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Abstract

Virgin nature, as well as historical and cultural monuments located in
National Parks, all form part of our national heritage. Tourism and recre-
ation allow visitors to National Parks to enjoy nature, to reinstate, recover
and broaden their personal outlook, to experience local history, culture, flora
and fauna and to interact with the environment harmoniously. One of the ob-
jectives of the administration of a Governmental Institution ’National Park’ is
to maximize profits from tourism and recreation, where profit is defined as the
difference between the revenues from visitors and the sum of expenditures on
recreation investments and defensive expenditures for ensuring the preserva-
tion of natural and cultural heritage. This paper is an attempt to model some
relevant aspects of these prey-predator relations. The model is formulated in
terms of optimal control theory, and then is transformed into an ‘augmented’
dynamic system by meas of the optimal choice of control variables resulting
form the application of Pontryagin’s Maximum Principle. It turns out that,
for reasonable parameter values, the optimal trajectory exhibits a cyclical
behavior.

Keywords: bioeconomic model, tourism, optimal dynamic control model, opti-
mal policy mix, financing and protected areas.
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1 Introduction

Virgin nature, as well as historical and cultural monuments located in National Parks
(hereinafter NPs) are part of our national heritage. Tourism and recreation allow
visitors to National Parks to enjoy nature, to reinstate, to recover and broaden their
personal outlook, to experience local history, culture, flora and fauna and to interact
with the environment harmoniously. One of the objectives of the administration of
a Governmental Institution ‘National Park’ (hereinafter GINP) is to regulate the
access of tourists and visitors into a park (on their own as well as through encour-
aging private sector activities in this sphere), while ensuring the preservation of its
natural and cultural heritage. There is one more reason to address the issue of
regulated tourism and recreation in NPs. The term ”regulated tourism and recre-
ation” means the restriction by NPs authorities, through different regulatory and
control mechanisms and activities, of the governments of tourists and operations
of visitors’ services within a NP and adjacent to its borders. The movements and
services should agree with admissible anthropogenic pressures and should not inflict
damage to the environment or to historical and cultural heritage. This means that
NP develops and implements a system of management and economic measures that
aim to involve tourists, tourist agencies and investors in the NP and create (espe-
cially around its borders) a highly efficient tourism infrastructure that promotes the
integration of the NP into the social and economic structure of the region. The pur-
pose of NPs and their recreation potential allows the development of various type of
regulated tourism within both the NP and its transition areas (see [11], [13]). Such
and approach facilitates the diversification of the tourist product, provides better
employment opportunities and creates various income sources for local people.
The main result is that, for reasonable parameters values, the optimal solution ex-
hibits a cyclical behavior which can be explained as follows. Assume that initially, a
narrow number of visitors and one high natural resource. Since the GINP invests in
order to increase the number of visitors, such increment leads to damage the natural
resources, with a consequent decrease of the visitors and a consequent increment of
the effort by the GINP in order to defend the stock of aggregated resources. The
defensive action leads to an increment of the resource stock and resumes the incre-
ment of the visitors ( for more works how the human activity may alter the natural
evolution of biological species, see e.g. [3], [1], [2], [7], [12], [14], [15] [?]).
This paper is organized as follows. Section 2 illustrates the formulation of the prob-
lem. Section 3 defines the model. Sections 4 analyze the dynamics by means of
the Pontryagin Maximum Principle and bifurcation theory. Section 5 outlines the
conclusions.
This research is inspired by the article [9] that deals with an optimal development
of a pollution generating tourism industry.
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2 Formulation of the problem

The model problem is formulated with two state variables:

• x(t) vulnerable natural resources

• V (t) a number of persons visiting a NP for the period of 24 hours or one night
for recreative, sports, religious, educational or other purpose with no gainful
activities. Further in this paper, the synonym ’visitor’ is used, because it is
simpler and clearer. Besides, a tourist is always a visitor to a NP.

As in [4], x(t) is the total stock of species (wild resources) comprising the various
populations or species found in a given area, aggregated in some appropriate way
1. To activate a regulated tourism and recreation, GINP invests I, in NP tourism
infrastructure, ( i.e. the sum of tourism accommodation facilities, transport, feeding
facilities, entertainment facilities and natural, historical and cultural monuments
and objects located in NP), and it spends ”to defend” the aggregated biomass of
the park per time unit is denoted by E.
The manager of a National Park aims to maximize the cash flow resulting from the
visitors.
Assuming an infinite planning period, denoting by r the time preference, which is
exogenously given and constant over time, the GINP objective function is given by
(see [8]):

max
I,E

∫ ∞

0

(pV − C(I)− bE)e−rtdt (1)

where I and E are the control variables, p is the (constant) revenue visitors, b is the
(constant) amount of money needed to activate one unit of enforcement and C(I)
are investment costs increasing and convex in I.
Define with f(I, x) the function increasing in the number of visitors and with g(x)
the increasing of the biomass of the park, with ψ(V ) the function that defines the
negative impact that visitors have on the natural resource and finally with ϕ(E) the
function that defines necessary efforts in order to defend the ecological biomass of
the park. Dynamics of interaction between the resource of the park and the number
of the visitors can be defined as follows:

V̇ = f(I, x)− aV
ẋ = g(x)− ψ(V ) + ϕ(E)

(2)

where the parameter a > 0 gives the decline in the number of tourists due to
crowding effects. This means that a NP becomes less attractive when a lot of
tourists visit that NP, leading to a decrease in the number of visitors.

Assumptions (Properties of f , g, ψ, ϕ)

1For example,the stock of species could be aggregated by number of individuals in each distinct
population or species. Alternatively, the total ’biomass’ of each population or species could be
aggregated across all species. Some form of ’weighted average’ combination of the two approaches
could also be employed
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a) fI > 0, fII ≤ 0, fx > 0, fxx ≤ 0, fIx > 0

b) gx > 0, for 0 < x < x, gx < 0, for x < x < k, with gxx < 0.

c) ψ′ ≥ 0, ψ′′ ≥ 0

d) ϕ′ > 0, ϕ′′ < 0

The Assumption a) states that both investment and the resource of the park
influences positively the increase of the number of visitors and that the function f
is not globally convex in the variables I and x.
The Assumption b) states that the function g that is chosen is a logistic function,
where x is golden rule resource stock with f ′ = 0 and k the environmental carrying
capacity i.e. f(k) = 0.The Assumption c) implies that the function ψ is convex.
The Assumption d) states that the function ϕ is concave, we can consider that the
rate of growth of defensive expenses decrements with the increment of the resource.

3 Optimal Control Problem

Apply the Pontryagin’s Maximum Principle to solve the model (1)-(2).
The current value Hamiltonian function is:

H = pV − C(I)− bE + λ(f(I, x)− aV ) + µ(g(x)− ψ(V ) + ϕ(E)) (3)

where λ, µ are respectively the multipliers of V and x, and they have the usual
interpretation of shadow ”prices”. Pontryagin’s maximum Principle provides the
necessary conditions of this problem. Let I∗ and E∗ be a solution of the problem
defined above and let V ∗ and x∗ be the optimal paths of associated state variables.
First-order necessary conditions for optimality are given by following equations:

λ̇ = (r + a)λ− p+ µψ′ (4)

µ̇ = (r − gx)µ− fx(I, x)λ (5)

Moreover, the Maximum Principles includes the condition that the control variables
maximize the Hamiltonian. Setting the derivatives of (3) with respect to control
variables I and E to zero, it yields:

∂H

∂I
= −C ′(I) + λfI(I, x) = 0 (6)

∂H

∂E
= −b+ µϕ′(E) = 0 (7)

The initial values of co-state variables are fixed according to the transversality con-
ditions:

lim
t→∞

λ(t)V (t)e−rt = lim
t→∞

η(t)x(t)e−rt = 0 (8)
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Note that such conditions are satisfied by every trajectory of system (2)-(6)-(7)
approaching a fixed point or a limit cycle.
From (6), I depends from both λ e da x, that is I = I(λ, x) then:

−C ′(I(λ, x)) + λfI(I(λ, x), x) = 0

deriving further we obtain:

Ix =
λfIx

C ′′ − λfII
> 0

Iλ =
λfI

C ′′ − λfII
> 0

(9)

Remember that, f is no convex function Assumption a) and C is convex (C
′′
>

0),therefore the equations (9) are hold. The first equation of the (9) states that
the investment for the services and infrastructures to the visitors grows with the
increasing of the biomass of the park (or the conservation of the biomass), therefore
the efficiency of unit additional of investment in terms of attraction for the visitors
grows as grows the biomass (resource) of the park. While the second equation states
that if the shadow price of the number of visitors is enough elevated the investment
rate increases. From (7) follow that E = E(µ), deriving regarding µ follows that:

Eµ = − ϕ′

µϕ′′ > 0 (10)

Remember that, ϕ is concave (ϕ′ > 0, ϕ′′ < 0), and (10) can be explained as it
follows: when the price shadow of the resource park grows the visitors give greater
value to the same resource and therefore the management of the park diminishes
defensive expenses.

Note. From (9) and (10) follow the second-order necessary conditions, i.e. the
Hamiltonian is concave in (I, E). The matrix of second derivatives of H with respect
to I and E is negative defined since, for all I,E,V ,x:

∂2H

∂I2
= −CII + λfIIIx < 0

∂EH

∂E2
= µϕEEEµ < 0

∂2H

∂I∂E
= 0

The sign of the first two expressions above follows from convexity assumption.
Substituting the optimal choices of the control variables I and E in the equations
(2)-(6)-(7) we obtain a dynamics system in the space (V, x, λ, µ):

V̇ = f(I(λ, x), x)− aV
ẋ = g(x)− ψ(V ) + ϕ(E(µ))

λ̇ = (r + a)λ− p+ µϕ′

µ̇ = (r − gx)µ− fx(I(λ, x), x)λ

(11)
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Denote by P = (V ∗, x∗, λ∗, µ∗), a fixed point, as solution of the nonlinear system
(V̇ = ẋ = λ̇ = µ̇ = 0).

Proposition 1 A necessary condition for (V̇ = ẋ = λ̇ = µ̇ = 0) is that r−gx(x∗) >
0

Proof. From Assumption (a), µ̇ = 0 is met if and only if r − gx(x
∗) is strictly

positive

Proposition 2 Let x such that gx(x) = r, if x∗ > x, then the optimal solution is
met

Proof. From the second of equations (11) follow that gx(x
∗) = r−fx(I(λ

∗, x∗), x∗)λ∗

µ∗ <

r, but remembering that gx is decreasing and gxx < 0 implies that gx(x
∗) < gx(x) =

r, therefore x∗ > x
The Proposition 1 says that the discount rate must be greater than the rate of

growth of the natural resource, besides a sufficient condition is that x > x (gx < 0).
The Proposition (2) tells us that as the more we preserve the resource for the next
generations (little r), the more the stock at equilibrium will be high. In other words
a positive externality exists when (the GINP) attributes value to the resource.

Moreover from λ̇ = 0 follow that µ∗ =
p− (r + a)λ∗

ϕ′ , then if p sufficiently large

µ∗ > 0 is hold.

4 Analysis of the Model

4.1 Stability Analysis

Assuming that steady state point P ⋆ exists, the local dynamics around that sta-
tionary state is determined by the eigenvalues of the Jacobian matrix at the the
stationary point.
The Jacobian of the dynamic system (11) is derived as

J =


−a J12 fIIλ 0
−ψ′ gx 0 ϕ′Eµ

µψ′′ 0 r + a ψ′

0 J42 −J12 r − gx


with J42 := −µgxx − λfxxIx = µ|gxx|+ λ|fxx|Ix > 0 and J12 := fx + fIIλ > 0.
The eigenvalues of the Jacobian, are given by

λ1,2,3,4 =
r

2
±

√√√√(r
2

)2

− K

2
±

√(
K

2

)2

− detJ
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with K defined as (see [6])

K =

(
−a fIIλ
µψ

′′
r + a

)
+

 gx ϕ′Eµ

J42 r − gx

+ 2

 J12 0
0 ψ′


= −a(r + a)− µψ′′fIIλ + (r + gx)gx − ϕ′EµJ42 + 2J12ψ

′

and with detJ determinant of matrix J .
From analysis of K and detJ , arise the following proposition

Proposition 3 If the effect of visitors on the environment is constant (ψ = con-
stant), then the fixed point P ∗ is a saddle point with monotonous approach of the
equilibrium on one or two-dimensional stable manifold
moreover

a) if the NP manager carry out a defensive technology (ϕ = 0) , the eigenvalues
of the system (11) are: λ1 = −a, λ2 = r − a, λ3 = r + a, λ3 = r − gx

b) if the NP manager no carry out a defensive technology (ϕ ̸= 0) , the eigenvalues

of the system (11) are: λ1 = −a, λ2 = r−a, λ3,4 =
r

2
±
√
(r − gx)2 + 4J42ϕ′Eµ

The proposition above states that, in the case a), if the intertemporal discount
rater is low enough, the fixed point P ⋆ is a saddle with a one-dimensional stable
manifold (only one eigenvalue with negative real part), the fixed point cannot be
(generically) reached, while in the case b) if the defensive technology (ϕ′Eµ) is suf-
ficiently high at the fixed point, the fixed point is a saddle with two-dimensional
stable manifold (two eigenvalue with negative real part). If case (b) holds, given the
initial values of V and x, there exists (at least locally) a single initial value of λ and
µ (determined by the representative agent) from which the economy approaches the
fixed point.

Furthermore, looking at the formula for eigenvalues, one immediately realized

that the eigenvalues are symmetric around
r

2
. Since r > 0 holds, this implies that

the system is never completely stable (in the sense that all eigenvalues have negative
real parts), it can be a saddle-point stable. From an economic point of view, saddle-
point stability means that all variables are constant in the long run. That is a
constant level of investment and level of defensive expenditures which are chosen
in a way that the number of visitors in the NP also remains. Further, more the
stock of environmental resource (or environmental quality) is also constant because
the deprecation caused by visitors equals the absorptive capacity of nature. In this
case, we may speak of a sustainable development since the environmental quality
remains constant in the long run. The transitional behavior of the variables in case
of saddle -point stability is characterized by unimodal time paths if the eigenvalues
are real. If the eigenvalues are complex conjugate, however, the variables dispose
cyclical oscillations until the stationary point is reached. This means that there are
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periods with high investment I and defensive expenditure E followed by periods
with low investment and defensive expenditures. But, in the long run, both I and
E are constant and as high enough that the number of visitors is kept at a constant
level. Besides convergence to the stationary state in long run, the system shows
persistent endogenous cycles. In this work,in particular we are interested in the
question of whether endogenous persistent cycles may occur for certain values of
discount rate (r) and of technology parameter (ϵ) that measures the effectiveness of
defensive expenditures.

4.2 Specification of the model

In order to illustrate the possibility of persistent cycles we choose the following
functions

f(I, x) = f1(I)f2(x) = I
x

1 + hx
g(x) = α1(k − x)x
ψ(V ) = γV 2

ϕ(E) = ϵ
Eα

α

C(I) =
1

2
βI2

(12)

The function f(I, x) depends upon recreation investments (f1(I)) and the culture
of the visitors and, in particular, upon their sensitivity to the quality of the natural
resources (f2(x)), their ability to detect it. The first component is also modeled
through linear function, while the attractiveness of the environment can be modeled
as an increasing and saturating function of x, that is described as a Monod function
[5].
The function g(x) represents the quality of the environment x, in the absence of
visitors and investment it is described by the well-know logistic equation, where
the parameter α1 is a measure of the maximum possible growth rate, while k > 0
represents the carrying capacity of the natural resource (i.e. the value that x reaches
as t→ ∞).
Note that the quadratic form of the function ψ(V ) = γV 2 ensures, in contrast to
Proposition 3, that ψ′′ = γ > 0.
Finally, both the functions ϕ(E) and C(I) are chosen so as to satisfy the Assumptions
in Section 2.
From (12) the system (11) become:

V̇ =
λx2

β(1 + hx)2
− aV

ẋ = α1(k − x)x− γV 2 +
ϵ

α
(
ϵµ

b
)

1

1− α

λ̇ = (r + a)λ− p+ 2µγV

µ̇ = (r − α1(k − 2x))µ− λx

β(1 + hx)3

(13)
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The system (13) is too complicated to generate analytical results, therefore, we have
to rely on numerical method.

4.3 A Numerical examples

Let me assume that the values of parameters of the dynamics (13) are as follows:
α = 0.5, a = 0.01, p = 0.008, β = 1.4, k = 1.5, h = 5, γ = 5, α1 = 0.05, b = 0.5;
The discount rate r and technology parameter ϵ are the bifurcation parameters.
Figure 1 show the equilibrium curve in the plane (r,x), fixed ϵ = 0 (absence
of defensive expenditures). We find two Hopf bifurcation, HS, with coordinates
P ⋆(Hs) = (0.056017, 0.251297, 0.06323, 0.00642) and rHs = 0.059592 and Hf , with
coordinates P ⋆(Hf ) = (0.074306, 0.648171, 0.044532, 0.00076) and rHf = 0.168374.
The continuous line represents the equilibrium characterized by reachable fixed
points (two eigenvalues with negative real part and two eigenvalues with positive
real part), while the dashed line represent not reachable fixed points (only one eigen-
value negative positive real part).
Now we consider codimension-2 bifurcation of the system (13) as two parameters r
and ϵ are varying (see Figure 2).
Figure 2 shows a Hopf curve, starting the HS point and ending in Hf point.
At (r, ϵ) = (0.16436, 1.37881) a generalized Hopf bifurcation was found, where
the first Lyapunov coefficient vanishes (label GH)2. The GH has coordinates
P ⋆(GH) = (0.074905, 0.629766, 0.045512, 0.000086). This codimension-2 bifurcation
is nondegenerate, since the second Lyapunov coefficient l2 = −0.1131215 nonzero.
The continuous line corresponds to the supercritical Hopf bifurcation generating sta-
ble limit cycles, while the dashed line corresponds the subcritical Hopf bifurcation
generating unstable limit cycles.
Moreover, Figure 2 shows that the plane (r, ϵ) is divided in two areas: the shaded
area separates the unreachable fixed points to reachable fixed points.
Also Figure 2 shows two supercritical Hopf bifurcations H1 and H2 and one subcrit-
ical Hopf bifurcation H3. Figure 3 shows a family of limit cycles (varying r) starting
from Hopf bifurcation H2 ,generating attractive limit cycles and starting from H3

generating repulsive limit cycles.
Figure 4 illustrates how, fixed ϵ = 1, a family of limit cycles which starts from
supercritical Hopf bifurcation (H1), varying r, approaches, the supercritical Hopf
bifurcation H2 ”through” the area of the plan consists of fixed points can not be
reached. Once you reach the point H2, the attractive limit cycles return back to the
point H1. This means that a trajectory that arises inside the ”ellipsoid” (see Figure
4) remains within it.

2The generalized Hopf (GH) is a bifurcation of an equilibrium in a two-parameter family of
autonomous ODEs at which the critical equilibrium has a pair of purely imaginary eigenvalues
and the first Lyapunov coefficient for the Andronov-Hopf bifurcation vanishes. This phenomenon
is also called the Bautin bifurcation.
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4.3.1 Discussion of the limit cycle

Figure 6 shows the cyclical time path of visitors V (t), of the ‘stock’ x(t) of the
environmental resources, of investments I(t) and of environmental defensive expen-
ditures E(t). Notice that I(t) and V (t) follow very similar time paths; that is,
investments do not counter the cyclic behavior of visitors. On the contrary, the
evolution of the other control variable, E(t), is inversely correlated with the evolu-
tion of the stock x(t); that is, defensive expenditures tend to dampen the oscillatory
behavior of x(t). The link between the two state variables V (t) and x(t) is obvious;
in particular, the path of V (t) follows that of x(t) with a time delay; the cyclic
behavior is generated by an interaction of the prey-predator type, where V (t) rep-
resents the size of the ‘predators’ while x(t) that of the ‘preys’. It is worth to stress
that these cyclic paths are optimal, according to the objective function used in the
model; consequently, the policy maker has no incentive to modify them.

5 Conclusions

The main issue of this paper was to establish the fact that periodic investments and
defensive expenditure by in order to defend the natural resource may be optimal
under certain parameters. An intertemporal approach was used to study the optimal
design of the tourist infrastructure in the National Park as well as efficient defensive
expenditures policies. Large investments call many visitors, this generates large
revenues. This implies a damage for the natural resource; in order to preserve the
investments it is necessary to defend the natural resource by defensive expenditure.
The presence of cyclical dynamics, such as environmental resource needs to rest.
The continuous cyclical pattern, in fact, allows the National Park to regenerate.
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Figure 1: Equilibrium manifold in the (r, x) plane: Hs and Hf are two Hopf point.
The parameter value: α = 0.5, a = 0.01, p = 0.008, β = 1.4, k = 1.5, h = 5, γ = 5,
α1 = 0.05, b = 0.5, ϵ = 0
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Figure 2: The Hopf bifurcation curve, varying r and ϵ: GH - Generalized Hopf
point. The parameter values are those used in the simulation showed in Figure 1
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Figure 3: Limit cycle started subcritical Hopf point (H3) and supercritical Hopf
point (H2).

Figure 4: Limit cycles started from a Hopf point H1.
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Figure 5: Phase portrait of the limit cycle in the plane, with r = 0.14678, and ϵ = 2.
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