of heterogeneity in the 
next section.  

)](exp[ ji XXβ −

iX jX

The estimated effects of covariates are shown in Table 3. We discuss firstly the 
effects of covariates for each of travel/activity purposes in trip episode and then proceed to 
that of activity episodes. 

The effect of gender plays a major determinant for trip durations for returning home 
directly after work. It reveals that women conduct longer trip durations than men. For the 
effect of departure time, it reveals that later the departure time is, longer is its duration. 
Similarly, when individuals work longer, their trip durations are longer when returning home. 
This might be resulted from congestion effects in the evening. Individuals reside in higher 
density area have shorter work-home trip durations, perhaps due to the proximity of work 
place and residence location. When examining covariate effects on trip durations for 
maintenance activity, the result reveals that women have longer trip durations for 
maintenance activity. It might be explained by the responsibility of household daily purchase 
generally assured by women. Moreover, departure time determines significantly its trip 
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durations for maintenance activity. It is also reasonable to find that work duration plays less 
influence on trip duration for maintenance activity participation. The covariate effects on trip 
duration for discretionary activity show quite different results than home and maintenance 
activity purposes. Individuals in couple households have shorter trip durations for 
discretionary activity participation. This indicates there may be significant interaction effects 
from time constraints of couple constraining individual’s destination choice in nearby work 
area. Individuals with one or more young children in household have shorter trip durations for 
discretionary activity, perhaps due to more constrained available time budget with the 
presence of children. Similarly, individuals with higher household income have shorter trip 
durations for discretionary activity participation. However, its effect is relative small compared 
with the influence of other covariates. On the other hand, individuals with higher vehicle 
availability in the household tend to travel longer. Similarly, when departure time is later, the 
trip duration for discretionary activity participation becomes longer. Finally, the results 
indicate that the accessibility at household location to transportation system has no/less 
significant effect on trip duration for different activity purposes.   

For the second episode, it is not surprising to find that individuals with one or more 
children in household have shorter durations in maintenance activity participation. The 
results reflect the effects of available time budget for maintenance activity participation. 
Individuals staring maintenance activity later have longer activity durations. However, 
individuals travel longer to maintenance activity destination, its activity participation duration 
is shorter. Its effect is less important compared to that of starting time of activity and of the 
presence of children in household. For discretionary activity durations, the results indicate 
similar effects of the presence of children in household and starting time of discretionary 
activity as that of maintenance activity. Travel time to the destination of discretionary activity 
have no significant effect on its activity duration. However, individuals with higher vehicle 
availability have longer discretionary activity durations.   

Finally, the covariates of density, accessibility to road/public transport system and 
household income have no significant effects on the durations of maintenance and 
discretionary activities during evening after-work commute. 

5.3 Unobserved heterogeneity effects      

The estimators of unobserved heterogeneity based on Gamma distribution across 
households is reported in Table 4. The heterogeneity has multiplicative effects on baseline 
hazard, reflecting the interaction of travel/activity participation of household members and 
also unobserved effects of household characteristics on travel/activity durations. The random 
effect (heterogeneity) is assumed following Gamma distribution with one parametric 
(variance) to be estimated. We estimate one frailty model for each of travel/activity purposes 
over episodes. The null hypothesis of 0=θ  can be based on a likelihood ratio test by 
comparing estimated likelihood values of models with and without the frailty term (Andersen 
et al, 1996; Bhat, 1996a). Higher the estimated variance is, more significant the effects of 
heterogeneity on hazards across households become.       

The effects of heterogeneity on transition hazards are reported for the first and 
second episodes. First, the likelihood ratio tests indicate that the effect of heterogeneity is 
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ˆ 04.1ˆ =

4270.0ˆ =

295.0ˆ =
0031.0ˆ =θ

For activity episode, the effects of heterogeneity are significantly different from 0 for 
the duration of maintenance activity with θ . However, for discretionary activity 
duration, the estimated variance is close to 0 ( ) suggesting that there are few 
heterogeneity effects across households for this activity purpose.               

 
 

 

Results improve our understanding of worker’s return home activity participation 
behaviour in how three classes of variables: sociodemographic, spatial and transport 
availability and timing and duration characteristics of state/episode influence trip and different 
activity durations. Moreover, this study identifies significant heterogeneity effects reflecting 
unobserved household characteristics influences on trip and activity episode durations. The 
results indicate that the heterogeneity effects vary over different types of activities and trips 
pursued in different episodes of travel and activity chains.                                  

In this study, a shared-frailty semiparametric Markov renewal model is proposed to 
investigate the effects of observed and unobserved explanatory variables on travel-activity 
episode durations in individual’s travel-activity chains. The proposed approach provides a 
general framework to incorporate unobserved heterogeneity and unspecified baseline 
hazards in sequential activity episode duration estimations. The approach is applied to 
analyze trip and activity episode durations of workers’ return home trip and activity sequence 
in the city of Lyon, France.  

6. CONCLUSIONS  

The variability of the heterogeneity effects reveals that the unobserved effects on 
travel/activity duration depend on its activity types conducted over episodes. The negligence 
of this effect will bias the estimators of parameters.            

statistically significant for all travel and activity episodes under study. The magnitude of 
estimated variance θ  for trip durations of home purpose is the highest (θ ), reflecting 
significant heterogeneity across household level for work-home trip duration. The estimated 
effects of covariates with frailty term are also different from independent proportional hazard 
model, as shown in Table 3. The effects of heterogeneity are also significantly different from 
0 for trip duration in first discretionary activity participation (θ ). However, the results 
indicate that there are almost no heterogeneity effects for trip duration for maintenance 
activity participation.  
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Table 3  Parameter estimates for state transition hazards over episodes with/without frailty term (t-ratios in parentheses) 

State 
Episode 

transition 
Model       Gender Couple H_two_worker Income N_children N_car Density Dist_I Dist_P Entering_T Duration_EPI

EP 1 Tr1-H No frailty -0.1(-3.34)      0.01(4.37)   -0.07(-5.52) -0.03(-34.13) 

           

          

           

    

      

 

Frailty -0.14(-2.99) 0.003(0.70)* -0.01(0.96)* -0.08(45.84)

Tr1-M No frailty -0.21(-2.3) -0.003(-1.99) -0.26(-4.24) -0.02(-7.68)

Frailty -0.21(-2.3) -0.003(-1.99) -0.26(-4.24) -0.02(-7.68)

Tr1-D No frailty 0.43(1.91) -0.29(-1.69)* 0.07(2.54) 0.16(1.91) -0.39(-3.41) -0.01(-1.52)* 0.004(2.17) -0.19(-3.21) -0.01(-4.96)

Frailty 0.50(1.61)* -0.24(-1.0)* 0.09(2.43) 0.20(1.7)* -0.56(-3.72) -0.03(-2.21) 0.005(2.29) -0.23(-3.00) -0.02(-5.09)

EP 2 M-Tr2 No frailty 0.14(1.48)*    0.11(1.96) 0.11(1.82)* 0.002(1.45)* -0.003(-1.67)* -0.54(-9.57) 0.009(2.63) 

       

       

         

Frailty 0.19(1.64)* 0.12(1.74)* 0.14(1.75)* 0.003(1.73)* -0.004(-1.41)* -0.65(-9.77) 0.009(2.20) 

D-Tr2 No frailty 0.32(1.56)* 0.36(3.86) -0.23(-2.09)  -0.70(-11.44) 0.007(1.65)*

Frailty 0.32(1.56)* 0.36(3.86) -0.23(-2.09)  -0.70(-11.44) 0.007(1.65)*

 
Remark: 1.H: home, M: maintenance activity, D: discretionary activity 

2. p-values are reported only for significance at 0.05 level except * 
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Table 4 Model fit statistics for proportional hazard model with Gamma frailty (heterogeneity) 

Episode State 
transition 

Number of 
covariates Frailty( )k

ijθ̂ )ˆ( k
ijSE θ  Likelihood 

ratio test p-value Kendall's 
 τ )(τSE  

EP 2 Tr1-Home 4 1.0400 4.83E-4 7899.0 <0.00001 0.34 1.05 E-04

 Tr1-M 4 0.0017 2.16E-05 89.9 <0.00001 <0.01 1.08E-05

 Tr1-D 9 0.4270 6.30E-3 246.0 <0.00001 0.18 2.14E-3 

EP 3 M-Tr2 7 0.2950 2.70E-3 358.0 <0.00001 0.13 1.03E-3 

 R-Tr2 5 0.0031 2.20E-5 174.0 <0.00001 <0.01 1.09E-05

Remark: Kendall’s 
)ˆ2(

ˆ

θ+
θ

=τ  and its standard error is 
2)ˆ2(
)ˆ(2

θ+
θSE
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