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Abstract

This paper introduces a life-cycle model where impatience, instead of being
driven by an exogenous discount function, results from the combination of risk
aversion and mortality risks. Opting for such a formulation provides novel
views on the impact of longevity extension on welfare, saving behavior and
capital accumulation. In particular, we show that longevity extension may
have much larger impacts on capital accumulation and equilibrium rate of
interest than is usually thought. Moreover, we show that the adherence to the
additive life cycle model introduced by Yaari (1965) may lead to significantly
overstimating the welfare gains due to mortality risk reduction.
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1 Introduction

It has long been recognized that uncertainty, in particular lifetime uncertainty, contributes

to human impatience. However, economic theory has developed around the consensus that

uncertainty could not be the main cause of human impatience. Early economists, such as

Jevons, Marshall, Böhm-Bawerk, Pigou or Fisher emphasized the “irrationality” of human

impatience driven by “the incompleteness of the imaginations” (Böhm-Bawerk, 1891),

“a lack of self control” (Marshall, 1890, Fisher, 1930) or “a faulty telescopic faculty”

(Pigou, 1920)1. Moreover, this “defect in will” (Böhm-Bawerk, 1891) was claimed to

be stronger among “savages”, “uneducated” or “uncivilized” people2. Modern economic

theory differs by its terminology, but not that much by its underlying conceptualization of

human impatience. Time preference is still viewed as an intrinsic element of preferences,

which is not to be discussed (de gustibus non est disputandum). Human beings, possibly

as a result of biological evolution3, are impatient by nature. And some of them (e.g. men

and non-whites) tend to be, for unexplained reasons, more impatient than others (women

and whites)4.

The present paper challenges this view by introducing a life cycle model, where im-

patience results from uncertainty and risk aversion. The suggested model, which remains

in the standard expected utility framework, involves abandoning the assumption that

agents have pure time preferences (i.e.: a non constant subjective discount function) but

allowing for temporal risk aversion. It is worth emphasizing that what is suggested is

not a negation of human impatience, but an alternative theory for human impatience. In

short, to the view that human impatience is unrelated to agents’ risk aversion and mainly

1Peart (2000) provides an excellent discussion on how early economists used to view time preferences.
2For Jevons (1871): “The untutored savage, like the child, is wholly occupied with the pleasures and

the troubles of the moment; the morrow is dimly felt; the limit of his horizon is but a few days off.”
According to Böhm-Bawerk (1891): “We systematically underestimate future wants, and the goods

which are to satisfy them. Of the fact itself there can be no doubt; but, of course, in particular nations,
at various stages of life, in different individuals, the phenomenon makes its appearance in very varying
degree. We find it most frankly expressed in children and savages.”
In the same line, Fisher (1930) argues that: “In the case of primitive races, children, and other

uninstructed groups in society, the future is seldom considered in its true proportions.”
3See for example Rogers (1994) or Robson and Samuelson (2008) for discussions about the evolutionary

fundations of time preferences.
4See for example the empirical results of Lawrance (1991) and Warner and Pleeter (2001) that are

discussed in Section 6.
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driven by an exogenous parameter of preferences, is opposed the view whereby human

impatience results from risk aversion and mortality risk.

This alternative way of modelling life cycle preferences has several attractive features.

Although impatience is “endogenized”, all forms of impatience can be obtained. Even if

mortality rates are small, lifetime uncertainty may generate large rates of time discounting.

In fact, it will be formally shown that, as long as we consider life-cycle behaviors under

a given (non-degenerate) mortality pattern, this novel formulation can reproduce (up to

infinitesimally small differences) all the predictions of Yaari’s (1965) standard life cycle

model, which assumes additively separable utilities and exogenous time preferences. Since,

the validity of Yaari’s model has never been tested by empirical studies using heterogeneity

in mortality across agents, it follows that the alternative approach I suggest has, up to

now, at least as much empirical support as Yaari’s model.

Nonetheless, this alternative approach affords new insights as to the impact of un-

certain lifetime on intertemporal choice. Individuals with identical preferences, but with

different mortality, may exhibit very different degrees of impatience. The discussion will

explain why, contrary to conventional wisdom, mortality decline may generate very sig-

nificant changes in human impatience. This is of crucial importance for discussing the

impact of longevity extension on capital accumulation and equilibrium interest rate. In

particular, we find that longevity extension may have had much larger impacts on capital

accumulation and equilibrium rate of interest than is usually thought.

This novel approach also suggests a revision of the literature on endogenous mortality.

Temporal risk aversion enhances risk aversion with respect to life duration and, therefore,

increases the willingness to pay for reducing mortality at young ages, relatively to the

willingness to pay for reducing mortality at old ages. The value of life is thus found to

decrease more rapidly (or to increase less rapidly) with age. This turns out to be significant

for the evaluation of welfare gains associated with longevity extension. Simulations based

on 1970 and 2000 U.S. demographic data show that using this novel model, instead of

the standard additive life cycle model, would lead to dividing by approximately two the

estimates of the value of longevity gains.

Abandoning Yaari’s model for a model that assumes temporal risk aversion suggests
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therefore a significant reformulation of the economics of ageing. More generally this paper

emphasizes that, because of the longitudinal nature of human life, temporal risk aversion

is a key element of individual preferences. The suggested model permits to account

for temporal risk aversion, in a simplest way, without abandoning expected utility nor

assuming time inconsistencies.

The structure of the paper is as follows. In Section 2 we return to the standard

model of intertemporal choice under uncertain lifetime, due to Yaari (1965), and introduce

the alternative “time neutral” model. In Section 3 and 4, we discuss the fundamental

properties (time preferences and temporal risk aversion) that distinguish both models.

In Section 5, we consider life cycle behavior under a given mortality pattern. Section 6

provides theoretical results on the impact of mortality changes. It will be complemented

by Section 7 that provides illustrations based on historical demographic data. Section

8 explores issues related to the value of life. Section 9 discusses the main conclusions

that can be drawn from the present paper. The appendix contains proofs of the results

and Section A that looks at technical difficulties that appear when working with the

non-additive model and suggests ways to deal with them.

2 Two Models of Individual Preferences

In this paper, we will view a “life” as being a pair (c, T ), where c is an infinitely long

consumption profile, and T a (finite) length of life. The set of possible lives will, therefore,

be:

X = C∞(R+,R+)× R+

This representation might seem odd at first sight, since consumption has not been con-

strained to zero after death. Instead, consumption after death can theoretically take any

non-negative value. However, as the models that will be considered assume that people

do not care for consumption after death, my results will be formally equivalent to what

we would obtain if consumption was constrained to zero after death. The paper is about

preferences that make it possible to rank lotteries whose outcomes are in X.
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2.1 Additive model (Yaari’s model)

The most common approach to deal lifetime uncertainty involves stating that individuals

maximize an expected utility of the form:

Z +∞

0

s(t)α(t)u(c(t))dt (1)

where c(t) is the consumption at age t, s(t) the probability of being alive at age t and α(t)

the subjective discount function. This model, which was introduced by Yaari (1965), has

become the model of reference for discussing the economic impact of mortality changes, as

in Blanchard (1985), Boucekkine, de la Croix and Licandro (2002) or Sheshinski (2007).

It is also used for providing policy recommendations on major social issues, such as the

optimal level of health spending or pollution regulation5.

For our purpose it proves useful to come back on the path followed by Yaari to de-

rive this representation. At the origin of Yaari’s model is the fundamental assumption

that preferences over lotteries involving lives of different lengths can be modeled within

the standard expected utility framework using an additively separable Bernoulli utility

function6. More precisely, we will say throughout the paper that:

Definition 1 Preferences are additive (or of Yaari’s type) if they are represented within

the expected utility framework with a Bernoulli utility function of the form:

Uadd(c, T ) =

Z T

0

α(t)u(c(t))dt (2)

with α > 0 and u0 > 0.

In order to clarify the link between the above definition and the formulation in terms

of expected utility shown in (1), consider the case of lotteries that are characterized by a

5For example in the recent contributions of Murphy and Topel (2006) and Hall and Jones (2007) as
well as in EPA (1997).

6We use the terms “Bernoulli utility function” to avoid any possible confusion between “utility func-
tion” and “expected utility function”. Bernoulli utility functions are defined over X. A Bernoulli utility
function composed with the expectation operator, gives an expected utility function, defined over the set
of lotteries with outcomes in X.
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given consumption profile, c, and a lottery on life duration. The distribution of the age

of death that is associated with the lottery on life duration is denoted d(T ).

The expected utility associated with such a lottery is

EUadd(c) =

Z +∞

0

d(T )Uadd(c, T )dT

Noting s(t) =
R∞
t

d(T )dt the the survival function, and integrating by parts the above

equation gives:

EUadd(c) =

Z +∞

0

s(t)
∂Uadd(c, T )

∂T
|T=tdt =

Z +∞

0

s(t)α(t)u(c(t))dt

which corresponds to (1). The popular formulation of Yaari’s model given in (1) is there-

fore nothing other than a straight application of specification (2) to the case where un-

certainty bears on life duration.

2.2 Time neutral model

As with any economic model, there would be no difficulty in arguing that the additive

model is, by its structure, too restrictive to provide a faithful representation of human

rationality. A “safe criticism” would then involve pointing to some particular assumption

and relaxing it to obtain a more general and less structured representation. This drift

towards more generality and less structure would, however, magnify identification prob-

lems. Moreover, it would fail to question the necessity to assume the existence of pure

time preferences.

The present paper follows a different kind of argument, challenging the additive model

with a model having the same level of complexity, when measured in terms of degrees of

freedom. More precisely we will consider time neutral preferences, defined as follows:

Definition 2 Preferences are “time neutral” if they are represented within the expected

utility framework with a Bernoulli utility function of the form:

U tn(c, T ) = φ

µZ T

0

u(c(t))dt

¶
(3)
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with φ0 > 0 and u0 > 0.

The function φ that enters the time neutral utility function has no impact on or-

dinal preferences, but determines individuals’ attitude towards risk. In particular as is

known from Kihlstrom and Mirman (1974), increasing the concavity of the function φ

involves increasing individuals’ risk aversion. The class of time neutral utility functions

is therefore a natural candidate to analyze the role of risk aversion within the expected

utility framework and appeared as such in Kihlstrom and Mirman (1974). Epstein and

Zin (1989) and Epstein (1992) argued, however, that working with such utility functions

is problematic because in a dynamic time consistent approach, they would generate “un-

reasonable” forms of history dependence, with the distant past mattering as much as the

closer past7. The critique relies therefore on the presupposition that consumption in the

remote past should be given a smaller weight than consumption in the closer past; in

other words, that people have time preferences. It is precisely this presupposition that

the time neutral model challenges. In a fully consistent manner, the time neutral model

assumes that -in absence of uncertainty- individuals would exhibit no time discounting for

the assessment of the future or for the assessment of the past. This might seem a surpris-

ing assumption, but a key result of the paper (Proposition 5) shows that this apparently

heterodox model is able to reproduce all forms of time discounting when mortality risk is

taken into account and may look very similar to the additive model which assumes history

independence. Denigrating the time neutral model, on the ground that it rules out pure

time preferences, or that it suggests undiscounted forms of history dependence, would be

no different than authoritatively stating that the existence of time preferences may not

be debated.

The additive and time neutral models have many features in common. Indeed, both

formulations can be seen as diverging extensions of the simplest case where preferences

are represented by the Bernoulli utility function :

U0(c, T ) =

Z T

0

u(c(t))dt

7The questions of time consistency and history dependence are discussed in greater details in Appendix
A.
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with u0 > 0. Preferences represented by U0 are both additive and time neutral. As we will

see in the following two sections, the additive preferences extend the above formulation

by introducing time preferences, while the time neutral preferences introduce temporal

risk aversion.

3 Time Preferences

The concept of pure time preference is an ordinal concept representing impatience in a

context without uncertainty. It can be summarized by the rate of time preference, which

in the continuous time framework is usually defined as follows:

Definition 3 For any length of life T , any time t < T and any consumption path c, the

rate of time preference is defined by:

ρ(c, t, T ) = − d

dt

µ
log(

∂U(c, T )

∂c(t)
)

¶
|dc(t)

dt
=0

The notation ρ(c, t, T ) is used to stress that, in general, the rate of time preference

can depend on c, t and T. However, with the preferences we are considering, the rate of

time preference at time t depends only on t. Indeed:

Proposition 1 In the additive model, the rate of time preference is given by:

ρadd(c, t, T ) =
−α0(t)
α(t)

(4)

In the time neutral model, it is given by:

ρtn(c, t, T ) = 0 (5)

Proof. From (2) we derive ∂Uadd(c,T )
∂c(t)

= α(t)u0(c(t)), which implies (4). From (3) we

derive ∂Utn(c,T )
∂c(t)

= u0(c(t))φ0
³R T

0
u(c(τ))dτ

´
, which implies (5).

This proposition emphasizes a fundamental difference between the two models. In

the additive case, people can have pure time preferences while the time neutral model

excludes this possibility.
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Nevertheless, as will be explained in Section 5, agents with time neutral preferences

may exhibit any kind of (positive) impatience when confronted with lifetime uncertainty.

The additive and time neutral models therefore suggest two very different theories for hu-

man impatience. In the standard approach, supported by the additive model, impatience

is inherent to human nature and would exist even in the absence of uncertainty. On the

other hand, the time neutral model, takes for granted that risk aversion and mortality

are inherent to human nature. It then suggests that human impatience may exclusively

result from a rational response to uncertainty and, in particular, to the risk of death.

The interest of each interpretation might be debated on philosophical grounds and,

in particular, in relation with Heidegger’s Being and Time (Heidegger, 1927). Instead, I

will focus on pragmatic matters and show why opting for one or the other interpretation

may well be crucial for concrete social issues, and especially in order to grasp the impact

of mortality changes.

4 Temporal Risk Aversion

Temporal risk aversion is an adaptation of the general notion of “multivariate risk aver-

sion” of Richard (1975) to the case of intertemporal choice under uncertainty. It is used

in Ahn (1989) and van der Ploeg (1993). To obtain an intuitive notion of what temporal

risk aversion is, consider the simple case of an individual who lives over two periods. An

individual is temporally risk averse if for any c1 < C1 and c2 < C2 he prefers the lottery

that gives (c1, C2) or (C1, c2) with equal probability to the lottery that gives (c1, c2) or

(C1, C2) with equal probability. To quote Richard (1975), a temporally risk averse con-

sumer prefers getting some of the “best” and some the “worst”, to taking a chance on

all of the “best” or all of the “worst”. Richard (1975) shows that temporal risk aversion

is related to the cross derivative of the Bernoulli utility function. In continuous time,

temporal risk aversion can be defined as follows:

Definition 4 An individual exhibits:

- temporal risk aversion if ∂2U(c,T )
∂c(t1)∂c(t2)

< 0 for all t1, t2 < T with t1 6= t2.

- temporal risk neutrality if ∂2U(c,T )
∂c(t1)∂c(t2)

= 0 for all t1, t2 < T with t1 6= t2.

9
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- temporal risk proneness if ∂2U(c,T )
∂c(t1)∂c(t2)

> 0 for all t1, t2 < T with t1 6= t2.

It is then fairly simple to note that:

Proposition 2 Agents with additive preferences exhibit temporal risk neutrality. Agents

with time neutral preferences exhibit temporal risk aversion if φ is concave, temporal risk

neutrality if φ is linear, and temporal risk proneness if φ is convex.

Proof. In the additive case ∂addU(c,T )
∂c(t1)

= α(t1)u(c(t1)) and
∂2Uadd(c,T )
∂c(t1)∂c(t2)

= 0. In the

time neutral case, ∂tnU(c,T )
∂c(t1)

= u0(c(t1))φ
0
³R T

0
u(c(t)dt

´
which implies that ∂2Utn(c,T )

∂c(t1)∂c(t2)
=

u0(c(t1))u
0(c(t2))φ

00
³R T

0
u(c(t)dt

´
.

This is the second fundamental difference between the two models. The additive model

rules out temporal risk aversion while the time neutral model allows for it.

Temporal risk aversion matters when considering attitude towards risks that have

durable consequences, since risks of this kind affect individuals over several periods of

time. This is for example the case for risks related to wealth investment, since current

wealth affects individuals’ consumption in future periods. This explains why temporal

risk aversion plays a central role in Ahn (1989), van der Ploeg (1993) or Bommier and

Rochet (2006) who study optimal saving and portfolio choices in models where the horizon

is infinite or known with certainty.

A risk that indisputably has longlasting consequences is that of mortality. Indeed, the

risk of dying at time t is nothing other than the risk of being put in the “death state” for

all times subsequent to t. Thus, we expect temporal risk aversion to deeply affect rational

attitudes towards the risk of death.

Given the obvious durability of death, it is intriguing that the economic literature that

deals with human mortality focuses on the additive specification which assumes tempo-

ral risk neutrality. Several papers did discuss the role of “risk aversion” in the context

of uncertain lifetime but, in reality, they only considered the additive specification and

discussed the role of the curvature of the instantaneous utility function u, which has no

impact on temporal risk aversion. We know, however, from the fundamental contribution

of Kihlstrom and Mirman (1974) that, strictly speaking, increasing individuals’ risk aver-

sion does not involve changing the curvature of u, but taking a concave transformation
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of the intertemporal utility function. This is what is done with the time neutral model,

where temporal risk aversion arises naturally.

To end this section, let us remark that the curvature of the function φ, which generates

temporal risk aversion in the time neutral model, can be related to individuals’ risk

aversion with respect to life duration. Imagine the (fictive) case of individuals who have

to choose between lotteries involving a single constant consumption path, but different

life durations. Consumption being the same in all outcomes, these individuals only have

to rank lotteries on a single dimensional variable: life duration. Their choices are then

governed by their risk aversion with respect to life duration which can be measured by a

standard Arrow-Pratt coefficient:

−
∂2U(c,t)
∂T2

∂U(c,t)
∂T

It is a matter of simple calculation to show that, with the time neutral model, this

coefficient equals u(c)−φ
00(Tu(c))

φ0(Tu(c)) . Considering such simple lotteries may therefore help

to understand the economic meaning of assumptions that might be made about φ. For

example, assuming φ is concave (temporal risk aversion) would involve assuming positive

risk aversion with respect to length of life. Assuming −φ
00

φ0 is decreasing would involve

assuming decreasing risk aversion with respect to length of life.

5 Life-Cycle Behavior Under an Exogenous Mortal-

ity Pattern

In this section, I consider the case where individuals face an exogenous mortality pattern.

Throughout the section, mortality will be described either by the distribution of the age

at death d(t), by the survival function s(t) = 1−
R t
0
d(τ)dτ or by the hazard rate of death

µ(t) = −s0(t)
s(t)

= d(t)
s(t)

. Even though, in this section, I do not compare what is obtained with

different mortality patterns (this is the purpose of Section 6), I will introduce an index µ

whenever I want to stress that an object depends on the mortality pattern.

Rational individuals with a Bernoulli utility function U(c, T ) who face this exogenous

mortality pattern have preferences on consumption profiles given by the following expected
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utility:

EµU(c) ≡
Z +∞

0

d(T )U(c, T )dT (6)

A crucial point is that although the time neutral representation assumes that people

have no pure time preferences, temporal risk aversion, together with uncertainty on the

length of life, generate non-trivial time discounting. The intuition, stressed in Bommier

(2006), is that if people cannot avoid the risk of dying young, they should prefer consuming

early in life in order to avoid the very low level of lifetime utility which would result from

simultaneously having a short life and low levels of instantaneous consumption. This

intuition can be formalized by looking at the rate of discount at time t.

Definition 5 For any consumption profile c, the rate of discount at time t is defined by:

RDµ(c, t) = −
d

dt
(log(

∂EµU

∂c(t)
)|dc(t)

dt
=0

This extends Definition 3 to the case where the length of life is not known with

certainty, but is described by an exogenous distribution. The rate of discount depends on

the mortality pattern considered. Indeed:

Proposition 3 In the case of the additive utility function, the rate of discount is given

by:

RDadd
µ (c, t) = µ(t)− α0(t)

α(t)
(7)

For the time neutral utility function, the rate of discount is given by

RDtn
µ (c, t) = µ(t)− µ(t)

R +∞
t

s(t1)u(c(t1))φ
00
(
R t1
0
u(c(τ))dτ)dt1R +∞

t
d(t1)φ

0
(
R t1
0
u(c(τ))dτ)dt1

(8)

Proof. See Appendix B.

In the additive case, the rate of discount is the sum of the mortality rate and the rate of

time preference, as is well known. An implication of this standard result is that, although

mortality is a risk, the impact of mortality on impatience is found to be independent of

individuals’ risk aversion. This is because of the assumption of temporal risk neutrality.

In the time neutral case, even though individuals have no pure time preferences, in the
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typical case where u is positive, φ strictly concave and mortality greater than zero, the

rate of discount is greater than the hazard rate of death. Temporal risk aversion together

with lifetime uncertainty does generate impatience. The intuition for this result will

be discussed at length in the following section, after Proposition 6, once comparative

statics related to risk aversion (Proposition 4) and mortality rates (Proposition 6) will be

provided.

Considering time neutral preferences makes it possible to highlight a relation between

risk aversion and impatience. The more concave the function φ, the greater risk aver-

sion. But, increasing the concavity of φ also has simple consequences on the rate of time

discounting.

Proposition 4 For a given instantaneous utility function u, a given consumption profile

c such that u(c(t)) ≥ 0 for all t, and a given mortality pattern, the greater the concavity8

of the function φ the greater RDtn
µ (c, t).

Proof. See Appendix C.

Hence, the greater risk aversion, the greater human impatience9. The intuition for

this result will also be given in the following section, after Proposition 6.

Once we found that impatience may result from temporal risk aversion and mortality,

it is natural to wonder about the impatience patterns that can be generated. Bommier

(2006) considers realistic mortality rates and exponential or hyperbolic functions φ. This

leads to discount functions that are approximately exponential or hyperbolic. In fact,

by adjusting the functions φ and u, any decreasing discount function can be generated.

Indeed, taking matters further, we will see in the following proposition that for any given

mortality pattern, any additive preferences with non-negative rates of time preference can

be obtained as the limit of time neutral preferences.

8A real function f is said to be at least as concave as a function g if

−f
00(x)

f 0(x)
≥ −g

00(x)

g0(x)
for all x

9This relation may be extended to a broader class of models. In particular, the proof of Proposition 4
would also work with specifications that would include both temporal risk aversion and time preferences.
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Proposition 5 Assume that individuals face an exogenous mortality pattern and that the

hazard rate of death is always positive. For any additive preferences that generate posi-

tive rates of discount10, there exists a sequence of time neutral preferences such that the

corresponding expected utility functions converge (weakly and up to positive affine transfor-

mations11) towards the expected utility function obtained from the additive representation.

Proof. See appendix D.

An implication of Proposition 5 is that, when modeling life-cycle behavior under a

given mortality pattern, all the predictions of the additive models with non-negative rates

of time preference can be reproduced, up to infinitesimally small differences, by time

neutral models. Thus, there is no chance to infer from micro data on individual behavior

that the additive formulation with non-negative rates of time preference is better than the

time neutral one, unless heterogeneity in mortality across agents is considered. This point

is particularly important since, to my knowledge, the validity of the additive assumption

has never been challenged by empirical studies that consider heterogeneity in mortality.

In other words, Proposition 5 tells us that, up to now, there is no piece of empirical

evidence that can afford more credit to the additive model than to the time neutral one.

Interestingly enough, Proposition 5 is not symmetrical. Indeed, from equation (20),

in appendix, we see that the expected utility function that represents the preferences over

consumption profiles in the time neutral is, in general, not additive. Thus, it cannot be

obtained as the limit of a sequence of additive expected utility functions. Although the

additive and time neutral models have the same degree of complexity, the time neutral

models provide a wider class of preferences with positive rates of discount than the additive

models, when a given non-degenerate mortality pattern is considered. This is because

preferences over consumption profiles under an exogenous mortality pattern do not depend

on the rate of substitution between consumption and the length of life in the additive

model12, while they do depend on it in the time neutral model.

10In the additive case, the age-specific rates of discount are given by (7). As mortality rates are assumed
to be positive, the rates of discount are positive whenever the rates of time preference (equation (4)) are
non-negative.
11What is meant by “weak convergence up to positive affine transformations” is formalized in the proof

(equations (23) and (24)).
12Preferences over consumption profiles provided by the expected utility function shown in equation
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6 The Consequences of Mortality Changes

In the previous section, we saw that there may be some similarity between the predictions

of the time neutral and the additive models on life-cycle behavior under an exogenous

mortality pattern. More precisely, I showed that for any given mortality pattern, with

positive hazard rates of death, and any additive preferences, with non-negative rates of

time preference, I could define a sequence of time neutral Bernoulli utility functions such

that the corresponding expected utility functions converge towards the expected utility

function obtained with the additive formulation. I could not, however, find a sequence of

time neutral utility functions that satisfy this property for all mortality patterns. In other

words, although additive and time neutral preferences may give similar predictions when

a given mortality pattern is considered, they will predict, in general, contrasted effects of

mortality changes.

In particular, a fundamental difference between the two models is that the rate of

discount (Definition 5) will react quite differently to mortality. To stress this point,

we can examine the Volterra derivative ∂RDµ(c,t1)
∂µ(t2)

, which gives the effects of a change in

mortality around age t2 on the rate of discount at age t1:

Proposition 6 In the additive case:

∂RDadd
µ (c, t1)

∂µ(t2)
= δ(t2 − t1) where δ is the Dirac delta function

In the time neutral case:

∂RDtn
µ (c,t1)

∂µ(t2)
= 1

µ(t1)
RDtn

µ (c, t1)δ(t2 − t1)

+µ(t1)
φ0(

t1
0 u(c(τ))dτ) +∞

t2

s(τ)
s(t1)

u(c(τ))φ
00
( τ
0 u(c(τ1))dτ1)dτ

φ0(
t1
0 u(c(τ))dτ)+ +∞

t1

s(τ)
s(t1)

u(c(τ))φ
00
( τ
0 u(c(τ1))dτ1)dτ

21(t2>t1)
(9)

where δ is the Dirac delta function and 1(t2>t1) a dummy that equals one if t2 > t1, and

zero otherwise.

Proof. See Appendix E.

(19) do not change if a constant is added to u.
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In the additive case, the result is very simple: an increase in the hazard rate of death

at age t2 of δµ causes an increase in the rate of discount at age t2 of δµ, and has no impact

on the rate of discount at other ages. This is because the rate of discount is simply the

sum of the hazard rate of death and an exogenous parameter.

In the time neutral case, the result is very different. In fact, there are two fundamental

differences. First, an increase in the hazard rate of death at age t2 affects positively and

in the same proportion the rate of discount at age t2 (first term in equation (9)). In other

words, the elasticity of the rate of discount at age t2 with respect to the hazard rate of

death at age t2 equals 1. Second, a change in the hazard rate of death at time t2 will

affect the rate of discount at all ages smaller than t2. More precisely, if the hazard rate

of death increases by δµ between ages t2 and t2 + dt then, for all ages t1 < t2, the rate of

discount will change from RDtn(t1) to:

RDtn(t1) +

R +∞
t2

s(τ)
s(t1)

u(c(τ))φ
00
(
R τ
0
u(c(τ 1))dτ 1)dτ

φ0(
R t1
0
u(c(τ))dτ) +

R +∞
t1

s(τ)
s(t1)

u(c(τ))φ
00
(
R τ
0
u(c(τ 1))dτ 1)dτ

RDtn(t1)× dtδµ

If u is positive and φ strictly concave (that is, if individuals are willing to live longer

and are temporally risk averse), the adjustment is negative. Thus, in that case, the time

neutral model predicts that an increase in the mortality rate at age t2 will have a positive

impact on the rate of discount at age t2 and a negative impact on the rate of discount at

all ages before t2.

Proposition 6 together with Propositions 3 and 4 clarify how mortality and risk aver-

sion contribute to impatience. An intuitive interpretation of these results can be given.

Mortality actually generates two kinds of risk: a risk on consumption (consumption is

contingent on survival) and a risk on lifetime utility (lifetime utility is typically low in the

case of an early death and high in the case of a late death). In both the additive and time

neutral models, the risk on consumption affects the discount rates in the simplest way:

mortality rate at age t contributes additively to the rate of discount at age t (this explains

the first terms of equations (7) and (8) found in Proposition 3). The risk on lifetime utility

has no effect in the additive model because of the underlying assumption of temporal

risk neutrality. In the time neutral model, when φ is strictly concave, individuals exhibit
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temporal risk aversion. This incites them to re-allocate consumption towards young ages

in order to reduce the risk on lifetime utility. Indeed, by consuming early in the life cycle,

individuals avoid the low levels of lifetime utility that would result from having a short

life with low levels of consumption. In other words, they see the intertemporal allocation

of consumption as a way to (partially) insure themselves against the risk of death. But

the need for insurance at a given age results from three parameters: (1) risk aversion, (2)

the probability of incurring damage (death, in the present case) at that age and (3) the

magnitude of the damage (the expected quantity of future pleasures in case of survival).

The greater risk aversion the greater the need for insurance. That explains Proposition

4. Mortality affects both the second and third parameters, but in opposite directions. It

increases the probability of damage, but diminishes the magnitude of the damage. More

precisely, mortality at age t increases the probability of incurring damage at age t and

decreases the magnitude of the damage in case of death before age t. The first point

explains why the second term of (8) (and hence the rate of discount at age t) increases

with mortality at age t. The second point clarifies why an increase in the mortality rate

at age t also causes a decrease in the rate of discount at all ages under t. Note also that

the damage caused by a death at age t increases with the consumption that was planned

after age t in case of survival. This explains why the rate of time discounting at age t

increases with consumption at ages greater than t (as can easily been seen from equation

22 in the appendix).

In practice, we would like to know what happens when there is a global mortality

decline that is characterized by a decrease in mortality rates at all ages. According to

the additive model, the result is unambiguous: such a global mortality decline implies

a decline in the rate of discount at all ages. This is no longer true in the time neutral

model. In this latter model, in the typical case where u is positive and φ is strictly

concave, such a global mortality decline may have a positive or a negative impact on

the age-specific rates of discount. Indeed, the rate of discount at an age t was shown to

depend positively on the mortality rate at age t and negatively on the mortality rates at

ages greater than t. There are, therefore, two opposing effects, which can aggregate into

a positive or a negative effect. The computations based on historical mortality rates that
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will be provided in Subsection 7.1 show examples of both positive and negative aggregate

effects. Thus, we know that it is impossible to provide a general result on the impact

of a global mortality decline on the rates of discount for the time neutral model. Some

interesting results can, however, be obtained if additional assumptions are made on how

age specific mortality rates are affected by a global mortality decline:

Proposition 7 Consider two mortality patterns described by hazard rates of death µ1(t)

and µ2(t), with:
µ2(t)

µ1(t)
≤ µ2(t

0)

µ1(t
0)
≤ 1 for all t ≤ t0 (10)

Then, for all consumption paths such that u(c(t)) > 0 for all t, we have:

RDtn
µ2
(c, t) ≤ RDtn

µ1
(c, t) for all t.

Moreover, if, in addition, φ is strictly concave, −φ
00

φ0 non-increasing and mortality non-

decreasing with age, for all constant consumption paths such that u(c) > 0, we have:

RDtn
µ1
(c, t)−RDtn

µ2
(c, t) ≥ RDadd

µ1
(c, t)−RDadd

µ2
(c, t) = µ1(t)− µ2(t) for all t

Proof. See appendix F.

According to the first point of Proposition 7, if we consider a “high mortality” context

(µ1) and a “low mortality” context (µ2), such that mortality is higher at all ages in the

“high mortality” context and the relative difference in mortality rates, | log(µ1
µ2
)|, decreases

with age, we know that the time neutral model will predict higher rates of discount in the

“high mortality” context.

Moreover, the second point of Proposition 7 indicates that if −φ
00

φ0 is positive and non-

increasing13 and if mortality increases with age14, the difference in the rates of discount

will exceed the differences in the mortality rates. That means that the rates of discount

are, in that case, more sensitive to mortality in the time neutral model than in the additive

model.
13This is equivalent to stating that individuals provided with a constant consumption profile exhibit a

positive and non-increasing risk aversion with respect to life duration.
14Demographic studies show that this is generally the case after age 25.
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Interestingly enough, the results of Proposition 7 can be compared with the findings

of empirical studies on heterogeneity in discount rates. Indeed, differential mortality has

been quite well documented by demographic studies. It is well known that in the USA,

being a woman, or being rich, educated or white are factors that are negatively correlated

with mortality15. Moreover, it is also often found that whatever the socioeconomic status

considered (e.g. gender, education, etc.), the differential mortality, measured by the

absolute value of the difference in the log of mortality rates tends to decrease with age

after ages 30 or 40. Thus, from Proposition 7, according to the time neutral model, we

expect to find that in the USA, female, rich, educated or white individuals have lower

values of RDµ − µ (the difference between the rate of discount and the mortality rate).

Conversely, the additive model predicts that RDµ − µ should be the same across the

population.

Two well-known empirical studies concur with the predictions of the time neutral

model. Lawrance (1991), who used data from the PSID, found that the rate of discount is

negatively correlated with education, wealth and being white16. Moreover the differences

in the rates of discount she observed are much larger than the differences in mortality

rates17. Warner and Pleeter (2001), who analyzed how US military servicemen chose

between lump-sum payments and pensions, found that men, less educated people, blacks

and those with low incomes had higher rates of discount. They also found a heterogeneity

in the rates of discounts that largely exceeds the differences in mortality rates. These

findings are consistent with the time neutral model, while they cannot be explained by

the additive model, without introducing further assumptions on the relation between

mortality and the discount function18.

15See for example the data provided by the Berkeley Mortality Database for comparison by gender or
by race, and the results of Brown, Liebman and Pollet (2002) for data on differential mortality by gender,
race and education.
16Lawrance used household data and did not explore the role of gender.
17Remember that in a country such as the USA, the mortality rate is only about 0.2 % at age 40 and

does not reach 1% before age 60. Differences in age-specific mortality rates across socio-economic groups
are typically a fraction of a percent and much smaller than the differences in the rates of discount found
by Lawrance (which are of a few percent).
18It could be argued, for example, that the discount function α(·) is related to morbidity, and decreases

more rapidly for individuals who have higher mortality rates.
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7 Illustrations Using Historical Mortality Rates

The recent history of developed countries is characterized by a huge decline in mortality

rates. In order to show how significant the difference between the additive models and

the time neutral models can be when considering historical mortality decline, we conduct

below three exercises. The first aims at illustrating that even if impatience is driven by

mortality in the time neutral model, it may well happen, even in realistic cases, that

mortality risk reductions lead to increase human impatience. The second deals with the

effect of mortality decline on consumption smoothing. The third discusses the macro-

economic consequences of mortality decline.

7.1 Impatience at age 30

Imagine that in 1937, the year in which Samuelson’s paper on the Discounted Utility

Model was published (Samuelson, 1937), we observed that individuals of age 30 exhibited

a rate of discount of 4%. Let us explore the three following possibilities:

• Case A (Additive preferences): this rate of discount is due to the fact that individuals

had additive preferences and expected to die according to the average age-specific

mortality rates observed in the USA in 1937.

• Case B (Time neutral preferences with a constant absolute risk aversion with respect

to length of life): this rate of discount is due to the fact that individuals had time

neutral preferences with a function φ of the form φ1(x) =
1−e−kx

k
, and that they

expected to have a constant quality of life and to die according to the mortality

rates of 1937.

• Case C (Time neutral preferences with a constant relative risk aversion with respect

to length of life): this rate of discount is due to the fact that individuals had time

neutral preferences, with a function φ of the form φ2(x) =
x1−κ−1
1−κ , and expected to

have a constant quality of life and to die according to the mortality rates of 1937.

Now, let us ask the following question: in each case, what would have been these

individuals’ rates of discount if they had expected to face the mortality rates observed in
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subsequent years? In solving this problem, we find what the effect of mortality decline on

the rate of discount at age 30 would have been if individuals’ preferences had remained

the same.

In practice, I used the historical cross-sectional mortality rates provided by the Berke-

ley Mortality Database. As shown in Figure 1, the mortality rate at age 30 decreased

rapidly between 1937 and 1960. Between 1960 and 2000, the mortality rate at age 30 had

a non-monotonic evolution, but its global trend indicates a slow decline. Life expectancy

at age 30 increased during the whole period (Figure 2).

For our exercise, I calibrated the rate of time preference (for case A), the function

φ1 (for case B) and the function φ2 (for case C), so that the rate of discount of a 30 year-

old individual was of 0.04 per year with the mortality of 1937. Then, for each year from

1938 to 2000, I computed the rate of discount that followed from the mortality observed

in those years.

The results are shown in Figure 3. We know from Proposition 6 that in the case of

additive preferences, the rate of discount is just the sum of the mortality rate and the

rate of time preference. Thus, the solid line that gives the rate of discount in the additive

case exactly follows the evolution of the mortality rate shown in Figure 1. However, as

the mortality rate is very small compared to the rate of time preference (note that the

scales of Figures 1 and 3 differ by a factor of 10), the rate of discount is found to decrease

only very slightly. It equals 0.03754 in 1960 and 0.03739 in 2000.

The two dashed lines, which represent the time neutral preferences, show radically

different patterns. In Case B, the mortality decline that occurred between 1937 and 1960

leads to a drop of 0.01743 in the rate of discount. That is 7.1 times greater than what

we would have predicted using the additive model! This is due to the major decline in

the mortality rate at age 30. After 1960, the rate of discount goes up and down, but the

average trend shows a slight increase. Thus, during this period, the change in the rate of

discount shows a global trend that does not follow the evolution of the mortality rate. In

fact, during the period 1960-2000, the mortality rate at age 30 declined only slightly while

life expectancy increased considerably. I explained after Proposition 6 that in the time

neutral model, the rate of discount at age 30 is linked to mortality through two different
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channels. It is positively related to the mortality rate at age 30, and negatively related

to the mortality rate at older ages. We see from our results that during the period from

1937 to 1960, it is the first factor that dominates, while after 1960, if we look at the global

trend, it is the second one that predominates.

The results in Case C are comparable to those in Case B, although they further diverge

from the results of the additive model. The interpretation is similar to Case B.

Overall, we found that the time neutral model can lead to radically different predictions

of the impact of mortality decline. A drop of 1.743 % or of 1.928 % in the rate of discount

at age 30 between 1937 and 1960, as we respectively found in Cases B and C, is likely to

generate a substantial impact on savings, human capital investment, and henceforth, on

economic growth. The additive model would have predicted a drop in the rate of discount

of only 0.25 %.

7.2 Life cycle consumption smoothing

To deal with more concrete issues, let us look at consumption smoothing behaviors. Con-

sider the case of an individual who earns 20000 dollars a year between ages 20 and 60

and nothing afterwards. Assume that there are perfect annuity markets and only one

risk free asset whose rate of return equals 3% per year. How would such an individual

smooth consumption and save along the life cycle? Let us consider three specifications

for individuals’ preferences:

1 - Additive model : Uadd =

Z T

0

e−ρt
∙
u0 +

c(t)1−γ − 1
1− γ

¸
dt

2 - Time neutral model (CARA) : U tn
cara = 1− exp

µ
−k
Z T

0

∙bu0 + c(t)1−γ − 1
1− γ

¸
dt

¶
3 - Time neutral model (CRRA) : U tn

crra =
1

1− κ

µZ T

0

∙eu0 + c(t)1−γ − 1
1− γ

¸
dt

¶1−κ
For each specification, we can compute the optimal life cycle behavior for two different

mortality patterns19. The first one is given by the mortality rates that were observed

19In all three specifications, the intertemporal elasticity of substitution, 1γ , was set at 0.9. The constants
ρ ,k, κ, u0, bu0 and eu0 were chosen so that, with 1950 mortality, 40 year-old individuals have a rate of
discount of 0.03 per year and a Value of a Statistical Life of 5 million dollars. Consumption before age
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in 1950 in the USA. The second one corresponds to the year 2000 mortality rates. The

predicted age-specific consumption and wealth profiles are shown in Figure 4.

When preferences are additive, the optimal consumption profile has the same shape,

whether we consider 1950 or 2000 mortality rates. The “2000 consumption” is obtained

from the 1950 one by a simple scaling down. It is in fact well-known that, with per-

fect annuity markets and a constant intertemporal elasticity of substitution, the rate of

consumption growth is independent of mortality rates. Consumption is lower with 2000

mortality rates, because longevity extension generates a dilution effect.

The time neutral specifications suggest very different pictures. Firstly, the 2000 con-

sumption and 1950 consumption no longer have the same shape. In both the CARA and

the CRRA cases, 2000 consumption lies below 1950 consumption at young ages, and above

at old ages. This reflects the fact that mortality decline has a two-fold effect. Firstly,

there is a dilution effect, as in the additive case. Secondly, and here is the novelty, there

is a significant impatience effect.

To see how significant the divergence in predictions is, we can consider individuals’

wealth at retirement. The additive specification suggests that wealth at retirement in-

creases by 14% when passing from 1950 to 2000 mortality rates. Rational individuals

increase their savings because the retirement period becomes longer. However, the time

neutral specifications suggest much larger increases (26% for the CARA case and 28% for

the CRRA case). Even in such a rough example, where retirement age does not adapt to

mortality decline, accounting for the change in impatience appears to be as important as

accounting for the extension of the retirement period.

7.3 Aggregate wealth and equilibrium rate of interest

We have explored the impact of mortality change on impact individual behavior. The

additive and time neutral models were found to provide contrasted predictions. Naturally

we expect that this will also translate into quite different macro-economic predictions for

the consequences of mortality decline.

20 is assumed to be exogenous and equal to 16000 dollars per year. The optimal consumption profiles
were numerically computed with the method detailed in Appendix A.
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In order to illustrate this point we consider below a model inspired from the one

developed in Blanchard (1985) and discuss the aggregate impact of mortality decline in

this setting. For any time T there are enTdT agents that are born between time T and

T + dT . Mortality rates may vary with age but, for a given age, not with calendar time

(for simplicity we will focus on the comparison of steady states). To an age-specific hazard

risk of death µ(.) corresponds a survival function s(t) = exp(−
R t
0
µ(τ)dτ). At any time

T there are therefore en(T−t)s(t)dt agents of age between t and t + dt in the population.

Agents have an exogenous age-specific productivity profile ω(t). The labor income of

t year-old individual is yω(t) where y is the market price for one unit of productivity.

There are perfect intertemporal and insurance markets and no uncertainty beyond lifetime

uncertainty.

In order to show how crucial are the assumptions on individual preferences we proceed

with the following exercise. Imagine that society is observed in steady state A which

is characterized by a survival function sA(.), a rate of interest rA, a wage per unit of

productivity yA and an age specific consumption profile cA(.). Assume that this steady

state may be rationalized by two different macro-economic models that only differ by the

specifications of individual preferences (the assumptions regarding the production sector

being identical in both models and specified later). More precisely, we assume that one

model relies on the additive specification of individual preferences, while the other uses

the time neutral one20. Consider then a society where mortality rates are exogenously set

to different levels µB(t) < µA(t), corresponding to a survival function sB(.) and ask how

the steady state B associated with that mortality pattern would compare to A, according

to both models. Doing so, we show to what extent the assumptions made on individual

preferences influence predictions about the macro-economic impact of mortality decline.

7.3.1 Aggregate wealth in an open economy

As in Blanchard (1985), we consider in turn an open and a closed economy. Markets are

assumed to be perfect. In a small open economy the rate of interest and labor income

20In both cases we will assume a constant intertemporal elasticity of substitution 1
γ . From Proposition

5, we can deduce that, when intertemporal markest are perfect, rationalization by both an additive and

a time neutral model is possible as soon as
d
dt cA(t)

cA(t)
< rA

γ .
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are exogenous. We denote r = rA = rB and y = yA = yB. We will discuss how the ratio

of aggregate wealth over aggregate income depends on mortality. Using the results of

Bommier and Lee (2003), the ratio of aggregate wealth over aggregate income in a steady

state i (i = A,B) is:

Wi

Yi
=

1

r − n

µ R∞
0

si(t)ci(t)e
−ntdt

y
R∞
0

si(t)ω(t)e−ntdt
− 1
¶

(11)

With perfect intertemporal markets, the individual budget constraint is:

Z ∞

0

si(t)ci(t)e
−rtdt = y

Z ∞

0

si(t)ω(t)e
−rtdt

Plugging this latter equality into (11) we obtain:

WB

YB
− WA

YA
=

1

r − n
(I + J)

where

I =

∞
0 sB(t)cA(t)e

−ntdt
∞
0 sB(t)cA(t)e−rtdt
∞
0 sB(t)ω(t)e−ntdt
∞
0 sB(t)ω(t)e−rtdt

−

∞
0 sA(t)cA(t)e

−ntdt
∞
0 sA(t)cA(t)e−rtdt
∞
0 sA(t)ω(t)e−ntdt
∞
0 sA(t)ω(t)e−rtdt

J =

R∞
0

sB(t)ω(t)e
−rtdtR∞

0
sB(t)ω(t)e−ntdt

µR∞
0

sB(t)cB(t)e
−ntdtR∞

0
sB(t)cB(t)e−rtdt

−
R∞
0

sB(t)cA(t)e
−ntdtR∞

0
sB(t)cA(t)e−rtdt

¶
(12)

The change in the ratio of aggregate savings over aggregate income is broken down into

the sum of two terms. Term I may be qualified as a structural effect, that measures the

aggregate impact of a change in mortality if agents had no reaction other than rescaling

their consumption in order to match their budget constraint. Term J may be called the

behavioral impact that accounts for the fact that agents’ saving strategies may vary with

mortality.

Since term I depends on cA but not on cB it will be the same whether the additive or

time neutral rationalization are chosen. The choice of a model of individual rationality

is however determinant for evaluating J . Rescaling the consumption profiles cA or cB by

positive factors in equation (12) does not change J . In other words, J depends on the

shape of the consumption profile in states A and B, but is independent of the levels of
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these consumption profiles. An immediate consequence is that J = 0 when individual

preferences are assumed to be additive.

When preferences are time neutral, the shape of the optimal consumption profile

depends of the mortality pattern (as illustrated in Figures 4b and 4c). Thus J does not

necessarily equal zero. The sign of J, however, cannot be determined without making

further assumptions on the mortality patterns µA and µB. In particular the fact that

mortality rates are lower in state B than in state A does not imply that J is positive: this

reflects the fact that, even if impatience is generated by mortality, mortality decline has

an ambiguous impact on human impatience (see Proposition 6 and the related discussion).

Still, if mortality decline generates a drop in the rate of discount that is greater than the

drop in mortality rates (which was shown to be the case under a set of sufficient conditions

in Proposition 7) we get that −
d
dt
cB(t)

cB(t)
<

− d
dt
cA(t)

cA(t)
which implies that 1

(r−n)J > 0. In such

a case, the additive formulation would lead to under-estimate the impact of mortality

decline on wealth accumulation, as compared to the time neutral one.

As an illustration we consider the case where µA corresponds to the 1950 mortality

rates and µB to the 2000 mortality rates. We assume that the steady state A correspond

to a rate of interest of 3% per year, a zero population growth rate and the income and

consumption profiles that are plotted in Figure 4b. Rationalization by a time neutral

model is obtained by construction, since Figure 4b was precisely drawn using time neutral

preferences. Rationalization by an additive model is straightforward and relies on a non

exponential discount function21.

According to the additive model, the ratio of aggregate wealth22 over aggregate income

would have increased by 28.6 % when passing from 1950 to 2000 mortality rates. The

time neutral model predicts an increase of 47.6%, the behavioral term, J, being almost as

large as the structural term, I.

21Several arguments have been suggested in the literature for using non exponential discount functions.
Murphy and Topel (2006) argue for example that non exponential discount functions may result from
life-cycle changes in health.
22We only consider savings of people of age 20 or above.
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7.3.2 The equilibrium rate of interest

We now consider the case of a closed economy. We assume a zero population growth

rate (n = 0). The production function is given by a Cobb-Douglas function of the form

F (K,L) = AKβL1−β = where K and L represent aggregate capital and labor in the

economy, and β a constant that will be chosen to fit a target rate of interest at the

calibration stage. Capital and labor are remunerated at their marginal productivity, the

rate of interest and wages being therefore endogenously determined.

Assume that a reference steady state is observed where mortality rates correspond to

those of the 2000 US life table, the rate of interest equals 3% per year and the consumption

and income profiles are those given in Figure 4b. Then, ask what steady state would

be obtained if preference and production parameters were hold constant, but if age-

specific mortality rates were set at the levels that were observed in past periods or at

the levels they will plausibly reach in the future (we use historical and projected US-

lifetable from 1900 to 2080). Doing so we identify the “comparative steady state” impact

of mortality changes, holding everything else constant23. Again we compare the case where

the consumption profile cA plotted in Figure 4b is rationalized through the time neutral

model (with the parameters used to draw Figure 4b), to the case where it is rationalized

by an additive model with the same intertemporal elasticity of substitution and a non

exponential discount function.

Whether one chooses the time neutral or the additive model to rationalize the reference

steady-state, we find that the historical and projected mortality decline leads to a decrease

in the rate of interest (see Figure 5). The magnitude of the decline is, however, quite

different. In the additive model the effect is driven by the fact that people live longer

and have to save for a longer period of retirement. In the time neutral model, in addition

to this effect, there is an impatience effect that plays a major role. Mortality decline

makes people appear less impatient on average and aggregate savings supply increases.

The equilibrium rate of interest decreases accordingly. As a consequence, the time neutral

23Of course, in reality, economies are not in steady-states and many dynamic aspects may turn out
to play a key role. This comparative steady state exercice aims at providing an order of magnitude of
the long term impact of mortality decline, but not at explaining what might occur in a realistic dynamic
setting.
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model predicts a decrease in the interest rate of 2.33 percentage points between 1900 and

2000, while the additive one only predicts a decrease of 0.79 percentage point. Predictions

for the future are also quite different since the time neutral model predicts a decline in the

rate of interest between 2000 and 2080 that is about twice as much as the one predicted

by the additive one (0.53 percentage points versus 0.25).

Historical data on interest rates show very large fluctuations. That makes it difficult

to identify the long term change in interest rates. A linear regression on the series from

Siegel (1992) indicate an average decline of the real risk free rate of about 3.5 percentage

points per century during the period 1800-1990. The 1889-2000 series of Mehra and

Prescott (2003) indicates a decline of about 1.6 percentage points per century. These

numbers have, however, to be taken with extreme precaution since the confidence interval

are very large. It would therefore be unfair to use them as a definitive argument against

the additive model. Still, they do not seem to be at odds with the predictions of the time

neutral model.

Whether we consider the case of an open or a closed economy, the contrast between the

predictions of the additive and time neutral models is quite substantial. What basically

comes out of the several simulations is that using the additive model (and therefore

ignoring the endogeneity of human impatience) when assessing the impact of mortality

decline may lead to ignore about half of the story.

8 The value of longevity gains

An important aspect of mortality changes is that they are not exogenous. Mortality

largely depends on (public and private) expenditure. A natural question is whether enough

resources are (and have been) allocated to the reduction of mortality risks. A number

of studies based on the additive model aim to measure the welfare gains associated with

mortality risk reduction (Becker, Philipson, Soares, 2005, Murphy and Topel, 2006, Hall

and Jones, 2007, EPA, 1997). Some of these studies reached very strong conclusions

on the optimal amount of public health expenditure or on the interest of continuing

environmental policies such as those delineated by the Clean Air Act in the USA. An
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intriguing question is to what extent the conclusions of theses studies would be altered if

the time neutral model were used instead of the additive specification.

For matters related to endogenous mortality, the sharpest contrast between the ad-

ditive and time neutral models occurs when looking at how the value of a statistical life

(VSL) varies with age. The intuition is that introducing temporal risk aversion involves

introducing risk aversion with respect to life duration (see Bommier 2006). Risk aversion

increases individuals’ willingness to avoid particularly unfavorable consequences (such as

an early death) relatively to the willingness to avoid less dramatic consequences (such

as a death at old age). Consequently, and this is confirmed by the formal result given

in Section 8.1, the intuition is that the VSL should decline faster with the time neutral

model than with the additive model.

Theoretical considerations about the relation between age and VSL are of crucial

importance since empirical estimates of the VSL are typically derived from choices of

relatively young individuals (workers, in most cases), while policy guidance requires to

evaluate the impact of mortality reduction that mainly occur at much greater ages. For

example, Hall and Jones (2007) calibrate their model using empirical values of the VSL

for 35-39 year-old individuals, and then use that calibrated model to predict the VSL at

ages up to 100. A similar strategy was adopted in Murphy and Topel (2006). There is

therefore a great deal of extrapolation underlying the conclusions of theses studies.

The question we address below is: to what extent this required extrapolation would

change when opting for the time neutral specification instead of the additive one. Our

discussion will gather a formal result as well as numerical illustrations.
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8.1 Formal result

In the following, the VSL at age t is defined as the opposite of the marginal rate of

substitution between mortality risk at age t and consumption at time t.24

V SL(c, t) =
−∂EµU

∂µ(t)

∂EµU
∂c(t)

Using a model with endogenous labor supply, Bommier and Villeneuve (2006) explain how

VSL may be directly revealed from empirical studies on wage risk trade-offs. Notation

V SLadd(c, t) and V SLtn(c, t) refer then to the V SL that is obtained when assuming that

preferences are additive or time neutral, respectively.

Proposition 8 Consider time neutral and additive preferences that assume the same

intertemporal elasticity of substitution and that are such that (for a given rate of interest,

r, a survival function, s(.), and an initial wealth W0):

(i) They provide the same optimal consumption profile c(t) to the problem

maxEµU

s.t.
R∞
0

s(t)e−rtc(t) ≤W0

(13)

(ii) They provide the same value of life at a given age t0 :

V SLtn(c, t0) = V SLadd(c, t0)

Assume moreover than the ratio of the rate of discount over the rate of mortality, RD
µ
,

is greater than 1 and decreases with age. Assume also that c, which solves (13), is non

increasing.

24Note that whenever agents maximize their lifetime utility under budget constraints that are linear in
saving (such as

R
p(t)(c(t)− y(t))dt ≤W0 where p(.) is an exogenous function), the VSL also equals the

opposite of the marginal rate of substitution between mortality risk at age t and wealth age t.
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Then, we have:

V SLtn(c, t) < V SLadd(c, t) for all t > t0

V SLtn(c, t) > V SLadd(c, t) for all t < t0

Proof. See Appendix G.

As already mentioned, models used to discuss the social value of longevity are usually

calibrated to fit a given consumption profile and a single value of life (corresponding either

to the value of life at a given age, or the average value of life for a given age range). The

fit may be obtained both with the additive and time neutral specifications. Proposition 8

shows, however, that opting for one or the other specification is not without consequences.

Relying on the additive model leads to assume greater values of VSL at old ages than when

using the time neutral model. This may significantly alter policy recommendations. In

practice the “additivists” would ascribe greater significance to the reduction of mortality

risk at old ages than the “time-neutralists”; the latter would be more attentive to mortality

at younger ages. Moreover, as it is the extrapolation towards old ages that is of greater

relevance for policy recommendation (because most mortality reductions occur at old ages

while value of life empirical estimates are derived from younger people), the additivists

would typically allocate a greater amount of public resources to mortality risk reduction

than the time-neutralists. The following Section seeks to provide some insights into the

magnitude of this divergence, when using realistic mortality data.

8.2 Numerical illustration

In this illustration, we assume that we observe the consumption profile shown in figure

4b (while the rate of interest is assumed to be 3% and mortality rates equal to those

observed in year 2000 in the USA), and a VSL that equals 5 million dollars at age 40.

Again, such an observation may be consistent both with the additive model (using a non

exponential discount function) and with the time neutral model. Both interpretations lead

to different extrapolations when evaluating the VSL at ages other than 40. The result of

these extrapolations is shown in Figure 6. We find, in agreement with Proposition 8, that
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the time neutral model predicts that the VSL declines more rapidly with age than the

additive model. When looking at the VSL around age 80, where most deaths occur, we

find that the additive model predicts a VSL that is 3.4 times larger than the time neutral

one.

We may now wonder whether this divergence in the age adjustment of the VSL is

likely to generate contrasted estimates of the value of longevity gains. To answer that

question, we compute how much adults living in the USA in 2000 would have been ready

to pay to maintain mortality rates at their 2000 levels instead of having them set back

to 1970 levels. This measure of gains from increased longevity was suggested by Murphy

and Topel (2006), the results being reported in Figure 6 of their paper. Unlike Murphy

and Topel, who only provided results based on the additive model, we provide in Figure

7 of the present paper two kinds of estimates: one relying on the additive model (and

therefore similar to the one reported by Murphy and Topel) and another using the time

neutral model. Compared to the additive model, the time neutral model provides lower

estimates for the value of longevity gains. This is because both models were calibrated

to provide the same value of life at age 40, while most of longevity gains occurred after

that age. If we aggregate the gains for the whole 2000 US population, the time neutral

model provides an estimates that is 1.98 smaller than the additive model. In this case,

switching from the additive model to the time neutral one would approximately lead to

divide the estimates of the value of longevity gains by a factor of two.

9 Discussion

More than fifty years ago, George Stigler, in a discussion bearing on the way precursors

modelled preferences over several commodities wrote:

“The faithful adherence for so long to the additive utility function strikes one as

showing at least a lack of enterprise. I think it showed also a lack of imagination: no

economic problem has only one avenue of approach” (Stigler, 1950, p394).

One might argue that the same statement currently applies to the theory of choice

under uncertain lifetime.
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Mortality risks were first considered by Yaari in a simple model that assumed addi-

tively separable preferences. Yaari’s choice, which he did not discuss, involved making an

assumption of temporal risk neutrality. A major consequence of this choice is that the rate

of time discounting equals the sum of the rate of time preference and the mortality rate.

Since mortality rates are typically much lower than observed rates of discount, Yaari’s

model eventually provides a theory where time discounting owes very little to mortality.

The ongoing adherence to Yaari’s approach ended up generating the belief that mortality

could not significantly contribute to human impatience, unless particularly high mortality

rates (either due to diseases or advanced age) were considered. Moreover, it has popular-

ized the idea in economic theory that risk aversion and impatience are orthogonal aspects

of individual preferences.

The present paper shows that a different path, which is no more complex than the one

followed by Yaari, might have been pursued. It involves assuming that individuals have

no time preferences but exhibit temporal risk aversion, giving the “time neutral model”.

With this model, impatience has no ordinal origins, but results from the combination of

mortality risks and temporal risk aversion.

In order to show the plausibility of the time neutral model, I formally showed that it

can reproduce all the predictions of Yaari’s model, as long as heterogeneity in mortality

across agents is ignored. To my knowledge, Yaari’s model has never been challenged by

studies that used heterogeneity in mortality. Thus, today, there is no empirical evidence

indicating that Yaari’s model is better than the time neutral model. In particular, the fact

that Yaari’s formulation proved useful to study consumption patterns, saving behaviors,

labor supply, etc. cannot be considered as an argument supporting Yaari’s model. The

time neutral model would do at least as well.

The time neutral model provides new insights on the relation between risk aversion,

mortality and impatience. In Yaari’s model, impatience, measured by the rate of time

discounting, is almost exogenous (mortality having a minor role). In the time neutral

model, impatience is exclusively driven by mortality. Thus, unsurprisingly, we find that

both models have very different predictions about the impact of changes in mortality.

Illustrations using historical data mortality were provided, showing that the time neu-
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tral model may shed new light on the interrelation between longevity extension, capital

accumulation and the equilibrium rate of interest.

For matters related to the value of life, introducing temporal risk aversion, as with the

time neutral model, generates risk aversion with respect to length of life. As a consequence,

agents are more willing to avoid the risk of an early death. The value of a statistical life

is then found to decline more rapidly with age with the time neutral model than with

the additive one. This is of particular importance for applied issues, since debating the

welfare impact of longevity extension generally requires a great deal of extrapolation for

assessing the benefits of reducing mortality at old ages. Numerical illustrations, based

on realistic demographic data, show that switching from the additive model to the time

neutral one would lead to significantly revise the estimation of the value of longevity gains.

Ultimately, one would like to discriminate between both models from empirical data.

The paper naturally suggests two lines of research. One possibility is to use empirical

data on the relation between age and the value of life. Unfortunately, as discussed in

Bommier and Villeneuve (2006), this approach cannot be conclusive today given the lack

of consensus in the empirical research that addresses this question. The other possibility

is to explore the interrelation between mortality and human impatience. Getting the

right intuitions about the role of mortality in the time neutral model requires, however,

a rigorous look at the formal expression of the rate of time discounting (Propositions 6

and 7). Even if impatience is driven by mortality, it is not always the case that greater

mortality implies greater impatience. In fact, in the time neutral model, mortality in the

short term increases impatience while mortality in the long term decreases it. Sufficient

conditions were provided for the first effect to dominate the second one, but one should

bear in mind that these conditions are not always fulfilled. As a consequence, in order to

discriminate between Yaari’s model and the time neutral model, it is necessary to have,

on the one hand, very good knowledge of differential mortality (so that heterogeneity in

short term mortality and heterogeneity in long term mortality can be compared) and, on

the other hand, excellent data on intertemporal choice that make it possible to measure

individuals’ rates of discount.

The ideal data set does not yet exist. A number of surveys report data on health,
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health shocks, etc. but it is generally impossible to accurately translate this information

into short-term and long-term mortality rates. To my mind, the best available option is to

confront the well documented heterogeneity in mortality rates across gender, ethnic, edu-

cation and income groups with the heterogeneity in discount rates. I explained that this

confrontation actually supports the time neutral model over Yaari’s model. This certainly

does not provide sufficient evidence to abandon the notion of time preference. However,

there are even less arguments in favor of ignoring temporal risk aversion. Accounting for

temporal risk aversion is in fact crucial to understanding the origins of human impatience

and the transformation that societies are going through along with the rapid change in

mortality rates.
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APPENDIX

A The time neutral model in practice

One attractive feature of Yaari’s model is its mathematical tractability. With Yaari’s

model, preferences over consumption profiles, conditional on an exogenous mortality pat-

tern, are represented by the utility function:

Eadd
µ (c) =

Z +∞

0

s(t)α(t)u(c(t))dt

Dealing with such a utility function is, technically speaking, particularly convenient for

several reasons. First, preferences over consumption after age t are independent of con-

sumption before age t. Therefore, in a dynamic setting, individuals need not remember

the past to have time consistent behaviors. Moreover the additive structure of the ex-

pected utility function often leads to relatively simple optimization problems. A number

of life cycle problems (e.g. consumption smoothing, portfolio choices) can be studied with

standard techniques, such as dynamic programming, and, for particular functions u , yield

to simple solutions.

The object of this section is to discuss how the landscape is transformed when working

with the time neutral model. It will be split into three parts. A first subsection identifies

the technical difficulties that emerge when dealing with the time neutral model. As

we will see, there are no fundamental obstacles for using standard techniques, such as

dynamic programming. The main difference, however, is that explicit solutions cannot

readily be found. Nevertheless, it is possible to work with the time neutral model without

developing cumbersome numerical computations. First, as will be explained in Subsection

A.2, a linear approximation makes it possible to recover all the simplicity of the additive

model, while maintaining key aspects of the time neutral model. Secondly, Subsection

A.3 provides a very simple method for numerically computing exact solutions when there

are complete markets.
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A.1 History dependence and dynamic programming

Agents with time neutral preferences who face an exogenous mortality pattern have pref-

erences over (stochastic) consumption profiles represented by the utility function:

EµU
tn(c) =

Z +∞

0

d(T )φ

µZ T

0

u(c(τ))dτ

¶
dT (14)

or, equivalently (through an integration by parts):

EµU
tn(c) =

Z +∞

0

s(τ)u(c(τ))φ0
µZ τ

0

u(c(τ 0))dτ 0
¶
dτ (15)

A noteworthy difference with the additive formulation is that preferences over consump-

tion after time t generally depend on consumption prior to t. From (15), given a con-

sumption profile ec between times 0 and t, preferences over consumption profiles after time
t are represented by the utility function:

Z +∞

t

s(τ)u(c(τ))φ0
µ
Ht +

Z τ

t

u(c(τ 0))dτ 0
¶
dτ (16)

where

Ht =

Z t

0

u(ec(τ))dτ
is the “stock of felicity” that has been accumulated up to time t. In a dynamic setting,

under the assumption of time consistency, the utility function (16) represents the prefer-

ences of an agent of age t with past consumption ec. Preferences may then exhibit history
dependence, since past consumption affects Ht which enters into the agents’ utility func-

tions.

At this point, however, it is useful to distinguish the case where φ0 is exponential from

the general case. When φ0(x) = e−kx, past consumption only matters in (16) through a

positive multiplicative factor, e−kHt, and therefore has no impact on individual preferences.

Thus, precisely as with the additive model, individuals do not need to remember the past

to be time consistent.

When φ0 is not exponential, preferences over consumption after age t depend on con-
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sumption before t. Thus, in order to have time consistent behaviors, individuals have to

bear in mind some of their history25. History dependence however takes a very simple

form. Preferences over consumption after age t depend on the past only through Ht, the

stock of felicity that has been accumulated at age t. This largely resembles habit formation

problems, where preferences at age t depend on the past only through the stock of habits

that has been accumulated at time t. Dynamic programming can then be implemented in

a standard way, even though the technical problems that one has to face are indisputably

more complex. The dynamics involve two scalar state variables (wealth and the stock of

past felicity) instead of one (wealth) with the usual additive case. For numerical applica-

tions going from one to two state variables only represents a slight increase in complexity.

Gomes and Michaelides (2003) and Polkovnichenko (2007) produced papers on portfolio

choice with habit formation that successfully deal with similar (and significantly greater)

technical difficulties. Their approach could be replicated. Alternatively, one may opt for

the simpler approaches developed in sections A.2 and A.3.

Since the economic literature has mostly focused on models that exhibit history inde-

pendence, one may wonder whether we should not restrict our attention to the case where

φ0 is exponential. One can interpret the time neutral model as the case where agents

have an additive lifetime felicity,
R T
0
u(c(t))dt, and are risk averse with respect to lifetime

felicity (risk aversion with respect to lifetime felicity being related to the curvature of the

function φ). By restricting the analysis to the case where φ0 is exponential, one would im-

pose constant absolute risk aversion with respect to lifetime felicity. This is less restrictive

than imposing risk neutrality (as is done when using the additively separable specifica-

tion) but it is difficult to find any compelling reason for ruling out decreasing or increasing

absolute risk aversion with respect to lifetime felicity. The assumption of decreasing ab-

solute risk aversion, which has become extremely popular for modelling preferences over

monetary lotteries, may also prove to be very natural for modelling preferences over lot-

teries over lifetime felicity. With such an assumption, an individual’s risk aversion has to

depend on the stock of felicity that he/she has accumulated, and therefore on his/her age

and past consumption.

25Another route, pursued in Bommier (2006), involves assuming the history independence of preferences
and allowing for time-inconsistencies.
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A.2 A linear approximation of the time neutral

From Proposition 5, we know that all the predictions of Yaari’s model can be reproduced,

up to infinitesimally small differences. Thus it must be the case that for some specifications

the time neutral model has the same tractability as the additive specification. The strategy

involves assuming that consumption remains in a range [cmin, cmax], such that the difference

in welfare between having a high or a low level of consumption is much smaller than

the difference of welfare between being alive with a low level of consumption and being

dead26:
u(cmax)− u(cmin)

u(cmin)− 0
<< 1

For any c∗ in [cmin, cmax] one can write

u(c) = u(c∗)[1 + εv(c)]

with ε = u(cmax)−u(cmin)
u(c∗) << 1 and v(c) = u(c)−u(c∗)

u(cmax)−u(cmin) . The idea is then to approximate

the utility function (15) by a first order approximation in ε. Following the lines of the

proof of Proposition 5, one can compute:

EµU
tn ' A+ ε

Z +∞

0

s(t)αµ(t)v(c(t))dt

where A is a constant and αµ is a discount function given by

αµ(t) =
1

s(t)

Z +∞

t

d(τ)φ0(τu(c∗))dτ

Thus, individuals approximately behave as if they were maximizing the expectation of:

Z +∞

0

s(t)αµ(t)v(c(t))dt

We are then back to an additive specification and recover all the tractability of Yaari’s

formulation. The fundamental difference with Yaaris’s formulation is that the discount
26This actually involves assuming that the value of life is very large. In fact, the linear approximation

developped below corresponds to the limit case where the value of life is infinite.
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function is now related to mortality. This is of course of crucial importance for studying

the role of mortality changes.

Such an approximation preserves one of the main features of the time neutral model

(the strong relation between mortality and impatience) and proves to be relatively ef-

ficient for studying the impact of mortality on consumption smoothing27. However, by

“forcing additivity”, we necessarily lose some features of the time neutral model, as with

its ability to separate risk aversion and intertemporal elasticity of substitution. This lin-

ear approximation will then be less advisable to study life cycle portfolio choices, since it

would lead to the same shortcomings as the standard additive case28.

A.3 Numerical solutions

In this section we explain how optimal life cycle behavior can be readily and quickly

numerically computed when financial markets are complete. We give accounts of the

method without addressing the technical questions as to the conditions that would ensure

this method’s efficiency.

Following the martingale approach, when financial markets are complete, life-cycle

optimization is equivalent to finding the consumption process c that solves:

max
c

E
£
EµU

tn(c)
¤
subject to W = E

∙Z +∞

0

p(t)c(t)dt

¸
(17)

where p is a contingent price process. From (15), it is clear that, when functions φ and u

are concave, EµU
tn is concave. Resolution of the maximization problem (17) can therefore

be achieved using standard numerical methods of convex optimization, as described in

Boyd and Vandenberghe (2004). However, given the particular structure of the objective

function it generally proves easier to solve the optimization problem using the utility

27For example, if we use this additve approximation to study the example developed in Section 7.2,
we find that switching from 1950 to 2000 mortality should induce an increase of wealth at retirement by
28%, in the CARA case, and 30% in the CRRA case. These predictions are close to those obtained from
an exact resolution of the time neutral (26% and 28%) and sharply contrast with those of the additive
model (14%).
28As explained in Bommier and Rochet (2006), when preferences are not additively separable, as in

the time neutral model, the optimal degree of risk taking varies along the life cycle. This is an intersting
feature that would be lost with the linear approximation.
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gradient approach. Basically, one has to compute the gradient of the utility function and

to invert it. In the present case, the utility gradient admits a simple expression. Under

regularity conditions on the functions φ and u, for any “small perturbation process” δc:

E
£
EµU

tn(c+ δc)− EµU
tn(c)

¤
' E

∙Z +∞

0

d(T )

µZ T

0

u0(c(t))δc(t)dt

¶
φ0
µZ T

0

u(c(τ))dτ

¶
dT

¸

Switching the order of integration:

E
£
EµU

tn(c+ δc)−EµU
tn(c)

¤
' E

∙Z +∞

0

δc(t)π(t)dτ

¸

with:

π(t) = u0(c(t))

Z +∞

t

d(T )φ0(

Z T

0

u(c(τ))dτ)dT

The first order conditions of the optimization problem (17) are thus:

u0(c(t))

Z +∞

t

d(T )φ0(

Z T

0

u(c(τ))dτ)dT = λp(t) for all t (18)

The core of the problem involves inverting this equation, that is to obtain c(.) from λp(.).

Denoting z(t) = log(u0(c(t))) the problem is to find a fixed point of the mapping:

Ω :

½
z ∈ C(R+,R)→ Ω [z] ∈ C(R+,R)

Ω [z] (t) = log(λp(t))− log
³R +∞

t
d(T )φ0

³R T
0
g(z(τ))dτ

´
dT
´

where g = u ◦ [u0]−1 ◦ exp . Here [u0]−1 denotes the reciprocal of u0 and ◦ the composition

operator29.

It occurs that when relative risk aversion with respect to length of life is small enough,

or when the value of life large enough, the mapping Ω is a contraction30. Its fixed point

can be found by a simple iteration process, looking at the limit of a sequence such that

zn+1 = Ω(zn), the limit being independent of z0.

The strategy to solve the optimization problem (17) is then as follows. Step 1: for any

λ, find the consumption process cλ that solves the first order conditions (18) by computing

29In the standard isoelastic case, u(c) = c1−γ−1
1−γ + u0, we have g(z) = e

− 1−γ
γ

z−1
1−γ + u0.

30A formal proof is available upon request.
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the fixed point of Ω by iteration. Step 2: compute Wλ = E
hR +∞
0

p(t)cλ(t)dt
i
and look

for the value of λ such that Wλ −W equals zero31.

Moreover, when u is isoelastic (that is when u(c) = c1−γ−1
1−γ + u0), the function [u0]

−1

is homogenous, which makes it possible to merge steps 1 and 2 into a single fixed point

search. Resolution of (17) involves finding the fixed point that solves z = bΩ[z] where:
bΩ[z](t) = γ log

µ
E

∙Z +∞

0

p(t) exp(−1
γ
eΩ[z](t))dt¸¶− γ log(W ) + eΩ[z](t)

with:

eΩ [z] (t) = log(p(t))− logÃZ +∞

t

d(T )φ0

ÃZ T

0

e−
1−γ
γ

z(τ) − c1−γ0

1− γ
dτ

!
dT

!

With the parameters that allow standard estimates of the rate of discount and the

value of a statistical life to be matched, the mapping bΩ was found to be a contraction,

and its fixed point could easily be found by looking at the limit of a sequence such that

zn+1 = bΩ(zn), whatever initial value z0 was chosen. Intuitively, working along this line
involves (i) starting with an arbitrary initial consumption profile, (ii) computing the age-

specific rates of time discounting that would be obtained with such a consumption profile,

(iii) looking for the optimal consumption profile, assuming exogenous age-specific rates

of time discounting equal to those found in step (ii). Steps (ii) and (iii) are then iterated

until a satisfactory convergence is reached. The method proved to be extremely efficient

and the consumption profiles shown in Figure 4 were thus computed in less than a second.

B Proof of Proposition 3

By integrating by parts (6), we find that:

EµU(c) =

Z +∞

0

s(t)
∂U(c, T )

∂T
|T=tdt

31Remark that cλ solves (17) when W is replaced by Wλ. This means that λ is the marginal utility of
wealth when wealth equals Wλ. Thus λ and Wλ are negatively related when EµU

tn is concave (which is
the case when φ and u are concave). Solving Wλ −W = 0 then involves finding the zero of a decreasing
function.
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where s(t) is the survival function.

In the additive case, ∂Uadd(c,T )
∂T

|T=t = α(t)u(c(t)) and

EµU
add(c) =

Z +∞

0

s(t)α(t)u(c(t))dt (19)

which implies that ∂EµUadd(c)
∂c(t)

= s(t)α(t)u0(c(t)) and RDadd
µ (c, t) = −s0(t)

s(t)
− α0(t)

α(t)
.

In the time neutral case, ∂Utn(c,T )
∂T

|T=t = u(c(t))φ0(
R t
0
u(c(t))dt), and we find:

EµU
tn(c) =

Z +∞

0

s(t)u(c(t))φ0
µZ t

0

u(c(τ))dτ

¶
dt (20)

so that:

∂EµU
tn(c)

∂c(t)
= u0(c(t))

∙
s(t)φ0(

Z t

0

u(c(τ))dτ) +

Z +∞

t

s(t1)u(c(t1))φ
00
µZ t1

0

u(c(τ))dτ

¶
dt1

¸

and

RDtn
µ (c, t) =

−s0(t)φ0(
R t
0
u(c(τ))dτ)

s(t)φ0(
R t
0
u(c(τ))dτ) +

R +∞
t

s(t1)u(c(t1))φ
00
(
R t1
0
u(c(τ))dτ)dt1

(21)

or also:

RDtn
µ (c, t) = µ(t)−

µ(t)
R +∞
t

s(t1)u(c(t1))φ
00
(
R t1
0
u(c(τ))dτ)dt1

s(t)φ0(
R t
0
u(c(τ))dτ) +

R +∞
t

s(t1)u(c(t1))φ
00
(
R t1
0
u(c(τ))dτ)dt1

which, after integration by parts of the denominator of the fraction, gives (8).

C Proof of proposition 4

From (8), through integration by parts of the numerator we obtain:

RDtn
µ (c, t) = µ(t)− µ(t)

−s(t)φ0(
R t
0
u(c(τ))dτ) +

R +∞
t

d(t1)u(c(t1))φ
0
(
R t1
0
u(c(τ))dτ)dt1R +∞

t
d(t1)φ

0
(
R t1
0
u(c(τ))dτ)dt1
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and therefore:

RDtn
µ (c, t) =

−s0(t)R +∞
t

d(t1)
φ
0
(

t1
0 u(c(τ))dτ)

φ
0
( t
0 u(c(τ))dτ)

dt1

Now for all x and x0:

φ0(x)

φ0(x0)
= exp

µ
−
Z x

x0

−φ00(z)
φ0(z)

dz

¶

Thus:

RDtn
µ (c, t) =

−s0(t)R +∞
t

d(t1) exp
³
−
R g(t1)
g(t)

−φ00(z)
φ0(z) dz

´
dt1

(22)

where g(t) =
R t
0
u(c(τ))dτ. The function g(t) is an increasing function since it is assumed

that u(c(τ)) ≥ 0 for all τ . Thus g(t1) ≥ g(t) for all t1 ≥ t. It is then clear from (22) that

the greater the concavity of φ the greater the rate of discount RDtn
µ (c, t).

D Proof of Proposition 5

As in equation (2), denote by α and u a pair of discount and instant utility functions

that characterize the additive preferences. The corresponding expected utility function,

EµU
add, defined by (6), can be rewritten as in (19). The positivity of the rates of discount

implies that µ(t)− α0

α
(t) > 0 for all t.

For any ε > 0 define U tn
ε by:

U tn
ε (c, T ) = φµ

µZ T

0

uε(c(t))dt

¶

with

uε(c(t)) = 1 + εu(c(t)) and φµ(x) =

Z x

0

(α(t)− α0(t)

µ(t)
)dt

Because α > 0 and µ(t) − α0

α
(t) > 0, the function φµ has a positive derivative. Also

u0ε = εu0 > 0. Thus, the utility functions U tn
ε represent time neutral preferences.

From (20), we know that the corresponding expected utility function can be written
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as:

EµU
tn
ε (c) =

Z +∞

0

s(t)uε(c(t))φ
0
µ

µZ t

0

uε(c(τ))dτ

¶
dt

I show below that, for any consumption paths c0, c1, c, such that c1(t) > c0(t) for all t,we

have:

EµU
tn
ε (c1)−EµU

tn
ε (c0) > 0 (23)

and

lim
ε→0

µ
EµU

tn
ε (c)−EµU

tn
ε (c0)

EµU tn
ε (c1)−EµU tn

ε (c0)

¶
=

EµU
add(c)−EµU

add(c0)

EµUadd(c1)−EµUadd(c0)
(24)

This is what is meant by “converges weakly up to positive affine transformations”. Clearly,

these conditions guarantee that at the limit ε → 0 the expected utility function EµU
tn
ε

will represent the same preferences over consumption profiles as EµU
add.

Inequality (23) is a direct consequence of the fact that the utility functions U tn
ε are

increasing in consumption that occurs before death. Equality (24) is shown thereafter

using a Taylor expansion in ε. We have:

EµU
tn
ε (c) =

Z +∞

0

s(t)uε(c(t))φ
0
µ

µZ t

0

uε(c(τ))dτ

¶
dt

Replacing uε(c, t) by 1 + εu(c(t)) and keeping only the zero and first order terms in ε we

find:
EµU

tn
ε (c) =

R +∞
0

s(t)φµ(t)dt

+ε
R +∞
0

s(t)u(c(t))φ0µ(t)dt

+ε
R +∞
0

s(t)φ
00

µ(t)
³R t

0
u(c(τ))dτ

´
dt

+o(ε)

(25)

The first term is a constant, independent of c and ε, that I denote by A. Switching the

order of integration in the third term, we find that:

Z +∞

0

s(t)φ00µ(t)

µZ t

0

u(c(τ))dτ

¶
dt =

Z +∞

0

u(c(t))

µZ +∞

t

s(τ)φ00µ(τ)dτ

¶
dt (26)
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Proceeding with an integration by parts and using φ0µ(t) = α(t)− α0(t)
µ(t)

, we compute:

R +∞
t

s(τ)φ00µ(τ)dτ =
h
s(t)

³
α(t)− α0(t)

µ(t)

´i+∞
t
−
R +∞
t

s0(τ)
³
α(t)− α0(t)

µ(t)

´
dτ

= −s(t)
³
α(t)− α0(t)

µ(t)

´
−
R +∞
t

[s0(τ)α(τ) + α0(τ)s(τ)] dτ

= s(t)α
0(t)
µ(t)

(27)

Using (26) and (27), and replacing φ0µ(t) by α(t) − α0(t)
µ(t)

in the second term of (25), we

finally obtain:

EµU
tn
ε (c) = A+ ε

Z +∞

0

s(t)α(t)u(c(t))dt+ o(ε) (28)

The first order term is thus precisely EµU
add(c) and (24) follows directly from (28).

E Proof of Proposition 6

The result for the additive case is immediate from equation (7). For the time neutral

case, the result is also obvious from equation (8) when t2 ≤ t1. The only difficult case is

when t2 > t1. In this instance, equation (21) can be rewritten as:

RDtn
µ (c, t) = µ(t1)

φ0(
R t1
0
u(c(τ))dτ)

φ0(
R t1
0
u(c(τ))dτ) +

R +∞
t1

s(τ)
s(t1)

u(c(τ))φ
00
(
R t1
0
u(c(τ 1))dτ 1)dτ

(29)

Note that s(τ)
s(t1)

= exp(−
R τ
t1
µ(t)dt). So we have:

∂
s(τ)
s(t1)

∂µ(t2)
= − s(τ)

s(t1)
for t1 < t2 < τ

∂ s(τ)
s(t1)

∂µ(t2)
= 0 for t1 < τ < t2

This implies that for t2 > t1 :

∂
∂µ(t2)

³R +∞
t1

s(τ)
s(t)

u(c(τ))φ
00
(
R t1
0
u(c(τ 1))dτ 1)dτ

´
=

−
R +∞
t2

s(τ)
s(t1)

u(c(τ))φ
00
(
R τ
0
u(c(τ 1))dτ 1)dτ

which explains why we obtain (9) by taking the derivative of (29) with respect to µ(t2).
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F Proof of Proposition 7

For the first point, rewrite (21) for i = 1, 2:

RDtn
µi
(c, t) = µi(t)

φ0(
R t
0
u(c(τ))dτ)R +∞

t
µi(τ) exp

¡
−
R τ
t
µi(τ 1)dτ 1

¢
φ
0
(
R τ
0
u(c(τ1))dτ 1)dτ

Inequality (10) implies that µ2(t) ≤ µ1(t). Thus exp
¡
−
R τ
t
µ2(τ 1)dτ 1

¢
≥ exp

¡
−
R τ
t
µ1(τ 1)dτ 1

¢
for all τ ≥ t. Moreover we also know from inequality (10) that µ2(τ) ≥ µ1(τ)

µ2(t)
µ1(t)

for all

τ ≥ t. It follows that RDtn
µ2
(c, t) ≤ RDtn

µ1
(c, t).

For the second point, use (8) to write that for i = 1, 2

RDtn
µi
(c, t) = µi(t)− µi(t)

R +∞
t

exp
¡
−
R τ
t
µi(τ 1)dτ 1

¢
u(c(τ))φ

00
(Iτ )dτR +∞

t
µi(τ) exp

¡
−
R τ
t
µi(τ 1)dτ 1

¢
φ
0
(Iτ)dτ

where Iτ =
R τ
0
u(c(τ 1))dτ 1. Using µ2(τ) ≥ µ1(τ)

µ2(t)
µ1(t)

and φ
00
< 0 we obtain

RDtn
µ1
(c, t)−RDtn

µ2
(c, t) ≥ µ1(t)− µ2(t) + µ1(t)∆

with

∆ =

R +∞
t

k(τ)g(τ)dτR +∞
t

g(τ)dτ
−
R +∞
t

k(τ)h(τ)g(τ)dτR +∞
t

h(τ)g(τ)dτ

where k(τ) = −φ00(Iτ )
φ0(Iτ )

u(c)
µ1(τ)

, h(τ) = exp
¡
−
R τ
t
(µ2(τ 1)− µ1(τ 1))dτ 1

¢
and

g(τ) = µ1(τ) exp
¡
−
R τ
t
µ1(τ 1)dτ 1

¢
u(c(τ))φ

0
(Iτ). The functions k, g and h are non-

negative. Note also that, by assumption, h is non-decreasing while k is non-increasing.

Thus, ∆ is non-negative32 and RDtn
µ1
(c, t) − RDtn

µ2
(c, t) ≥ µ1(t) − µ2(t). The fact that

RDadd
µ1
(c, t) − RDadd

µ2
(c, t) = µ1(t) − µ2(t) is a direct consequence of (7). The proof of

Proposition 7 is then complete.

32To prove that ∆ ≥ 0 one can show that the function

f(x) =

µZ x

t

k(τ)g(τ)dτ

¶µZ x

t

h(τ)g(τ)dτ

¶
−
µZ x

t

k(τ)h(τ)g(τ)dτ

¶µZ x

t

g(τ)dτ

¶
is non-decreasing (and therefore non-negative) for x ≥ t.
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G Proof of Proposition 8

Write

V SL(t) = −
∂EµU
∂µ(t)

∂EµU
∂c(t)

Now, since:

s(t) = exp

µ
−
Z t

0

µ(τ)dτ

¶
we have

∂EµU

∂µ(t)
= −

Z +∞

t

∂EµU

∂s(τ)
dτ

and

V SL(t) =

Z +∞

t

∂EµU
∂s(τ)

∂EµU
∂c(τ)

∂EµU
∂c(τ)

∂EµU
∂c(t)

dτ =
1

s(t)e−rt

Z +∞

t

s(τ)e−rτ
∂EµU
∂s(τ)

∂EµU
∂c(τ)

dτ

Now compute
∂EµUadd

∂s(τ)

∂EµUadd

∂c(τ)

=
1

s(τ)

uadd(c(τ))

u0(c(τ))

so that

V SLadd(t) =
1

s(t)e−rt

Z +∞

t

e−rτ
uadd(c(τ))

u0(c(τ))
dτ

For time neutral specification:

∂EµUtn

∂s(τ)

∂EµUtn

∂c(τ)

=
utn(c(τ))φ0

¡R τ
0
u(c(τ 1))dτ 1

¢
u0(c(τ))

R +∞
t

d(τ)φ0
¡R τ
0
u(c(τ 1))dτ 1

¢
dτ
=

1

s(τ)

RD(τ)

µ(τ)

utn(c(τ))

u0(c(τ))

And

V SLtn(t) =
1

s(t)e−rt

Z
e−rτ

RD(τ)

µ(τ)

utn(c(τ))

u0(c(τ))
d

That implies

V SLtn(t)

V SLadd(t)
=

R +∞
t

RD(τ)
µ(τ)

utn(c(τ))
uadd(c(τ))

h(τ)dτR +∞
t

h(τ)dτ

with h(τ) = e−rτ u
add(c(τ))
u0(c(τ)) > 0. Now, because it is assumed the same intertemporal elas-

ticity of substitution in both the time neutral model and the additive models, it must be
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the case that utn(c(τ)) = uadd(c(τ)) + δ where δ is a constant. We obtain

V SLtn(t)

V SLadd(t)
=

R +∞
t

RD(τ)
µ(τ)

(1 + δ
uadd(c(τ))

)h(τ)dτR +∞
t

h(τ)dτ

Now recall that RD(τ) > µ(τ). Since V SLtn(t0) = V SLadd(t0), it must be the case

that δ < 0. Since c is non-increasing, (1 + δ
uadd(c(τ))

) is non increasing. It is also the case

of RD(τ)
µ(τ)

, by assumption. That implies that V SLtn(t)
V SLadd(t)

is a non increasing function, which

completes the proof of Proposition 8.
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Figure 1:  Mortality Rate at Age 30 (Historical Data from the USA)
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Figure 2:  Life Expectancy at Age 30 (Historical Data from the USA)
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Figure 3: Rate of Discount at Age 30 According to Historical Mortality rates

Case A (additive model)
Case B (time neutral model − CARA)
Case C (time neutral model − CRRA)
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Figure 4a: Consumption. Additive model
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Figure 4b: Consumption. Time neutral (CARA)
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Figure 4c: Consumption. Time neutral (CRRA)
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Figure 4d: Wealth. Additive model

wealth (with 1950 mortality rates)
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Figure 4e: Wealth. Time neutral (CARA)

wealth (with 1950 mortality rates)
wealth (with 2000 mortality rates)

+26%
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Figure 4f: Wealth. Time neutral (CRRA)

wealth (with 1950 mortality rates)
wealth (with 2000 mortality rates)
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Figure 5:  Rate of interest in steady−state general equilibria

Historical and projected US mortality.
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Figure 6: Value of Statistical Lives
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Figure 7: Gains from increased longevity, 1970−2000
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