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Abstract

We consider a multi-player situation in an illiquid market in which one player tries to liquidate
a large portfolio in a short time span, while some competitors know of the seller’s intention and try
to make a profit by trading in this market over a longer time horizon. We show that the liquidity
characteristics, the number of competitors in the market and their trading time horizons determine
the optimal strategy for the competitors: they either provide liquidity to the seller, or they prey on
her by simultaneous selling. Depending on the expected competitor behavior, it might be sensible
for the seller to pre-announce a trading intention (“sunshine trading”) or to keep it secret (“stealth
trading”).
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Introduction

A variety of circumstances such as a margin call or a stop-loss strategy in combination with a large price
drop can force a market participant (the “seller”) to liquidate a large asset position urgently. Such a
swift liquidation may result in a significant impact on the asset price. Hence, intuitively it seems to be
crucial to prevent information leakage while executing the trade, for informed market participants (the
“predators” or the “competitors”) could otherwise try to earn a profit by predatory trading: They can
sell in parallel with the seller and cover their short positions later at a lower price. Probably the most
widely known example of such a situation is the alleged predation on the hedge fund LTCM1. Surprisingly,
however, some sellers do not follow a secretive “stealth trading” strategy but rather practice “sunshine
trading”, which consists in pre-announcing the trade to competitors so as to attract liquidity2.

Our goal in this paper is to propose a new model of a competitive trading environment that explains
the tradeoff that leads the seller to choose between stealth and sunshine execution and the competitors to
choose between predation and liquidity provision. We argue that these choices are driven by the relations
between the different liquidity parameters of the market, the number of competitors of the seller and
the trading time horizons. In particular, different behavioral patterns may coexist within the same set
of agents when they are trading in markets of different liquidity types. Since our model market is semi-
strong efficient and allows for anonymous trading possibilities, our results are applicable to a wide variety
of real-world markets including most equity exchange markets.

To fully acknowledge the roles of the different liquidity parameters of the market and of the number of
competitors of the seller, we need to relax all exogenous trading constraints in our model. In particular, we
do not require that predators face the same time constraint as the seller. This assumption is reasonable
as sellers typically must achieve a trading target in a fixed and relatively short time horizon—e.g., a
margin call has to be covered by the end of the day—while predators often may afford to maintain a
long or a short position for a number of days. In order to capture the structure of this situation, we
consider a two stage model of an illiquid market. In the first stage, the seller as well as the predators
trade; in the second stage, only the predators trade and unwind the asset positions they acquired during
the first stage. Liquidity effects are incorporated into our market model by applying a permanent as
well as a temporary impact as in the market model proposed by Almgren and Chriss (2001) and used by
Carlin, Lobo, and Viswanathan (2007). For the sake of simplicity, throughout this paper we focus on the
liquidation of a long position of assets; equivalent statements hold for the liquidation of a short position.

In our analysis of the optimal agent behavior in this model, we first assume that all agents know the
seller’s liquidation intentions. We derive a Nash equilibrium of optimal trading strategies for the seller
and the predators, and we show that, in equilibrium, the predators’ optimal strategy depends heavily
on the liquidity type of the market. We identify two distinct types of illiquid markets: First, if the
temporary price impact dominates the permanent impact then prices show a high resilience after a large
transaction. The price in such “elastic” markets behaves similar to a rubber band: trading pressure can
stretch it, but after the trading pressure reduces, the price recovers. Such market conditions can occur
when it is difficult to find counterparties for a specific deal within a short time. In such a market, the
optimal strategy for the predators is to cooperate with the seller: they should buy some of the seller’s
assets and sell them at a later point in time. On the other hand, if the permanent price impact of a trade
outweighs the temporary impact, then large transactions have a long-lasting influence. In such “plastic”
markets, the trading pressure exerts a “plastic deformation” on the market price. Such a situation can
arise when a large supply or demand of the asset is interpreted as the revelation of new information on the
fundamentals of the asset. Under these conditions the optimal behavior of the predators is the opposite:
they should sell in parallel to the seller and buy back at a later point in time (predatory trading). In this
case, the price is pushed far down during the first stage and recovers during the second stage, resulting in

1See, e.g., Lowenstein (2001), Jorion (2000) and Cai (2003)).
2See, e.g., Harris (1997) and Dia and Pouget (2006). A similar phenomenon occurs in the sometimes widespread

distribution of so-called “indications of interest” in which brokers announce tentative conditions for certain liquidity trades.
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price overshooting. The latter effect disappears as the number of predators increases; for a large number
of predators, the market price incorporates the seller’s intentions almost instantly and exhibits little
drift thereafter. This effect indicates that our model market fulfills the semi-strong form of the efficient
markets hypothesis.

Through sunshine trading, the seller can increase the number of predators. We find that in elastic
markets, the seller always achieves a higher return when predators are participating than when she is
selling by herself. Therefore, sunshine trading appears to be sensible in such a market. In a plastic
market, the seller’s return can be significantly reduced by predators; however, as the number of predators
increases, the optimal strategy for the predators changes from predation to cooperation and the return for
the seller increases back, sometimes even above the level of return obtained in the absence of predators.
Hence, if the seller has reason to believe that there is some leakage of information3, it may be sensible to
take the initiative of publicly announcing the impending trade so as to turn around the adverse situation
of predation by few competitors into the beneficial situation of liquidity provision.

Although our approach is normative rather than descriptive, our model provides a number of em-
pirically testable hypotheses for both seller and competitor behavior. In our model, sunshine trading is
rational in elastic markets or when the trading horizon of the seller is comparatively short. We therefore
suspect that sunshine trades and indications of interest are usually short-term and occur in markets with
high temporary impact, while we conjecture that efforts to conceal trading intentions are particularly
strong in plastic markets.

We predict that competitors in plastic markets pursue predatory trading if they know about selling
intentions of other agents, while we expect them to provide liquidity in elastic markets. Unfortunately, we
are not aware of any systematic study of informed competitors reactions to trading under varying market
liquidity4. However, the analysis of distressed hedge funds lends anecdotal support to our hypothesis.
During the LTCM crisis in 1998, several competitors allegedly engaged in front-running and predatory
trading, while no individual investor was willing to acquire LTCM’s positions and thus provide liquidity.
According to our results, such a behavior is rational in plastic markets. The price evolution after the
LTCM crisis indicates that its liquidation had a predominantly permanent effect5, i.e., that the market
was indeed plastic.

More recently, the hedge fund Amaranth experienced severe losses resulting in the need for urgent
liquidation6. Contrary to LTCM, Amaranth quickly found a buyer for its portfolio7. In the Amaranth
case, liquidity provision apparently appeared as the more profitable option for competitors compared to
predatory trading. How can the differences between competitors’ behavior in the LTCM and Amaranth
cases be explained? In both cases very large market participants were in distress, promising large profit
opportunities for competitors. However, Amaranth operated in the natural gas market, which behaved

3In practice, information leakage can occur due to a variety of circumstances. For instance, as in the case of the LTCM
crisis, the position may simply be too large to keep its liquidation secret. In a much more common situation, the execution
of the trade will be commissioned to an investment bank, but advance price quotes are obtained from several banks. Banks
that are not successful in bidding for the trade will nevertheless be informed about its existence and hence constitute
potential predators. When obtaining price quotes, it is therefore common practice for the client to distribute only a limited
amount of information on their “bid sheets” so as to to reduce the potentially adverse effects of predatory trading. Another
example is provided by market makers who must report large transactions.

4This could be carried out, e.g., by analyzing the order flow after pre-announcement of a sale. In plastic markets, we
expect to see an initial increase of additional seller initiated trades. In elastic markets, we expect to see an increase in buy
orders.

5Lowenstein (2001) notes that (Epilogue, page 229): “(...) a year after the bailout [of LTCM], swap spreads remained
(...) far higher than when Long-Term had entered the (...) trade.”

6For a description of the Amaranth case, see Till (2006) and Chincarini (2007). Finger (2006) finds that “The events of
September [2006] led to the greatest losses ever by a single hedge fund, close to twice the money lost by Long Term Capital
Management.”

7Till (2006) notes that “Amaranth sold its entire energy-trading portfolio to J.P. Morgan Chase and Citadel Investment
Group on Wednesday, September 20th [2006].”
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elastic during a previous hedge fund liquidation8. According to our model liquidity provision is the most
profitable behavior in such an elastic market.

The profitability of liquidity provision in elastic markets is confirmed by Coval and Stafford (2006),
who find that providing liquidity to open-ended mututal funds that suffer severe cash outflows promises
average annual abnormal excess returns well over 10%. This supports our hypothesis since these profits
are made on the temporary nature of the price impact. Interestingly, the impact of stock sales in mar-
kets that do not suffer from extreme cash outflows appears to be predominantly permanent, resulting in
profitable predatory trading opportunities for insiders.

Our research builds on previous work in three research areas. The first area to which our work is
connected is research on predatory trading. In previous studies, the size of the liquidation completely
determines the optimal action of the competitors. In these models, predatory trading is always optimal
for large liquidations. For small liquidations, predatory trading is always or never optimal, depending of
the model at hand.

Brunnermeier and Pedersen (2005) suggest a model in which the total rate of trading as well as the
asset positions of all traders face exogenous constraints. They show that in equilibrium in their model
predation and price overshooting occur necessarily, irrespective of the market environment9. As a side
effect of the exogenous trading constraint, their model market is weakly inefficient: even if the number
of informed predators is large, the market price changes continuously in reaction to the trading of the
seller and the predators.

Carlin, Lobo, and Viswanathan (2007) propose a model in which competitors can engage in and refrain
from predatory trading, however there is no room for optimal liquidity provision. To explain abstinence
from predatory trading, they assume that all market participants repeatedly execute large transactions in
a fully transparent market10; in such a repeated game, predation can be punished by applying a tit-for-tat
strategy. In their model, competitors always refrain from predatory trading while others are liquidating
small positions, but cooperation always breaks down if an unusually large distressed sale is occurring.
Although their analysis of a one stage game is also at the foundation of our model, the two models diverge
in their qualitative predictions of trading decisions: their model predicts that predatory trading is most
widespread in elastic markets, while our model predicts the opposite.

Attari, Mello, and Ruckes (2005) discuss trading strategies against a financially constraint arbitrageur.
Price impact in their model market is completely temporary, resulting in an elastic market with profitable
liquidity provision. By clever exploitation of the arbitrageur’s capital constraint, the competitors can
profitably engage in predatory trading, but only for arbitrageurs with very large asset positions.

In a second line of research, the effects of sunshine trading are investigated. In a theoretical inves-
tigation, Admati and Pfleiderer (1991) propose a model in which sunshine trading is always increasing
the seller’s return as long as speculators do not face market entry costs. The underlying motives for
sunshine trading in this model and in our model are very different11. Empirical evidence on the benefit
of trade pre-announcements appears to be mixed (see, e.g., Harris (1997), Dia and Pouget (2006)), which

8Till (2006) observes that “There was a preview of the intense liquidation pressure on the Natural Gas curve on 8/2/06,
the day before the [natural-gas-oriented] energy hedge fund, MotherRock, announced that they were shutting down. (...) A
near-month calendar spread in Natural Gas experienced a 4.5 standard-deviation move intraday before the spread market
normalized by the close of trading on 8/2/06.”

9The only situation in which predatory trading does not occur in the model of Brunnermeier and Pedersen (2005) is
when there is significant capacity on the sideline. In their model, this implies that the asset is heavily undervalued. They
show that this cannot be the case in equilibrium.

10Our model explains cooperation in a different way; in particular, our model is also applicable to anonymous markets.
11In the model of Admati and Pfleiderer (1991), sunshine traders can expect to obtain better trade conditions in the

market since it is assumed that their actions are not based on private information. In our model, we do not assume that
sunshine trades have a special motivation; instead, we show that sunshine trading under certain market conditions can raise
the attention of competitors and attract them to provide liquidity. A different market perception of sunshine trades can
easily be incorporated in our framework by applying different liquidty parameters for sunshine trades and for unannounced
trades.
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is in line with our observation that the potential benefit of sunshine trading depends on the liquidity
characteristics of the market.

The third line of research consists of empirical investigations and theoretical modeling of the market
impact of large transactions. The empirical literature is extensive12. These empirical results, most no-
tably the identification of temporary and permanent impact, have led to theoretical models of illiquid
markets. One line of research focused on deriving the underlying mechanisms for these liquidity effects13.
A second line takes the liquidity effects as exogeneously given and derives optimal trading strategies
within such an idealized model market. We follow this second approach and apply a market model simi-
lar to the one proposed by Almgren and Chriss (2001). Several alternative models have been proposed14;
the advantages and disadvantages of these models are still a topic of ongoing research.

The remainder of this paper is structured as follows. In Section I, we introduce the market model
and specify the game theoretic optimization problem. As a preparation for the general two stage model,
we review predation in a one stage model in Section II. In this model, the seller and the predators face
the same time constraint, i.e., the predators do not have the opportunity to trade after the seller finished
selling. In the main Section III, we turn to the more general two stage framework and derive our main
results. After identifying the Nash equilibrium of optimal trading strategies in Section IV, we investigate
the qualitative properties of our model in three example markets in Section V. Thereafter, we summarize
the general properties in Section VI. Section VII concludes. Appendix A contains additional propositions
on the one stage model. All proofs of propositions are given in Appendix B.

I The market model

We start by describing the market dynamics and trade motives of market participants. The market
consists of a risk-free asset and a risky asset. Trading takes place in continuous time. We assume that
the risk-free asset does not generate interest. In this market we consider n + 1 strategic players and a
number of noise traders. The strategic players are aware of liquidity needs in the market and optimize
their trading to profit from these needs, whereas noise traders have less information and trade based on
exogenous liquidity and investment needs. We assume that the number of strategic players (n + 1) is
given a priori. During our analysis, we will perform comparative statics and discuss the incentives for
each player to change the number of strategic players in the market.

We denote the time-dependent risky asset positions of the strategic players by X0(t), X1(t), ..., Xn(t)
and assume that they are differentiable in t. Their trading Ẋi(t) affects the market price in the form of
a permanent impact and a temporary impact. Trades at time t are thus executed at the price

P (t) = P̃ (t) + γ

n∑

i=0

(Xi(t)−Xi(0)) + λ

n∑

i=0

Ẋi(t). (1)

Here, P̃ (t) is a one-dimensional arithmetic Brownian motion without drift, starting at P̃ (0) = P0 and
defined on a probability space (Ω,F ,P). This term reflects the price changes due to the random trades
of noise traders. The second term on the right hand side represents the permanent price impact resulting

12See, e.g., Kraus and Stoll (1972), Holthausen, Leftwich, and Mayers (1987), Holthausen, Leftwich, and Mayers (1990),
Barclay and Warner (1993), Chan and Lakonishok (1995), Biais, Hillion, and Spatt (1995), Kempf and Korn (1999), Chordia,
Roll, and Subrahmanyam (2001), Chakravarty (2001), Lillo, Farmer, and Mantegna (2003), Mönch (2004), Almgren, Thum,
Hauptmann, and Li (2005), Coval and Stafford (2006), Obizhaeva (2007), Large (2007).

13See for example Kyle (1985), Glosten and Milgrom (1985), Easley and O’Hara (1987), Foster and Viswanathan (1996),
Frey (1997), O’Hara (1998), Bondarenko (2001) and Biais, Glosten, and Spatt (2005).

14See, e.g., Bertsimas and Lo (1998), Almgren (2003), Butenko, Golodnikov, and Uryasev (2005), Obizhaeva and Wang
(2006), Engle and Ferstenberg (2006), Alfonsi, Schied, and Schulz (2007), Frey (1997), Frey and Patie (2002), Bank and
Baum (2004), Çetin, Jarrow, and Protter (2004), Çetin, Jarrow, Protter, and Warachka (2006), Jarrow and Protter (2007).
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from the change in total asset position of all strategic players. Its magnitude is determined by the
parameter γ > 0. The third term reflects the temporary impact caused by the net trading speed of all
strategic investors. Its magnitude is controlled by the parameter λ > 0. This price dynamics model is a
multi-player extension of the framework introduced by Almgren and Chriss (1999) and Almgren (2003)
with linear permanent and linear temporary impact.

In this market, the strategic players are facing the following optimization problem. Each player i
knows all other players’ initial asset positions Xj(0) and their target asset positions Xj(T ) for some
fixed point T > 0 in the future15. We assume that these trading targets are binding; players are not
allowed to violate their targets. We assume that all players are risk-neutral16; therefore, players want to
maximize their own expected return by choosing an optimal trading strategy Xi(t) given their boundary
constraints on Xi(0) and Xi(T ). In mathematical terms, each player is looking for a strategy that realizes
the maximum

ri := max
Xi

E(Return for player i) = max
Xi

E

(∫ T

0

(−Ẋi(t))P (t)dt

)
(2)

= max
Xi

E


−

∫ T

0

Ẋi(t)


P̃ (t) + γ

n∑

j=0

(Xj(t)−Xj(0)) + λ

n∑

j=0

Ẋj(t)


 dt


 . (3)

Although in principle the strategies Xi might be predictable, we limit our discussion to deterministic
strategies, where the function Xi does not depend on the stochastic price component P̃ (t). In such
open-loop strategies, all players determine their trade schedules ex ante17. Hence,

ri = max
Xi


−

∫ T

0

Ẋi(t)


P0 + γ

n∑

j=0

(Xj(t)−Xj(0)) + λ

n∑

j=0

Ẋj(t)


 dt


 . (4)

A set of strategies (X0, X1, ..., Xn) satisfying Equation (4) for all i = 0, 1, ..., n constitutes a Nash
equilibrium; we call such a set of strategies optimal18 and denote the corresponding optimal returns in
equilibrium by Ri := ri. These are determined by the expected price

P̄ (t) := E(P (t)) = P0 + γ

n∑

i=0

(Xi(t)−Xi(0)) + λ

n∑

i=0

Ẋi(t). (5)

Whenever we refer to price or return in the following, we will always refer to the expected price P̄ (t)
and the expected return − ∫

Ẋi(t)P̄ (t)dt.

II The one stage model

In this section, we investigate the optimal strategies in a one stage framework: all players trade over the
same time interval [0, T1]. The results in this section will be used in the analysis of a two stage model in
the following sections.

15For the purposes of this paper, we assume that all strategic players have perfect information. For imperfect information,
we expect to obtain slightly changed dynamics (potentially including a “waiting game” as in Foster and Viswanathan (1996)),
but expect the qualitative results on predatory trading and liquidity provision to remain unchanged.

16See also Footnote 22.
17The analysis of closed-loop strategies in which players can dynamically react to other players actions is mathematically

more difficult. It is often not possible to derive closed form solutions, on which we rely in the proof of Theorem 2. Carlin,
Lobo, and Viswanathan (2007) show numerically that closed-loop solutions of the one stage model (see Section II) are
similar to the open-loop solutions and do not exhibit any new qualitative features. Therefore, no major differences are
expected in the two stage model introduced in Section III.

18These strategies remain optimal for the entire trading time. At a future point in time t ∈ [0, T ], there is no reason to
deviate from the trade schedule chosen at time 0 as long as no other player deviated from her trade schedule.
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Parameter Value
Asset position X0 1
Initial price P0 10
Duration T1 1
Permanent impact sensitivity γ 3
Temporary impact sensitivity λ 1

Table I: Parameter values used for numerical computation of the figures in Section II.

The optimal strategies in the one stage framework were derived by Carlin, Lobo, and Viswanathan
(2007). We repeat their result:

Theorem 1 (Carlin, Lobo, and Viswanathan (2007)). Assume that n + 1 players are trading simultane-
ously in a time period t ∈ [0, T1]. They start with asset positions Xi(0) and need to achieve a target asset
position Xi(T1). Furthermore, these players are risk-neutral and are aware of all other players’ asset
positions and trading targets. Then the unique optimal strategies for these n + 1 players (in the sense of
a Nash equilibrium) are given by:

Ẋi(t) = ae−
n

n+2
γ
λ t + bie

γ
λ t (6)

with

a =
n

n + 2
γ

λ

(
1− e−

n
n+2

γ
λ T1

)−1
∑n

i=0(Xi(T1)−Xi(0))
n + 1

(7)

bi =
γ

λ

(
e

γ
λ T1 − 1

)−1
(

Xi(T1)−Xi(0)−
∑n

j=0(Xj(T1)−Xj(0))
n + 1

)
. (8)

Proof. See Carlin, Lobo, and Viswanathan (2007).

For the rest of this section, we consider the following more specific situation: One player (say player
0) wants to sell an asset position X0(0) = X0 in the time interval [0, T1), i.e. the target is given by
X0(T1) = 0. All other players (i.e., players 1, 2, ..., n) do not want to change their initial and terminal
asset positions (for simplicity, we assume that Xi(0) = Xi(T1) = 0 for i 6= 0), but they want to exploit
their knowledge of player 0’s sales.

The result is preying of the n players on the first player (see Figure 1 and 2; see Table I for the
parameter values used for the figures): while the first player is starting to sell off her asset position,
the other players sell short the asset and realize a comparatively high price per share. At the end of the
trading period, the price has been pushed down by the combined sales of both seller and predators. While
the seller liquidates the remaining part of her long position at a fairly low price, the other players can
now close their short positions at a favorable price. Since the price has dropped, the preying players need
to spend less on average for buying back than they received for initially selling short. In the following,
we refer to player 0 as the “seller” and to the players 1, 2, ..., n as the “predators”.

In the one stage model considered so far, there is no room for cooperation; preying always occurs.
The seller’s return is further deteriorating as the number of predators increases; preying becomes more
competitive with more players being involved (see Figure 3). We will see in the next section that relaxing
the exogenous time constraint on the positions of predators can lead to a more differentiated behavior.
It includes in particular the possibility of liquidity provision to the seller.

7



0.2 0.4 0.6 0.8 1

-0.2

0.2

0.4

0.6

0.8

1

Asset positions Xi(t)

Time

Figure 1: Asset positions Xi(t) over time. The solid line represents the seller, the dashed line the predator
(n = 1).
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Figure 2: Trading speeds Ẋi(t) over time. The solid line represents the seller, the dashed line the predator
(n = 1).
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Number of predators

Figure 3: Expected cash return for the seller (player 0) from selling X0 shares, depending on the number
n of predators. The expected return in absence of predators is 7.5 (intersection point of x- and y-axes).
The grey line at the bottom corresponds to the limit n →∞.

III The two stage model

In the previous section, we have assumed that the seller and the predators are limited to trade during
the same time interval. As we have mentioned earlier, in reality the seller is often facing a stricter time
constraint than the predators do. While the seller usually needs to liquidate her asset position within a
few hours, the predators can often afford to close their positions at a later point in time. In the following,
we therefore extend the one stage model considered so far to a two stage framework19 and assume that:

• In stage 1, all players (the seller and the predators) are trading.

• In stage 2, only the predators are trading; the seller is not active.

The first stage runs from t = 0 to T1, the second stage20 from T1 to T2. The asset position of player i is
denoted by Xi(t) with t ∈ [0, T2]. We require the strategies Xi(t) to be differentiable within each stage,
but they need not be differentiable at t = T1.

The market prices are governed by

P (t) = P̃ (t) + γ

n∑

i=0

(Xi(t)−Xi(0)) + λ

n∑

i=0

Ẋi(t) (9)

19The framework can be extended further to a three stage model including a stage 0 in which only the predators are
allowed to trade. Such a setup can capture the effects of front-running, which results in different results in particular for
price overshooting. We limit our analysis to the two stage model since in most practical cases, there is little room for
front-running due to legal constraints or insufficient time (i.e., stage 0 is very short); see the introduction for examples.
As another alternative, the model can account for a different trading horizon for each predator. This increases the mathe-
matical complexity, but does not lead to qualitatively new phenomena within stage 1.

20In reality, the seller usually has to liquidate an asset position by the end of the trading day. In this case, the second
stage begins at the open of the next trading day. Our framework can easily be extended to accommodate for this setting
by having the second stage run from T̃1 > T1 to T2. Since we assumed that the seller and the predators are risk-neutral,
this does not change any of the statements in this exposition; for notational simplicity, we therefore restrict ourselves to
the case where the second stage starts immediately after the first stage.
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for t ∈ [0, T2]\T1. Again, P̃ (t) is an arithmetic Brownian motion without drift, starting at P̃ (0) = P0.
Since the Xi(t) might be non-differentiable at t = T1, the above formula might not be well-defined; we
therefore set

P (T1) = lim
t↘T1

P (t), P (T1−) := lim
t↗T1

P (t), (10)

forcing the price to be right-continuous.
The seller (player 0) is assumed to liquidate an asset position X0 = X0(0) during stage 1: X0(t) = 0 for

all t ∈ [T1, T2]. We assume that the n predators want to exploit their knowledge of the seller’s intentions,
but do not want to change their asset position permanently. We therefore require that the predators
have the same asset positions at the beginning of stage 1 and at the end of stage 2: Xi(0) = Xi(T2).
For notational simplicity, we assume21 Xi(0) = 0. All assumptions and notation introduced in Section
I apply in our two stage model; in particular, we restrict our analysis to risk-neutral players22 following
deterministic strategies.

There are no a-priori restrictions on predators’ asset positions Xi(T1) at the end of stage 1. They can
be positive, i.e., the predators buy some of the seller’s shares in stage 1 and thereby provide liquidity to
the seller. Alternatively, they can be negative, i.e., the predators sell parallel to the seller, driving the
market price further down and preying on the seller. In the next section, we show that the occurrence
of liquidity provision or predation depends on the market characteristics, in particular on the balance
between temporary and permanent impact.

IV Optimal strategies in the two stage model

We can now describe the optimal behavior of all n+1 strategic players in the two stage model introduced
in the previous section. If the optimal asset positions Xi(T1) of the predators at the end of stage 1 are
known, the entire optimal strategies are determined by Theorem 1: In stage 1, n + 1 players are trading
and the initial and final asset positions are known; in stage 2, n players are trading and again the initial
and final asset positions are known23. Therefore, we only need to derive the optimal asset positions24

Xi(T1) for all predators i = 1, 2, ..., n (see Figure 4 for an illustration).

Theorem 2. In the unique Nash equilibrium, all predators acquire the same asset position during stage 1:

Xi(T1) = F

(
γT1

λ
,
T2

T1
, n

)
X0. (11)

The function F is given in closed form in the proof in Appendix B. For the special case n = 1, we obtain

X1(T1) = −

(
−2− e

γT1
3λ − e

2γT1
3λ + e

γT1
λ

)
γ
λ (T2 − T1)

6
(
−1 + e

γT1
λ

)
+

(
2 + e

γT1
3λ + e

2γT1
3λ + 2e

γT1
λ

)
γ
λ (T2 − T1)

X0. (12)

21The optimal trading speed Ẋi(t) of the predators is independent of their initial asset position Xi(0). In particular, our
results also hold in the case where predators have different initial asset positions.

22Risk aversion can be incorporated in two different ways. The first is to regard the different execution time frame of
the seller and the predators as proxies of their risk aversion. This provides a simple model of a highly risk averse seller
in a market environment with relatively risk-neutral competitors. Alternatively, risk aversion can explicitly be modeled by
introducing utility functions for the seller and the predators. This leads to the coexistence of liquidity provision and preying
already in the one stage model introduced in Section II. The dynamics for a risk averse seller facing relatively risk-neutral
predators is qualitatively very similar to the two stage model presented here. A detailed discussion of the effects of risk
aversion lie beyond the scope of this paper and are subject of ongoing research.

23In the case n = 1, it follows from the results in Almgren and Chriss (2001) and Almgren (2003) that the optimal trading
strategy in stage 2 is a linear increase / decrease of the predator’s asset position.

24Carlin, Lobo, and Viswanathan (2007) noted this for the single predator case. They also conjectured that in a two stage
model there will be price overshooting. As we will see in Section V and Proposition 9, the source of this price overshooting
is not necessarily the presence of strategic players. In fact, price overshooting is reduced by predators in elastic markets.
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Figure 4: Expected return R1 for a single predator depending on her asset position X1(T1). Optimal
trading within stage 1 and stage 2 is assumed. Parameters are chosen as in the elastic market in Table
II.

Formulas (11) and (12) do not depend on γ and λ separately, but only on the fraction 25 γT1
λ = γ

λ/T1
,

which can be interpreted as a normalized ratio of liquidity parameters. The permanent impact parameter
γ has unit “dollars per share” and is independent of the time unit. The temporary impact parameter λ
has unit “dollars per share per time unit” and thus depends on the time unit. The fraction λ/T1 can be
interpreted as the temporary impact parameter normalized to the length of the first stage.

In the next section, we will analyze the qualitative influence of the ratio γT1
λ by reviewing some specific

example markets. For notational simplicity, we will implicitly assume that T1 = 1 and thus restrict our
discussion to γ and λ. We will return to the general situation again in Section VI.

V Example markets

A Definition of the example markets

In an illiquid market, each market order causes a price impact. Some part of this initial price impact
is temporary and therefore vanishes after the execution of the market order. In the following, we will
analyze two polar market extremes in more detail:

• Elastic markets, in which the major part of the initial total market impact vanishes after the
execution of a market order (i.e., temporary impact λ >> permanent impact γ). The market price
in such markets behaves similar to an elastic rubber band: trading pressure can stretch it, but after
the trading pressure reduces, the price recovers.

• Plastic markets, in which the price impact of market orders is predominantly permanent (i.e.,
permanent impact γ >> temporary impact λ). In such markets, the trading pressure exerts a
“plastic deformation” on the market price.

25Since the dependence of F on n is non-reciprocal, the joint strategy of the predators changes as the number of predators
increases (see also the dependence on n in Theorem 1), resulting in a reduced joint profit of the predators. Hence, the
predators have an incentive to collude.
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Parameter Elastic Plastic Intermediate
market market market

Asset position X0 1
Initial price P0 10
Duration T1 of stage 1 1
Duration T2 − T1 of stage 2 1
Permanent impact sensitivity γ 1 3 1.8
Temporary impact sensitivity λ 3 1 1

Table II: Parameter values used for numerical computation in Section V.

Empirical studies report that markets are indeed sometimes plastic and sometimes elastic26. In
many practical cases however, the market will fall into neither of these two categories, but instead
temporary and permanent impact will be balanced; we therefore conclude our case analysis by reviewing
an intermediate market, that is, a market where temporary and permanent impact are balanced:
λ ≈ γ. For the numerical computations, we used the parameter values given in Table II.

B Example market 1: Elastic market

To begin with, let us assume that no predators are active in the market. In such a situation, it is optimal
for the seller to sell her asset position linearly (Figure 5). We therefore expect that the market price
in stage 1 drops dramatically (Figure 6), since in order to satisfy the seller’s trading needs, liquidity is
required fast — which is expensive in an elastic market. In stage 2, no selling pressure from the seller
exists any more; hence, the market price will bounce back. Furthermore, since the permanent impact is
comparatively small, it will bounce back almost completely.

A predator knowing of the seller’s intentions would expect this price pattern. Her natural reaction
would therefore be to buy some of the seller’s shares in stage 1 at the very low price and to sell them in
stage 2 at the much higher price. Figure 7 shows that this is indeed what happens when the seller and
the predators follow their optimal strategies.

As can be seen in these figures, the total asset position
∑n

i=1 Xi(T1) acquired by the predators at the
end of stage 1 increases as the number of predators increases (see also Figure 8). To gain some intuition
for this phenomenon, let us assume that n1 predators optimally acquire a joint asset position of n1Y1

shares. Imagine one of the predators increases her target asset position by 1. This will decrease the
profit per share that she makes, but adds another share to her profitable portfolio. If the original target
position Y1 is optimal, then this increase will leave her total profit roughly unchanged:

Profit per share× 1−Decrease in profit per share× Y1 ≈ 0. (13)

Let us now assume that n2 > n1 predators are active and that they jointly acquire n1Y1 shares. Now,
increasing the target position n1Y1

n2
of an individual predator by one share changes the predator’s total

profit by

Profit per share× 1−Decrease in profit per share× n1Y1

n2
> 0. (14)

26Holthausen, Leftwich, and Mayers (1987) find that for their data sample, 75% of the total price impact of large
transactions was temporary, while the follow-up study (Holthausen, Leftwich, and Mayers 1990) finds that for a different
sample, 85% of the total price impact was permanent. Coval and Stafford (2006) show that in markets where investors
withdraw their money from open-ended mutual funds, the total price impact of transactions is predominantly temporary,
while in other markets the price impact is predominantly permanent. The anecdotal evidence presented in the introduction
indicates that the market for derivatives traded by LTCM was plastic, whereas the energy market was elastic during the
Amaranth crisis.
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Figure 5: Asset position X0(t) of the seller when no predators are active.
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Figure 6: Expected price P̄ (t) in an elastic market over time when no predators are active; at time t = 1,
stage 1 ends and stage 2 begins.
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Figure 7: Asset positions Xi(t) over time in an elastic market; at time t = 1, stage 1 ends and stage 2
begins. The solid lines represents the seller, the dashed lines the combined asset position of all n predators.
The black lines correspond to n = 2, the dark grey lines to n = 10 and the light grey lines to n = 100.

Therefore each predator has an incentive to increase the trading target for the end of stage 1, resulting
in an increased joint trading target.

The effect of the predators’ trading (buying in stage 1, selling in stage 2) is that prices between stage 1
and stage 2 will even out; the large price jumps expected in the absence of predators will disappear if
the number of predators is large enough (see Figure 9). The price overshooting created by the selling
pressure of the seller is therefore reduced by the predators.

From the seller’s perspective, the predators’ trading is beneficial; by buying some of her shares, the
predators reduce the seller’s market impact and thus increase her return. As we have just discussed, a
larger number of predators implies a larger combined purchase by the predators. Hence, the seller can
expect to profit from each additional predator, i.e., the larger the number of predators, the larger her
profit. This is illustrated by Figure 10; the seller’s return is higher when predators are active than it is
when there are no predators.

The practical implications are evident: in an elastic market, it is sensible to announce any large,
time-constrained asset transaction directly at the beginning of trading in order to attract liquidity.

C Example market 2: Plastic market

We will now turn to plastic markets, i.e., markets with a permanent impact that considerably exceeds
the temporary impact. In such a setting, we expect the price dynamics to be very different from the
dynamics described for elastic markets in the previous section.

Let us again assume that no predators are active. Then, the optimal trading strategy for the seller
is again a linear decrease of the asset position (see Figure 5). In stage 1, the seller is constantly pushing
the market price further and further down; we therefore expect the price to be high at the beginning of
stage 1 and low at the end of stage 1 (see Figure 11). In stage 2, the price will bounce back, since the
temporary impact of the seller’s trading has vanishes. However, this jump will be comparatively small
because the temporary price impact is small.

For a predator, this implies that buying some of the seller’s shares in stage 1 does not promise any
large profit; the price reversion in stage 2 is too small. Instead, it appears more profitable to exploit the
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Figure 8: Joint asset position
∑n

i=1 Xi(T1) of all predators in an elastic market at time T1 depending on
the total number n of all predators. The grey line represents the limit limn→∞

∑n
i=1 Xi(T1).
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Figure 9: Expected price P̄ (t) in an elastic market over time depending on the number of predators n;
at time t = 1, stage 1 ends and stage 2 begins. The black line corresponds to n = 2, the dark grey line
to n = 10 and the light grey line to n = 100. A significant reduction in price drift can be observed;
furthermore, P̄ (0) is smaller than P0 = 10.
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Figure 10: Expected return R0 for the seller in an elastic market, depending on the number of predators.
The grey line represents the limit n →∞. The return for the seller without predators is at the intersection
of x- and y-axis.

price changes within stage 1 instead of the price changes between stage 1 and stage 2. By selling short
the asset at the beginning of stage 1 and buying it back at the end of stage 1, she can likely make a
large profit. Thus, we expect to see preying behavior similar to the behavior in the one stage framework
discussed in Section II. Our hypothesis is verified by the numerical results shown in Figure 12.

It might be surprising that the asset position Xi(T1) of the predators at the end of the first stage
changes from a short position to a long position as the number of predators increases. This can be
explained in the following way. For a small number of predators the price evolution will be sufficiently
close to the one shown in Figure 11, therefore preying is attractive and the predators will enter stage 2
with a short position. As the number of predators increases, the price curve flattens within the first
stage due to the increased competition for profit from predatory trading27 (Figure 13). In comparison,
the recovery of prices between stage 1 and stage 2 now becomes attractive, even though it is relatively
small. Similar to the line of argument in elastic markets, it now pays off for the predators to acquire a
small asset position during stage 1 in order to sell it during stage 2. This is illustrated in Figure 14. If
the number of predators is small, it is beneficial to enter stage 2 with a short position; if the number of
predators is large, it is more attractive to enter stage 2 with a long position.

Based on this line of argument, we expect the price overshooting to disappear if the number of
predators is large. A single predator however can decrease or increase price overshooting, depending on
how plastic the market is. In the plastic market considered in this section, even a single predator reduces
price overshooting; if the permanent impact is increased to 7.0 and all other parameters are unchanged,
a single predator increases price overshooting.

Similar to the results of Section II, we might be tempted to expect that the return for the seller is
decreasing as the number of predators increases and predation becomes more fierce. Figure 15 shows
that this is not the case. The return for the seller is significantly decreased by predators; furthermore,
two predators decrease it more than a single predator. However, the return for the seller is higher when
three predators are active than when only two predators are active; as soon as at least two predators are
active, each additional predator is beneficial for the seller.

The connection between the return for the seller and the number of predators is a combination of
27See also Proposition A.1 in the appendix.
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Figure 11: Expected price P̄ (t) in a plastic market over time when no predators are active; at time t = 1,
stage 1 ends and stage 2 begins.
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Figure 12: Asset positions Xi(t) over time in a plastic market; at time t = 1, stage 1 ends and stage 2
begins. The solid lines represents the seller, the dashed lines the combined asset position of all n predators.
The black lines correspond to n = 2, the dark grey lines to n = 10 and the light grey lines to n = 100.
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Figure 13: Expected price P̄ (t) in a plastic market over time depending on the number of predators n;
at time t = 1, stage 1 ends and stage 2 begins. The black line corresponds to n = 2, the dark grey line
to n = 10 and the light grey line to n = 100. A significant reduction in price drift can be observed.
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Figure 14: Joint asset position
∑n

i=1 Xi(T1) of all predators in a plastic market at time T1 depending on
the total number n of all predators. The grey line represents the limit limn→∞

∑n
i=1 Xi(T1).
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Figure 15: Expected return R0 for the seller in a plastic market, depending on the number of predators.
The grey line represents the limit n →∞. The return for the seller without predators is at the intersection
of x- and y-axis.

effects from the one stage model and the two stage model in an elastic market. The first effect (already
observed in the one stage model) is that a larger number of predators leads to more aggressive preying
and hence to a reduced return for the seller. This effect is very strong for a small number of predators, but
not for a large number of predators. The second effect is that a larger number of predators also results
in an increased total asset position

∑n
i=1 Xi(T1) of all predators at the end of stage 1. This reduces the

trading pressure in stage 1 and therefore increases the return for the seller. The latter effect dominates
the first if the number of predators is large.

D Example market 3: Intermediate market

In most cases, the differences between the temporary and permanent impact factors γ and λ will not
be as extreme as depicted above. If the two parameters are closer together, we can expect to observe
characteristics of both elastic as well as plastic markets:

• At the beginning of the first stage, the predators “race the seller to market”, that is, they sell in
parallel to her. We say that intra-stage predation occurs.

• For a small number of predators, the predators end the first stage with either a long or a short
position depending on whether the market is more elastic or more plastic (see Figure 16).

• For a large number of predators, the predators buy back more shares than they sold at the beginning
of stage 1; we say that inter-stage cooperation takes place subsequently to the intra-stage predation.

• If the number of predators is large, then prices do not overshoot. Instead, market prices are almost
flat and almost the same in stage 1 and stage 2.

• If a certain minimum number of predators is active, then additional predators increase the return
for the seller since the increase in inter-stage cooperation outweighs the increase in intra-stage
predation.
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Figure 16: Asset position X1(T1) of the predators, depending on γ
λ . The black line corresponds to n = 2,

the dark grey line to n = 10 and the light grey line to n = 100. The other parameters are chosen as in
Table II.

All of these characteristics hold; we prove them in general in the next section. However, one interesting
question remains open so far. We have already seen that in elastic markets the seller benefits from
predators, whereas in plastic markets the seller prefers to have no predators at all. What is the situation
in an intermediate market? Of course, both effects may apply depending on whether the market is more
plastic or more elastic in nature. However, a new phenomenon can also arise: It might be the case that a
small number of predators is harmful to the seller’s profits, but a large number increases the profits even
beyond the case of no predation (see Figure 17 for an example).

The practical implications are evident: If there are already some informed traders or if the seller
expects to be able to attract a sufficient number of predators, announcing her trading intentions can
be attractive; if there is only a limited number of potential predators she is best advised to conceal her
intentions.

VI General properties of the two stage model

After having reviewed three explicit market examples, we summarize their common equilibrium proper-
ties.

A Competitor behavior: Predatory trading versus liquidity provision

Proposition 3. As the number of predators n tends to infinity, the combined asset position of all preda-
tors at the end of stage 1 converges to

lim
n→∞

n∑

i=1

Xi(T1) = lim
n→∞

nX1(T1) =
e

γ(T2−T1)
λ − 1

e
γ(T2)

λ − 1
X0. (15)

In economic terms, this implies that for large n, intra-stage cooperation between the seller and the
predators occurs regardless of the market parameters: in stage 1, the predators buy a portion of the
seller’s asset position and sell this portion in stage 2. Thereby the market impact in stage 1 is reduced.
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Figure 17: Expected return R0 for the seller in an intermediate market, depending on the number of
predators. The grey line represents the limit n →∞. The return for the seller without predators is at
the intersection of x- and y-axis.

We can draw an intuitive consequence for elastic markets: If the number of predators is high, then
the net sale of seller and predators in each stage is proportional to the time available for selling. The
following corollary expresses this in mathematical terms when sending λ to ∞.

Corollary 4. As the number of predators n and the temporary price impact coefficient λ tend to infinity,
the combined asset position of all predators at time T1 converges:

lim
λ→∞

lim
n→∞

n∑

i=1

Xi(T1) =
T2 − T1

T2
X0 (16)

We summarize the drivers of inter-stage cooperation.

Corollary 5. For a large enough number n of predators, the total net amount of liquidity
∑n

i=1 Xi(T1)
provided by strategic players in stage 1 is

• decreasing in γT1/λ,

• increasing in T2/T1, and

• increasing in n.

The first driver highlights the importance of the market environment; inter-stage cooperation is re-
duced in plastic markets28. The second driver relates to the influence of risk management. If the
competitors have enough capital, they will be willing to hold inventory for a long period of time, i.e.,
T2 > T1. On the other hand, if they are in a financially weak condition, risk management is likely to limit
the maximum holding period T2 in order to reduce the associated risk. The third driver reflects the effect
of limited competition among strategic players. By a combination of the latter two drivers, liquidity can
disappear in a self-exciting vicious circle: Financial distress of some market participants can result in a
general tightening of risk management practices and a smaller number of players engaging in strategic
trading, leading to increased predatory trading and more distressed players.

28In the repeated game model of Carlin, Lobo, and Viswanathan (2007), the opposite result is obtained and cooperation
is increased in plastic markets.
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B Seller behavior: Stealth versus sunshine trading

We now turn to the return that the seller can expect to receive in a market with a certain number n of
strategic competitors.

Theorem 6. By selling an asset position X0 in stage 1, the seller receives an average total cash position
of

R0 = X0

(
P0 − γX0G

(
γT1

λ
,
T2

T1
, n

))
. (17)

The function G is given in closed form in the proof in Appendix B. For large n, the seller’s return is

• decreasing in γT1/λ,

• increasing in T2/T1, and

• increasing in n.

It converges to:

lim
n→∞

R0 = X0

(
P0 − γX0

1
1− e−

γ
λ T2

)
(18)

The cash received in the limit case n →∞ is exactly the initial asset position multiplied by the limit
of the expected market price derived in Proposition 8.

Given the result above, the benefits of sunshine trading can easily be quantified29. If the seller’s
intentions remain secret30, she can expect a return of31

X0 (P0 − γX0/2− λX0/T1) . (19)

Alternatively, she can pre-announce her intentions, attract a large number of predators and thus expect
a return of

X0

(
P0 − γX0

1
1− e−

γ
λ T2

)
. (20)

Corollary 7. Assuming that pre-announcement attracts a large number of predators (n ≈ ∞), sunshine
trading is superior to stealth trading if

1
2

+
λ

γT1
>

1
1− e−

γ
λ T2

. (21)

If the predators do not face any material time constraint (T2 →∞), sunshine trading is beneficial if

λ

γ
>

T1

2
. (22)

In our model, the ratio γ/λ of the market liquidity parameters γ and λ and the length of the two
stages T1 and T2−T1 determine whether sunshine trading is beneficial. These drivers are not relevant in
existing models. Most notably, sunshine trading is always beneficial in the model used by Admati and
Pfleiderer (1991), while it is never beneficial in equilibrium in the model of Brunnermeier and Pedersen
(2005).

29We assume that pre-announcing a trade does not change market-wide liquidity. In case sunshine traders are structurally
special, this can be modeled by changing λ and γ for sunshine trades. For example, Admati and Pfleiderer (1991) assume
that sunshine traders are uninformed; their trades should therefore result in a smaller (or possibly even no) permanent price
change. This can be incorporated by assuming a smaller value for γ for sunshine trades.

30Even without pre-announcement, the market will try to infer the complete trading intentions from the trading pattern
observable in the market. Barclay and Warner (1993) and Chakravarty (2001) find that the market reacts strongest to
orders of medium size because such orders are most likely to be part of the execution of a large, informed transaction. Such
observations should be taken into account when performing “stealth execution”.

31See Almgren and Chriss (2001) and Almgren (2003) for a discussion of the case without predators.
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C Price evolution

We now analyze the market prices resulting from the combined trading activities of the seller and the
predators in more detail. In Figures 9 and 13, we observe that when trading commences in t = 0, the
expected price jumps downward from its level P̄ (0−) = P0 to P̄ (0) due to the temporary impact of
the selling. After the initial price jump, the expected price P̄ (t) is exhibiting a downward trend. This
indicates that our model market does not fulfill the strong form of the efficient markets hypothesis as
introduced by Fama (1970): if relevant information is shared by only a small number of market par-
ticipants, then this information is only slowly reflected in market prices. On the other hand, empirical
evidence suggests that capital markets are efficient in the semi-strong sense. We would therefore expect
that if the seller’s intentions are known by a sufficiently large number of market participants, this infor-
mation is instantaneously fully reflected in market prices. Public information can thus not be used to
predict price changes. The following proposition states that this is indeed the case in our market model.

Proposition 8. The absolute value of the drift | ˙̄P (t)| is a decreasing function of n. In the limit, the
expected market price instantaneously jumps to

P0 − γ

1− e−
γ(T2)

λ

X0 (23)

and is constant from thereon throughout stage 1 and stage 2 until the end of stage 2.

In plastic markets, the initial price jump |P̄ (0) − P0| is an increasing function of the number n of
predators, while it is a decreasing function of n in elastic markets. It is interesting to note that the
new equilibrium price P0 − γ

1−e−
γ(T2)

λ

X0 does not depend on whether the seller can trade in stage 2 (see

Proposition A.1).
To formally discuss price overshooting, we include the time after T2 in our analysis, i.e., the time

after the seller and the predators have stopped trading. The temporary impact of the trades during
[0, T2] vanishes immediately at T2; therefore, only the permanent impact remains. The seller sold X0

while the predators did not change their asset positions. Therefore we obtain an expected market price
of P̄ (T2+) = P0 − γX0 for the time after T2. If during the trading phase [0, T2] the price drops below
P̄ (T2+), i.e.,

min
t∈[0,T2]

P̄ (t)− P̄ (T2+) < 0 (24)

we say that the price overshoots. We can now describe the relationship between price overshooting and
predatory activity.

Proposition 9. The price P̄ (t) attains its minimum in the interval [0, T2] at the end of the first stage:

min
t∈[0,T2]

P̄ (t) = P̄ (T1−) (25)

Price overshooting occurs irrespective of the presence of predators:

P̄ (T1−) < P̄ (T2+). (26)

The level of price overshooting P̄ (T2+)− P̄ (T1−) is increased by predators only in very plastic markets,
i.e., only if the permanent impact is much larger than the temporary impact. In all other circumstances,
price overshooting is reduced by predators. If predators are already active in the market (n ≥ 1), then
additional predators reduce price overshooting irrespective of the market character.

It is interesting to compare our results to the models introduced by Brunnermeier and Pedersen
(2005) and by Carlin, Lobo, and Viswanathan (2007). Preying introduces price overshooting in the first
framework, but it reduces price overshooting in the latter (see Proposition A.2); in our model, the effect
of preying on price overshooting depends on the market. In all three models, price overshooting is reduced
by additional predators (assuming that at least one predator is active).
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VII Summary and Conclusions

In a number of practical cases, investors need to liquidate large asset positions in a short time. In
this paper, we describe optimal liquidation strategies in case other market participants are aware of the
investor’s needs. A crucial assumption is that these predators are not limited by the same time constraint
the seller is facing.

We solve a competitive trading game in an illiquid market model incorporating a temporary and a
permanent price impact. Each player faces a dynamic programming problem. According to our model,
the optimal strategies for these predators depend on the liquidity characteristics of the market. If the
permanent impact affects market prices more heavily than the temporary impact, the predators will
“race” the seller to market, selling in parallel with her and buying back after the seller sold her asset
position. If price impact is predominantly temporary, predators provide liquidity to the seller by buying
some of her shares and selling them after the seller has finished her sale. In the first case, the seller should
conceal her trading intentions in order not to attract predators, while in the latter case, pre-announcing
a trade can attract liquidity suppliers and thus be beneficial.

As a special case, we investigate behavior in a market with a very large number of predators. We
find that in spite of illiquidity, such a market efficiently determines a new price. Information about the
seller’s intentions is immediately incorporated into the market price and does not affect it thereafter. The
predators might race the seller to market, but even in markets with high permanent impact, they quickly
start buying back shares and sell these after the seller has finished her sale.

In conclusion, we believe that our model enhances the understanding of stealth and sunshine trading
as well as liquidity provision and predation in the marketplace.

A Propositions on the one stage model

We first state two propositions concerning the one stage model introduced in Section II. These are used
for comparison of the one stage model and the two stage model as well as in the proofs presented in
Appendix B.

Proposition A.1. In the one stage model, the absolute value of the drift | ˙̄P (t)| is a decreasing function
of n. In the limit case n →∞, the expected market price instantaneously jumps to

P0 − γ

1− e−
γT1

λ

X0 (27)

and is constant from thereon until the end of trading at time t = T1.

Proof of Proposition A.1. Using the notation from Theorem 1, the combined trading speed of the
seller and all predators amounts to

n∑

i=0

Ẋi(t) =
n∑

i=0

(ae−
n

n+2
γ
λ t + bie

γ
λ t) = (n + 1)ae−

n
n+2

γ
λ t. (28)

The change in combined asset position at time t is therefore:

n∑

i=0

(Xi(t)−Xi(0)) =
n∑

i=0

∫ t

0

Ẋi(s)ds =
∫ t

0

n∑

i=0

Ẋi(s)ds (29)

=
∫ t

0

(n + 1)ae−
n

n+2
γ
λ sds = (n + 1)

n + 2
n

λ

γ
a

(
1− e−

n
n+2

γ
λ t

)
(30)
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Now, we can compute the expected market price:

P̄ (t) = P0 + γ

n∑

i=0

(Xi(t)−Xi(0)) + λ

n∑

i=0

Ẋi(t) (31)

= P0 + γ(n + 1)
n + 2

n

λ

γ
a(1− e−

n
n+2

γ
λ t) + λ(n + 1)ae−

n
n+2

γ
λ t (32)

= P0 + λ
n + 1

n
(n + 2− 2e−

n
n+2

γ
λ t)a (33)

= P0 + λ
n + 1

n
(n + 2− 2e−

n
n+2

γ
λ t)

n

n + 2
γ

λ

(
1− e−

n
n+2

γ
λ T1

)−1 −X0

n + 1
(34)

= P0 − γX0
1

1− e−
n

n+2
γ
λ T1

+ γX0
2

n + 2
e−

n
n+2

γ
λ t

1− e−
n

n+2
γ
λ T1

(35)

Only the last term in the expression above is time dependent; its influence decreases with increasing n.
In the limit, we obtain that the expected market price P̄ (t) is constant:

lim
n→∞

P̄ (t) ≡ P0 − γX0
1

1− e−
γ
λ T1

(36)

Proposition A.2. Without any predators (i.e., nobody is aware of the seller’s intentions), the price
overshoots by λX0/T1. If predators are present, the price overshooting is reduced to

n

n + 2
γX0

e−
n

n+2
γ
λ T1

1− e−
n

n+2
γ
λ T1

, (37)

which is a decreasing function of the number n of predators.

Proof of Proposition A.2. Without any predators, the optimal strategy for the seller is to liquidate
her asset position linearly: X0(t) = (T1 − t)X0/T1. The market price thus drops to

P̄ (T1−) = P0 − γX0 − λX0/T1. (38)

and price overshooting amounts to λX0/T1.
From Equation 33, we know the structure of P̄ (t) when predators are present and deduce that the

market price decreases to

P̄ (T1) = P0 − γX0
1

1− e−
n

n+2
γ
λ T1

+ γX0
2

n + 2
e−

n
n+2

γ
λ T1

1− e−
n

n+2
γ
λ T1

. (39)

Thus, the price overshoots with magnitude

P̄ (T1)− P̄ (T1−) =
n

n + 2
γX0

e−
n

n+2
γ
λ T1

1− e−
n

n+2
γ
λ T1

. (40)

The monotonicity follows directly.

B Proofs for propositions on the two stage model

The proofs of the theorems, propositions and corollaries presented in this paper are given in order of
appearance in the main body of text. In order to keep the proofs compact, they sometimes use results
that are independently proven later in this appendix.
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Proof of Theorem 2. The actual computations are lengthy; we will therefore only sketch the approach
(more details are available from the authors on request).

Let us first discuss the case n = 1, i.e., the seller is facing only one predator. By computations
similar to the ones in Proposition A.1, we can express the expected market price P̄ (t) as a linear function
of the seller’s asset position X0 and the predators asset position X1(T1) = Z1 at the end of stage 1.
Furthermore, by Theorem 1 the predator’s trading speed ˙X1(t) is linear in X0 and Z1. Therefore we can
then calculate the return for the predator in the two stages as quadratic functions of X0 and Z1:

ReturnPredator = ReturnStage1(X0, Z1) + ReturnStage2(X0, Z1) (41)

Now, we can determine the optimal Z1 by maximizing the quadratic function ReturnPredator, i.e., by
determining the root of its derivative, which is a linear function in X0.

Let us turn to the case n ≥ 2, i.e., the seller is facing at least two predators. We assume that n − 1
predators acquire optimal asset positions Xi(T1) = Yi for 1 ≤ i ≤ n − 1 and solve for the optimal asset
position Xn(T1) = Zn for the last predator. Similar to the case n = 1 discussed above, we can calculate
the return for the last predator as a quadratic function of X0 +

∑n−1
i=1 Yi and Zn:

ReturnPredatorn = ReturnStage1(X0 +
n−1∑

i=1

Yi, Zn) + ReturnStage2(X0 +
n−1∑

i=1

Yi, Zn) (42)

We can again determine the optimal Zn by maximizing ReturnPredatorn and obtain a linear function
of X0 +

∑n−1
i=1 Yi:

Zoptimal
n = f(X0 +

n−1∑

i=1

Yi) (43)

Similarly we obtain the linear equations

Zoptimal
j = f(X0 +

n∑

i=1,i6=j

Yi) (44)

for all 1 ≤ j ≤ n. Since we assumed that (Y1, . . . , Yn) was optimal in the first place, we know that the
optimal Zoptimal

j has to be equal to Yj ; we therefore obtain

Yj = f(X0 +
n∑

i=1,i 6=j

Yi) (45)

for all 1 ≤ j ≤ n. The set of linear equations (45) constitutes a symmetric, non-singular linear problem
of n equations in n variables. Its unique solution therefore has to fulfill Y1 = · · · = Yn and these Yi are a
linear function of X0. By computing this linear function precisely, we obtain the functional form

F

(
γT1

λ
,
T2

T1
, n

)
= − A2n

2 + A1n + A0

B3n3 + B2n2 + B1n + B0
(46)

with parameters

26



A0 = 2

(
− e

γ(−T1+(2+n)T2)
(1+n)λ − e

γ(n(3+2n)T1+(2+n)T2)(
2+3n+n2

)
λ +

e

γ

((
2+2n+n2

)
T1+n(2+n)T2

)
(
2+3n+n2

)
λ + e

γ

((
−2+n2

)
T1+(2+n)2T2

)
(
2+3n+n2

)
λ +

e
γ(−nT1+(1+2n)T2)

(1+n)λ − e

γ

(
−nT1+

(
2+5n+2n2

)
T2

)
(
2+3n+n2

)
λ + e

nγT1+γT2
λ+nλ −

e
γT1+nγT2

λ+nλ

)

A1 = 3e
(2+n)γ(−T1+T2)

(1+n)λ − 3e
(1+2n)γ(−T1+T2)

(1+n)λ − 3e
γ(−T1+T2)

λ+nλ +

3e
nγ(−T1+T2)

λ+nλ − 2e
γ(−T1+(2+n)T2)

(1+n)λ − e

nγ(−T1+(2+n)T2)(
2+3n+n2

)
λ +

e

γ

((
−2+n2

)
T1+(2+n)T2

)
(
2+3n+n2

)
λ − e

γ

(
−(4+3n)T1+(2+n)2T2

)
(
2+3n+n2

)
λ +

2e
γ(−nT1+(1+2n)T2)

(1+n)λ + e

γ

(
−
(
2+4n+n2

)
T1+

(
2+5n+2n2

)
T2

)
(
2+3n+n2

)
λ +

2e
nγT1+γT2

λ+nλ − 2e
γT1+nγT2

λ+nλ

A2 = e
(2+n)γ(−T1+T2)

(1+n)λ − e
(1+2n)γ(−T1+T2)

(1+n)λ − e
γ(−T1+T2)

λ+nλ +

e
nγ(−T1+T2)

λ+nλ − e

nγ(−T1+(2+n)T2)(
2+3n+n2

)
λ + e

γ

((
−2+n2

)
T1+(2+n)T2

)
(
2+3n+n2

)
λ −

e

γ

(
−(4+3n)T1+(2+n)2T2

)
(
2+3n+n2

)
λ + e

γ

(
−
(
2+4n+n2

)
T1+

(
2+5n+2n2

)
T2

)
(
2+3n+n2

)
λ

and

B0 = −2

(
2e

(1+2n)γ(−T1+T2)
(1+n)λ − e

γ(−T1+T2)
λ+nλ − e

nγ(−T1+T2)
λ+nλ −

e
γ(−T1+(2+n)T2)

(1+n)λ + e
nγ(−T1+(2+n)T2)

(1+n)(2+n)λ − 2e
γ(n(3+2n)T1+(2+n)T2)

(1+n)(2+n)λ +

e
γ

((
−2+n2

)
T1+(2+n)T2

)
(1+n)(2+n)λ + e

γ

((
−2+n2

)
T1+(2+n)2T2

)
(1+n)(2+n)λ −

e
γ(−nT1+(1+2n)T2)

(1+n)λ + e
γ

(
−nT1+

(
2+5n+2n2

)
T2

)
(1+n)(2+n)λ −

2e
γ

(
−
(
2+4n+n2

)
T1+

(
2+5n+2n2

)
T2

)
(1+n)(2+n)λ + 2e

nγT1+γT2
λ+nλ

)

27



B1 = 2e
(2+n)γ(−T1+T2)

(1+n)λ − e
γ(−T1+T2)

λ+nλ − e
nγ(−T1+T2)

λ+nλ − e
γ(−T1+(2+n)T2)

(1+n)λ +

e
nγ(−T1+(2+n)T2)

(1+n)(2+n)λ + e
γ

((
−2+n2

)
T1+(2+n)T2

)
(1+n)(2+n)λ −

2e
γ

((
2+2n+n2

)
T1+n(2+n)T2

)
(1+n)(2+n)λ − 2e

γ

(
−(4+3n)T1+(2+n)2T2

)
(1+n)(2+n)λ +

e
γ

((
−2+n2

)
T1+(2+n)2T2

)
(1+n)(2+n)λ − e

γ(−nT1+(1+2n)T2)
(1+n)λ + e

γ

(
−nT1+

(
2+5n+2n2

)
T2

)
(1+n)(2+n)λ +

2e
γT1+nγT2

λ+nλ

B2 = 2

(
e

(2+n)γ(−T1+T2)
(1+n)λ − 2e

γ(−T1+T2)
λ+nλ + e

nγ(−T1+T2)
λ+nλ +

e
γ

((
−2+n2

)
T1+(2+n)T2

)
(1+n)(2+n)λ − e

γ

((
2+2n+n2

)
T1+n(2+n)T2

)
(1+n)(2+n)λ −

e
γ

((
−2+n2

)
T1+(2+n)2T2

)
(1+n)(2+n)λ − e

γ(−nT1+(1+2n)T2)
(1+n)λ +

2e
γ

(
−nT1+

(
2+5n+2n2

)
T2

)
(1+n)(2+n)λ − e

γ

(
−
(
2+4n+n2

)
T1+

(
2+5n+2n2

)
T2

)
(1+n)(2+n)λ +

e
nγT1+γT2

λ+nλ

)

B3 = −e
γ(−T1+T2)

λ+nλ + e
nγ(−T1+T2)

λ+nλ + e
γ(−T1+(2+n)T2)

(1+n)λ − e
nγ(−T1+(2+n)T2)

(1+n)(2+n)λ +

e
γ

((
−2+n2

)
T1+(2+n)T2

)
(1+n)(2+n)λ − e

γ

((
−2+n2

)
T1+(2+n)2T2

)
(1+n)(2+n)λ − e

γ(−nT1+(1+2n)T2)
(1+n)λ +

e
γ

(
−nT1+

(
2+5n+2n2

)
T2

)
(1+n)(2+n)λ

Note that the denominator B3n
3 + B2n

2 + B1n + B0 of the general expression

Xi(T1) = − A2n
2 + A1n + A0

B3n3 + B2n2 + B1n + B0
X0 (47)

is 0 in the case n = 1; however, the general expression as a whole converges for n → 1 against the optimal
value of X1(T1) for n = 1 as given in Equation 12.

In the following proofs, we will need the limits limn→∞Ai and limn→∞Bi. All of these limits exist
and can be established by direct calculations. We obtain:
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lim
n→∞

A0 = 2e
γT1

λ

(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)2

(48)

lim
n→∞

A1 = −3
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)2

(49)

lim
n→∞

A2 = −
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)2

(50)

lim
n→∞

B0 = −2
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)(
− 1 + 2e

γT1
λ − 2e

γ(T2−T1)
λ + e

γT2
λ

)
(51)

lim
n→∞

B1 =
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)(
− 1 + e

γT2
λ

)
(52)

lim
n→∞

B2 = 4
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)(
− 1 + e

γT2
λ

)
(53)

lim
n→∞

B3 =
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)(
− 1 + e

γT2
λ

)
(54)

(55)

Proof of Proposition 3. We apply Theorem 2 and obtain:

lim
n→∞

n∑

i=1

Xi(T1) = − limn→∞A2

limn→∞B3
X0 (56)

From the proof of Theorem 2, we know the values of the limits of A2 and B3 and the desired result
follows.

Proof of Corollary 4. Using Proposition 3 and L’Hospitale’s rule, we calculate

lim
λ→∞

lim
n→∞

n∑

i=1

Xi(T1) = lim
λ→∞

e
γ(T2−T1)

λ − 1

e
γT2

λ − 1
=

T2 − T1

T2
(57)

Proof of Corollary 5. We observe that by Theorem 2 all derivatives of Xi(T1) converge locally uni-
formly. Hence, we have

lim
n→∞

d

dγ
Xi(T1) =

d

dγ
lim

n→∞
Xi(T1) (58)

and by computing the derivatives of limn→∞Xi(T1) using Proposition 3 we obtain the first two relations
of the corollary.

Similar to the proof of Theorem 6, it can be shown that for large n, Xi(T1) is increasing in n. This
shows the last of the three relations stated in the corollary.

Proof of Theorem 6. Using Theorems 1 and 2 and Propositions A.1 and 8, we can calculate the return
for the seller in a straightforward way and obtain:

R0 = X0

(
P0 − γX0

A7n
7 + A6n

6 + A5n
5 + A4n

4 + A3n
3 + A2n

2 + A1n + A0

B7n7 + B6n6 + B5n5 + B4n4 + B3n3 + B2n2 + B1n + B0

)
(59)

=: X0

(
P0 − γX0G

(
γT1

λ
,
T2

T1
, n

))
(60)
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The coefficients Ai and Bi are functions of γT1
λ , T2

T1
and n. They are of a similar structure as the

coefficients derived in the proof of Theorem 2, but even more complex. The calculations and coefficients
are omitted here for brevity (they are available from the authors on request).

The coefficients Ai and Bi converge for n →∞; furthermore, their derivatives dAi

dn and dBi

dn converge
to 0 as n →∞. We compute

lim
n→∞

R0 = lim
n→∞

E(Return for the seller) = X0

(
P0 − γX0

limn→∞A7

limn→∞B7

)
. (61)

Inserting A7 and B7 and computing the limit gives the desired limit.
To prove that limn→∞R0 is increasing for large n, we compute the derivative of the seller’s return R0

with respect to n as

d

dn
R0 = −γX0

Numerator
(B7n7 + B6n6 + B5n5 + B4n4 + B3n3 + B2n2 + B1n + B0)2

(62)

with

Numerator =

(
7A7B7n + 7A7B6 + 6A6B7 +

dA7

dn
B7n

2 +
dA7

dn
B6n

+
dA7

dn
B5 +

dA6

dn
B7n +

dA6

dn
B6 +

dA5

dn
B7

)
n12

−
(

7B7A7n + 7B7A6 + 6B6A7 +
dB7

dn
A7n

2 +
dB7

dn
A6n

+
dB7

dn
A5 +

dB6

dn
A7n +

dB6

dn
A6 +

dB5

dn
A7

)
n12 + o(n11). (63)

For large n, we can omit the o(n11) term; furthermore, we know that all derivatives converge to 0 as
n →∞. We therefore obtain for large n:

Numerator ≈
( (

dA7

dn
B7 − dB7

dn
A7

)
n2

+
(

dA7

dn
B6 +

dA6

dn
B7 − dB7

dn
A6n− dB6

dn
A7

)
n

+ A7B6 −B7A6

)
n12 (64)

Inserting the expressions for Ai and Bi, we obtain

lim
n→∞

(
dA7

dn
B7 − dB7

dn
A7

)
n2 = 0 (65)

lim
n→∞

(
dA7

dn
B6 +

dA6

dn
B7 − dB7

dn
A6n− dB6

dn
A7

)
n = 0 (66)

lim
n→∞

(A7B6 −B7A6) = −e
γT1

λ

(
e

γT1
λ − 1

)7(
e

γ(T2−T1)
λ − 1

)5(
e

γT2
λ − 1

)3

γ2 < 0. (67)

The derivative of the seller’s return has the opposite sign of the Numerator and is thus positive for large
values of n.
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To prove that the seller’s return is decreasing in γT1/λ and increasing in T2/T1 for large n, we proceed
similar to the proof of Corollary 5, observe that the derivatives of R0 converge locally uniformly for n →∞
and obtain the desired relations by inspection of the limit limn→∞R0.

Proof of Corollary 7. The condition

1
2

+
λ

γT1
>

1
1− e−

γ
λ T2

. (68)

is obtained by direct comparison of the returns of sunshine and stealth trading given in Equations 19 and
20. Equation 22 can be derived by passing to the limit T2 →∞.

Proof of Proposition 8. First, we note that by arguments similar to the proof of Proposition A.1 (in
particular Formula (35)), the price during stage 1 (t ∈ [0, T1)) is

P̄ (t) = P0 − γ

(
X0 −

n∑

i=1

Xi(T1)

)
1

1− e−
n

n+2
γ
λ T1

+ γ

(
X0 −

n∑

i=1

Xi(T1)

)
2

n + 2
e−

n
n+2

γ
λ t

1− e−
n

n+2
γ
λ T1

(69)

and the price during stage 2 (t ∈ [T1, T2]) is

P̄ (t) = P0 − γ

(
X0 −

n∑

i=1

Xi(T1)

)
− γ

(
n∑

i=1

Xi(T1)

)
1

1− e−
n−1
n+1

γ
λ (T2−T1)

+ γ

(
n∑

i=1

Xi(T1)

)
2

n + 1
e−

n−1
n+1

γ
λ (t−T1)

1− e−
n−1
n+1

γ
λ (T2−T1)

. (70)

Again, the time-dependent terms vanish as n increases. For the first stage, we obtain the limit

lim
n→∞

P̄ (t) = P0 − γ

(
X0 − lim

n→∞

n∑

i=1

Xi(T1)

)
1

1− e− limn→∞ n
n+2

γ
λ T1

+ γ

(
X0 − lim

n→∞

n∑

i=1

Xi(T1)

)(
lim

n→∞
2

n + 2

)
e− limn→∞ n

n+2
γ
λ t

1− e− limn→∞ n
n+2

γ
λ T1

(71)

= P0 − γ

(
X0 − e

γ(T2−T1)
λ − 1

e
γT2

λ − 1
X0

)
1

1− e−
γ
λ T1

(72)

= P0 − γX0
e

γT2
λ

e
γT2

λ − 1
(73)
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For the second stage, we compute

lim
n→∞

P̄ (t) = P0 − γ

(
X0 − lim

n→∞

n∑

i=1

Xi(T1)

)

− γ

(
lim

n→∞

n∑

i=1

Xi(T1)

)
1

1− e− limn→∞ n−1
n+1

γ
λ (T2−T1)

+ γ

(
lim

n→∞

n∑

i=1

Xi(T1)

)
lim

n→∞
2

n + 1
e− limn→∞ n−1

n+1
γ
λ (t−T1)

1− e− limn→∞ n−1
n+1

γ
λ (T2−T1)

(74)

= P0 − γ

(
X0 − e

γ(T2−T1)
λ − 1

e
γT2

λ − 1
X0

)

− γ

(
e

γ(T2−T1)
λ − 1

e
γT2

λ − 1
X0

)
1

1− e−
γ
λ (T2−T1)

(75)

= P0 − γX0
e

γT2
λ

e
γT2

λ − 1
. (76)

Proof of Proposition 9. By Formulas 69 and 70, it is easy to see that within each stage the price
P̄ (t) moves monotonously. Therefore, the only four possible times at which the minimum price can be
achieved are T0, T1−, T1 and T2. It is straightforward to calculate the prices for these four points in time
using Theorem 2 and Formulas 69 and 70, to show that P̄ (T1−) is the minimum of these four values and
that it is lower than P̄ (T2+). Furthermore, it is direct to show that P̄ (T1−) is an increasing function of
the number of predators n.

The different effect of predators on price overshooting in plastic and elastic markets is shown by the
examples in Section V.
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