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Abstract

Least squares cross-validation (CV) methods are often used for automated

bandwidth selection. We show that they share a common structure which has

an explicit asymptotic solution. Using the framework of density estimation,

we consider unbiased, biased, and smoothed CV methods. We show that,

with a Student t(ν) kernel which includes the Gaussian as a special case, the

CV criterion becomes asymptotically equivalent to a simple polynomial. This

leads to optimal-bandwidth solutions that dominate the usual CV methods,

definitely in terms of simplicity and speed of calculation, but also often in terms

of integrated squared error because of the robustness of our asymptotic solution.

We present simulations to illustrate these features and to give practical guidance

on the choice of ν.

KEY WORDS: bandwidth choice; cross validation; nonparametric density es-

timation; analytical solution.
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1 Introduction

Let {xi}n
i=1 be an i.i.d. sequence with unknown common density f that is a continuous

function. The kernel density estimator introduced by Rosenblatt (1956) is given by

f̂(u) :=
1

nh

n∑

i=1

K

(
u − xi

h

)
,

where h is the bandwidth and K is the kernel. We will assume that the kernel is

nonnegative, in which case the scaled kernels Kh(u − x) := h−1K(h−1 (u − xi)) are

proper p.d.f.s and

f̂(u) =
1

n

n∑

i=1

Kh(u − xi) (1)

is the sample mean of these. It is widely recognized that a variety of kernels (including

the Gaussian) have good asymptotic efficiencies compared to the optimal one, the

Epanechnikov kernel, whereas the choice of the bandwidth is crucial. For example,

using the Gaussian instead of the Epanechnikov, the asymptotic mean integrated

squared error (AMISE) is multiplied by a factor of (6
√

π/125)−4/5 ≈ 1.04, implying

a relative loss of only 4% and an absolute loss that vanishes at the rate of n−4/5.

Subject to some regularity conditions, optimizing the AMISE gives

ĥ =

(
k02

k2
21I2

)1/5

n−1/5, (2)

where kij :=
∫∞
−∞ tiK(t)j dt and Ij :=

∫∞
−∞ f (j)(u)2 du, with f (j)(·) denoting the j-th

derivative of f(·). Plug-in methods substitute estimates for the remaining unknown

quantity I2 of (2) by using a nonparametric estimate, as in Hall and Marron (1987) or

Jones and Sheather (1991); but they can go as far as replacing f in I2 by a Gaussian

density, a method commonly referred to as the rule of Silverman (1986).

Rudemo (1982) and Bowman (1984) introduced the least squares cross-validation

(CV) method to determine the bandwidth that minimizes the integrated squared
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error (ISE) asymptotically. The formula for the ISE is

ISE :=

∫ ∞

−∞
(f(u) − f̂(u))2 du (3)

=

∫ ∞

−∞
f(u)2 du +

∫ ∞

−∞
f̂(u)2 du − 2

∫ ∞

−∞
f̂(u)f(u) du,

where all three components are assumed finite with probability 1. The first integral

in (3) does not affect the procedure and can be omitted from the optimization. The

second integral is in terms of the data (known) and the h to be optimized. However,

the last one contains the unknown density. CV overcomes this problem by considering

an alternative criterion that has the same expectation as the ISE and is based on a

resampling scheme. The validity of this method relies on a strong result by Stone

(1984) which shows that the ISEs with optimal h (unknown in practice) and with

h obtained by CV coincide asymptotically. But the speed of convergence is rather

slow. The method is said to suffer from a great deal of sample variability, and it

is costly to compute for large samples. Silverman (1982) proposed to use the fast

Fourier transform as an approximation for reducing computational cost, while Härdle

and Scott (1992) recommended binning techniques.

This CV criterion is an unbiased estimator of the mean integrated squared error

(MISE), and we shall refer to it as unbiased CV (UCV) to stress this. The biased

CV (BCV) criterion proposed by Scott and Terrell (1987) is a biased estimator of

the MISE, but it reduces the sample variability of the UCV criterion. It was derived

as a method of estimating the unknown integral in the denominator of (2), and it

minimizes the same AMISE objective function.

The BCV of Scott and Terrell (1987) was followed by a number of alternative

BCVs; including the modified CV of Stute (1992), the smoothed CV (SCV) of Hall,

Marron and Park (1992) and its extension in Jones, Marron and Park (1991). The

latter is particularly interesting because it derives the functional form of an additional

bandwidth that helps CV achieve the fastest rate of convergence relative to ĥ, a rate

that was established by Hall and Marron (1991) as
√

n.
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None of these methods give an explicit solution for the optimal h. Furthermore,

there is a common structure to all these CV methods, not just in density estimation

but also in nonparametric regression; e.g. see Li and Racine (2006). In fact, it

is a structure that is also shared by other problems, such as the determination of

bandwidths in the estimation of spectra; inter alia, see Velasco (2000), the widespread

Newey and West (1987) method that requires the estimation of spectra at the origin,

and the more recent one by Robinson (2005).

In Section 2, we introduce a method to obtain explicit solutions for asymptotically

optimal bandwidths in problems sharing this common structure. In Sections 3–5, we

apply it to solving for the optimal bandwidths in UCV, BCV, and the SCV version of

Jones, Marron and Park (1991), respectively. In Section 6, we present simulations to

illustrate the finite-sample robustness of the results to various densities and to give

guidance on choices that need to be made in practice when implementing our method

of solution. We confirm that our simple explicit solutions (one for each of UCV, BCV,

SCV) for the asymptotic bandwidth are very efficient (in terms of ISE) and robust,

solving CV’s notorious sampling variability problem as well as giving huge numerical

efficiency gains. Section 7 concludes. An appendix collects some derivations that are

needed in the text.

2 Method for explicit solution of bandwidths

Let ∗ denote the convolution symbol. UCV, BCV, and their variants require the

calculation of

K(q) ∗ K(r), (4)

where q, r ∈ Z0,+, the nonegative integers. Define

Dh := Kh − K0, (5)
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where K0 is the Dirac delta function. SCV and its variants introduce an additional

kernel L with bandwidth g, requiring the calculation of

Dh ∗ Dh ∗ Lg ∗ Lg, (6)

where Lg is the scaled version of kernel L such that Lg(t) := g−1L(g−1t), the optimal

g taking the form

ĝ ∼ Cnp/ĥ2 (7)

with C constant as n → ∞ and p a constant to be detailed in Section 5. The notation

an ∼ bn means that limn→∞ an/bn = 1.

There are two components to the solution. The first one is straightforward once

we recall that the choice of a Gaussian kernel function has little effect on asymptotic

efficiency while allowing simple explicit solutions, in which case we take K = L = φ

to work out (4) and (6). To do so will require the Hermite polynomials

Hem(t) :=
(−1)m φ(m) (t)

φ (t)
= tm

1+⌊m/2⌋∑

j=0

(−m)2j

j!(−2t2)j
, (8)

where m ∈ Z0,+, ⌊m/2⌋ denotes the integer part of m/2, and

(−m)2j :=

2j∏

i=1

(−m + i − 1) ;

see Abadir (1999) for more details on Hem polynomials and their relation to the other

type of Hermite polynomials denoted by Hm.

Lemma 1 For K = L = φ ,(4) and (6) become, respectively,

(
K(q) ∗ K(r)

)
(a) = (−1)q+r K√

2 (a) Heq+r

(
a/

√
2
)

√
2q+r

(9)

and

(Dh ∗ Dh ∗ Lg ∗ Lg) (a) = K√
2h2+2g2

(a) − 2K√
h2+2g2

(a) + Kg
√

2 (a) , (10)

where a is the argument of the convolution and Kb(t) := b−1K(b−1t).
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Proof. See the appendix.

The second component of the solution is to find a way to achieve the asymptotic

separability (in h and t) of a kernel K(t/h). This allows a factorization of first-order

conditions for h. This does not hold for φ, but it holds for another p.d.f. that can be

made arbitrarily close to φ and that can be used instead of φ after the convolutions

have been worked out as in the previous lemma.

Consider a Student t(ν) kernel, K(t) = cν/(1 + t2/ν)(ν+1)/2, where

cν := Γ

(
ν + 1

2

)
/
(√

πνΓ
(ν

2

))
. (11)

The Gaussian kernel is the limiting t(∞) case, but ν = 30 makes the two virtually

indistinguishable for all practical purposes. The scaled version of this Student t(ν)

kernel is

Kh(t) =
cν

h(1 + t2/(νh2))(ν+1)/2
=

cν

(h2 + t2/ν)(ν+1)/2
hν . (12)

As ĥ = Op(n
−1/5)

p−→ 0, (12) becomes asymptotically separable in t and h:

Kh(t) = cν

(
t2/ν

)−(ν+1)/2
hν
(
1 + O(h2)

)

as h → 0 and ν is finite. This is implied by the binomial expansion, as

(h2 + a)−b = a−b + O(h2), (a, b finite and h → 0), (13)

which we will need again later. This quasi-separability for small h does not hold

in the limiting ν = ∞ Gaussian case, but it nevertheless holds for any fixed large

ν that makes t(ν) indistinguishable from the Gaussian. This allows the subsequent

derivations to give an explicit formula for the asymptotically optimal ĥ. The only

available expansion for the Gaussian kernel relies on exp(−t2/(2h2)) = 1− t2/(2h2)+

. . . , which is not valid for h → 0. To use the terminology of complex analysis, h = 0

is an “essential singularity” of the function. The binomial expansion of the Student

t(ν) kernel does not suffer this drawback, even for any arbitrarily large but finite ν.

We are now in a position to apply these results to optimal bandwidth selection in

CV problems.
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3 Application 1: UCV

This section contains three parts to clarify the ideas in this first application. This

level of detail will not be given for applications 2 (BCV) and 3 (SCV).

First, we rewrite the UCV criterion by using Lemma 1. Second, we analyze the

criterion to shed light on the asymptotic behaviour of its components, and this results

in some straightforward approximations for the optimal ĥ. This solution allows us to

determine the required orders of magnitude and understand how the method works.

Third, this analysis leads to an asymptotic representation of the first-order conditions

for ĥ as simple polynomials for which we give solutions that are numerically-efficient,

of the order of 24 times faster than CV methods. Our solutions are also often more

accurate in terms of minimizing the ISE, as will be seen in Section 6.

3.1 UCV criterion

The first step of the UCV procedure is to delete one observation at a time, say xj

(j = 1, . . . , n), then calculate the usual kernel estimator based on the remaining n−1

data points

f̂−j(u) :=
1

n − 1

∑

i6=j

Kh(u − xi), j = 1, . . . , n. (14)

The last integral in the ISE in (3) is an expectation which can be estimated by using

the sample mean of (14)

f̂n−1(x; h) :=
1

n

n∑

j=1

f̂−j (xj) =
1

n (n − 1)

n∑

j=1

∑

i6=j

Kh(zij), (15)

where x := (x1, . . . , xn)′, denoting a transpose by a prime, and

zij := xj − xi. (16)

A matrix with typical element zij would be skew-symmetric.

UCV minimizes with respect to h the sum S := S1 + S2 + S3, where

S1 :=

∫ ∞

−∞
f(u)2 du, S2 :=

∫ ∞

−∞
f̂(u)2 du, S3 := −2f̂n−1(x; h).
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This procedure is justified by the fact that E(S) = E(ISE), the latter being the

definition of the MISE. Since S1 > 0 and does not depend on n, it does not tend to

0 as n → ∞ and we need

S2 + S3
p−→ −S1 < 0 (17)

for consistency of f̂ .

Using Lemma 1, we can work out

S2 =
1

n
Kh

√
2(0) +

2

n2

n∑

j=1

∑

i>j

Kh
√

2(zij),

where we separated out the term having i = j and used the fact that K is an even

function of zij to rewrite the range of the inner summation (
∑

i6=j = 2
∑

i>j). Using

n/(n − 1) = 1 + O(1/n) gives

S2 + S3 =
Kh

√
2(0)

n
+

2 + O(1/n)

n2

n∑

j=1

∑

i>j

[
Kh

√
2(zij) − 2Kh(zij)

]
, (18)

where the first fraction is deterministic and of order 1/(nh). We now apply the second

idea of the previous section, the t(ν) kernel, in order to tackle the optimization.

3.2 Asymptotic approximation

From the scaled Student t(ν) kernel in (12), Kh
√

2(0) = cν/(h
√

2). Applying (17) to

(18), and the fact that the UCV-optimal h is ĥ = Op(n
−1/5), it follows that the first

term of (18) drops out asymptotically and the second term has a strictly negative

and finite probability limit. In this subsection, we will therefore minimize

R := 2

n∑

j=1

∑

i>j

Kh
√

2(zij) − 4

n∑

j=1

∑

i>j

Kh(zij), (19)

where R/n2 p−→ −S1 < 0 at the optimum and so each of the two terms in (19) is of

order n2 or larger (but with cancelling leading terms). We now exploit this remark.

The objective function (19) with a t(ν) kernel becomes

R = 2cνh
ν

n∑

j=1

∑

i>j

[
2ν/2

(
2h2 + z2

ij/ν
)−(ν+1)/2 − 2

(
h2 + z2

ij/ν
)−(ν+1)/2

]
. (20)
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Differentiating (20) with respect to h, we get the first-order condition

ν

n∑

j=1

∑

i>j

[
2ν/2

(
2ĥ2 + z2

ij/ν
)−(ν+1)/2

− 2
(
ĥ2 + z2

ij/ν
)−(ν+1)/2

]
(21)

= 2 (ν + 1) ĥ2
n∑

j=1

∑

i>j

[
2ν/2

(
2ĥ2 + z2

ij/ν
)−(ν+3)/2

−
(
ĥ2 + z2

ij/ν
)−(ν+3)/2

]
.

Applying R = Op(n
2) and ĥ = Op(n

−1/5) to (20) and recalling the remark following

(19), the function

yn(q, ĥ) :=

n∑

j=1

∑

i>j

(
ĥ2 + z2

ij/ν
)−(q+1)/2

(22)

has order n2+ν/5 or larger for q = ν. Therefore, the leading term of the expansion

of (22) is the one from which ĥ is absent and it is the one obtained by using the

binomial expansion (13). In other words, any small values of the same order as ĥ

will do, asymptotically, for (22), and we will explore now two such possibilities for a

plug-in that we will denote generically by ĥp.

First, we could substitute Silverman’s (1986) rule of thumb ĥ = 1.06σ̂n−1/5 men-

tioned after (2), with σ̂2 denoting the sample variance of {xi}n
i=1. A more elaborate

version would use again (2) but with f replaced by a Student density instead of the

Gaussian. The ingredients for this are in Lemma 2 of the appendix, and they give

ĥS :=

(
4 (1 − 2/ν)9/2 (ν − 3/16)2 (ν + 17/8) (ν + 5/2) (ν + 7/2)

3 (ν − 1/4) (ν + 1)2 (ν + 3)2

)1/5

σ̂n−1/5 (23)

with limν→∞ ĥS/
(
σ̂n−1/5

)
= (4/3)1/5 ≈ 1. 06 implying Silverman’s rule as a special

case. Second, we could generalize the popular method of Jones and Sheather (1991),

using a Student (rather than Gaussian) density and kernel, resulting in an estimate

of I2 given by

Î2 :=
1

n2λ̂
5

∑

i,j

K(4)

(
zij

λ̂

)
(24)

=
(4ν − 1) (ν + 1) (ν + 3)

4
√

2πn2λ̂
5
ν5

∑

i,j

(ν + 2) (ν + 4) z4
ij/λ̂

4 − 6ν (ν + 4) z2
ij/λ̂

2
+ 3ν2

(
1 + z2

ij/
(
λ̂

2
ν
))(ν+9)/2

10



with λ :=
(
2K(4)(0)/ (nI3k21)

)1/7
estimated by

λ̂ :=

(√
2 (ν − 2)9/2 (2ν + 7) (2ν + 9) (2ν + 11) (8ν + 25)

5ν7/2 (ν + 1) (ν + 3) (ν + 5)2 (4ν − 1)

)1/7

σ̂n−1/7 (25)

leading to

ĥJS :=

(
(ν − 2)2 (16ν − 3)2 (4ν − 1)

√
π211ν5Î2

)1/5

n−1/5 (26)

with the ingredients derived in Lemma 3 of the appendix.

Exploiting the asymptotic invariance of the yn(·, ·) function, we can rewrite the

solution (21) as

ĥ =

√√√√√
ν
[
2ν/2yn(ν, ĥp

√
2) − 2yn(ν, ĥp)

]

2 (ν + 1)
[
2ν/2yn(ν + 2, ĥp

√
2) − yn(ν + 2, ĥp)

] , (27)

where the RHS makes use of a plug-in ĥp, be it ĥS or ĥJS, giving an explicit asymp-

totic solution for ĥ. Note that R/n2 p−→ −S1 < 0 implies that the numerator and

denominator should both be negative at the optimum, thus restricting the allowable

solutions for h. Note also that z2
ij/ν = (xj − xi)

2 /ν, appearing in yn(ν, ĥ) of (22), is a

measure of distance between the data points. It is quadratic because of the adoption

of a spherical p.d.f. as a kernel, and this applies more generally to other spherical

kernels.

3.3 Exact solution

Omitting only the term denoted by O(1/n) in (18), but not the first deterministic

term which is now cν/(nh
√

2), similar derivations lead to the first-order condition

n

2
√

2
= νĥν+1

u

[
2ν/2yn(ν, ĥu

√
2) − 2yn(ν, ĥu)

]
(28)

−2 (ν + 1) ĥν+3
u

[
2ν/2yn(ν + 2, ĥu

√
2) − yn(ν + 2, ĥu)

]
,

where ĥu is the UCV solution. As before, the content of the square brackets can

be accurately approximated by using ĥp. This makes (28) an equation of the form

11



α1 = α2ĥ
ν+1 + α3ĥ

ν+3, where

α1 =
n

2
√

2
, α2 = ν

[
2ν/2yn(ν, ĥp

√
2) − 2yn(ν, ĥp)

]
,

α3 = −2(ν + 1)
[
2ν/2yn(ν + 2, ĥp

√
2) − yn(ν + 2, ĥp)

]
,

which is easy to solve numerically. An alternative form of writing α1 = α2ĥ
ν+1 +

α3ĥ
ν+3 is

ĥ =

(
α1

α2 + α3ĥ2

)1/(ν+1)

, (29)

which can be approximated for ν > 2 by using ĥ2
p of (23) or (26) on the RHS, giving

an explicit asymptotic formula for ĥ which we will call ĥa:

ĥa :=

(
α1

α2 + α3ĥ2
p

)1/(ν+1)

.

(30)

One should note however that this solution exists if and only if α2 + α3ĥ
2
p > 0, a

condition which is guaranteed in large samples, but might fail in small samples. In

this case, the simpler asymptotic approximation (27), reexpressed as

ĥaa :=
√

−α2/α3, (31)

should be used. Note that iterating (29), instead of using ĥ2
p in (30), would give the

exact UCV solution except for the inconsequential approximation of 1/ (n − 1) by

1/n in the objective function (18).

4 Application 2: BCV

Scott and Terrell (1987) optimize the AMISE and eventually arrive at their BCV

objective function (their equation (3.17)). In our notation,

Sb :=
k02

nh
+

k2
21

4n2h

n∑

j=1

∑

i6=j

(∫ ∞

−∞
K(2) (u)K(2) (u + zij/h) du

)
,

12



where k02/ (nh) is a good estimator of the integrated variance in the MISE, while the

second part is the modified estimator of integrated squared bias which achieves the

stability of the BCV criterion relative to UCV. Using Lemma 1 and

He4(b) = b4 − 6 b2 + 3

which is calculated from the formula for Hermite polynomials in (8), we get

Sb =
k02

nh
+

k2
21

8n2

n∑

j=1

∑

i>j

(
z4

ij

4h4
−

3z2
ij

h2
+ 3

)
Kh

√
2(zij), (32)

where K is an even function of zij , hence the range of the inner summation.

As before, using the Student t(ν) kernel (12) with h
√

2 instead of h, as required

for (32), we get

Sb =
k02

nh
+

cνk
2
21

8
√

2n2

n∑

j=1

∑

i>j

(
z4

ij

4
hν−4 − 3z2

ijh
ν−2 + 3hν

)
(h2 + z2

ij/(2ν))−(ν+1)/2 (33)

and the exact first-order solution for ν > 4 is

8
√

2k02n

cνk
2
21

(34)

= ĥν−3
b

n∑

j=1

∑

i>j

((ν

4
− 1
)

z4
ij − 3(ν − 2)z2

ijĥ
2
b + 3νĥ4

b

)(
ĥ2

b + z2
ij/(2ν)

)−(ν+1)/2

−(ν + 1)ĥν−1
b

n∑

j=1

∑

i>j

(
z4

ij

4
− 3z2

ijĥ
2
b + 3ĥ4

b

)(
ĥ2

b + z2
ij/(2ν)

)−(ν+3)/2

,

where ĥb is the BCV solution. The same arguments in the previous subsection about

ĥ = Op(n
−1/5) indicate that this is essentially an equation of the form β1 = β2ĥ

ν−3 +

β3ĥ
ν−1, which leads to

ĥa :=

(
β1

β2 + β3ĥ
2
p

)1/(ν−3)

.

(35)

We can make the same remark as before concerning the positivity of β2 + β3ĥ
2
p, but

this time we have a supplementary restriction on the value of ν which should be
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greater than 4. In addition, like (31) was a simplification of (30), here we have the

simplifying asymptotic approximation

ĥaa :=
√

−β2/β3. (36)

We use it instead of (35) whenever β2 + β3ĥ
2
p < 0.

5 Application 3: SCV

Jones, Marron and Park (1991) estimate the integrated squared bias
∫

(Kh ∗ f − f)2

(or equivalently
∫

(Dh ∗ f)2) by smoothing this particular appearance of f , effectively

a plug-in that uses a second kernel L and bandwidth g. They also combine this with

the option of using the idea of Jones and Sheather (1991), in which case they set an

indicator function δ = 1 below (and δ = 0 otherwise). The result is the SCV objective

function

Ss :=
k02

nh
+

δ

n
(Dh ∗ Dh ∗ Lg ∗ Lg) (0) +

1

n2

n∑

j=1

∑

i6=j

(Dh ∗ Dh ∗ Lg ∗ Lg) (zij) ,

where 0 and zij are the arguments of the respective convolutions. They show that

the asymptotically-optimal p in g ∼ Cnp/h2 is given by

p̂ =





−23/45 (δ = 1)

−44/85 (δ = 0) ,
(37)

but the constant C depends on the unknown f again. They experiment with a couple

of plug-in methods to estimate C, but they do not work well and they will not be

necessary in the case of our method where we optimize with respect to both h and g.

The case of δ = 1 achieves the best 1/
√

n rate for the relative distance between the

values of h minimizing MISE and Ss, while it is the slightly worse rate of n−8/17 that is

obtained if δ = 0. Note that ĝs dominates ĥs, where these are the optimizers of Ss; e.g.,

if we take p̂ to be −1
2

henceforth, then ĝs = Op

(
n−1/10

)
dominates ĥs = Op

(
n−1/5

)
.
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Nevertheless, the argument used for ĥ in connection with the Student kernel in Section

2 applies to ĝs as well.

Although the 1/
√

n rate is achieved by SCV, the best possible multiplicative

constant established in Fan and Marron (1992) is not quite reached by the limiting

variance of the normalized ĥs. Kim, Park and Marron (1994) show how to modify

the method to achieve this lower bound, but their results show that samples as big as

n = 1, 000 are not big enough to reach these asymptotics and they say (p.120) that

their method is “mostly of theoretical interest”. We therefore do not include their

extension.

Using Lemma 1 and the symmetry of the Student t(ν) kernels (we use the same

ν for K and L), we can work out the criterion explicitly as

Ss =
k02

nh
+

δcν

n
√

2

(
1√

h2 + g2
− 23/2

√
h2 + 2g2

+
1

g

)

+
2cν

n2

[(
2h2 + 2g2

)ν/2
yn(ν, h

√
2, g) − 2

(
h2 + 2g2

)ν/2
yn(ν, h, g) + 2ν/2gνyn(ν, 0, g)

]
,

where

yn(q, h, g) :=

n∑

j=1

∑

i>j

(
h2 + 2g2 + z2

ij/ν
)−(q+1)/2

. (38)

Since ∂yn(q, h
√

2, g)/∂h = (h/g) ∂yn(q, h
√

2, g)/∂g and

∂yn(q, h, g)

∂g
=

2g

h

∂yn(q, h, g)

∂h
= −2 (q + 1) gyn(q + 2, h, g),

defining

y†
n(q, h, g) :=

(
h2 + 2g2

)(q−2)/2
yn(q, h, g) (39)

=
(
h2 + 2g2

)(q−2)/2
n∑

j=1

∑

i>j

(
h2 + 2g2 + z2

ij/ν
)−(q+1)/2

allows us to write the exact first-order conditions for g and h, respectively, as

δn

25/2

(
1

(ĥ2
s + ĝ2

s )
3/2

− 25/2

(ĥ2
s + 2ĝ2

s )
3/2

+
1

ĝ3
s

)
(40)

= ν
[
y†

n(ν, ĥs

√
2, ĝs) − 2y†

n(ν, ĥs, ĝs) + y†
n(ν, 0, ĝs)

]

− (ν + 1)
[
y†

n(ν + 2, ĥs

√
2, ĝs) − 2y†

n(ν + 2, ĥs, ĝs) + y†
n(ν + 2, 0, ĝs)

]
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and

k02n

4cνĥ3
s

+
δn

25/2

(
1

(ĥ2
s + ĝ2

s )
3/2

− 23/2

(ĥ2
s + 2ĝ2

s )
3/2

)
(41)

= ν
[
y†

n(ν, ĥs

√
2, ĝs) − y†

n(ν, ĥs, ĝs)
]
− (ν + 1)

[
y†

n(ν + 2, ĥs

√
2, ĝs) − y†

n(ν + 2, ĥs, ĝs)
]
,

where we notice that the terms on the RHS of (41) have already been calculated in

(40). Also, (41) can be used to simplify (40) by subtraction as

k02n

4cνĥ3
s

+
δn

25/2

(
23/2

(ĥ2
s + 2ĝ2

s )
3/2

− 1

ĝ3
s

)
(42)

= ν
[
y†

n(ν, ĥs, ĝs) − y†
n(ν, 0, ĝs)

]
− (ν + 1)

[
y†

n(ν + 2, ĥs, ĝs) − y†
n(ν + 2, 0, ĝs)

]
.

We shall consider solutions of (41) and (42).

As before, the asymptotic invariance of the yn(·, ·, ·) function allows us to replace

its arguments ĥs, ĝs by ĥp, ĝp, where ĥp is defined in either of (23) or (26), and ĝp is

defined as

ĝp :=
ĥp

n−1/5
n−1/10 = ĥpn

1/10, (43)

hence replacing y†
n(q, aĥs, ĝs) in (41) and (42) by (a2ĥ2

s +2ĝ2
s )

(q−2)/2yn(q, aĥp, ĝp) for all

q and a, leading to polynomial-type first-order conditions, as we shall see by the end

of this paragraph. Furthermore, an asymptotic approximation for ĝs can be obtained

from (42) by dropping the LHS terms as in the previous two sections, and we get

ĝaa :=

√√√√ yn(ν, ĥp, ĝp) − yn(ν, 0, ĝp)

2 (1 + 1/ν)
[
yn(ν + 2, ĥp, ĝp) − yn(ν + 2, 0, ĝp)

] , (44)

where we have used twice on the RHS (2 + ĥ2
s/ĝ

2
s )

q/2 = (2 + Op

(
n−1/5

)
)q/2 ∼ 2q/2, a

large-n asymptotic expansion that is more accurate for small q (i.e. small ν). The

corresponding asymptotic approximation for ĥs is obtained from (41) and by using

the binomial expansion

(
2ĥ2

s + 2ĝ2
s

)q

=
(
ĥ2

s + 2ĝ2
s

)q
(

1 +
ĥ2

s

ĥ2
s + 2ĝ2

s

)q

∼
(
ĥ2

s + 2ĝ2
s

)q

, (45)
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yielding

ĥaa :=

√√√√ yn(ν, ĥp

√
2, ĝp) − yn(ν, ĥp, ĝp)

(1 + 1/ν)
[
yn(ν + 2, ĥp

√
2, ĝp) − yn(ν + 2, ĥp, ĝp)

] − 2ĝ2
aa. (46)

Like in the previous two sections, an asymptotic solution that keeps the LHS of (41)

can be obtained by using (43) to write ĝ2
p/ĥ

2
p = n1/5 and

k02n

4cν
+

δn

25/2

(
1

(1 + n1/5)3/2
− 23/2

(1 + 2n1/5)3/2

)
(47)

= ĥν+1ν
[
(2 + 2n1/5)(ν−2)/2yn(ν, ĥp

√
2, ĝp) − (1 + 2n1/5)(ν−2)/2yn(ν, ĥp, ĝp)

]

−ĥν+3 (ν + 1)
[
(2 + 2n1/5)ν/2yn(ν + 2, ĥp

√
2, ĝp) − (1 + 2n1/5)ν/2yn(ν + 2, ĥp, ĝp)

]
,

which is a polynomial of the form γ1 = γ2ĥ
ν+1 + γ3ĥ

ν+3 yielding as before

ĥa :=

(
γ1

γ2 + γ3ĥ
2
p

)1/(ν+1)

(48)

if we use the plug-in ĥp on the RHS. However, unlike in the previous two sections,

it is not the case that ĥaa of (46) equals
√

−γ2/γ3, because of the presence of terms

like (a2 + 2n1/5)q that are due to g.

Unlike in the previous two sections where we did not have g, we now have the

following additional result. Having an asymptotic solution ĝaa and ĥaa allows us to

estimate the constant C (that depends on the unknown density) in ĝ ∼ C/(ĥ2
√

n) as

Ĉ := ĝaaĥ
2
aa

√
n, (49)

which obviates the need for a plug-in rule for C as in Jones, Marron and Park (1991)

who find that such rules do not work well for C. Furthermore, we can now replace ĝ2
s

by Ĉ2/(ĥ4
sn) in the first-order condition (41) to solve for only one unknown, ĥs, from

k02nĥ2ν−3
s

4cν

+
δnĥ2ν+6

s

2

(
1

(2ĥ6
s + bn)3/2

− 1

(ĥ6
s + bn)3/2

)
(50)

= ĥ4
sν
[
(2ĥ6

s + bn)(ν−2)/2yn(ν, ĥp

√
2, ĝp) − (ĥ6

s + bn)(ν−2)/2yn(ν, ĥp, ĝp)
]

− (ν + 1)
[
(2ĥ6

s + bn)ν/2yn(ν + 2, ĥp

√
2, ĝp) − (ĥ6

s + bn)ν/2yn(ν + 2, ĥp, ĝp)
]
,
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where bn := 2Ĉ2/n and yn(q, aĥp, ĝp) is calculated only once (for a = 1,
√

2 and

q = ν, ν + 2) for all iterations over ĥs.

6 Simulations

Among the different possibilities suggested in the literature,1 we selected five gen-

erating densities: Gaussian, Student with three degrees of freedom, two mixtures of

normals and the lognormal. We chose t(3) to avoid the Cauchy (i.e. t(1)) and t(2)

because their variance does not exist, thus precluding the use of plug-in rules as a

starting point. We reported in Table 1 the expression of these densities together with

Table 1: Generating processes and a measure of its intrinsic complexity.

Density Expression B(f)

Gaussian N(0,1) 1.30

Bimodal Mixture 0.5N(-1,4/9)+0.5N(1,4/9) 1.87

Student t(3) 2.58

Skewed Bimodal Mixture 0.75N(0,1)+0.25N(3/2,1/9) 3.39

Lognormal exp(N(0,1)) 7.17

the measure of complexity proposed in Fan and Marron (1992).2 We have chosen two

1For example, see Scott and Terrell (1987), Park and Marron (1990), or Marron and Wand (1992).

Scott and Terrell (1987) use four different densities as a benchmark: Gaussian, Cauchy, lognormal,

and the mixture of Gaussians 0.75 N(0,1) + 0.25 N(3/2,1/9). Their sample sizes are 400 or larger.

Park and Marron (1990) make use of the Gaussian and a variety of mixtures of Gaussians with two

sample sizes, n = 100 and n = 400. Marron and Wand (1992) use fourteen different mixture of

normals to investigate the degree of approximation committed when using the AMISE instead of

the MISE.
2Note the alternative measure of complexity proposed in Wand and Devroye (1993), which is

based on an L1 measure. Both the L2 measure of Fan and Marron (1992) and the L1 measure of Wand

and Devroye (1993) are scale and location independent. The former is based on a nonparametric

counterpart of the famous Cramér-Rao lower bound.
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sample sizes n = 150 and n = 450. For each case, we compute ĥise as the minimizer

of the true ISE in (3), given that the true density is known in the simulations.3 We

then compare the efficiency of each method i by reporting the mean of the Monte

Carlo ratio ISE(ĥi)/ISE(ĥise). The ISEs are computed on a fixed grid (not sample

dependent) of 67 points using Simpson’s rule on the following intervals: [-5,5] for the

Gaussian density and the two mixtures of Gaussians, [-8,8] for the Student t(3), and

[e−5, e2] for the lognormal. These grids were chosen so as to cover most of the proba-

bility of the theoretical density.4 We generate 2500 replications for each experiment.

In order to reduce the variance of the Monte Carlo experiments, first we impose the

same starting seed for each density, and second we take the smaller sample n = 150

as a sub-sample of the larger sample n = 450.

The coming subsections tackle the following issues. First, we compare (23) and

(26) to see which is preferable as the initial plug-in ĥp for our method. The second to

fourth subsections then study the performance of our UCV, BCV, and SCV formulae,

respectively.

6.1 Choosing our initial plug-in ĥp

With (23) and (26), we discussed two possible initial values for our proposed formulae.

Both come from usual plug-in methods generalized for the use of a Student t(ν) kernel.

Table 2 shows that these starting values do a fairly good job in term of efficiency.

We first note that the efficiency of the plug-in of Jones and Sheather (1991) based

on a Gaussian assumption can always be improved either by using the simple rule

of Silverman in the empirically rare case of the Gaussian process (which is true by

3The estimate ĥise is searched over an initial grid of 9 values covering the interval [ĥS/10, 2ĥS],

where ĥS is given in (23). The initial range is automatically enlarged if the optimum is on the

boundary. The initial grid is then iteratively split until the required precision is obtained.
4The lower bound of e−5 was employed to deal with the usual boundary problems of the lognormal.

When comparing ISEs for different window sizes, all ISEs are affected by comparable truncation

errors.
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design for this rule), or by using a Student kernel (instead of a Gaussian) with either

10 degrees of freedom in the case of moderately difficult processes or with 3 degrees

of freedom in the case of the more difficult lognormal.

How can we explain the changes in the results as ν varies? The Student kernel

entails a loss of relative efficiency measured by the ratio

(∫
Kt(ν)(t)

2 dt/

∫
KE(t)2 dt

)4/5

,

where KE is the Epanechnikov and Kt(ν) the Student t(ν) kernel used. This ratio

is 1.06 for ν = 30, 1.08 for ν = 10, and goes up to 1.37 for ν = 3. As complexity

increases, the loss of efficiency is more than compensated by a better care of the

influence of the observations that are outside the immediate neighbourhood of the

point where the density is fitted. This is a kind of robustification, the first of two

such features that we will note in the simulations. The value ν = 10 seems to be a

good compromise between efficiency and robustification for most of the moderately

complicated situations.

We note that the relative efficiency of ĥJS will be difficult to beat because, on

average, ĥise is only 20% more efficient than ĥJS. This is simply a question about

the real efficiency of any cross validation method, compared to a plug-in method.

The answer depends on the complexity of the generating process. We must finally

note that ĥJS is relatively costly to compute, while the cost of ĥS is comparatively

negligible; see Table 4 below.

6.2 UCV

We have discussed how to choose the value of ν as an inverse function of the complexity

of the density to estimate in the case of a plug-in rule only. Here, we will reconsider

it in the context of UCV. We will also have to answer four questions. How well does

our asymptotic ĥa of (30) do? Is it better to solve the more elaborate exact first-

order conditions (28) for ĥu, using an iterative method? Or should we maximize the
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Table 2: Plug-in with a Student kernel

Density Bandwidth Kernel’s ν n = 150 n = 450

Gaussian ĥS 3 2.68 2.17
10 1.47 1.27
30 1.38 1.21

ĥJS 3 3.21 2.39
10 1.56 1.30
30 1.48 1.26

Bimodal Mixture ĥS 3 1.47 1.32
10 1.14 1.19
30 1.29 1.38

ĥJS 3 1.79 1.49
10 1.12 1.11
30 1.16 1.14

Student t(3) ĥS 3 1.64 1.38
10 1.68 1.68
30 2.03 2.08

ĥJS 3 2.00 1.58
10 1.30 1.21
30 1.32 1.23

Skewed Mixture ĥS 3 1.26 1.16
10 1.24 1.39
30 1.42 1.66

ĥJS 3 1.53 1.32
10 1.13 1.15
30 1.24 1.25

Lognormal ĥS 3 2.05 2.68
10 5.35 7.99
30 6.20 9.40

ĥJS 3 1.18 1.20
10 2.44 2.73
30 2.88 3.27

Each line reports the expectation of the ratio ISE(ĥi)/ISE(ĥise), where

ĥise is the optimal bandwidth for a Student kernel with ν degrees of

freedom.
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objective function (18) for ĥu, using a grid search in case this function has several

local minima in small samples? Is there any benefit from using the more expensive

ĥJS as our initial plug-in ĥp?

For the Gaussian process, Table 3 shows that ĥa does not improve efficiency over

the simple starting value ĥS, which we expected since ĥS is designed for this case.

In fact, taking ν = 30 gives essentially a Gaussian kernel, and the efficiency of ĥa

is almost indistinguishable from that of ĥS in Table 2. Table 3 shows that iterating

to get the exact ĥu is of no use and even leads to a worse situation here. For the

bimodal mixture, ĥa improves efficiency over the simple starting value ĥS and reaches

the efficiency obtained with ĥJS for ν = 10. As ĥa is much cheaper to compute than

ĥJS, it thus constitutes an interesting alternative. Iterating is again of no use here.

A similar situation appears for the Student and the skewed mixture. If we decide

to iterate, it is better in all cases to choose ν = 3. Iterating for any given sample

realization can leads us away from the optimum, and it is better to use the more

“robust” low ν in this case, as discussed in the previous subsection. This brings us

to the second “robustification” comment. Starting with Table 3, we will notice that

ĥa often performs better than the exact solution of first-order equations. This gives

us an idea of how robust ĥa is to undesirable sample variations that CV methods are

known for, especially UCV. Note that all the methods seen so far in the table produce

quickly convergent results as the sample size grows.

The lognormal case is, in a sense, rather special. It is well known that in the

case of strong asymmetry, it is not ideal to find a single window size to estimate a

density on the whole of its support, when using a symmetric kernel. The preferred

solutions would be to use asymmetric kernels as in Abadir and Lawford (2004) or to

transform the data as underlined by Wand, Marron and Ruppert (1991). However,

ĥa with ν = 3 still does very well. Additionally, here we examine the more expensive

ĥJS as a plug-in for our method, and we find that it is does better than using ĥS as

our plug-in for the RHS of ĥa. Actually, ĥa with ĥJS as a plug-in does better than the
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Table 3: Unbiased cross-validation with a Student kernel

Density Bandwidth Kernel’s ν n = 150 n = 450

Gaussian ĥa 3 2.27 1.85
10 1.48 1.28
30 1.39 1.22

ĥu 3 1.62 1.43
10 1.95 1.59
30 2.10 1.66

Bimodal Mixture ĥa 3 1.36 1.26
10 1.14 1.13
30 1.25 1.30

ĥu 3 1.32 1.23
10 1.44 1.30
30 1.48 1.33

Student ĥa 3 1.61 1.46
10 1.41 1.31
30 1.81 1.78

ĥu 3 1.59 1.43
10 1.76 1.51
30 1.83 1.54

Skewed Mixture ĥa 3 1.24 1.20
10 1.19 1.21
30 1.37 1.52

ĥu 3 1.29 1.20
10 1.38 1.26
30 1.41 1.28

Lognormal ĥa 3 1.17 1.13
10 3.49 4.42
30 5.34 7.67

ĥa (with ĥp = ĥJS) 3 1.13 1.09
10 1.79 1.79
30 2.54 2.76

ĥu 3 1.31 1.22
10 1.36 1.24
30 1.38 1.24

Bold numbers indicate the best method for each density. Starting values are

ĥS if not stated otherwise.

23



latter on its own; compare to Table 3. The asymptotic ĥa improves a lot the efficiency

of ĥS and also that of ĥJS. The efficiency results for this simple ĥa are strikingly good

(very close to minimum-ISE) for a generating density that is as troublesome as the

lognormal. Again, by a careful choice of ν, it is not useful to iterate.

UCV methods have a tendency to produce smaller window sizes than plug-in

methods. It is thus useful to compare the graphs of the empirical distributions of the

various estimates of h in order to have a more precise idea about their location and

dispersion. The bimodal mixture of Gaussians and the lognormal represent opposite

levels of difficulty of estimation, and so offer graphs with interesting interpretations.

Figure 1: Window size dispersion for unbiased cross validation:

Bimodal Gaussian mixture density with a Student kernel (ν = 10).
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Figure 1 presents the empirical density of the various estimates of h for the bimodal

mixture of Gaussians using a Student kernel with ν = 10. The distribution of ĥu is

rather dispersed for a small sample size, but seems to converge to the distribution

of ĥise as the sample size increases. The distribution of ĥa is less dispersed than

that of ĥise, but is always contained in a reasonable probability interval of the latter,

a robustness feature that we mentioned earlier in this subsection. In contrast, the

distribution of ĥS is more and more concentrated and goes to the borderline of a
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reasonable probability interval of the distribution of ĥise as the sample size grows.

Figure 2: Window size dispersion for unbiased cross validation:

Lognormal density with a Student kernel (ν = 3).
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Figure 2 presents a rather different picture for estimating the lognormal density

using a Student kernel with ν = 3. The distribution of ĥS is very dispersed and lies

far away from the distribution of the other bandwidth estimates. This seems to be

the case because σ̂2 is not a good measure of dispersion when contrasting the two

lognormal tails.5 However, when ĥS is used as a plug-in for ĥa, the distribution of

ĥa is nearly identical to that of ĥJS. When the sample size grows, the distribution of

ĥa gets closer to that of ĥise. The exact solution ĥu, obtained by iterating the first-

order condition of UCV, produces window estimates that are slightly smaller than

the ISE-optimal ones. Everything behaves smoothly in this graph because ν = 3. For

ν = 30, the kernel is basically Gaussian and we have three clearly identified groups

in the windows we considered: ĥS and ĥa (with ĥS as a starting value), then ĥJS and

the corresponding ĥa, finally ĥise and ĥu. With ν = 30, all the non-iterated methods

5Silverman (1986) suggests using a more robust measure of dispersion given by min(σ̂, (q0.75 −
q0.25)/1.34), where qα is the α quantile. This could improve greatly the performance for this partic-

ular case, but gave mixed results for the other generating processes.
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are disqualified. We clearly see here the beneficial impact of using a Student kernel

with ν smaller than 30.

Table 4: Relative execution time

Method n = 150 n = 450

ĥa (with ĥp = ĥS) 1 1

ĥJS 2 2

ĥu 16 16

integral-free UCV 24 22

ISE-optimal 21 6

Computer time is normalized in terms of

the execution time of ĥa.

Let us finally turn to computational efficiency. Computations were done on a

Pentium 4 running at 3 GHz. The ĥa based on (30) involves no iteration, but a loop

of size n × (n − 1)/2, while ĥJS involves a loop of size n2. The UCV ĥu based on the

first-order condition (28) involves iterations and a loop of size n × (n − 1)/2. The

optimization of our integral-free UCV objective function (18) and of the ISE-optimal

ĥise are based on an adaptative grid search. The former involves the basic calculation

of a loop of size n × (n − 1)/2, while the latter has two loops of size n × m with m

denoting the size of the basic grid over which the function is evaluated.

Table 4 displays execution times relative to that of ĥa. This ratio seems to be in-

dependent of the sample size, except for the ISE-optimal calculation. The asymptotic

ĥa of (30) can be up to 24 times quicker than the integral-free UCV, while ĥu can be

1.5 times quicker than a direct optimzation of the integral-free UCV using an adap-

tative grid search. We can conclude that ĥa is numerically very efficient compared

to the integral-free UCV, while ĥu brings some additional efficiency compared to the

latter. The gains in absolute (not relative) comuptational times can be considerable

when dealing with large datasets such as the ones that arise in finance, where typical
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methods are too slow (they take hours) to yield a useful answer.

6.3 BCV

BCV was proposed as an alternative to UCV, in order to provide efficiency gains and

to deal with the sample variability of UCV solutions (a gain that has already been

achieved by our asymptotic ĥa of (30) for UCV). The aim of this second Monte Carlo

experiment is to investigate the reality of these potential gains for our explicit exact

solutions of BCV bandwidths and their asymptotic versions, as well as comparing the

results with our new UCV results.

Before presenting results in Table 5, we must underline the computational difficul-

ties for getting the BCV estimate. It was not possible to solve the first-order (34), as

the program ends too many times with a non-convergence. Instead, we were looking

for the minimum of the integral-free BCV objective function Sb in (33) by a grid

search. But in most cases, (33) reaches a minimum as h → ∞. We had to look for a

local minimum in the range [ĥS/10, 1.25ĥS]. Whenever there was no local minimum,

we selected the upper value of the interval. Scott and Terrell (1987) mention related

difficulties in their optimizations when samples are small; see their Sections 5 and 6.

The samples they consider for BCV are typically very large for what is commonly

available in economics.

Let us now compare the results of Table 3 and of Table 5, case by case. For the

Gaussian density, BCV improves clearly over the UCV, as found by Scott and Terrell

(1987). For all the other cases, there is no major improvement except in 2 cases of

mixtures and small n where the BCV’s ĥa of (35) does well. In general, most of the

time we had to use the asymptotic approximation ĥaa of (36) instead of ĥa of (35).

In the cases we analyze, the BCV approach is infrequently beneficial. Here again,

we find that ν = 10 does better than ν = 30 (approximately Gaussian kernel) most

of the time, hence supporting the idea of considering a Student kernel. There is no

case ν = 3 in the table because it is required that ν > 4 for the BCV derivations; see
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Table 5: Biased cross-validation with a Student kernel

Density Bandwidth Kernel’s ν n = 150 n = 450

Gaussian ĥa 10 1.69 1.41
30 1.33 1.20

ĥb 10 1.23 1.15
30 1.29 1.22

Bimodal Mixture ĥa 10 1.07 1.12
30 1.36 1.42

ĥb 10 1.53 1.72
30 1.85 1.82

Student ĥa 10 1.53 1.44
30 1.94 1.95

ĥb 10 2.10 2.67
30 1.49 1.64

Skewed Mixture ĥa 10 1.13 1.25
30 1.45 1.72

ĥb 10 1.63 2.01
30 1.93 2.40

Lognormal ĥa 10 5.25 7.34
30 6.09 8.60

ĥa (with ĥp = ĥJS) 10 2.51 2.63
30 2.84 3.06

ĥb 10 4.85 7.75
30 2.05 1.66

Starting values are ĥS if not stated otherwise. Figures in italics indicate an

improvement over the corresponding case in Table 3. Figures in bold indicate

the best solution for the process.
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the condition before (34). We shall henceforth only compare the cases ν = 10 and

ν = 30.

6.4 SCV

How do our SCV formulae perform, and how do they compare to UCV and BCV? In

Table 6, ĥaa represents the asymptotic approximation (46) which requires ĝaa of (44),

while ĥa is the asymptotic (48). For ĥs, we have two versions, both iterated solutions

of first-order conditions: the first arises from (47), while the second is obtained from

(50).

For the Gaussian case, SCV does better than UCV, except if we compare ĥaa

here to ĥa there. There are no substantial differences among the various methods.

For the other processes, the gain is not evident. In general, the simple asymptotic

approximation ĥaa provides a good solution with ν = 10. The second ĥs is better

than the first one, except for the special case of the lognormal where the ranking is

reversed. A choice of ν = 10 dominates ν = 30 here too. Overall, SCV tends to do

better than UCV in small samples, except in the Student and lognormal cases. This

result is in accordance with the simulation results of Jones, Marron and Park (1991)

where smoothing the MISE give better convergence results when not far from the

Gaussian. But when far from it, the UCV gave better results despite its variability.

7 Conclusion

In this paper, we introduce a general method for solving explicitly the optimization

of CV-type problems. We use this approach for the optimization of UCV, BCV, and

SCV criteria in density estimation. We obtain an explicit first-order condition for the

bandwidth that optimizes each of these criteria. We then obtain an explicit asymp-

totic formula for the optimal bandwidth in each of the three cases. The asymptotic

formula is displayed in (30), (35), and (48). It requires no iteration, is simple and
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Table 6: Smoothed cross-validation with a Student kernel

Density Bandwidth Kernel’s ν n = 150 n = 450

Gaussian ĥaa 10 1.64 1.42
30 1.40 1.23

ĥa 10 1.31 1.20
30 1.33 1.19

ĥs of (47) 10 1.62 1.32
30 1.38 1.20

ĥs of (50) 10 1.59 1.27
30 1.43 1.19

Bimodal Mixture ĥaa 10 1.10 1.13
30 1.26 1.33

ĥa 10 1.35 1.39
30 1.38 1.46

ĥs of (47) 10 2.80 2.57
30 2.42 2.03

ĥs of (50) 10 1.11 1.23
30 1.23 1.43

Student ĥaa 10 1.50 1.43
30 1.93 1.95

ĥa 10 1.74 1.66
30 2.04 2.04

ĥs of (47) 10 1.94 1.55
30 1.84 1.78

ĥs of (50) 10 1.86 1.79
30 1.86 2.14

Skewed Mixture ĥaa 10 1.15 1.24
30 1.38 1.58

ĥa 10 1.45 1.63
30 1.50 1.75

ĥs of (47) 10 2.49 2.67
30 2.20 2.23

ĥs of (50) 10 1.17 1.42
30 1.35 1.73

Lognormal ĥaa 10 4.63 6.77
30 5.98 8.97

ĥa 10 5.03 6.92
30 6.05 8.91

ĥs of (47) 10 3.14 2.63
30 4.18 3.74

ĥs of (50) 10 5.70 8.25
30 5.85 9.49

Starting values are ĥS. Figures in italics indicate an improvement over

the corresponding case (ĥaa and ĥa here considered together) in Table 3.

Figures in bold indicate the best solution for the process when including

UCV and BCV in the comparison.
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very fast to calculate, is ISE-efficient, and is very robust. The latter two features

(efficiency and robustness) of our explicit asymptotic solution are a compensation

for CV’s notorious sampling variability which has preoccupied many in this field and

has led to many modifications of CV-type criteria in an attempt to stabilize it. Our

results apply to non-i.i.d. setups as well, with a minor modification of the index of

some sums as, for example, shown by Hart and Vieu (1990) and Hall, Lahiri and

Truong (1995).

Appendix

Proof of Lemma 1. By definition,

(
K(q) ∗ K(r)

)
(a) =

∫ ∞

−∞
K(q) (t) K(r) (a − t) dt;

and we drop the argument a henceforth from the LHS for convenience. Using K = φ,

K(q) ∗ K(r) =

∫ ∞

−∞
φ(q) (t)φ(r) (a − t) dt = Dq

w1
Dr

w2

∫ ∞

−∞
φ (w1 + t)φ (w2 + a − t) dt,

where Dq
w is shorthand for the q-th derivative with respect to w, evaluated at w = 0.

Using the convolution of two Gaussians,

K(q) ∗ K(r) =
1√
2
Dq

w1
Dr

w2
φ

(
w1 + w2 + a√

2

)
=

φ(q+r)
(
a/

√
2
)

√
2

= (−1)q+r φ
(
a/

√
2
)
Heq+r

(
a/

√
2
)

2(q+r+1)/2

by the definition of Hermite polynomials.

To work out Dh ∗ Dh ∗ Lg ∗ Lg, we start with

Lg ∗ Lg =
1

g2

∫ ∞

−∞
φ

(
t

g

)
φ

(
a − t

g

)
dt =

1

g

∫ ∞

−∞
φ (u)φ

(
a

g
− u

)
du

by a change of variable. Applying the result of the previous convolution and using

He0 ≡ 1,

Lg ∗ Lg =
φ
(
a/
(
g
√

2
))

g
√

2
= Lg

√
2 = Kg

√
2
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Next,

Dh ∗ Dh = Kh ∗ Kh − 2Kh + K0 = Kh
√

2 − 2Kh + K0,

hence

Dh ∗ Dh ∗ Lg ∗ Lg =
(
Kh

√
2 − 2Kh + K0

)
∗ Kg

√
2

= Kh
√

2 ∗ Kg
√

2 − 2Kh ∗ Kg
√

2 + Kg
√

2.

The remaining convolutions can be worked out by means of

Kb ∗ Kc =
1

bc

∫ ∞

−∞
φ

(
t

b

)
φ

(
a − t

c

)
dt =

1√
b2 + c2

φ

(
a√

b2 + c2

)
= K√

b2+c2

to give the required result.

Lemma 2 Let ν > 2.

(i) For a Student t(ν) kernel, k21 :=
∫∞
−∞ t2K(t) dt = ν/ (ν − 2) and

k02 :=

∫ ∞

−∞
K(t)2 dt =

√
2Γ
(

ν
2

+ 1
2

)
Γ
(

ν
2

+ 1
4

)
Γ
(

ν
2

+ 3
4

)

√
πν

3

2 Γ
(

ν
2

)3 ∼
(
1 − 3

16ν

)2 (
1 − 1

4ν

)

2
√

π
,

here k02 ∼ a(ν) meaning that the function a(ν) is made up of the leading terms of the

asymptotic expansion of k02 for large ν.

(ii) For a scaled Student t(ν) density with variance σ2,

I2 :=

∫ ∞

−∞
f (2)(u)2 du =

3ν (ν + 1)2 (ν + 3)2 c2
ν

σ5 (ν − 2)5/2 (2ν + 9)1/2 (2ν + 7) (2ν + 5) c2ν+9

∼ 3 (ν + 1)2 (ν + 3)2 (4ν − 1)2

σ54
√

πν (ν − 2)5/2 (2ν + 7) (2ν + 5) (8ν + 17)

where cν := Γ
(

ν+1
2

)
/
(√

πνΓ
(

ν
2

))
.

Proof. (i) For k21, the result is simply the usual variance of a t(ν). For k02, the

integrating constant c2ν+1 of the t(2ν + 1) density implies that

k02 =

∫ ∞

−∞

c2
ν

(1 + t2/ν)ν+1
dt =

√
ν

2ν + 1

(
Γ
(

ν+1
2

)
/
(√

πνΓ
(

ν
2

)))2

Γ (ν + 1) /
(√

π (2ν + 1)Γ
(
ν + 1

2

))

=

√
2Γ
(

ν
2

+ 1
2

)
Γ
(

ν
2

+ 1
4

)
Γ
(

ν
2

+ 3
4

)

√
πν

3

2 Γ
(

ν
2

)3 ∼ 1

2
√

π

(
1 − 3

16ν

)2(
1 − 1

4ν

)
,
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where the last equality follows from Legendre’s duplication formula

Γ (η) =
2η−1

√
π

Γ
(η

2

)
Γ

(
η + 1

2

)
,

and the asymptotic equivalence from the general approximation for the ratio of two

gamma functions

Γ(a + ν/2)

Γ(b + ν/2)
=

(ν

2

)a−b
(

1 +
(a − b)(a + b − 1)

ν
+ O

(
1

ν2

))

∼
(ν

2

)a−b
(

1 +
(a − b)(a + b − 1)

ν

)
.

(ii) The Student t(ν) density with variance σ2 is

f(u) =
cν

σ
√

1 − 2/ν (1 + u2/ (νσ2 (1 − 2/ν)))(ν+1)/2
,

hence

f (2)(u)2 =
(1 + 1/ν)2 c2

ν

σ6 (1 − 2/ν)3

(1 − (ν + 2)u2/ (νσ2 (1 − 2/ν)))
2

(1 + u2/ (νσ2 (1 − 2/ν)))ν+5 .

By the change of variable t = u
√

2ν + 9/
√

νσ2 (1 − 2/ν),

I2 =

∫ ∞

−∞
f (2)(u)2 du =

(1 + 1/ν)2 c2
ν

σ5 (1 − 2/ν)5/2 (2 + 9/ν)1/2 c2ν+9

∫ ∞

−∞

c2ν+9

(
1 − ν+2

2ν+9
t2
)2

(1 + t2/ (2ν + 9))ν+5 dt.

From the Student t(2ν + 9) density,

I2 =
(1 + 1/ν)2 c2

ν

σ5 (1 − 2/ν)5/2 (2 + 9/ν)1/2 c2ν+9

(
1 − 2

ν + 2

2ν + 7
+

(
ν + 2

2ν + 9

)2
3 (2ν + 9)2

(2ν + 7) (2ν + 5)

)

=
3ν (ν + 1)2 (ν + 3)2 c2

ν

σ5 (ν − 2)5/2 (2ν + 9)1/2 (2ν + 7) (2ν + 5) c2ν+9

.

Using

cν =
Γ
(

ν+1
2

)
√

πνΓ
(

ν
2

) ∼ 1 − 1
4ν√

2π
and c2ν+9 =

Γ (ν + 5)√
π (2ν + 9)Γ

(
ν + 9

2

) ∼ 1 + 17
8ν√

π
(
2 + 9

ν

)

(51)

gives the required asymptotic result.
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Lemma 3 (i) For a Student t(ν) kernel,

K(4)(t) =
cν (ν + 1) (ν + 3) ((ν + 2) (ν + 4) t4 − 6ν (ν + 4) t2 + 3ν2)

ν4 (1 + t2/ν)(ν+9)/2

∼ (4ν − 1) (ν + 1) (ν + 3) ((ν + 2) (ν + 4) t4 − 6ν (ν + 4) t2 + 3ν2)

4
√

2πν5 (1 + t2/ν)(ν+9)/2
.

(ii) For a scaled Student t(ν) density with ν > 2 and variance σ2,

I3 :=

∫ ∞

−∞
f (3)(u)2 du =

15ν (ν + 1)2 (ν + 3)2 (ν + 5)2 c2
ν

σ7 (ν − 2)7/2 (2ν + 13)1/2 (2ν + 7) (2ν + 9) (2ν + 11) c2ν+13

∼ 15 (ν + 1)2 (ν + 3)2 (ν + 5)2 (4ν − 1)2

σ74
√

πν (ν − 2)7/2 (2ν + 7) (2ν + 9) (2ν + 11) (8ν + 25)
,

where cν := Γ
(

ν+1
2

)
/
(√

πνΓ
(

ν
2

))
.

Proof. (i) This follows directly from K(t) = cν/(1 + t2/ν)(ν+1)/2 and (51).

(ii) From the Student t(ν) density with variance σ2 (see Lemma 2(ii)),

f (3)(u)2 =
9ν (ν + 1)2 (ν + 3)2 c2

ν

σ10 (ν − 2)5 u2 (1 − (ν + 2)u2/ (3σ2 (ν − 2)))
2

(1 + u2/ (σ2 (ν − 2)))ν+7 .

By the change of variable t = u/
√

σ2 (ν − 2),

I3 =

∫ ∞

−∞
f (3)(u)2 du =

9ν (ν + 1)2 (ν + 3)2 c2
ν

σ7 (ν − 2)7/2

∫ ∞

−∞
t2

(1 − (ν + 2) t2/3)
2

(1 + t2)ν+7 dt.

From the Student t(2ν + 13) density,

I3 =
9ν (ν + 1)2 (ν + 3)2 c2

ν

σ7 (ν − 2)7/2 c2ν+13

√
2ν + 13

×
(

1

2ν + 11
− 2 (ν + 2)

(2ν + 9) (2ν + 11)
+

5 (ν + 2)2

3 (2ν + 7) (2ν + 9) (2ν + 11)

)

=
15ν (ν + 1)2 (ν + 3)2 (ν + 5)2 c2

ν

σ7 (ν − 2)7/2 (2ν + 13)1/2 (2ν + 7) (2ν + 9) (2ν + 11) c2ν+13

.

Using (51) for cν and

c2ν+13 =
Γ (ν + 7)√

π (2ν + 13)Γ
(
ν + 13

2

) ∼ 1 + 25
8ν√

π
(
2 + 13

ν

)

gives the required asymptotic result.
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