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1. Introduction 

Division of innovative labor and R&D collaborative contractual relationships are 

recognized as increasingly important economic phenomena (see Arrow, 1983; Arora, 

Fosfuri, and Gambardella, 2001).  

In particular, networks of contractual relationships among firms specialized in 

research and exploration (Originators) and firms focused on development, 

production, and commercialization (Developers) are ever-widening organizational 

forms, especially in high-tech, knowledge-intensive fields (see Orsenigo, Pammolli, 

and Riccaboni, 2001).  

In the last ten years, several studies have shown that network structure and positions 

in networks influence firm performance and growth (see Powell, Koput, and Smith-

Doerr, 1996; Powell and Smith-Doerr, 1999) and, ultimately, market structure (Mc 

Lean and Padgett, 1996; Pammolli and Riccaboni, 2001). Moreover, most of the 

literature agrees that networks have to be analyzed as a distinct organizational 

solution for the access to outside knowledge sources, the coordination of 

heterogeneous learning processes by agents endowed by different skills, 

competencies, access to innovation, and assets (Pavitt, 2001).  

In spite of growing consensus on networks as a distinct organization form and on 

their importance in processes of learning and evolution, economic models of division 

of (innovative) labor tend to focus on dyadic contractual relationships and on trade-

offs defined at that level (Arrow, 1974; Williamson, 1991): particularly the tradeoff 

between economies from specialization exploited through task partitioning and the 

transaction costs involved in transferring knowledge and technological information 

through arm’s length contracts (see Pisano, 1990; Teece, 1988; Teece, 1998; Arora, 

Fosfuri, Gambardella, 2001).  

Against this background, the most relevant motivation for our analysis is an 

intellectual challenge to our understanding of the nature of ‘networks of innovators’ 

(Freeman, 1991) and of processes of firm growth, which is revealed by a somehow 
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unusual problem in the match between available theories and data. In fact, our 

empirical investigations on processes of firm growth in networks offer a neat picture, 

revealing the existence of scaling phenomena, with the firm connectivity distribution 

being well described by a power law of the form N=kS-α, where N is the number of 

firms with connections greater than S.  

This result, which is stunningly equivalent to well known empirical regularities on 

processes of growth in several domains of both natural and social sciences (see 

Simon, 1955; Albert and Barabasi, 2001; Fujita, Krugman, Venables, 2000), is hard 

to reproduce in any of the available economic theoretical frameworks. It would be 

obviously possible to find parameter combinations in models that produce a good fit 

with real data. However, any explanation of such an apparently general phenomenon 

ought to be central in any modeling effort.   

Along this way, we focus on the mechanisms behind the dynamic properties of 

growing networks and on firm growth in networks, unraveling striking analogies 

between processes of internal growth and processes of external growth through 

collaborative agreements.  

We consider the links between Originators and Developers as instances of firm 

external growth. On the one side, Originators discover new technological 

opportunities and establish contractual relationships that generate income and give 

access to relevant assets. On the other side, Developers rely on collaborations with 

Originators to get access to outside knowledge sources and capture new technological 

opportunities.  

We represent size and growth in terms of the number of connections of a given firm, 

seen as independent business opportunities of size unity arising over time (see Ijiri 

and Simon, 1977).  

Moreover, we do show that the scale free behavior detected in networks can be 

accounted for by a very general and simple model, which is rooted in the ‘old’ 

stochastic approach to the analysis of firm growth.  
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We show that networks growth are shaped by entry of new firms and by proportional 

growth of the connectivity of individual firms, with remarkable departures from a 

regime of universal random growth.  

In addition, different regimes of growth are found to be at work for Originators vs. 

Developers, reflecting differences in the processes of generation and 

absorption/development of technological opportunities.  

In particular, the population of Originators is characterized by a regime of 

proportional growth which corresponds to a ‘popularity is attractive’ mechanism (see 

also Zucker, Darby, Brewer, 1997), while for Developers this mechanism is 

attenuated by a random component.  

While this result cannot be fully explained given the present status of our knowledge, 

it is coherent with an interpretation of firm growth and networking activities which is 

rooted in a competence-based view of organizational growth and division of labor 

(Penrose, 1995; Richardson, 1972; Nelson and Winter, 1982; Dosi, 2000).  

In particular, the empirical findings presented in this paper, as well in Orsenigo, 

Pammolli, Riccaboni, 2001 and in Pammolli and Riccaboni, 2001) show that 

processes of network growth are sustained by the existence of dynamic 

complementarities between patterns of specialization in knowledge production 

(Originators) and processes of diversification of in-house capabilities by large multi 

product, multi technological companies (Developers) (see also Granstrand, Patel, 

Pavitt, 1997; Pavitt, 2001).  

We do think that our analysis points to some basic principles behind the growth of 

firms in technological networks, providing a simple benchmark to be used in the 

context of future investigations.  

In addition, one important feature of our work is related to the fact that, since we are 

dealing with the dynamics of a set of links, we can exploit the duality of the overall 

system, extracting topological information which can be used to uncover the 

underlying causal data generating mechanisms. That is to say, one important 

contribution of the analysis of firm growth in systems of division of labor can be the 
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possibility to produce plausible restrictions on the acceptable classes of conditional 

predictive distributions and on the dynamics of the stochastic processes which 

generated them, so contributing to a better understanding of firm growth in general.  

2. Firm Growth and Connectivity in Networks  

It is our claim that firm growth in networks can be fruitfully framed in terms of the 

‘old’ stochastic tradition in the analysis of processes of firm internal growth, with 

particular reference to the seminal contributions of Simon and colleagues (see Simon, 

1955; Ijiri and Simon, 1977).  

Both business size distributions and nodes degree distributions of many real-world 

networks exhibit heavy tails and power-law scaling of the form P(k)~k-γ (see Sutton, 

1997; Brock, 1999; Albert and Barabasi, 2001). The connectivity distributions of 

networks with complex topologies such as the world wide web, the internet, phone 

call and power networks, the movie actor collaboration network, the science 

collaboration graph, the web of human sexual contacts, the citation network of 

scientists, follow scale-free power laws, reflecting some major departures from a 

regime of 'universal' random growth (Barabási and Albert, 1999).  

To make a long story short (see Riccaboni, 2000), the origin of scale-free behaviors 

in networks can been accounted for by a simple model for scaling in growth 

processes that was proposed by Herbert Simon (1955), in order to give an 

interpretation of distributions such as word frequencies in texts or population figures 

of cities.  

Simon models the dynamics of a system of elements with associated counters 

(business opportunities of size unity) where the dynamics of the system is based on 

constant growth via the addition of new elements (new business opportunities) as 

well as incrementing the counters at a rate proportional to their current values. First, 

networks can grow by the addition of new nodes that become linked to existing ones. 

Second, networks growth can be driven by a popularity mechanism (preferential 

attachment).  
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Interestingly enough, these two mechanisms can be considered as particular instances 

of the model which was solved by Simon in his 1955 paper, in which the Pareto 

distribution is derived from “simple and economically plausible assumptions”, 

namely size independence of percentage growth rate (the Gibrat’s law of 

proportionate effect), and constancy of the entry rate. In particular, the original Simon 

model accounts for a robust empirical regularity that has been detected in many 

networks across different fields, irrespectively of their nature and components: that is, 

the probability distribution of the number k of links that point to a particular node (i.e. 

web page, scientist), P(k), decays following a power law P(k)~k-γ, with the scaling 

exponent γ being very close to 2, both for the distribution of in coming and out 

coming links (for a review, see Albert and Barabási, 2001).  

Given the pervasiveness of scale free distributions across different empirical domains, 

we retain here the Pareto curve in our analysis of firm growth in networks. .  

In particular, Ijiri and Simon have shown, in the case of business firm size, the 

existence of systematic departures from Pareto. Equivalently, most empirical 

connectivity distributions in networks depict similar flattened upper tails, suggesting 

equivalent departures from the Pareto law, with nodes with a low connectivity 

following a different distributional model (possibly Poisson, or a combination of 

Poisson and power law).  

In the next session, we will show that the mechanisms identified by Simon and 

colleagues to explain the observed departures from the Pareto size distribution -

namely, M&As and growth autocorrelation- hold also in the case of firm growth in 

networks: (a) The probability of a firm disappearing is not independent of its 

connectivity: poorly connected organizations evidence a higher probability to be 

acquired by core players than vice versa; (b) The growth of firms within the network 

is characterized by autocorrelation, which tends to vanish over time: recent links have 

only a short-run effect upon firm’s future probability of relinking (that is, the 

probability of establishing a new link conditional upon having already established a 

link); the effect of a given opportunity (deal established) on future collaborations 

decays as time goes by.  
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Despite the general validity of the framework that we have recalled, we detect the 

existence of systematic differences between the curvatures of the connectivity 

distributions of Originators vs. Developers.  

In the next session we will show, by means a simple simulative model, that these 

differences can be considered the result of inherently different mechanisms of growth 

at work for the two types of firms.  

 

3. Firm Growth in Networks: Empirical and Simulative Results 

In this section we refer to a domain, biopharmaceuticals, in which the R&D network 

among firms has grown substantially in the last 30 years.  

New bodies of knowledge have generated a plethora of scientific and technological 

opportunities, nurturing a continuous flow of entry of new firms, as well as an 

extensive division of innovative labor between Originators and Developers of R&D 

projects (Orsenigo, Pammolli, and Riccaboni, 2001).  

The expansion of the network has been driven by the entry of new firms and by the 

addition of new collaborations. In particular, during the Nineties, the number of 

research alliances has grown fourfold, while the number of firms has almost doubled. 

At the same time, the number of M&A events has been steadily high, culminating 

with a few mega-mergers in the last few years1 (see Pammolli and Riccaboni, 2001).  

Data used for this study are drawn from the Pharmaceutical Industry Database 

(PHID) at the University of Siena.  

An important feature of PHID is that it provides information on typology, 

technological content, and date of signing for 5353 collaborative agreements and 989 

mergers and acquisitions (M&As), involving 1583 firms worldwide. 

                                                
1 1996: Ciba-Geigy – Sandoz (Novartis); 1997: Roche – Boehringer Mannheim; 1998: Hoechst Marion 
Roussel – Rhône-Poulenc Rorer (Aventis); Sanofi – Syntélabo; Astra – Zeneca (AstraZeneca); 1999: 
Pharmacia & Upjohn – Monsanto (Pharmacia Corp.); 2000: Glaxo Wellcome – SmithKline Beecham 
(Glaxo SmithKline); Warner Lambert – Pfizer.  
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Here, given our focus on division of innovative labor– we have selected 3807 R&D 

collaborative transactions subscribed by 349 pharmaceutical companies, and 1100 

Dedicated Biotechnology Firms (DBFs). For each firm we have collected additional 

information on location, size, main areas of activity, age, and type.  

For each contract, we have recorded the following transaction-specific attributes:  

Date of signing; 

Stage of project development at subscription (i.e. discovery, preclinical, clinical); 

Technological content (i.e. gene therapy, genomics, molecular diversity…); 

Targeted diseases (i.e. AIDS, Alzheimer, Cancer…); 

Typology (viz. license, joint venture, co-development…).  

For 3171 R&D collaborative agreements we are able to distinguish an Originator 

(Licensor) from one or more Developers (Licensees).  

 

Based on our data set, we begin our investigation by looking at the connectivity 

distributions for Originators and Developers. In Figure 1 the integrated connectivity 

density distribution for both Originators and Developers is plotted on a double log 

scale. The upper tails of both distributions are well fitted by a power law with 

exponent –1, correspondent to γ=2±0.1. Figure 1 reveals, however, the existence of a 

remarkable concavity of the actual connectivity distributions, which substantiates a 

rather significant departure from the theoretical power law distribution.   

 

[FIGURE 1 ABOUT HERE] 

 

In order to investigate the mechanisms behind the observed departures, we sort firms 

in decreasing order of connectivity and plot the relationships between rank and 

connectivity on a log-log scale. The results are shown in Figure 2 and 3.  

As noticed above, a first economic mechanism that sways the degree distribution 

form Pareto is the process of consolidation. Since in the pharmaceutical industry 

merged and acquired firms usually remain separated de facto for long, we are allowed 

to follow their growth processes even after tie-up events and to evaluate the degree 
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distribution of single freestanding divisions as if they never collapse into they relative 

holdings.  

The comparison of distributions in Figure 2 reveals that a significant fraction of the 

departure from the Pareto connectivity-rank distribution (straight line on a double-log 

scale) can be ascribed to M&As. As it is evident, the slope of the post-merger 

distribution (holdings) is steeper than the slope of the “mergerless” distribution (see 

also the OLS estimates in Table 1 below). Moreover, the concavity of the distribution 

is influenced by M&As. The deviation of the post-merger from the Pareto 

distributions is wider than the correspondent departure from the “mergerless” 

distribution. Not surprisingly, the probability of a firm disappearing is not 

independent of connectivity, since less connected organizations have a higher 

probability to be acquired by core players than vice versa.  

 

[FIGURE 2 ABOUT HERE] 

 

So far, we have discussed the effects of M&As on the connectivity distribution. 

However, the consolidation process accounts for only a fraction of the observed 

departure form the Pareto distribution. Autocorrelation of growth opportunities is a 

second possible cause leading to the concavity of curve. In order to test if this second 

mechanism holds in the case of firm growth in networks, we now focus on the deal-

making activity between standing-alone firms.  

As it is evident from Figure 3, both mergerless distributions show remarkable 

departures from Pareto. Figure 4 shows that the probability of capturing a new 

opportunity decays in time. As noticed by Ijiri and Simon, 1977, this mechanism 

substantiates can account for the observed deviation from Pareto.  

The above results are confirmed in Table 1, in which we perform an OLS estimate of 

the theoretical Pareto distribution: εβ ++= rAk logloglog . The connectivity of 

each firm (k) and its rank (r) are shown to be linearly related on a double-log scale. 

Table 1 reports also the values of the intercepts (log A, i.e. the logarithm of the largest 
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firm’ connectivity) and the estimated slope coefficients (β). In order to measure the 

extent of the concavity we have added a cubic term and compare the estimated 

coefficients (c).  

However, Figure 3 shows also systematic differences between the curvatures of the 

connectivity distributions of Originators vs. Developers. These findings are 

suggestive of different relational behaviors for the two types of firms, which are not 

explained by differences in intensity and decay of growth autocorrelation, which 

appear to be very similar by looking at Figure 4.  

 

[FIGURE 3 ABOUT HERE] 

 

[TABLE 1 ABOUT HERE] 

 

[FIGURE 4 ABOUT HERE] 

 

In order to improve our understanding of these different patterns of firm growth in 

networks, we introduce a simulative model, which is based on two simple parameters 

and make possible a better characterization of the processes of growth for Originators 

and Developers.  

The model is based on the simple assumptions of entry and proportional growth. A 

parameter (p) sets the interdependence between the growth of the network and the 

flows of firm entry. A parameter (q) gives the probability of having a cumulative 

relational regime, reflecting the relative growth of number of nodes versus number of 

links. 

Each simulation starts with N isolated nodes (firms).  

At each time step, with probability p, a new Originator enters the network, whilst 

with probability (1-p) a link is originated by an already active firm.  

With probability q, an Originator links to a Developer chosen preferentially, in 

proportion to its connectivity. In this case a new link is drawn from an Originator to a 
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Developer, which is selected with probability Π(d) proportional to its degree k(d). 

Based on the evidence discussed in Powell, Koput, and Smith-Doerr, 1996, as well as 

in Orsenigo, Pammolli, and Riccaboni, 2001, we model Π(d) as a linear function of 

k(d). With probability (1-q), an Originator establishes a new link with a preexisting 

Developer chosen at random.  

We tested different versions of the simulative model for different combinations of p 

and q. In a nutshell, two different generative processes turn out to be in place for 

Originators and Developers. In the case of Originators, the actual connectivity 

distribution is accounted for by a regime of preferential attachment and sustained 

entry (p=.5, q=1).  

On the contrary, in the case of Developers the simulative model that better 

approximates the real-world distribution is a mixture of the random and the 

cumulative generative processes, with sustained entry (p=.5, q=.5)..  

 

 4. Concluding Discussion 

In this paper we have shown that a simple generalization of stochastic explanations of 

internal firm size and growth fit a whole range of empirical findings.  

Along this line, we have introduced a model, which can be used as a benchmark in 

the analysis of firm external growth in networks of collaborative agreements.  

In the context of a specific industry, we have shown that the growth of the overall 

network of R&D collaborative agreements is shaped by the interplay among a 

differentiated set of regimes of firm growth, with a crucial role being played by entry 

and by a mechanism of proportional growth.   

The scale-free structures that we have found to be in place in the network of 

collaborative agreements in pharmaceutical R&D can be considered as one striking 

outcome of a fairly general ‘popularity is attractive’ principle, which seems to sustain 

also the growth of systems of division of labor and of firms acting within them.  

Being very general, mechanisms behind external growth in networks do not seem to 

differ from the ones that sustain firm internal growth.  
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We do think that this result is deeply suggestive of the existence of organizational 

principles that are general in nature, and map on both the internal structure of firms 

and the structure of markets and networks.  

Moreover, we have shown that the dual nature of networks can convey information 

on topological properties of industries and roles/positions of firms within them (to 

begin with, the distinction between Originators and Developers), which can be used 

to understand some fundamental structures, mechanisms, and generative processes 

behind the growth of firms and industries, in the direction of building parsimonious 

and, at the same time, realistic, representations.  

At present, our analysis has some obvious limitations. First, apart from information 

on firms’ age and on the distinction between Originators and Developers, we did not 

take into account any node-specific attribute. Second, we have considered links of 

size unity, without addressing the properties of weighted networks and interactions 

strength. Third, the relational propensities of different nodes stay unchanged in our 

model. Finally, the exit of nodes from the network was not accounted for.  

These shortcomings notwithstanding, this paper should be considered as a first step 

towards the understanding of some general determinants of firm growth in networks. 

Despite its limitations, it provides a parsimonious and general framework to ‘reverse 

engineering’ the growth of networks in different industries, as we attempt to make 

our models more realistic.  

Some of the current limitations of our analysis could be overcome, in the future, 

based on a higher availability of data on real systems and, in particular, of detailed 

topological and economic information on real-world networks.  

While at present such data are relatively rare, the increasing interest in industrial 

networks is leading to the development of suitable data sets, offering further guidance 

for modeling and interpreting the growth of these complex and important economic 

systems.  
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Figure 1- Integrated Connectivity Density Distribution: Originators and 

Developers 
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Figure 2- Rank-Size Distribution of Firms in the Network of Collaborative 

Agreements: The Effect of M&As 

1

2

0 1 2
Log(rank)

Lo
g(

de
al

s #
)

H oldings

D ivisions

 

 

 



 17

Figure 3- Rank-Size Distribution of Firms in the Network of Collaborative 

Agreements: Originators and Developers 

 

0.5

1

1.5

2

0 1 2
Log(rank)

L
og

(d
ea

ls
 #

)

D evelopers

Originators

 

 

Table 1. Pareto Regressions 

 log A β c R2 

Holdings, linear 2.169 -0.500 - 0.84 
Holdings, cubic 2.169 -0.117 -0.197 0.99 
Divisions, linear 1.973 -0.446 - 0.85 
Divisions, cubic 1.973 -0.126 -0.158 0.99 
Developers, linear 1.991 -0.551 - 0.88 
Developers, cubic 1.991 -0.206 -0.186 0.99 
Originators, linear 1.591 -0.400 - 0.87 
Originators, cubic 1.591 -0.115 -0.141 0.99  
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Figure 4- Probability of Relinking at Different Time Steps: Originators and 

Developers 
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