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Abstract Given a bargaining problem, the relative utilitarian (RU) so-

lution maximizes the sum total of the bargainer’s utilities, after having first

renormalized each utility function to range from zero to one. We show that RU

is ‘optimal’ in two very different senses. First, RU is the maximal element (over

the set of all bargaining solutions) under any partial ordering which satisfies

certain axioms of fairness and consistency; this result is closely analogous to

the result of Segal (2000). Second, RU offers each person the maximum expected

utility amongst all rescaling-invariant solutions, when it is applied to a random

sequence of future bargaining problems which are generated using a certain

class of distributions; this is somewhat reminiscent of the results of Harsanyi

(1953) and Karni (1998).

Let I be a finite group of individuals, and let A be a set of social outcomes

(e.g. allocations of some finite stock of resources). If each i ∈ I has an ordinal

preference relation overA and also over the set of all lotteries between elements in

A, and if these lottery preferences satisfy the von Neumann-Morgenstern (vNM)

axioms of minimal rationality, then we can define a cardinal utility function

ui : A−→R 6− := [0,∞) such that i’s lottery preferences are consistent with

maximization of the expected value of ui. Let u := (ui)i∈I : A−→RI6− be the

‘joint’ utility function, and let B be the convex, comprehensive closure of the

image set u(A) ⊂ RI6−; then any element of B represents an assignment of a vNM

utility level to each player, obtainable through some lottery between elements

of A. Let ℘B be the Pareto frontier of B. We assume that the members of I
can obtain any social outcome in ℘B, but only through unanimous consent. Let
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a0 ∈ A represent the ‘status quo’ outcome, which we assume to be Pareto-

suboptimal. If q := u(a0) ∈ B, then no element of ℘B will be unanimously

accepted unless it is Pareto-preferred to q. Thus, the set of admissible bargains is

the set ℘qB :=
{

b ∈ ℘B ; q
℘

� b
}

, where “q
℘

� b” means b is Pareto-preferred

to q.

Thus, a von Neumann-Morgenstern bargaining problem on I consists of an

ordered pair (B,q), where B ⊂ RI6− is convex, compact, and comprehensive, and

q ∈ B; the problem is to choose some point in ℘qB as the social outcome. For

simplicity, we will actually assume that B is strictly convex; this involves a slight

loss of generality, but it is true for a ‘generic’ choice of vNM utility functions

{ui}i∈I on A. Let B be the set of all strictly convex bargaining problems over

I. That is:

B :=
{

(B,q) ; q ∈ B ⊂ RI6−, and B is strictly convex, compact, and comprehensive
}

.

A bargaining solution is a function σ : B−→RI6− such that, for all (B,q) ∈ B: (1)

σ(B,q) ∈ B, and (2) σ(B,q)
℘

� q. [Condition (1) is normally strengthened to

require σ(B,q) ∈ ℘qB; however, we will use the weaker condition so that axiom

(SL) in §1 below make sense. Condition (2) reflects the fact that a bargain

requires unanimous consent; this distinguishes bargaining solutions from social

choice functions, which do not posit a status quo point.1]

For example, the classic utilitarian (CU) bargaining solution Υ : B−→RI6− is

defined:

Υ (B,q) := the unique b = [bi]i∈I ∈ ℘qB which maximizes
∑

i∈I

bi.

(We have required B to be strictly convex precisely to guarantee that this max-

imizer is unique). Myerson (1981) has shown that Υ is the unique bargaining

solution which has a useful property of ‘time independence’ when applied to lot-

teries over unknown future bargaining problems. More broadly construed as a

1 Formally, any bargaining solution can be converted to a social choice function

by defining the ‘status quo’ to be some point of minimal utility for all players (e.g.

a Hobbesian ‘state of nature’). Conversely, any social choice function can converted

into a bargaining solution. Thus, the two concepts are mathematically equivalent; the

difference lies in the interpretation. Bargaining problems generally involve relatively

small groups of people (e.g. two or three), and require unanimous consent. Social choice

problems usually involve large groups (e.g. entire societies), and usually do not require

unanimity. These different interpretations may suggest different axioms or modelling

assumptions, which may then lead to different solutions.
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social choice function, classic utilitarianism has several philosophically appealing

axiomatic characterizations, due to Harsanyi (1953, 1955, 1977), d’Aspremont

and Gevers (1977), Maskin (1978), and Ng (1975, 1985, 2000).

However, CU implicitly assumes that, for any i, j ∈ I, the vNM utility func-

tions ui and uj are ‘interpersonally comparable’; in other words, if ui(a) > uj(b),

this somehow means that i is ‘happier’ under outcome a than j is under outcome

b. Nothing in the vNM framework justifies this assertion. Indeed, vNM cardi-

nal utility functions are only well-defined up to affine transformations —that

is, if s ∈ R 6− and t ∈ R, then the function ũi(a) := s · ui(a) + t is ‘equivalent’

to ui as a description of i’s lottery preferences. By applying (distinct) affine-

transformations to the utility functions {ui}i∈I , we can change the shape of the

bargaining problem (B,q), and change the outcome of Υ . Thus, the CU solution

Υ can be easily manipulated by the players of I, simply by affine-transforming

their declared utility functions. Indeed, strictly speaking, Υ is not well-defined

within the vNM theory of cardinal utility functions.

Thus, Nash (1950), Kalai and Smorodinsky (1975), and others have insisted

that any meaningful bargaining solution must be rescaling invariant —that is,

invariant under any affine transformations of the utility functions {ui}i∈I . One

way to achieve this is to ‘renormalize’ the functions {ui}i∈I to each range from

zero to one, and then apply the classic utilitarian solution to this renormalized

problem; this yields the relative utilitarian bargaining solution. Formally, let

(B,q) be a bargaining problem on I. For every i ∈ I, let

Mi := max {bi ; b ∈ ℘qB}. (1)

be i’s dictatorship utility level. Define the ‘renormalized’ joint utility function

UB,q : RI6−−→RI6− by:

UB,q(b) :=
∑

i∈I

bi − qi
Mi − qi

(2)

The relative utilitarian bargaining solution ˜Υ (B,q) is the point in ℘qB which

maximizes the value of UB,q.

Relative utilitarianism (RU) is a form of utilitarianism which obviates the

problem of interpersonal utility comparison by effectively legislating that each

bargainer’s status quo utility is ‘morally equivalent’ to every other bargainer’s

status quo utility; likewise, each bargainer’s dictatorship utility is ‘morally equiv-

alent’ to every other bargainer’s dictatorship utility. In other words, to obtain
˜Υ (B,q), we first apply the rescaling function F : RI6−−→RI6− defined

F (x)i :=
xi − qi
Mi − qi

, ∀ i ∈ I.
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Thus, F (q) = 0, and if ˜B := F (B), then ˜Mi = 1 for all i ∈ I. We then apply

the classic utilitarian solution Υ to the rescaled problem ( ˜B,0). We then have
˜Υ (B,q) = F−1

[

Υ ( ˜B,0)
]

.

Like Υ —and unlike the egalitarian solution of Kalai (1977) and the rel-

ative egalitarian solution of Kalai and Smorodinsky (1975) —˜Υ is willing to

make cost/benefit tradeoffs which decrease one person’s surplus so as to in-

crease someone else’s surplus, as long as the benefits (to the recipient’s utility)

exceed the costs (to the donor’s utility). However, like the Nash (1950) and

Kalai-Smorodinsky solutions (and unlike Υ or egalitarianism), ˜Υ is rescaling-

invariant: it does not presuppose some standard, ‘objective’ way to compare

utilities between individuals. As a social choice function, RU admits several

appealing axiomatic characterizations, due to Cao (1982), Dhillon (1998), and

Dhillon and Mertens (1999). Also, Karni (1998) has characterized RU using a

modified version of Harsanyi’s (1953) Impartial Observer Theorem, while Segal

(2000) has shown that RU is optimal in a certain sense, when used as a ‘resource

allocation policy’.

We will show that the RU bargaining solution is ‘optimal’ in two distinct

ways. In §1, we develop a variant of Segal’s (2000) argument. Theorem 1 states

that, if “�” is a partial ordering over the set of all bargaining solutions, and

“�” satisfies certain reasonable axioms of ‘fairness’ and ‘consistency’, then ˜Υ is

a maximal element under “�”; furthermore, ˜Υ is the only solution which is max-

imal for every such ordering. Finally if “�” is a total ordering, then ˜Υ dominates

every other bargaining solution. Thus, any arbitrator with ‘reasonable’ prefer-

ences over the set of bargaining solutions would, upon reflection, decide that ˜Υ

was the best solution. Although our conclusion is philosophically very similar to

Segal’s, it is not logically equivalent (because our framework and axioms are not

logically equivalent to his). We believe that our framework is technically simpler

than Segal’s, while our conclusion is slightly stronger.

In §2, we develop a variant of Harsanyi’s (1953) Impartial Observer Theorem.

We imagine that a society must select a single bargaining solution to apply

to a randomly generated infinite sequence of future bargaining problems, and

that each player foresees equal probability that she will take on each ‘role’ in

each of these bargaining problems. Under the standard vNM assumption that a

person wishes to maximize her long-term expected utility, we will show that she

will prefer the classic utilitarian bargaining solution Υ to any other bargaining
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solution, and she will prefer the relative utilitarian bargaining solution ˜Υ to any

other rescaling-invariant solution.

§1 and §2 are logically independent, and can be read in either order.

1 Dictatorship Indifference

Recall that I is a finite population of individuals and B is the set of all strictly

convex bargaining problems over I. Let S be the set of all bargaining solutions

defined on B. That is:

S :=
{

σ : B−→RI6− ; ∀ (B,q) ∈ B, σ(B,q) ∈ B and σ(B,q)
℘

� q
}

.

Imagine an arbitrator who is trying to decide which bargaining solution to em-

ploy. This arbitrator has moral intuitions, which cause her to prefer some bar-

gaining solutions to others. Formally, we can express this by saying that her

moral intuitions induce a preference ordering “�” over S. We will show that, if

“�” satisfies certain ‘reasonable’ axioms, then the relative utilitarian bargaining

solution will be the maximal element in S according to the ordering “�”.

Recall that a partial ordering on S is a relation “�” which is transitive (i.e. for

all σ, ς, τ ∈ S, if σ � ς � τ then σ � τ) and reflexive (i.e. for all σ ∈ S, we have

σ � σ). If σ � ς and ς � σ, then we write “σ ≈ ς”. If σ � ς and ς 6� σ, then

we write “σ ≺ ς”. We say that “�” is a total ordering if, for any σ, ς ∈ S, either

σ � ς or ς � σ. We do not assume that “�” is a total ordering. In other words,

for any arbitrary σ, ς ∈ S, it may be the case that neither σ � ς nor ς � σ (i.e.

σ and ς are incomparable).

If σ ∈ S, then σ is maximal if there exists no other ς ∈ S such that σ ≺ ς.

We say σ dominates S if, for all ς ∈ S, we have ς � σ. Clearly, any dominant

element is maximal. However, in general, (S,�) may not have any maxima; even

if it has one, the maximum might not be unique; and even if (S,�) has a unique

maximum, this maximum might not be dominant. Conversely, even a dominant

maximum might not be unique. However, if “�” is a total ordering on S, then

any maximum is dominant.

We will assume that “�” satisfies three axioms: Global Pareto, Strong Linear-

ity, and Dictatorship Indifference. The first of these axioms is quite plausible; it

says that a reasonable arbitrator would prefer a bargaining solution ς to another

bargaining solution σ, if ς was systematically Pareto-superior to σ:
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(GP) (Global Pareto)2 Let σ, ς ∈ S. Suppose that, for all (B,q) ∈ B, we have

σ(B,q)
℘

� ς(B,q). Then σ � ς. Furthermore, if there exists some (B,q) ∈ B

such that σ(B,q) ≺ ς(B,q), then σ ≺ ς.

To formulate the second axiom, suppose that σ0, σ1 ∈ S are two bargaining

solutions. For any r ∈ [0, 1], we define the bargaining solution σr := rσ1 + (1−
r)σ0 as follows: for any (B,q) ∈ B,

σr(B,q) := rσ1(B,q) + (1− r)σ0(B,q).

Heuristically, σr represents a ‘randomized’ bargaining solution: with probability

r we will apply solution σ1, while with probability (1 − r) we will apply so-

lution σ0. This perhaps provides a “compromise” solution which combines the

(dis)advantages of σ0 and σ1. The von Neumann-Morgenstern theory of cardi-

nal utility says that preferences should be ‘linear’ with respect to such convex

combinations. This suggests the following axiom:

(WL) (Weak Linearity)3 Let σ, ς, τ ∈ S. Let r ∈ (0, 1).

– If σ ≺ ς, then rσ + (1− r)τ ≺ rς + (1− r)τ .

– If σ ≈ ς, then rσ + (1− r)τ ≈ rς + (1− r)τ .

However, we will actually require a somewhat stronger form of linearity. Let

ρ : B−→[0, 1] be some ‘weight function’. We define the bargaining solution

σρ := ρσ1 + (1− ρ)σ0 as follows: for any (B,q) ∈ B,

σρ(B,q) := ρ(B,q) · σ1(B,q) + [1− ρ(B,q)] · σ0(B,q).

Thus σρ is a ‘randomized’ bargaining solution, where with probability ρ we apply

solution σ1, while with probability (1 − ρ) we apply solution σ0. However, the

value of ρ might depend on the bargaining problem (B,q). This leads to the

next axiom:

(SL) (Strong Linearity) Let σ, ς, τ ∈ S and let ρ : B−→[0, 1].

(SL1) If σ � ς, then ρσ + (1− ρ)τ � ρς + (1− ρ)τ .

Furthermore, suppose that ρ : B−→(0, 1). Then

(SL2) If σ ≺ ς, then ρσ + (1− ρ)τ ≺ ρς + (1− ρ)τ .

Note that (SL1) immediately implies:

(SL0) If ρ : B−→[0, 1], and σ ≈ ς, then ρσ + (1− ρ)τ ≈ ρς + (1− ρ)τ .

2 Segal calls this axiom “Monotonicity”.
3 Segal calls this axiom “Independence”.
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Also, note that (SL) implies (WL); just set ρ ≡ r.
To state the last axiom, we define the dictatorship bargaining solutions δj for

each j ∈ I as follows: for any (B,q) ∈ B, if Mj is as in eqn.(1), then

δj(B,q) := mj = [mj
i ]i∈I , where mj

j := Mj , and mj
i := qi for all i 6= j. (3)

In other words, δj is the solution which always gives all surplus utility to player

j, and leaves all other bargainers with their status quo. Our third axiom is a

weakened form4 of Segal’s ‘Dictatorship Indifference’.

(DI) (Dictatorship Indifference) For all i, j ∈ I, δi ≈ δi.

The main result of this section is this:

Theorem 1 Let ˜Υ : B−→RI6− be the relative utilitarian bargaining solution.

(a) If “�” is any partial ordering on S which satisfies axioms (GP), (SL)

and (DI), then ˜Υ is a maximal element of S with respect to “�”.

(b) ˜Υ is the only element of S which is maximal for every ordering satisfying

(GP), (SL), and (DI).

(c) If “�” is a total ordering on S which satisfies (GP), (SL) and (DI),

then ˜Υ is a dominant, maximal element of S.

Proof: (a) If ρ, µ : B−→[0, 1] are two weight functions, then we write “ρ ≤ µ”

if, for all (B,q) ∈ B, we have ρ(B,q) ≤ µ(B,q). Thus, “ρ 6≤ µ” means there

is some (B,q) ∈ B with ρ(B,q) > µ(B,q). Finally, we write “ρ < µ” if, for

all (B,q) ∈ B, we have ρ(B,q) < µ(B,q). Let 0,1 : B−→{0, 1} be the

constant zero and constant one functions. Thus, ρ : B−→(0, 1) iff 0 < ρ < 1.

If σ0, σ1 ∈ S, and ρ : B−→[0, 1], recall that we define σρ := ρσ1 + (1− ρ)σ0.

Claim 1: Let σ0, σ1 ∈ S. Let ρ, µ : B−→[0, 1], with ρ ≤ µ.

(L0) If σ0 ≈ σ1 then σ0 ≈ σρ ≈ σµ ≈ σ1.

(L1) If σ0 � σ1 then σ0 � σρ � σµ � σ1.

(L2) Suppose 0 < ρ < µ < 1. If σ0 ≺ σ1 then σ0 ≺ σρ ≺ σµ ≺ σ1.

Proof: Define ν : B−→[0, 1] by ν(B,q) :=
µ(B,q)− ρ(B,q)

1− ρ(B,q)
. It is easy to check

that

σµ = νσ1 + (1− ν)σρ and σρ = νσρ + (1− ν)σρ. (4)

Thus, Axioms (SL0) and (SL1) and eqn.(4) imply:

(`0)
(

σρ ≈ σ1

)

=⇒
(

σρ ≈ σµ
)

.

4 Segal also requires indifference amongst ‘piecewise mixtures’ of dictatorship solu-

tions.
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(`1)
(

σρ � σ1

)

=⇒
(

σρ � σµ
)

.

Furthermore, if 0 < ρ < µ < 1, then 0 < ν < 1, in which case (SL2) implies:

(`2)
(

σρ ≺ σ1

)

=⇒
(

σρ ≺ σµ
)

.

Finally, note that

σµ := µσ1 + (1− µ)σ0 and σ1 = µσ1 + (1− µ)σ1. (5)

To see (L2), suppose 0 < ρ < µ < 1. If σ0 ≺ σ1, then Axiom (SL2) and

eqn.(5) imply that σµ ≺ σ1. By a similar argument, σ0 ≺ σρ. Finally, by

a similar argument, σρ ≺ σ1; thus, Fact (`2) implies that σρ ≺ σµ. This

establishes (L2). To get (L1), replace all ‘≺’ with ‘�’ and use Axiom (SL1)

and Fact (`1). To get (L0), replace all ‘�’ with ‘≈’ and use Axiom (SL0)

and Fact (`0). 3 Claim 1

Claim 2: Let σ0, σ1, σ
′
1 ∈ S, with σ0 � σ1 ≺ σ′1. Let ρ, ρ′ : B−→(0, 1), and

let σρ := ρσ1 + (1− ρ)σ0 and σ′ρ′ := ρ′σ′1 + (1− ρ′)σ0. If σ′ρ′ ≈ σρ, then ρ 6≤ ρ′.
Proof: (by contradiction) Suppose ρ ≤ ρ′. Let σρ′ := ρ′σ1 + (1 − ρ′)σ0. Then

we have:

σρ �
(∗)

σρ′ ≺
(†)

σ′ρ′ ˜

(̃H)
σρ.

Here, (∗) is by (L1) because σ0 � σ1 and ρ ≤ ρ′. Next, (†) is by Axiom

(SL2), because σ1 ≺ σ′1 and 0 < ρ′ < 1. Finally, (H) is by hypothesis. Thus,

we get σρ ≺ σρ, which is a contradiction. Thus, it cannot be true that ρ ≤ ρ′.
3 Claim 2

Let ∆ :=

{

∑

i∈I

ρiδi ; ∀ i ∈ I, ρi : B−→[0, 1], and
∑

i∈I

ρi ≡ 1

}

.

Claim 3: All elements of ∆ are “�”-indifferent.

Proof: Use (L0) and Axiom (DI). 3 Claim 3

For any σ ∈ S and ρ : B−→[0, 1], let

∆(σ, ρ) :=

{

ρσ +
∑

i∈I

ρiδi ; ∀ i ∈ I, ρi : B−→[0, 1], and ρ+
∑

i∈I

ρi ≡ 1

}

.

Claim 4: For any fixed σ and ρ, all elements of ∆(σ, ρ) are “�”-indifferent.

Proof: Use Axiom (SL0) and Claim 3. 3 Claim 4

For any σ ∈ S, we define Uσ : B−→R 6− by Uσ(B,q) := UB,q [σ(B,q)], for

every (B,q) ∈ B, where UB,q is defined as in eqn.(2). Thus, if ς ∈ S, we write

“Uσ ≤ Uς” if UB,q [σ(B,Q)] ≤ UB,q [ς(B,Q)], for all (B,q) ∈ B.

Claim 5: Let σ, σ′ ∈ S.

(a) There exist weight functions ρ, ρ′ : B−→(0, 1) such that∆(σ, ρ)∩∆(σ′, ρ′) 6=
∅.
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m0

m1

∆0

a’

a

∆’r’

∆r

q

B

Fig. 1 Claim 5.1.

(b) Uσ ≥ Uσ′ if and only if ρ ≤ ρ′.

Proof: Fix (B,q) ∈ B. For all i ∈ I, let mi be as in eqn.(3)

Claim 5.1: There exist r ∈ [0, 1]I and r ∈ (0, 1) with r +
∑

i∈I

ri = 1 and

also r′ ∈ [0, 1]I and r′ ∈ (0, 1) with r′ +
∑

i∈I

r′i = 1 such that

rσ(B,q) +
∑

i∈I

rimi = r′σ′(B,q) +
∑

i∈I

r′im
i. (6)

Proof: Let a := σ(B,q) and a′ := σ′(B,q). As shown in Figure 1, for any fixed

r, r′ ∈ [0, 1], let

∆r :=

{

ra +
∑

i∈I

rimi ; r ∈ [0, 1]I and r +
∑

i∈I

ri = 1

}

,

and ∆′r′ :=

{

r′a′ +
∑

i∈I

rimi ; r′ ∈ [0, 1]I and r′ +
∑

i∈I

r′i = 1

}

.

Also, let ∆0 :=
{

∑

i∈I rim
i ; r ∈ [0, 1]I and

∑

i∈I ri = 1
}

. Then ∆r and

∆′r′ are hyperplane segments parallel to ∆0 (and thus, to each other). Fur-

thermore, as r, r′→0, the hyperplane segments ∆r and ∆′r′ both converge to

∆0; thus, there exist some r and r′ such that ∆r overlaps ∆′r′ . O Claim 5.1

Claim 5.2: UB,q [σ(B,Q)] ≥ UB,q [σ′(B,Q)] if and only if r ≤ r′.
Proof: If r, r′ ∈ [0, 1]I and r, r′ ∈ (0, 1) are as in Claim 5.1, then

1 + r · [UB,q(a)− 1] = (1− r) + rUB,q(a)
(�)

rUB,q(a) +
∑

i∈I

ri
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(∗)
rUB,q(a) +

∑

i∈I

riUB,q(mi)
(L)

UB,q

(

ra +
∑

i∈I

rimi

)

(†)
UB,q

(

r′a′ +
∑

i∈I

r′im
i

)

(L)
r′UB,q(a′) +

∑

i∈I

r′iUB,q(mi)

(∗)
r′UB,q(a′) +

∑

i∈I

r′i (♠)
(1− r′) + r′UB,q(a′)

= 1 + r′ · [UB,q(a′)− 1] .

Here, (�) is because r+
∑

i∈I

ri = 1 by definition. (∗) is because UB,q(mi) = 1

for all i ∈ I by definition. (L) is because UB,q is linear, and (†) is by eqn.(6).

Finally, (♠) is because r′ +
∑

i∈I

r′i = 1 by definition. Thus, we have

r · [UB,q(a)− 1] = r′ · [UB,q(a′)− 1] .

Thus,

(

UB,q(a) ≥ UB,q(a′)
)

⇐⇒
(

UB,q(a)− 1 ≥ UB,q(a′)− 1
)

⇐⇒
(

r ≤ r′
)

,

as desired. O Claim 5.2

So, for each (B,q) ∈ B, set ρ(B,q) := r and ρ′(B,q) := r′, and define

ρi(B,q) := ri and ρ′i(B,q) := r′i for all i ∈ I, where these values are as

in Claim 5.1. Then

ρσ +
∑

i∈I

ρiδi = ρ′σ′ +
∑

i∈I

ρ′iδi.

But clearly, ρσ +
∑

i∈I

ρiδi ∈ ∆(σ, ρ) and ρ′σ′ +
∑

i∈I

ρ′iδi ∈ ∆(σ′, ρ′). Thus,

∆(σ, ρ)∩∆(σ′, ρ′) 6= ∅. This establishes part (a). Part (b) follows from Claim

5.2. 3 Claim 5

Claim 6: Let σ, σ ∈ S. If σ ≺ σ′, then Uσ 6≥ Uσ′ .
Proof: Let ρ, ρ′ : B−→(0, 1) be as in Claim 5(a). Fix some δ∗ ∈ ∆0. Let

δ := ρσ + (1− ρ)δ∗ and δ′ := ρ′σ′ + (1− ρ′)δ∗.
Claim 6.1: δ ≈ δ′.
Proof: Find δ] ∈ ∆(σ, ρ) ∩∆(σ′, ρ′); this exists by Claim 5(a). Then we have

δ ≈ δ] ≈ δ′, where both ‘≈’ are by Claim 4, because δ ∈ ∆(σ, ρ) and δ′ ∈
∆(σ′, ρ′). Thus, δ ≈ δ′, because ‘≈’ is transitive. O Claim 6.1

But σ ≺ σ′, so Claims 2 and 6.1 imply that ρ 6≤ ρ′. But then Claim 5(b)

implies that Uσ 6≥ Uσ′ . 3 Claim 6

Claim 7: ˜Υ is a maximal element of “�”.
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Proof: (by contradiction) Suppose ˜Υ is not maximal; then there is some σ ∈ S
with ˜Υ ≺ σ. But then Claim 6 says that U

˜Υ 6≥ Uσ, which means there is some

(B,q) ∈ B such that UB,q
[

˜Υ (B,Q)
]

< UB,q [σ(B,Q)]. But this contradicts

the fact that ˜Υ (B,Q) always maximizes UB,q by definition of ˜Υ . 3 Claim 7

(b) Suppose σ ∈ S is maximal for every ordering satisfying (GP), (SL), and

(DI). We must show that σ = ˜Υ .

Fix (B,q) ∈ B, and consider the ordering “B�q” defined by:

(

σ B�q σ′
)

⇐⇒
(

UB,q [σ(B,q)] ≤ UB,q [σ′(B,q)]
)

.

It is easy to check that “B�q” satisfies (GP), (SL), and (DI). If σ is maximal

for “B�q”, then we must have σ(B,q) = ˜Υ (B,q), because ˜Υ (B,q) is the unique

point which maximizes the value of UB,q in ℘qB.

Since we can do this for any (B,q) ∈ B, we conclude that σ = ˜Υ .

(c) follows from (a), because maxima are always dominant in total orderings.

To see that (c) is nonvacuous, however, we must show that there exists a total

ordering which satisfies (GP), (SL), and (DI). However, for any (B,q) ∈ B,

the ordering “B�q” in the proof of (b) is such a total ordering. 2

Remark: Our approach is clearly inspired by Segal’s (2000) characterization of

RU. However, Segal’s original paper is not about bargaining solutions, but is

instead about a somewhat more abstract class of ‘resource allocation schemes’;

such a scheme takes any initial bundle of commodities and allocates it amongst

two or more competing claimants whose preferences are encoded by cardinal

utility functions over commodity bundles. Also, instead of positing an arbitra-

tor, Segal imagines that each member of society separately develops a (partial)

preference ordering satisfying certain axioms, based on her personal moral intu-

itions (formally, this just involves replacing the symbol “�” with“�i” for some

i ∈ I). He concludes that all members of society, after due consideration, would

separately but unanimously endorse relative utilitarianism.

Segal’s ‘resource allocation’ framework introduces considerable technical com-

plexity, but it does not provide any greater generality, because any multicom-

modity resource-allocation problem can be reformulated as an abstract bargain-

ing problem (Muthoo, 1999, §2.2). Segal’s premise that each individual in society

separately derives the optimality of RU is quite similar to our own conclusions

in Section 2 (see Theorem 4 below). However, this premise is unrealistic in the

present context, because the key axiom needed for Segal’s result (and for our
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Theorem 1) is Dictatorship Indifference. Axiom (DI) requires that each person

recognize that her own dictatorship is just as morally objectionable as anyone

else’s. This places a rather heavy burden on the ‘fairmindedness’ and ‘objec-

tivity’ of each bargainer. Indeed, history suggests that even great champions of

egalitarianism and democracy often seem to feel that, while any dictatorship is

evil, their own dictatorship is ‘not quite as evil’ as someone else’s. We feel that

(DI) is not a realistic axiom for the bargainers, but it is a reasonable axiom for

a neutral arbitrator; that is why we have formulated our model in this way.

2 An ex ante Impartial Observer Theorem

In this section we propose a form of Harsanyi’s (1953) Impartial Observer The-

orem5 in the context of bargaining. Our approach is loosely inspired by Karni

(1998); like him, we are troubled by the fact that Harsanyi’s definition of ‘im-

partiality’ implicitly requires interpersonal comparability of utility functions. We

are also troubled by Harsanyi’s premise that fairminded individuals can and will

temporarily pretend ignorance of their own circumstances so as to obtain social

consensus; this is inconsistent with the standard economic model of humans as

self-regarding rational maximizers.

Instead, we imagine a person who anticipates that, in the long-term future,

she will be involved in multiple bargaining interactions involving I individuals

(including herself). At present, she cannot predict the specific shape of these

future bargaining problems; or which other people will be involved in each one.

Instead, she posits an ex ante probability distribution µ over the set B of all

possible bargaining problems, and she imagines that she will encounter an infinite

sequence of independent random bargaining problems generated according to

µ. She further assumes that her ‘roles’ in these bargaining problems (that is,

which axis represents her utility) are independent, uniformly distributed, I-

valued random variables. Intuitively, this means that, in the long-term future,

she anticipates that she has an equal probability of taking on each of the two

or more roles which exist in each bargaining problem —i.e. she has an equal

probability of being Vendor or Customer, Landlord or Tenant, Employer or

Employee. Under these conditions, she will recognize that the classic utilitarian

solution Υ maximizes her ex ante µ-expected utility (Proposition 2). If we further

require that the bargaining solution be rescaling-invariant, then each person will
5 See Harsanyi (1953, 1955, 1977), (Weymark, 1991, p.293), (Roemer, 1998, §4.4),

Karni and Weymark (1998), or (Karni, 2003, §4).
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see that the relative utilitarian solution ˜Υ maximizes her ex ante µ-expected

utility (Theorem 4).

Now imagine some primordial negotiation, where all members of a society

must agree upon a single bargaining solution to resolve all their (unknown) fu-

ture interpersonal conflicts. Assume each person seeks to maximize her expected

utility, and reasons in the aforementioned fashion; then the result will be a unan-

imous consensus to use Υ to solve all future bargaining problems (even if each

person uses a different ex ante measure in place of µ). If we require that the

solution be rescaling-invariant, there will instead be unanimous consensus to use
˜Υ .

Formally, let I be a finite set of indices, representing ‘bargaining roles’ (for

example, in a labour contract negotiation, we might have I = {0, 1} where 0

represents the worker and 1 represents the employer). Let B be the set of all

convex bargaining problems over I. If A is a sigma-algebra of subsets of B, then

a probability measure on (B,A) is a countably additive function µ : A−→[0, 1]

such that µ[B] = 1. If P (b) is some statement which could be either true or

false for each b ∈ B, then we write, “P (b), for ∀µ b ∈ B” to mean that the

set F := {b ∈ B ; P (b) is false} is in A, and µ[F] = 0. A bargaining solution

σ : B−→RI6− is A-measurable if σ−1(O) ∈ A for every open subset O ⊂ RI6−. If

we write σ := (σi)i∈I , then, for all i ∈ I, we can compute the µ-expected value

of i’s utility under solution σ:

Eµ(σi) :=
∫

B

σi(B,q) dµ[B,q].

In contemplating a sequence of unknown future bargaining problems, you might

expect that sometimes you will play one role and sometimes the other (for

example, in future labour negotiations, sometimes you will be a worker, and

sometimes an employer). If η is some probability distribution on I, then let

ση :=
∑

i∈I η{i}σi be the η-expected value of σ, assuming you receive payoff

σi with probability η{i}. If S denotes the set of all A-measurable bargaining

solutions, this yields the following result.

Proposition 2 Let η be the uniform probability distribution on I, and let µ be

any probability distribution on B. If σ ∈ S maximizes the value of Eµ(ση) over

S, then σ(B,q) = Υ (B,q), for ∀µ (B,q) ∈ B.

Proof: Clearly, Eµ(ση) = 1
IEµ

(∑

i∈I σi
)

. Thus, if σ ∈ S maximizes Eµ[ση], then

σ must maximize Eµ
[∑

i∈I σi
]

, which means σ must maximize
∑

i∈I σi(B,q),

for ∀µ (B,q) ∈ B. Thus, σ(B,q) = Υ (B,q), for ∀µ (B,q) ∈ B. 2
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Proposition 2 (and classic utilitarianism in general) is objectionable because

it requires interpersonal comparison of utility, and such interpersonal comparison

is meaningless in the vNM framework. Strictly speaking, any bargaining solution

is meaningless in the vNM framework unless it is invariant under any affine

rescaling of the player’s utility functions (and Υ is not rescaling-invariant).

Formally, let r = [ri]i∈I ∈ RI and q = [qi]i∈I ∈ RI . If b = [bi]i∈I ∈ RI ,

then we define r × b := [ri · bi]i∈I ∈ RI , and b + q := [bi + qi]i∈I ∈ RI . If

B ⊂ RI6−, then define r×B := {r× b ; b ∈ B} and B + q := {b + q ; b ∈ B}. If

(B,q0) ∈ B, and r,q ∈ R2
6−, then (r× B + q, r× q0 + q) represents the ‘same’

bargaining problem as (B,q0), encoded using a different (but equivalent) vNM

utility function for each i ∈ I. If σ : B−→RI6− is a bargaining solution, then we

say that σ is rescaling invariant (RI) if, for every r,q ∈ R2
6− and (B,q0) ∈ B, we

have σ(r×B+ q, r× q0 + q) = r× σ(B,q0) + q. For example, ˜Υ is RI, but Υ

is not. Heuristically speaking, RI is a weak form of ‘nonmanipulability’; it says

that no player can alter the bargaining outcome in her favour by applying an

affine transformation to her utility function. For any (B,q) ∈ B and i ∈ I, let

ri(B,q) := max {bi − qi ; b ∈ ℘qB}. We define ˜B := {B ⊂ RI6− ; B is strictly

convex, comprehensive, and compact, and ri(B,0) = 1, for all i ∈ I}. Let ˜S
denote the set of all A-measurable, rescaling-invariant bargaining solutions.

Lemma 3 (a) There is a natural bijection Φ : ˜B×RI6−×RI6−−→B defined by

Φ( ˜B, r,q) := (r× ˜B,q).

(b) If σ ∈ ˜S, then σ is determined entirely by its values on ˜B.

(c) ˜Υ is the unique element of ˜S which maximizes the value of
∑

i∈I

σi(B,0)

for every B ∈ ˜B. ut

Proof: (b) and (c) follow from (a). To prove (a), it suffices to show that, for

any (B,q) ∈ B there is a unique ˜B ∈ ˜B and a unique r ∈ RI6− such that

(B,q) = r × ( ˜B,0) + q. To see this, let r := [ri]i∈I , where ri = ri(B,q). Let

r−1 := [r−1
i ]i∈I , and define ˜B := r−1 × (B − q). Then B = (r × ˜B) + q. Thus

(B,q) = r× ( ˜B,0) + q. Uniqueness is clear. 2

Let ˜A be a sigma-algebra on ˜B, let Φ be as in Lemma 3(a), and assume

that Φ is measurable with respect to A, ˜A, and the Borel sigma-algebra on

RI6− × RI6−. Let µ̃ be a probability measure on ˜B, let µ be a probability measure

on RI6−×RI6−, and let µ := Φ(µ̃×µ). Thus, a µ-random bargaining problem in B

is obtained by first generating a µ̃-random bargaining problem in ˜B, and then

applying an independent, µ-random rescaling to this problem. For all i ∈ I, let



Optimality of the Relative Utilitarian Bargaining Solution 15

ri :=
∫

RI6−×R
I
6−

ri dµ[r,q]. We say that µ is anonymous if there is some constant

r such that ri = r for all i ∈ I. This means every coordinate receives the same

average rescaling (in particular, this will be true if µ is any measure on RI6−
which is invariant under any transitive group of permutations of the I-indexed

coordinate axes).

Theorem 4 Let µ be an anonymous probability measure on RI6−, let µ̃ be a prob-

ability measure on ˜B, and let µ := Φ(µ̃ × µ) . Let η be the uniform probabil-

ity distribution on I. If σ ∈ ˜S maximizes the value of Eµ(ση) over ˜S, then

σ(B,q) = ˜Υ (B,q), for ∀µ (B,q) ∈ B.

Proof: Define σ̃ : ˜B−→RI6− by σ̃(B) := σ(B,0) for all B ∈ ˜B. Fix i ∈ I, and let

qi :=
∫

RI6−×R
I
6−

qi dµ[r,q]. Then

Eµ (σi) =
∫

B

σi(B,q) dµ[B,q]
(�)

∫

˜B

∫

RI6−×R
I
6−

σi(r× ˜B,q) dµ[r,q] dµ̃[ ˜B]

(∗)

∫

˜B

∫

RI6−×R
I
6−

(

riσi( ˜B,0) + qi

)

dµ[r,q] dµ̃[ ˜B]

(†)
qi +

∫

˜B

σi( ˜B,0)

(

∫

RI6−×R
I
6−

ri dµ[r,q]

)

dµ̃[ ˜B]

(‡)
qi +

∫

˜B

r σ̃i( ˜B) dµ̃[ ˜B] = qi + r Eµ̃(σ̃i). (7)

Here, (�) is because µ = Φ(µ̃× µ), (∗) is because σ is RI, (†) is by definition of

qi, and (‡) is because µ is anonymous. Thus,

Eµ(ση) =
1
I

∑

i∈I

Eµ(σi) (7)

1
I

∑

i∈I
qi +

1
I

∑

i∈I
r Eµ̃(σ̃i)

=
1
I

∑

i∈I
qi +

r

I
Eµ̃

(

∑

i∈I

σ̃i

)

.

Thus, if σ ∈ ˜S maximizes Eµ[σj ], then σ̃ must maximize Eµ̃
[∑

i∈I σ̃i
]

, which

means σ̃ must maximize the value of
∑

i∈I σ̃i(B) for ∀µ̃ B ∈ ˜B. Thus, σ(B,0) =
˜Υ (B,0), for ∀µ̃ B ∈ ˜B. Thus, σ(B,q) = ˜Υ (B,q), for ∀µ (B,q) ∈ B, because

µ = Φ(µ̃× µ). 2

Remark: (a) The key assumptions of Theorem 4 —that µ = Φ(µ̃ × µ), and µ

is an anonymous measure on RI6− × RI6− —are fairly restrictive. It is possible to

prove a similar theorem for an arbitrary measure µ on B; however it yields a

kind of ‘generalized’ relative utilitarianism, where for each B ∈ ˜B, we maximize a
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weighted utilitarian sum
∑

i∈I ri(B)σi(B), where the weights ri(B) depend on B,

and are determined by the measure µ. To obtain RU, we must have ri(B) = rj(B)

for all i, j ∈ I; the assumptions of Theorem 4 are the most natural hypotheses

yielding this condition.

(b) Theorem 4 says that ˜Υ is the unique bargaining solution in ˜S which

is ex ante optimal for each person. However, clearly, ˜Υ is not ex post optimal:

once a person learns the specific bargaining problem which confronts her, she

can probably find some other solution in ˜S which will give her higher utility

for this problem. Thus, any implementation of RU based on Theorem 4 must

include a mechanism to extract irrevocable commitments to RU from all players

at the ex ante stage, and make defection from RU highly costly at the ex post

stage. (Note that each player will find it ex ante optimal to make such a com-

mitment, as long as she is assured that every other player must also make such

a commitment.)

(c) Our analysis of RU bargaining assumes that it is possible to obtain true

information about the utility functions of the bargainers. Of course this is false.

Sobel (2001) has studied the Nash equilibria of the game which results when

players are allowed to strategically misrepresent their utility functions in RU

bargaining.
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