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Abstract 

 

 Davidson and MacKinnon’s J-test was developed to test non-nested model specification.  In 

empirical applications, however, when the alternate specifications fit the data well the J test may 

fail to distinguish between the true and false models: the J test will either reject, or fail to reject 

both specifications. In such cases we show that it is possible to use the information generated in 

the process of applying the J-test to implement a Bayesian approach that provides an unequivocal 

and acceptable solution. Jeffreys’ Bayes factors offer ways of obtaining the posterior 

probabilities of the competing models and relative ranking of the competing hypotheses. We 

further show that by using approximations of Schwarz Information Criterion and Bayesian 

Information Criterion we can use the classical estimates of the log of the maximum likelihood 

which are available from the estimation procedures used to implement the J test to obtain 

Bayesian posterior odds and posterior probabilities of the competing nested and non- nested 

specifications without having to specify prior distributions and going through the rigorous 

Bayesian computations. 
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I.  INTRODUCTION 

 

One of the most widely used tests for comparing non-nested hypotheses is the J test proposed by 

Davidson and MacKinnon (1981). The non-nested tests of hypotheses arise in situations when 

the alternate hypothesis cannot be derived as a special case of the null hypothesis. This may arise 

either due to completely different sets of regressors in competing model specifications or 

different distributions of the stochastic terms. This test appears in standard econometrics’ 

textbooks [e.g. Greene, 2003, and Davidson and MacKinnon, 2004], the Handbook of 

Econometrics [Vol. 4, 1994], is included in the literature of standard econometrics programs [e.g. 

EViews 5, and Shazam], and is the most commonly used non-nested test procedure (McAleer’s 

(1995)). 

 

When each of the competing hypotheses is successful in explaining the variations in the data, the 

J-test may not be able to discriminate between alternative specifications. Some of the situations 

in which the J test does not discriminate between the competing specifications have already been 

noted. Godfrey and Pesaran (1982) state the  following one or more conditions where the J test is 

likely to over reject the true hypothesis:  (i) a poor fit of the true model; (ii) low or moderate 

correlation between the regressors of the two models; and (iii) the false model includes more 

regressors than the correct specification.  Davidson and MacKinnon (2004) agree that the J test 

will over-reject, “often quite severely” in finite samples when the sample size is small or where 

conditions (i) or (iii) above are obtained.  Gourieroux and Monfort (1994) conclude that the test 

is very sensitive to the relative number of regressors in the two hypotheses; in particular, the 

power of the J test is poor when the number of regressors in the null hypothesis is smaller than 

the number of regressors in the alternative one. 

 

It is possible, however, to find examples in the literature where none of the above noted 

conditions are violated
1
 and where the J test rejects all models.

2
   

                                                 
1 That is to say that  each of the alternative hypotheses fit  the data extremely well, where the regressors of the alternative 

hypotheses are correlated, where the alternatives have the same numbers of regressors, J-test is inconclusive. 

 
2 McAleer’s (1995)  survey of the use of non-nested tests in applied econometric work reports that out of 120 applications all 

models were rejected in 43 applications. However, he did not break down the rejections by the type of test used. 
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Here, we give three examples of empirical work on the consumption functions that illustrates this 

situation. 

 

In the econometrics software EViews 5, the J test is used to compare two hypotheses regarding 

the determinants of consumption.  The first hypothesis is that consumption is a function of GDP 

and lagged GDP.  The alternative expresses consumption as a function of GDP and lagged 

consumption. The data used are quarterly observations, 1947:2 – 1994:4.  The conclusion reads: 

“we reject both specifications, against the alternatives, suggesting that another model for the data 

is needed.” [p. 581].  This conclusion is surprising, for the coefficient of determination reported 

for each of the models was .999833, a value that would have lead most researchers to accept 

either of the models as providing full explanation for the quarterly variability of consumption 

over almost half a century. 

 

Greene [2003] reported the results of comparing the same two consumption function hypotheses 

using quarterly data for the period 1950:2 – 2000:4. The results of the test lead him to a similar 

conclusion: “Thus, Ho should be rejected in favor of H1.  But reversing the roles of Ho and H1… 

H1 is rejected as well.”  Although Greene did not report on the goodness of fit, it is very likely, 

as in the EViews 5 data, that each of the models had explained almost all of the variation in 

consumption. 

 

The third example is found in Davidson and MacKinnon [1981] where they report on the results 

of applying the J test to the five alternative consumption function models examined by Pesaran 

and Deaton [1978]. In spite of the fact that the coefficients of determination for all the models 

are quite high, ranging from .997933 to .998756 [Pesaran and Deaton, 1978, 689-91], each of the 

models is rejected against one or more of the alternatives. 

 

In this paper we show that when we wish to test alternative non-nested specifications that are 

successful in explaining the observed variations, the J test is likely to be inconclusive.  While 

advances and improvements on the J test such as the Fast Double Bootstrap procedure [Davidson 

and MacKinnon, 2002] have been made and are reported to increase the power of the test, it 

appears that in doing empirical work researchers still use the standard J test [see for examples: 
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Faff and Gray (2006) or Singh (2004)]. In the discussion below we use the original test as this 

allows for clarity of exposition. 

  

In section II we point out the theoretical reasons why the test may lack power in testing model 

specifications that fit a given set of data well.  We do this by expressing the test statistic in terms 

of the correlation between the variables in the alternative specification.  

 

In section III we illustrate the problems encountered in using the J test in empirical work by 

applying the test to two alternative specifications designed to explain monthly output behavior in 

24 industries.   

 

In section IV, we present a testing paradigm for non-nested hypothesis that can be implemented 

to supplement the J test when the J test proves inconclusive. We use log-likelihood values which 

are obtained in the process of applying the J test to approximate Bayesian information criteria 

and Bayes factors. This allows us to circumvent the complexities of the Bayesian approach: 

specifying the prior distributions and computations of marginal likelihoods. This specification 

testing method yields results that do not depend on the choice of the null or the maintained 

hypothesis. We illustrate the use of the Bayes factors in specification testing by applying it to the 

same data on the 24 industries studied in section III.  

 

II. THE J TEST 

An “artificial regression” approach for testing non-nested models was proposed by Davidson and 

MacKinnon [1981, 1993]. Consider two non-nested hypotheses that are offered as alternative 

explanations for Y: 

 

(2.1) H0: 1XY  , and 

(2.2) H1: 2ZY  ,  

 

Both disturbances satisfy the classical normal model assumptions, X has k1 and Z has k2 

independent non-stochastic regressors.  
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We write the artificial compound model as: 

 

(2.3)  ZX)1(Y  

 

If this model is estimated, we test the non-nested model by testing one parameter: when  = 0, 

the compound model collapses to equation (2.1) and when  = 1, the compound model collapses 

to equation (2.2).   

 

Because the parameters of this model are not identifiable, Davidson and MacKinnon suggest 

replacing the compound model (2.3) by one “in which the unknown parameters of the model not 

being tested are replaced by estimates of those parameters that would be consistent if the DGP 

[data generating process] actually belonged to the model they are defined.” (Davidson and 

MacKinnon, 1993, p. 382). Thus, to test equation (2.1), we replace  in (2.3) by its estimate ̂  

obtained by regressing Y on Z. If we write  ˆZŶz , the equation to be estimated to test whether 

 = 0 is: 

 

(2.3’)  z1 ŶX)1(Y . 

 

Similarly, to test equation (2.2) we estimate ̂  by fitting equation (2.1) to the data and replace 

X  in (2.3) by ̂X , or xŶ .  The equation to be estimated to test (2.2) is then, 

 

(2.3”)  ZŶ)1(Y x . 

 

The Davidson and MacKinnon J-test applies the t-test for the estimated coefficients on zŶ  in 

equation (2.3’) and xŶ  in equation (2.3’’).  A statistically significant t-statistic on the coefficient 

of zŶ  rejects H0 as the appropriate model and a significant t-statistic on the xŶ  coefficient 

results in the rejection of H1.  For instance, in the consumption functions described in the 

introduction, both t-statistics result in the rejection of each model.  As some of the regressors in 

(2.3’) and (2.3”) are stochastic, the t-test is not strictly valid.  Davidson and MacKinnon (1993, 
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pp. 384-5) show as to why the J and P tests (which in [linear models] are identical) are 

asymptotically valid.
3
 

     

In this section we show that the t-test statistic for the significance of 


 in (2.3’), thus the 

decision we make regarding the hypothesis (2.1), depends on the goodness of fit of the 

regression of Y on Z, the goodness of fit of the regression (2.3’) as well as the correlation 

between the two sets of regressors in (2.3’).  We show this using the F ratio for testing  = 0, 

which is identical to the square of the t-value since we are interested in the contribution of only 

one regressor zŶ . A similar statement applies to the test of the significance of (1 - ) in (2.3”). 

Consider the OLS estimator of the coefficient  of the model (2.3’).  Using a theorem due to 

Lovell (1963, p. 1001)
4
, the OLS estimate of  and the estimated residuals will be the same as 

those obtained from regressing the residuals of the regression of Y on X, YM x , on the residuals 

of regressing zŶ  on X, , 
zxYM ˆ :: 

 

(2.4)  xzxx MYMYM  ˆ   

 

Where, ]X)XX(XI[M 1
x

  , and  ˆZŶz  and ̂  is the estimated regression coefficients of 

Y on Z: 

 

Writing, Z)ZZ(ZP 1
z

  , we write (2.4) as: 

 

  xzxx MYPMYM . 

 

The OLS estimator of  is then: 

 

(2.5) YMPY]YPMPY[ˆ
xz

1
zxz

   

                                                 
3 They also add, “also indicates why they (J and P tests) may not be well behaved in finite samples.  When the sample size is 

small or Z contains many regressors that are not in S(X)…”  We do not consider these situtions in what follows.  
4 Lovell’s theorem 4.1 generalizes (to deal with seasonal adjustment) a theorem that was developed by R. Frisch and F. Waugh 

for dealing with detrending data. Green (2003) extends the application to any partitioned set of regressors. 
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The residuals of OLS estimation of (2.4) are: 

 

]YPMˆYM[ˆM zxxx   

 

Since (2.4) has only one regressor, under the null hypothesis that  = 0 the F-statistic is the 

square of the t-statistic. 

 

The sum of squares due to regression of equation (2.4), Q, is given by: 

 

(2.6)  ˆDˆQ , where zxz ŶMŶD   

 

Consider regressing Y on X only and denote the residuals of that regression by YMû x  and 

regressing zŶ  on X and denote the residuals of that regression by: zx ŶMˆ  . We can then write: 

 

(2.5’) ûˆ)ˆˆ(ˆ 1  , and  

 

(2.6’) 221
xz

1
zxzzx

ˆ)ˆû(ˆû)ˆˆ(ˆûYMŶ]ŶMŶ[ŶMYQ    

 

The residuals from OLS estimation of (2.4) can be written as: 

 

  ˆ)ûˆ()ˆˆ(ûˆˆû]YPMˆYM[ˆM 1
zxxx  

 

The sum of the squared residuals from estimating (2.4) is: 

 

 (2.7) ]ˆ/)ˆû[(ûˆMˆ 222
x     

 

This sum of squares has (T–k1–1) degrees of freedom, where T is the number of observations 

and k1 is the number of variables in X. 
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Thus, under the hypothesis that  = 0, the F-statistic is
5
: 

 

(2.9)  )1kT,1(F 1 /[Q   ˆMˆ
x / (T-k1-1)]  = )1kT(

)ˆû(ˆû

)ˆû(
1222

2










   

 
 

 

This test statistic can be expressed in terms of correlations between the variables. We show in the 

Appendix that:  

 

(2.10) 
2

ŷŷyxyz
2
xŷ

2
yx

2

ŷŷyxyz1

1
2

]RRR[)R1)(R1(

]RRR)[1kT(
)1kT,1(F

zx

zx




  

 

Where we placed the superscript 2 to denote that it is a test for the second model, equation (2.2), 

under the assumption that the first model is true, and where: 

2
yxR  is the coefficient of determination of the regression of Y on X only, 

2

yzR  is the coefficient of determination of the regression of Y on Z only, 

2
xŷR  is the coefficient of determination of the regression of  zŶ  on X, 

zx ŷŷ
R is the correlation coefficient of xŶ  and zŶ , and since these are linear combinations of X 

and Z respectively, 
zxŷŷR is the canonical correlation of the alternative  regressors X and Z.

6
 

 

Because the J test is symmetric, the second part of the J test, maintaining (2.2) and testing for the 

significance of (1 - ) in (2.3”), the test statistic, denoted as F1  is: 

(2.11) 
2

ŷŷyzyx
2
zŷ

2
yz

2

ŷŷyzyx2

2
1

]RRR[)R1)(R1(

]RRR)[1kT(
)1kT,1(F

zx

zx




  

                                                 
5 See equation (22) of Godfrey and Peseran (1983). 

6 Where there is only one regressor in each of X and Z, the coefficient
zx ŷŷ

R is the correlation between the two regressors and 

the test statistic simplifies to: 

xzyxyz
2
yz

2
yx

2
xz

2
xzyxyz1

1
2

RRR2RRR1

]RRR)[1kT(
)1kT,1(F




 . 
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From these two test statistics we note the following: 

a) When sample size is small, the difference between the numbers of regressors in 

the competing model will affect the sizes of the test statistics.  If the data were 

generated by the model of (2.1), the test statistic F1  will get smaller as the 

number of regressors in the alternative model, k2, increases.  This may lead to the 

rejection of (2.1) in favor of the alternative model (2.2), particularly if the number 

of regressors k1 is small.  This is consistent with Godfrey and Pesaran’s (1982) 

simulation-based findings as well as with Gourieroux and Monfort (1994) who 

conclude that the test “is very sensitive to the relative number of regressors in the 

two hypotheses; in particular the power of the J test is poor when the number of 

regressors in the null hypothesis is smaller than the number of regressors in the 

alternative one.”  However, the influence of the differentials in the number of 

regressors will become negligible as sample size increases. 

 

b) When a model is successful in explaining the variations in Y the J test is likely to 

reject it.  To see this clearly, assume that the alternative regressors are orthogonal 

so that 0R
zx ŷŷ  . If model (2.1) is successful, the high coefficient of 

determination 2

yxR  will increase the numerator of (2.11) while reducing the 

denominator, thus increasing the value of the test statistic F1  which leads to 

rejection of the model (2.1).  Similarly, if the model (2.2) is successful in 

explaining the variations in Y, the high value of 2

yzR will increase the value of the 

test statistic F2
 which leads to the rejection of model (2.2).  When both models 

are successful in explaining the variations in Y, the combined effect of high 

2

yxR and 2
yzR  leads us to reject both models.  Such was the situation in Davidson 

and MacKinnon [1981] report on the five alternative consumption function where 

the coefficients of determination for all the models ranged from .997933 to 

.998756, yet all the models were rejected.  This would be at variance with the 

conclusion reached by Godfrey and Pesaran (1983) “when sample sizes are small 

the application of the (unadjusted) Cox test or the J-test to non-nested linear 

regression models is most likely to result in over rejection of the null hypothesis, 
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even when it happens to be true, if …the true model fits poorly”, unless the fit of 

the false model also fits poorly. 

 

c)  
zx ŷŷ

R is the canonical correlation coefficient of the sets of regressors X and Z.  

Higher values of this correlation would reduce the numerator and increase the 

denominator of both (2.10) and (2.11), lowering the values of the F statistics.  The 

effect would reduce the likelihood of rejecting either of the competing 

hypotheses. The reverse, as stated in Godfrey and Pesaran (1983) is also true: 

“when the correlation among the regressors of the two models is weak” the J test 

“is most likely to result in over rejection of the null hypothesis, even when it 

happens to be true,”  

 

The effect of the coefficients of determination of the alternative model specifications on the F 

statistic is shown in Figure 1.
7
  In this figure, the light grey areas represent combinations of 2

yxR  

and 2

yzR  that result in rejecting the X model (2.1) and failing to reject the Z model (2.2).  This is 

appropriate since for those combinations, the model using the set of explanatory variables Z is 

clearly superior to that which uses the set X.  The dark grey areas represent combinations that 

result in rejecting the model that uses the set of explanatory variables Z and failing to reject the 

model which uses X.  Again, this is clearly appropriate. The interior white areas represent 

combinations of the coefficients of determination for which the J test fails to reject both models.  

Within those areas comparisons of the coefficients of determination for the two alternative 

models, particularly for large samples would have led to the conclusion that neither model is 

                                                 

7 The coefficients of determination and the canonical correlations are subject to restrictions.  Since the quadratic form  

]ˆ/)ˆû[(ûˆMˆ 222
x     is positive semi-definite,   222 )vu(vu


, that is: 

2

ŷŷyxyz
2
xŷ

2
yx ]R.RR[)R1)(R1(

zx
 .  The restrictions imply that when the canonical correlation between X and 

Z is zero (the two sets of alternative explanatory variables are orthogonal), 1RR 2

yz

2

yx  .  Thus, in figures (1.a), (1.b) and 

(1.c) where the canonical correlation is set at zero, the only feasible region is the triangle below the line connecting the points 

1R 2

yx   and 1R 2

yz  .  When the canonical correlation is different from zero, the restriction on the relationship between the 

coefficients of determination result in the elliptical shape of the feasible region shown in the second and third columns of Figure 

1.  Combinations of the coefficients of determinations outside of the ellipse violate the restriction. 
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particularly useful in explaining Y.  The black areas represent combinations of 2

yxR  and 2

yzR  that 

result in rejecting both hypotheses. What is remarkable is the size of these areas compared to the 

other areas and the fact that the black area encompasses combinations of 2

yxR  and 2

yzR  that, 

because of their large difference, would reasonably preclude a researcher from employing the J 

test.
8
  For instance, consider two competing models in the middle panel (the case of n = 100 and 

4.R 2

xz  ).  If one model had  9.R2

yx   and the other 6.R2

yz   , the J test would reject both 

models despite the fact that the X model would be traditionally viewed as the superior model 

based solely on the comparisons of the coefficients of determination. 

 

The canonical correlation of the competing model’s independent variables impacts the 

permissible values of the J test. The first panel demonstrates a canonical correlation between 

regressors set at zero, in the second panel it is set at .40 and in the third it is set at .90.  It is worth 

noting that when the canonical correlation is greater than zero, the size of the permissible region 

decreases as the correlation increases.  In the extreme case where the canonical correlation 

approaches 1, so that each of the variables X and Z are a linear combination of the other, the 

permissible combinations of the coefficients of determination, R
2

xy and R
2

yz will lie on the 45 

degree diagonal emanating from the origin. 

 

The effect of sample size on both the permissible region, we present the figures for sample sizes 

30, 100 and 1000 in each of the three panels.  The size of the permissible region depends only on 

the value of the canonical correlation, and is independent of sample size as would be expected.  

It is clear from these figures that as sample size increases, the area in which the J test would lead 

to the rejection of both hypotheses expands and thus covers increasingly larger areas of the 

permissible region. 

                                                 
8
 The white spaces outside of the shaded areas are regions where the combinations of the coefficients of determination that are 

not permissible- they result in violating the requirement that    222
x

ˆ/)ˆû[(ûˆMˆ ] is positive semi-definite. 

 



 

Figure 1:  J-Test Results for Various N, 2

xzR , 2

xyR , and 2

yzR  

 0R 2

xz   40.R 2
xz   90.R 2

xz   

n
 =

 3
0
 

 

 

 

 

 

 

n
 =

 1
0
0
 

 

 

 

 

 

 

n
 =

 1
0
0
0

 

 

 

 

 

 

 
Notes:  Black area represents reject both region, red (light grey) area represents reject the X model and fail to reject the Z model, blue 

(dark grey) represents reject the Z and fail to reject the X model, interior white areas represents fail to reject both models.  All graphs were 

produced at a 5% level of significance.



III. DETERMINANTS OF MONTHLY VARIATIONS IN INDUSTRY OUTPUT 

 

3.1 Alternative Model Specifications for Production Behavior 

We now apply the J test to compare two model specifications that have been used to explain 

monthly variations in industry output (Ghali, 2004).  In both specifications monthly output is 

determined by sales.  In one specification the stock of inventories also influences production, 

while in the other specification inventory stock does not play a role. The two specifications also 

differ in the way in which the sales variable enter into the specification.  

 

Minimizing the discounted cost over an infinite horizon for the traditional cost function used by 

many researchers results in the Euler equation reported by Ramey and West (1999, p. 885).  

Solving for current period output, Qt and assuming the cost shocks to be random,
9
 we get the 

following equations: 

 

(3.1) ii41i31i22i

2

1ii10i uHSQ]QbQb2Q[Q    

 

where Qi is output in month “i”, Si is sales and Hi is the inventory stock at the end of the month. 

  

The minimization of the cost using an alternative cost function (Ghali, 1987) and solving the 

resulting Euler equation for output we get: 

 

(3.2)  
tiQ = itt2it10 uSS  ,  

where Sit represents sales in month “i” of production planning horizon “t” and tS  is the average 

sales over the production planning horizon. 

We apply the J-test to the two specifications M1 in equation (3.1) and M2 in  equations (3.2). as 

specifications are  non-nested hypotheses explaining the monthly variability of production. 

                                                 
9 The empirical justification for this assumption is that the estimates reported in the literature for the effect of factor price 

variations on cost are not strongly supportive of the assumption that the cost shocks are observable.  Ramey and West (1999) 

tabulated the results of seven studies regarding the significance of the estimated coefficients for input prices. They reported that 

wages had a significant coefficient in only one study and material prices in one study. (Ramey and West, 1999, 907). More 

detailed discussion is given in Ghali (2004).  
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3.2 The Data 

The data we use are those used by Krane and Braun (1991).
10

  These data are in physical 

quantities, thus obviating the need to convert value data to quantity data and eliminating the 

numerous sources of error involved in such calculations
11

.  The data are monthly, eliminating 

the potential biases that may result from temporal aggregation.
12

  They are at the four-digit SIC 

level or higher, reducing the potential biases that may result from the aggregation of 

heterogeneous industries into the two-digit SIC level.
13

  The data are not seasonally adjusted, 

thus obviating the need for re-introducing seasonals in an adjusted series.
14

  A description of the 

data and their sources is available in Table 1 of Krane and Braun (1991, 564-565).  We use the 

data on the 24 industries studied by Ghali (2005). 

 

3.3 Empirical Results
15

 

In Table 1 the results of applying the J test to compare the two specifications are reported.  In the 

first set of columns we report the results of testing M1, equation (3.1) assuming that M2, 

equation (3.2) is maintained. This is done by estimating the parameters of equation (3.2) using 

OLS as suggested by Davidson and MacKinnon,
16

 The coefficient of determination, R
2
, of those 

regressions are reported in the first column, We then used the predicted values of Qi from that 

regression as an added regressor in the estimation of equation (1’).  The coefficient of the added 

regressor, iQ̂ , is reported in the second column and its t value in the third column.  If the 

coefficient of the added regressor is significantly different from zero, the model specification 

(3.1) is rejected in favor of the model specification (3.2).  As the fourth column shows, this was 

the case for all of the industries. 

 

The process is reversed in the second set of columns of Table 1. We now maintain the model 

specification of equation (3.1) and test that of equation (3.2).  The last column of this set of 

                                                 
10 We are very grateful to Spencer D. Krane who made this data available. 
11 For discussion of the potential measurement errors in converting value to quantity data for inventory stocks,see Krane and 

Braun (1991, 560 –562).  
12 See Ghali (1987) and Lai (1991). 
13 For discussion of the potential biases see Krane and Braun (1990, 7). 
14 For example see Ramey (1991).  She had to re-introduce seasonality as the data she was using was seasonally adjusted. 
15 The results reported in Table (1) are from Ghali 2007 reproduced with permission from publisher. 
16 All equations were estimated under the assumption of an AR(1) process for the error term. 
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columns shows that the model of equation (3.2) is rejected in favor of the model specification of 

equation (3.1). 

 

As can be seen from Table 1, for all industries studied both competing specifications are rejected 

by the J-test.  “When both models are rejected, we must conclude that neither model is 

satisfactory, a result that may not be welcome but that will perhaps spur us to develop better 

models.”(Davidson and MacKinnon, 1993, p. 383). However, it should be noted that each of the 

model specifications explains very high proportion of the monthly variation of output that as seen 

by the high coefficients of determination reported for each.  It may be that because each of the 

specifications is so successful in explaining the behavior of output, the J test is not able to 

distinguish between them.  In other words, if the maintained specification is successful in 

explaining the dependant variable, the correlation between the predicted value and the dependant 

value will be significant, and so will be the coefficient of the predicted value when added as a 

regressor in the artificial compound model. 
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TABLE 1:  DAVIDSON- MACKINNON J TEST 
INDUSTRY SAMPL

E 

PERIOD 

H2Maintained, H1Tested H1Maintained H2 Tested 

R2
2 

  t H1 R1
2 

  t H2 

Asphalt1 1977:01- 

1988:12 
.955 .767 16.76 R .980 .959 14.98 R 

Bituminous 

Coal 

1977:01- 

1988:09 
.606 .371 8.432 R. .944 .958 34.276 R 

Cotton Fabric 1975:01- 

1986:12 
.936 .507 13.201 R. .944 .578 14.242 R 

Distillate Fuel 1977:01-

1988:12 
.686 .330 7.000 R .943 1.060 28.310 R 

Gasoline 1977:01-

1988:12 
.733 .246 3.750 R .904 1.058 19.085 R 

Glass  

Containers 

1977:01- 

1989:03 
.670 .231 4.301 R .902 .969 20.822 R 

Iron and  Steel 

Scrap 

1956:01- 

1988:12 
.969 .596 15.868 R .966 .642 18.185 R 

Iron Ore 1961:01- 

1988:12 
.873 .376 12.489 R .966 1.087 37.225 R 

Jet Fuel 1977:01-

1988:12 
.899 .182 3.932 R .983 .961 28.234 R 

Kerosene 1977:01- 

1989:03 
.823 .318 5.551 R .949 1.155 26.824 R 

Liquefied Gas 1977:01- 

1988:12 
.376 .441 7.015 R .917 1.045 31.742 R 

Lubricants 1977:01- 

1988:12 
.496 .198 2.940 R .912 1.046 25.697 R 

Man-made 

Fabric 

1975:01- 

1986:12 
.904 .587 11.894 R .903 .553 10.606 R 

Newsprint 

Canada 

1961:01 

1988:12 
.838 .243 8.769 R .966 .965 44.514 R 

Newsprint US 1961:01- 

1988:12 
.991 .402 12.963 R .996 .773 30.423 R 

Petroleum 

Coke 

1977:01 

1989:03 
.933 .216 5.377 R .983 .847 20.469 R 

Pig Iron 1961:01- 

1988:12 
.997 .924 39.214 R .985 .242 8.294 R 

Pneumatic 

Casings 

1966:01- 

1988:12 
.802 .317 12.310 R .956 .983 40.722 R 

Residual Fuel 1977:01-

1988:12 
.965 .313 6.950 R .991 .997 29.659 R 

Slab Zinc 1977:01- 

1988:03 
.888 .254 5.283 R .976 1.065 28.974 R 

Sulfur 
 1961:01- 

1988:12 
.889 .281 6.348 R .988 1.024 72.875 R 

Super 

Phosphates 

1981:01- 

1988:12 
.941 .325 6.743 R .981 .936 21.897 R 

Synthetic 

Rubber
 

1961:01 

1984:12 
.833 .198 5.567 R .965 1.026 34.948 R 

Waste Paper 1977:01 

1988:02 
.874 .440 6.253 R .962 .896 19.073 R 
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IV. A BAYESIAN SOLUTION 

       

In many non-standard testing of hypotheses situations when the classical procedures lead to 

inconsistent results as in the case of J-test, the Bayesian approach provides an alternative that is 

consistent (see, for example; Zellner (1971, 1994), Berger and Pericchi (2001)). The Bayesian 

paradigm is generally more involved as it necessitates the specification of prior distribution for 

the parameters as well as the hypotheses, obtaining marginal likelihoods, Bayesian posterior 

odds and Bayes factors for the competing hypotheses.  Therefore, it is not surprising that we find 

a rather limited number of applications of the Bayesian approach even though it is intuitively 

more appealing and provides consistent and meaningful results.  

 

Schwarz (1978) suggested approximations to Schwarz Information criterion (SIC) and Bayesian 

Information criterion (BIC) using the log of the likelihood values.  Later, Kass and Raftrey 

(1995) provided extensions and applications for computing Bayes factors.  By combining these 

approaches we can use the maximum likelihood values obtained from the estimation needed for 

the J test to approximate the Bayesian posterior odds and the Bayes factor.  

 

We give below a brief overview of the Bayesian approach and then describe how the log of the 

maximum likelihood can be used to asymptotically approximate the Bayes factor and to provide 

consistent results for non nested model selection. 

    

 4.1 An overview of the Bayesian Hypothesis Testing for Nested and Non-nested hypotheses 

 

The theory of Bayesian testing of hypotheses is built around the concept of posterior 

probabilities of hypotheses and the Bayes factor, which were first introduced by Jeffreys (1935, 

1961).  Bayesian model comparison concepts and the issues that arise in empirical applications 

have been discussed by Zellner (1971), Kass and Raftrey (1995), Berger and Pericchi (2001) 

and Koop (2003), amongst many others. Schwarz (1978) paved the way for interplay between 

the Information Criteria and the Bayes factor for Bayesian specification test. We use Schwarz’ 

approximation of Bayesian information criteria and the log likelihood values to calculate Bayes 

factors for the competing models. 
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If M1, M2 are two different model specifications
17

 for a given data D, the posterior odds ratio 

K12   is given by 

 

(4.1)                    K12   =   [P (Data/H1)/P (Data/H2)]* [P (H1) /P (H2)]                                        

Or: 

(4.2)                    Posterior Odds   =   Bayes factor   X   Prior odds    

                                       

In the absence of any definitive information or if we have little information we treat the two 

hypotheses a priori equally likely implying P(H1) = P(H2) = ½ , and the prior odds  ratio  

[P (H1) / P (H2)] is equal to 1.  If prior odds equal one, from (4.2), the Posterior odds ratio is 

same as the Bayes factor. 

              

The Bayes factor is the ratio of the posterior probability of observing the data if Hi, i=1, 2   were 

true.  Bayes factor K12  measures the extent to which data supports Hypothesis l over Hypothesis 

2 and the evidence against Hypothesis 2.  

 

 P(D/Hi, i=1,2…k) ,  the marginal likelihood and is also known as the weighted likelihood or the 

predictive likelihood and is given by 

 

 (4.4)         P (D/Hi) =  i, Hi) π (i/ Hi) di     i=1.2….,k                                        

       

 Where i, is the parameter under Hi and π (i/ Hi) di    is its prior probability density and 

 i, Hi)  is the probability  density of D  given the value of i under the hypothesis 

Hi  or the likelihood function of .   

In the traditional Bayesian approach, we must specify the prior distribution π(i/ Hi) for the 

parameter(s) i. The use of prior distribution is the double edged sword for the Bayesian 

approach.  This is what provides that extra information in applications and the advantage over 

                                                 
17 The two  model specifications must be exahustive if we need to obtain Posterior probabilities of hypothesis from the posterior 

odds.  The results can be easily extended for k model specifications. 
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the classical approach. On the other hand, the specification of the prior is one of the most 

controversial aspects of the Bayesian approach.   

 

The quantity P(D/Hi), is the predictive probability of the data; that is the probability of seeing 

this data which is calculated before the data is observed. Bayes factor which is the ratio of these 

marginal probabilities of the data shows the evidence in favor of or against the hypothesis. In 

case of two hypotheses, i=1,2: 

 

(4.5)     K12 =      P (D/H1)/ P (D/H2)   

 

(4.6)     K12      =  1, H1) π (1/ H1) d1 /   2, H2) π (2/ H2) 

d2                                        

 

If K12 is greater than 1, the data favors Hypothesis 1 (Model M1) over Hypothesis 2(Model M2) 

and if K12 is less than 1, the data favors   Hypothesis 2 (model M2).  

 

 

 4.2 Bayes factor, BIC and the Likelihood values 

 

Although Bayes factors are fairly versatile and universally applicable for specification testing, 

calculation of marginal likelihoods is extremely demanding and sometimes these may not even 

exist (Leamer 1978). There has been great interest in finding alternate methods and 

approximations to Bayes factors. Various information criterions have been developed to this 

effect, which are not very rigorous, yet they are approximations to quantities that are either 

Bayesian or have a Bayesian justification. Akaike, Schwarz and Bayesian information criterion 

are frequently used.   

 

From Schwarz (1978) we note that the log of the Marginal likelihood can be approximated by the 

log of the Likelihood minus a correction term. This asymptotic approximation to the marginal 

likelihoods can be used to compute Bayes factor and can be applied to obtain the Posterior odds 
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and the posterior probabilities of the two competing models from the likelihood values for each 

model (Koop 2003 and Kass and Raftrey 1995 ). This is how it works in practice: 

 

(4.7)                  -2 SIC  BIC 

(4.8)                 SIC  =  (log[ pr( D 1/,,M1] –    log[ pr( D/   , M2] )  – ½ (p1 -  p2 ) log (n),  

  

Where   i-1,2 are the MLE under Model Mi,  p1, and p2 are the number of parameters in 

models 1 and 2 respectively and n is the sample size.   

 

(4.9)                    BIC (M1)   =   2 log pr (D/  /, M1] –   p1 ln(n) ,  

 

(4.10)                    BIC (M2) =    2log pr [ p( D/ 2  M2] – p2 ln(n) , and  

                               

 (4.11)                  2 log K12   =   BIC (M2) – BIC (M1)  

 

Since BICs can be calculated from likelihood values, we can calculate twice the Bayes factor 

from (4.11) without specifying the prior distribution. Once we know the 2 log K12 and since 

Models M1 and M2 are exhaustive in this case we can obtain posterior probabilities 1 and 2 

for Models M1 and M2 by using the relationship: 

 

              (4.12)           1 =     ;     and            2      =  

 

Although in all empirical applications we use only the posterior odds and the Bayes factors, we 

can also use the posterior probabilities of individual specifications and hypothesis for ranking 

and comparing different model specifications in case of larger number of alternate model 

specifications.  A decision to accept or reject a particular model generally requires choosing a 

model that minimizes an appropriate loss function. 

    

Jeffreys in (1961, appendix B) also proposed some rules of thumb for interpreting Bayes factor.  

If we  consider  0 < 2 Log(K21)<2 ; the  evidence   against M1 is not worth more than a   bare 
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mention, if 2 < 2 Log(B21)< 6, the evidence against M1 is positive and if 6<2 Log(B21)<10, the 

evidence against is strong and if 2 Log(B21)>10, the evidence against M1 is very strong.  We 

shall use these guiding rules to make decisions for choosing between two cost functions for  all  

twenty five industries in our data set. 

 

 4.3 Bayes Factors and the Model Specification: 

 

Let us consider that the model specification M1 in equation 3.1   is the Null Hypothesis H0 and 

the maintained hypothesis is model specification M2 in equation 3.2.  Bayes factor K12 will 

measure the evidence for Model 1 against model 2 and K21 will measure the evidence against 

M1. These results are given in the Table 2 below. The results are quite consistent and 

unequivocal  that specification M2 in equation 3.2 is strongly supported  by the data for 23 of the 

25 industries ( except, iron scrap and pig iron)  irrespective of the choice of the Null and the 

maintained hypotheses. 

 



 23 

Table 2: Bayes factors and Posterior Probabilities of Models M1 and M2 

 2 Log 

K21 

K21 Evidence 

against M1 

 2 log  

(K12) 

K12 Evidence 

Against M2 
1 2 

Asphalt 101.99 1.4E+22 very Strong -101.99 7.12E-23 Not worth 

mention 

7.12E-23 1 

Beer 18.56 10695.36 very Strong -18.56 9.35E-05 Not worth 

mention 

9.35E-05 0.999907 

Bituminous 

Coal 

322.56 1.1E+70 very Strong -322.56 9.06E-71 Not worth 

mention 

9.06E-71 1 

Cotton 

Fabric 

25.09 280624.6 very Strong -25.09 3.56E-06 Not worth 

mention 

3.56E-06 0.999996 

Distillate 

Fuel 

249.23 1.32E+54 very Strong -249.23 7.6E-55 Not worth 

mention 

7.6E-55 1 

Gasoline  154.64 3.79E+33 very Strong -154.64 2.64E-34 Not worth 

mention 

2.64E-34 1 

Glass 

Containers 

178.87 6.94E+38 very Strong -178.87 1.44E-39 Not worth 

mention 

1.44E-39 1 

Iron Scrap -18.37 0.000103 not worth 

mention 

18.37 9739.505 Very strong 0.999897 0.000103 

Iron Ore 353.21 4.99E+76 very Strong -353.21 2E-77 Not worth 

mention 

2E-77 1 

Jet Fuel 257.77 9.43E+55 very Strong -257.77 1.06E-56 Not worth 

mention 

1.06E-56 1 

Kerosene 175.58 1.34E+38 very Strong -175.58 7.47E-39 Not worth 

mention 

7.47E-39 1 

Liquified 

Gas 

277.70 2E+60 very Strong -277.70 5E-61 Not worth 

mention 

5E-61 1 

Lubricants 232.60 3.22E+50 very Strong -232.60 3.11E-51 Not worth 

mention 

3.11E-51 1 

Man-made 

Fabric 

7.61 44.98217 Strong  -7.61 0.022231 Not worth 

mention 

0.021748 0.978252 

Newsprint 

Canada 

520.39 1E+113 very Strong -520.39 1E-113 Not worth 

mention 

1E-113 1 

Newsprint 

US ARD 

513.09 2.6E+111 very Strong -513.09 3.8E-112 Not worth 

mention 

3.8E-112 1 

Newsprint 

US 

276.53 1.12E+60 very Strong -276.53 8.97E-61 Not worth 

mention 

8.97E-61 1 

Petroleum 

Coke 

125.52 1.81E+27 very Strong -125.52 5.53E-28 Not worth 

mention 

5.53E-28 1 

Pig Iron -508.78 3.3E-111 not worth 

mentioning 

508.78 3E+110 Very strong 1 3.3E-111 

Pneumatic 

casings 

512.75 2.2E+111 very Strong -512.75 4.5E-112 Not worth 

mention 

4.5E-112 1 

Residual  

Fuel 

197.12 6.36E+42 very Strong -197.12 1.57E-43 Not worth 

mention 

1.57E-43 1 

Slab Zinc 216.21 8.88E+46 very Strong -216.21 1.13E-47 Not worth 

mention 

1.13E-47 1 

Sulphur 722.68 8.5E+156 very Strong -722.68 1.2E-157 Not worth 

mention 

1.2E-157 1 

 Super 

Phosphate 

148.91 2.17E+32 very Strong -148.91 4.62E-33 Not worth 

mention 

4.62E-33 1 

Synthetic  

Rubber 

460.03 7.8E+99 very Strong -460.03 1.3E-100 Not worth 

mention 

1.3E-100 1 

Waste  Paper 180.21 1.36E+39 very Strong -180.21 7.37E-40 Not worth 

mention 

7.37E-40 1 
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IV. CONCLUSION 

 

In earlier research the original J test has been shown to over reject when the true model fits the 

data poorly, when the regressors in the models being compared are highly correlated, or when 

the false model contains more regressors than the true model.  We presented examples where the 

alternative specifications fit the data well but the J test did not distinguish between them:  the J 

test either rejects, or fails to reject both specifications.  

 

To supplement the J test when such situations arise we proposed a Bayesian approach that uses 

the estimated maximum likelihood values obtained in the process of conducting the test. 

Bayesian posterior odds allow us to overcome the problems associated with the J-test. Jeffreys’ 

Bayes factors offer ways of obtaining the posterior probabilities of the competing model 

specifications and relative ranking of the competing specifications. We showed that by using 

approximations of Schwarz Information Criterion and Bayesian Information Criterion we can 

use the classical estimates of the log of the maximum likelihood to obtain Bayesian posterior 

odds and posterior probabilities of the competing nested and non- nested models.   

 

Bayesian testing for nested and non-nested specifications is currently an active area of  research. 

Bayes intrinsic factors and Bayes fractional intrinsic factors  and default Bayes factors of Berger 

and Pericchi (2001),  the approximations by Gelfand and Dey (1994) and  Chib (1995) are all 

very  promising for applications in complex economic models and in case of panel data models.  

The method we proposed in this paper has an advantage as it gives us all the benefits of the 

Bayesian paradigm and the Bayes factors without having to specify prior probabilities and going 

through the extensive Bayesian computations. 
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                                                    APPENDIX 

 

Expressing the F statistic in terms of correlations between the variables 
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yzŷxŷŷŷ
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The F statistic for the model (2.2) with model (2.1) as maintained hypothesis, which we denote 

by F2  is given by: 
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The second part of the J test consists of maintaining (2.2) and testing for the significance of 

)1(   in (2.3”).  This can be similarly derived with the roles of X and Z reversed. If the number 

of regressors in Z is k2, the test statistic which we denote by Fa
 is: 
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2

xŷR  is the coefficient of determination of the regression of zŶ   on X. Since zŶ is a linear 

transformation of Z,  ˆZŶz ,  the coefficient 2

xŷR  = 2

xzR . 

zx ŷŷR is the correlation coefficient of xŶ  and zŶ , and since these are linear transformations of X 

and Z respectively, 
zx ŷŷR is the canonical correlation of the alternative  regressors X and Z. 

 

If Z has only one variable and X has only one variable, 
zx ŷŷR = xzR , and the F statistic for the 

model (2.2) with model (2.1) as maintained hypothesis, which we denote by F2   is given by: 
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This can be written as: 
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The second part of the J test consists of maintaining (2.2) and testing for the significance of (1-

) in (2.3”).  This can be similarly derived with the roles of X and Z reversed. If the number of 

regressors in Z is k2, the test statistic which we denote by F1  is: 
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