Metadata, citation and similar papers at core.ac.uk

MPRA

Munich Personal RePEc Archive

Mathematical Dynamics of Economic
Growth as Effect of Internal Savings

Krouglov, Alexei

15. October 2006

Online at http://mpra.ub.uni-muenchen.de/1262/
MPRA Paper No. 1262, posted 07. November 2007 / 01:38


https://core.ac.uk/display/6799092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/1262/

Mathematical Dynamics of Economic Growth

Mathematical Dynamics of Economic Growth as Effect
of Internal Savings

Alexei Krouglov
796 Caboto Trail
Markham, Ontario L3R 4X1 Canada
alexkrouglov@concordidea.com

Page 1 of 45



Mathematical Dynamics of Economic Growth

Mathematical Dynamics of Economic Growth as Effect
of Internal Savings

ABSTRACT

Paper introduces mathematical models describing long-time effects of real savings on economic
growth. Models are built for single-product and multiple-product economy with market forces presented
through the system of ordinary differential equations. Modeling results show a limited long-run economic
growth for occasional and constant-rate systematic internal savings, a steady long-run economic growth if
acceleration rate of internal savings lies within the proper limit for every industry, and a steady long-run
economic decline if acceleration rate of internal savings exceeds the suitable limit for certain industry.
Modeling outcome also suggests that a long-run economic growth requires direct investment of internal
savings into appropriate investment vehicles with exclusion from savings-investment chain the interest-
rate-bearing bank accounts with clear danger of suffering a long-run economic decline in case of violation

of the requirement.

Journal of Economic Literature Classification Numbers: E 32, O 41
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Mathematical Dynamics of Economic Growth

Introduction

This paper is a continuation of my recent book [3] where I presented mathematical model
describing economic forces acting on economic markets through the system of ordinary differential
equations. Particularly in that book I built a dynamic model explaining the effect of economic forces on
economic growth in market economy. The reason is that market participants withdraw some products from
the markets as savings and use the withdrawn products in consecutive production as investments. That
drives the products’ prices on the markets up and at the same time it drives the amounts of products on the
markets down. When the effect of increase in the products’ prices exceeds the effect of decrease in the
amounts of products one can observe the effect of economic growth whereas she can observe the effect of
economic decline in the opposite situation. One important point is that products’ savings are used as
consecutive investments in order to increase in the products’ quality. Thus increase in the products’ prices
during periods of economic growth is accompanied by the continuous increase in the products’ quality.

In the current paper I look into various effects that savings and investments exert on the economy.

Firstly I investigate the concept by utilizing a simplified mathematical model of economy, which
operates with single product. After concept becomes clear I extend the model on economy that operates
with multiple products. As earlier in [2], [3] I describe the multi-product market economy with the help of
Input-Output model of Wassily Leontief (see [4], [5]). Here I am using the Leontief model to describe how
dynamic forces affecting supply and demand on the market for one particular product are influencing the
markets for other products that are produced in multi-product economy. Technological factors in economy

are assumed to be constant.

1 Model of Single-Product Economy

Here in this section I show how process of savings in a single-product economy affects the
situation on the market of product, and creates an economic growth.
The concept of economic growth is presented through dual impact of changes in the product’s

prices and changes in the supply-demand equilibrium on the market of product.
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Mathematical Dynamics of Economic Growth

After supply-demand equilibrium on the market of product is reached, the economic growth is
achieved through continuous improvement in the product’s quality. To improve the product’s quality one
has to make an appropriate investment of product (remember, we are dealing with a single-product
economy). That is done by applying the product’s savings i.e. withdrawing an appropriate amount of
product from the market. That process creates a temporal or permanent shortage of product on the market,
which violates supply-demand equilibrium on the market of product, and drives the product’s price up. In
other words, when one pays enlarged price for an improved-quality product, she compensates from
economic point of view for an increase in the product’s price caused by withdrawal of appropriate amount
of product from the market through the process of savings (and consecutive investment) in order to
improve the quality of product.

On the other hand, withdrawing the product from the market in form of savings decreases
available amount of product there. The reduced amount of product on the market is offset through an
increased product’ supply. Thus withdrawing the product from the market for investment and replenishing
the product on the market by suppliers have opposite effects on the supply-demand equilibrium on market.
As a result it could appear a surplus or shortage of product on the market at some point in time but market
forces will try to bring market to new supply-demand equilibrium in the long term. Similarly withdrawing
the product from the market in form of savings increases the product’s price in the long term. These dual
impact drive the monetary value of product (equal to the product’s price multiplied by the product’s
quantity) on market in opposite directions — an enlarged price drives the monetary value up, if the product’s
quantity increases it drives the monetary value up, and if the product’s quantity decreases it drives the
monetary value down. When the monetary value increases in time one can talk about economic growth, and
when the monetary value decreases in time she can speak about economic recession.

To turn to mathematical descriptions, when there are no disturbing economic forces, the market is
in equilibrium position, i.e. the product’s supply and demand are equal, and they are developing with a
constant rate and the product’s price is fixed.

When the balance between the product’s supply and demand is broken, the product’s market is

experienced the economic forces, which act to bring the market to a new equilibrium position.
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Mathematical Dynamics of Economic Growth

These economic forces are described by the following ordinary differential equations regarding to

the product’s supply V' (t), demand V), (t), and price Be(t) (see [3]),

Pl 01, 0) 0.
d*v(t dp,(t

i
PV, B0
T e 3)

In Equations (1.1 — 3) above the values A,, A, 4, = 0 are constants.

I assume that the market had been in equilibrium position until time ¢ =/, the volumes of
product’s supply V' (t ) and demand ¥/, (t ) on the market were equal, and they both were developing with
constant rate I”DO .

v (t)=r(t—t,)+ Vs (1.4)

Ve(t)=V,(2) (1.5)
where V), (to) =V).

I present few scenarios describing the situation with product’s saving.

A One-Time Withdrawal of Product Savings from Market

At some point in time f =7, the equilibrium situation was broken, and the amount of product

equal to A, >0 was removed from the market,

(1.6)

V()= { v(t), t<t,

Vi—-A,, t=t,

where 0 <A, SVDO.
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Mathematical Dynamics of Economic Growth

That scenario increases at time ¢ = ¢, the amount of savings S, (t) for the product,

0, <t
SR(I):{A t_to (1.7)
R -t

where SR(Z)Z 0 for ¢ <t,.
From Equations (1.1 — 3) the volume of product’s surplus (or shortage) [VS(Z)—VD(Z)] for

t > 1, is described by,

:;_tzz(Vs(t)_ VD(t))—i_Z‘P AD%(VS(t)_VD(t))—F /1P zs (VS(t)_VD(t)): 0 (1.8)

with the following initial conditions,

Vs(to)_VD(to): —Ap.

% (1(t,)- V(1)) = 0.

d

LAy

L =0 Ay

Initial conditions for the product’s price /% (t ) are P, (to) = PRO and

Similar to Equation (1.8) the product’s price PR(t) is described by the following second-order

ordinary differential equation for £ > £,

d*P,(t)
dt*

dPy(1)

+Ap A +hphg P(t)+C =0 (1.9)

where C = -\, (KP ApAp +Ag Pz?) is a constant.

If one uses the new variable B (t) =P, (t) - P - }L‘;KD A , Equation (1.9) becomes,
s
d’R(t dB(t
d—tg()+x,,x,) ét()m,,xspl(t):o (1.10)
itial condit Mok j g @A)
Therefore the initial conditions for £ (t) are B (to) =———=Ap and — =L, A,.

N
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Mathematical Dynamics of Economic Growth

Equations (1.8) and (1.10) have the same characteristic equations. And the roots of these

characteristic equations are,

My, [1595
2 4

—hp A (1.11)

212
(a) If 7”’47”[’ > Ap Ag the solution of Equation (1.8) is (see [6] — [8]),

Vs(t)_ VD(I): G eXp{kl (t - to)}"‘ G eXp{kz (t - to)}» (1.12)

and C, = A, k

where C; = A, —2 .
ky =k, ky =k,

If inequality above holds, the solution of Equation (1.10) is

B(t)=C expik, (t —,)}+ C, explk, (t —¢,)} . (1.13)

where C; = A, A, M and C, =X, A, M are constants.
kl _kz kz kl

Since k; <0 and k, <0 it takes place VS(Z)— VD(t)—) 0 and Pl(t)—> 0 for t —> +o00.

Then it follows from the change of variable,

Ap

P(t)=P(r)+ P} + 2222 A, (1.14)
As
and it takes place for £ — +00,
P(t)—> P+ Ao TETD A, (1.15)
As
: A Y -
Since V), (l‘o)Z V), and —n = ry, it takes place from Equation (1.3),
2
V,(£)= =0y B(0)+ (2 + Ap ey A )= 1)+ V2 — x}f” A, (1.16)
s

Since VS(t)— VD(Z) — 0 it takes place VS(t) - VD(Z) for t — +00.

I calculate now the effect of the product’s savings by comparing two monetary values of product

quantity taken at the limit # — +00 i.e. when the market of product comes to a new equilibrium. The first
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monetary value is the product v, = P, (Z)X v, (t) of the product’s price P, (t) and the product’s demand

~ ~

v, (t) at the limit after savings. The second monetary value is the product Vv, = PR(l‘ )>< v, (t ) of the

product’s price ISR (t ) = P; and the product’s demand I7D (t ) = rg (t - to)—i- VD0 at the limit if there was

no withdrawal of product from the market.

2172
(b) If Ay Ao

= A, Ay the solution of Equation (1.8) is (see [6] — [8]),

-1+ Cle-nexp| 22221 o

where C; =—A, and C, = —%AR.

If equality above holds, the solution of Equation (1.10) is
p M
B(t)=(C,+C,(t—1,))exp —T(t—to) , (1.19)

Ap b

S

where C, =— Ay and C, = —A, A, are constants.

Since Ap A, > 0 it takes place V;(¢)—V,(¢) = 0 and P(t) =0 for £ — +o0.

Therefore it takes place for £ — +00 as before,

P,(t)— P! +MAR (1.20)
As
2
V()= —xDPl(t)+(r§ +A, 0, AR)(t—to)-I- vy - Ay A, (1.21)
S

and V(t) = V,,(t) for t — +o0.
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Since lim PR(t) =1+ hp M ?R and lim KD (t) =1 +m—€AR, it takes place,
As P oo VD(t)

p

KD(t)j=1+};P7;foA§ (KSPIS"'FL())"'Q\'P}”D AR) (1.22)
D sikr p

212
(c) If P4 L < ApAg the solution of Equation (1.8) is (see [6] — [8]),

AOAD =exp{_%@ 1, )}[q cos[ Aoy — ”?4’% (-1, )J C, sin( Ay — ’“?4”? (-1, )D
(1.23)
iy A,
2\/7»1) g — 76)47% |

If inequality above holds, the solution of Equation (1.10) is

212 212
B(t) =exp{—%(l ~1, )}[Q co{ Ap g — 7””47”0 (t—1, )J +C, sin[ Aphg — 7“’47”’3 (t—1, )H

where C; =— A, and C, =

(1.24)
2
where C, = ety Ay and C, = Ap Ay 1- Ao b are constants.
As A 2)s
}\‘P 7\’5‘ _P""D
4
Since Ap A, > 0 it takes place VS(Z)— VD(t)—) 0 and Pl(t) — 0 for £ — +o0.
Therefore it takes place for £ — +00 as before,
P,(t)— P! +MAR (1.25)
A
2
V() ==y B(E)+ (10 + 2p oy A )= 1)+ V78 —%AR (1.26)

N

and Vs(l‘)—) VD(t) for t — 400,
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Since lim[PR(t)J =1+ Mo My A and lim[VD (Z)J =1+ M—DAR , it takes place,

o ]N)R(t) XSB? I VD(t) rDO
~(v@)) [ Pe)x V() Aphp A o o
1 - =1 = = =1+ 22L—L0 P AphpA .
,lrﬂo(;R(t)J flr&(PR(t)xVD(t) + A PUr) ( sPe t1p + Ay R) (1.27)

Thus all cases to deduce the solutions of differential equations from the roots of related
characteristic equation are covered.
Therefore at the limit for £ — +00 the withdrawal of product from the market causes both an

increase of the product’s price and an increase of product’s demand. These actions raise the monetary value

Ve (t ) of product on the market in the long run,

PR(t) :1+7\‘P7\‘DAR >1

lim| =

A ks By
lim KD(t) =1+KPK§AR >1
e D(t) Ip

lim VR(t)j:HW‘—DAR(xSP; 04 Ay A, )> 1

~ 0.0
e VR(I) sk Tp

That concludes the first scenario.

B Constant-Rate Continuous Withdrawal of Product Savings from Market

According to this scenario I assume that amount of product’s savings S, (l‘ ) increases since time
t =, according to following formula,

0 r<t
S.(t)= ’ ‘ :
R(t) {SR (t - to), t>t, (1.28)

where S,(t)=0 for £ <z, and 5, >0.
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Therefore taken into account the product’s withdrawal from the market in the form of product’s

savings S, (t) described by Equation (1.28) the volume of product’s surplus (or shortage) on the market
[Vs (t ) -V, (t )] in Equations (1.1 — 3) has to be replaced by the volume of product’s surplus (or shortage)

on the market expressed as D, = (Vs (l‘ ) -V, (t ) -5 (t )), that produces for £ > 7,

d’Dy(t)
ar’

dD,(¢)

+ A0, + A A Dy(t)=0 (1.29)

with the following initial conditions,

Dy (to ) =0,
)
=-5,.
dt
Gl condii . 0 ang GPelt)
Initial conditions for the product’s price P, (t) are P, (ZO) =P, and 0 =0.

Similar to Equation (1.29) the product’s price PR(t ) is described by the following second-order

ordinary differential equation for > £,

d’Py(t)
ar’

2y 20

+Ap g Pot)+C =0 (1.30)
where C = -\, (7\,5 PR0 +0 R) is a constant.

1
If one uses the new variable B (l‘ ) =P, (l‘ )— P]? - K_S r » Equation (1.30) becomes,
s

@’R(0) ;5. 4R0)

o T A B()=0 (131)

. 48

1
Therefore the initial conditions for £ (t ) are B (l‘o) = _K_S R =0.

s
Equations (1.29) and (1.31) have the same characteristic equations. And the roots of these

characteristic equations are,

Ap A A
k=~ P2 L+ P4 oA (1.32)
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A
(a) If P4 D > 7\,1, 7‘5 the solution of Equation (1.29) is,

D, (t)=C, explk, (t —t,)}+ C, explk, (t -1, )} (1.33)

where C, = O and C, = .
ky =k, ky =k,

If inequality above holds, the solution of Equation (1.31) is
Pl(t) =G, exp{kl (t —1, )}+ G, exp{kz (t —1, )}7 (1.34)

R, k2 —SR. kl
7*5 kl_kZ S kz_kl

o7}

where C; = are constants.

Since k; <0 and k, <0 it takes place DR(Z)—> 0 and R(t)—) 0 for t — +o0.

Then it follows from the change of variable,

By(t)=PB(t)+ P +%6R (1.35)

S

and it takes place for £ — +00,

PR(t)_)Plg-’_%SR (1.36)

N

dVl(t
Since ¥ (to) =V} and % =1} it takes place from Equations (1.1 —3),
!

C C 2
Vo(t) =g k—3exp{k1 (t—1,)}+ A k—“exp{k2 (t—1,)}+ (rg +8R)(t —1,)+ V] _k_DSR

1 2 S
(1.37)
and it follows from Equations (1.28), (1.33), (1.37) for £ — +o0,
0 0 7\’
Vo(t)— (rD +8R)(t —t,)+V —K—DSR (1.38)
S
0 0 7\’
Vo (t)—ri(t—1,)+V; —X—DSR (1.39)
S
S (t)=8,(t—1,) (1.40)
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Since lim %(t) =1+ 8R0 and lim KD(I) =1, it takes place,
» V,(t)

lim(KR (r )j _ lim(
t—>+0 vR (l‘) t—>+o©

AL A2
(b) If P4 L =, Ay the solution of Equation (1.29) is,

Dy (t) = (Cl +C, (t - to))exp{—%(t ) )} :

where C, =0 and C, = —0,.

If equality above holds, the solution of Equation (1.31) is

Pl(t): (C3 +C, (t—to))exp{—%(t _to)}ﬂ

1
where C; =——0, and C, =———0 are constants.
s D

Since Ap A, > 0 it takes place DR(Z)—> 0 and R(t)—) 0 for t — +o0.

Then it follows from the change of variable,

RO=R)+ P +-55,

S

and it takes place for £ — +00,

RO P+,

N

avi(t,)

= rg it takes place from Equations (1.1 — 3),

Since V' (to) =V} and

Ve(t)= (— 7b—DC3 - Lq(kple) (t—1,)+ 1)] exp{— 7”’27”0 (t—1, )} (48, )t

2 7,

and it follows from Equations (1.28), (1.42), (1.46) for { — +o0,

_t0)+VDO_ 1y R

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)

My

S
(1.46)
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VS(t)—>(rg+6R)(t—to)+VD°—;t—D . (1.47)
S
0 0 7\’
Vo (t)—ri(t—t,)+V; —X—DSR (1.48)
S
S (t)=8,(t—1,) (1.49)
Since lim[§(t)j=l+ O 5 and lim[KD(t)le,it takes place,
o PR(t) A By o D(t)
1im(KR(t)j:1im(§*(t)XKD(t)j=1+ On_ (1.50)
oo VR(I) [ PR(t)XVD(t) A P

A7
(c) If P4 L < ApAg the solution of Equation (1.29) is,

22 212
D, (t) =exp{— 7”’27”0 (t—1, )}[C1 co{ Ap A — 7””47”0 (t—1, )} +C, sin[ Aphg — 7“’47”’3 (t—1, )J}

(1.51)
_812

22
\/KP}\‘S_ P4 D

where C; =0 and C, =

If inequality above holds, the solution of Equation (1.31) is

212 22
B(t) =exp{—%(l ~1, )}[Q co{ Ap g — 7””47”0 (t—1, )J +C, sin[ Aphg — 7“’47”’3 (t—1, )J}

(1.52)
Ap A )
where C; =——3, and C, =——%—2. £ are constants.
As As NS
24| Ap Ay -2
4
Since A, A, > 0 it takes place DR(t)—> 0 and Pl(t)—) 0 for t > +o0.
Then it follows from the change of variable,
P()=R)+ P+ 15
Rt_1t+R+}\‘_R (1.53)

S
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and it takes place for £ — +o0,

PR(t)_)PJS-i_%SR (1.54)

N

dVilt
Since V (l‘o) = VDO and ;—50) = rg it takes place from Equations (1.1 —3),

A . 242 242
" +[c3 dop Mg — 7‘P4XD C, xP?D%ir{ dop Mg — 7‘P4XD (l—tO)J
0 o A
+(rD +6R)(t—to)+ vy —X—DSR
’ (1.55)
and it follows from Equations (1.28), (1.51), (1.55) for £ — +o0,
VS(t)—>(r£+8R)(t—tO)+V,§—7£—D . (1.56)
s
0 0o A
Vo (t)—ri(t—t,)+V; —X—DSR (1.57)
s
S (t)=8,(t—1,) (1.58)
Since lim([j(t)] =1+ O 5 and lim(KD(t)j =1, it takes place,
o PR(t) As B o D(t)
1im(KR(t)j - 1im(§*(t)x KD(t)j 14 On (1.59)
o VR(I) o PR(t)XVD(t) hg Py

Thus all cases to deduce the solutions of differential equations from the roots of related
characteristic equation are covered.
Therefore at the limit for £ — +00 the withdrawal of product from the market causes an increase

of the product’s price and practically doesn’t change the product’s demand. These actions raise the

monetary value v, (l‘ ) of product on the market in the long run,
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A B

j:IJr;SR0 > 1

Jim 7 (1

>1

lim
11—+ VR

l
—_

N
N—
Il
+

o5}
~2

That concludes the second scenario.

C  Constant-Accelerated Continuous Withdrawal of Product Savings from Market

According to this scenario I assume that amount of product’s savings S, (l‘ ) increases since time

t =, according to following formula,

0, t<t,
Sit)= SR(t—to)+%R(t—tO)2, t>1, (1.60)
where S,(£)=0 for £ <#,,8,>0,and £, > 0.
Therefore taken into account the product’s withdrawal from the market in the form of product’s
savings S, (t) described by Equation (1.60) the volume of product’s surplus (or shortage) on the market

[Vs (l‘) -V, (t)] in Equations (1.1 — 3) has to be replaced by the volume of product’s surplus (or shortage)

on the market expressed as D, = (VS (l‘ ) -V, (t ) -5 (t )), that produces for £ > 7,

2
: clz’)tlze(t)‘”VPkD dDC[};(Z)""}‘P}‘SDR(l)"‘SR =0 (1.61)

with the following initial conditions,

DR(ZO): 0,
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)
dt ke

1
If one uses the new variable D, (t ) =D, (t ) + WS > then Equation (1.61) becomes,
phs

2
B B0

with the following initial conditions,

1
D (t,)= dop g Er>
D),
-
dt
Gl condii . 0 ang 9Falt0)
Initial conditions for the product’s price P, (t) are P, (ZO) =P, and — =0.

Similar to Equation (1.61) the product’s price PR(t ) is described by the following second-order

ordinary differential equation for > £,

2
%IZ(I)HMPKD dPR(t)+kasﬂ(t)—KP(eR(t—to)+8R + A P)=0 (1.63)
If one uses the new variable E(Z)Zﬂ(t)—f;?—%sje—%s}e (t_t0)+}7t_§8R’ then
N N S
Equation (1.63) becomes,
2
4°RY) jz(t) +Ap g, —dgt(t) +4, A B(t)=0 (1.64)
1 A drP(t,) 1
herefore initial conditions for P, (¢ Plt,)=——08,+2 d 1=
Therefore initial conditions for 1( ) are 1( 0) A rT Xé € an ” A o

Equations (1.62) and (1.64) have the same characteristic equations. And the roots of these

characteristic equations are,

Ap A A
k=~ PzDJ_q/ P4D—kpxs (1.65)
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A
¢ 2 p
(a) 4

> A P 7\,5 the solution of Equation (1.62) is,
D,(t)= C, expik, (t -1, )} + C, expik, (t 2, )} (1.66)

xsi k O +x8Rx k
TP and Cz N il
kz _kl kl _kz

S +

where C| =

If inequality above holds, the solution of Equation (1.64) is

R(e)= Cyexplk, (1 =1, )} + Cyexplh, (1 = 1,)} (1.67)
—738R+(738R—77?8RJ]€2 —;8R+(;8R—77?8RJI€1
where C; = 5 5 5 and C, = 5 5 5 are
kl _kz kz _kl
constants.

Since k;, <0 and k, <0 it takes place Dl(t)—)O and Pl(t)—>0 for t = +00.

Then it follows from the change of variable,

1
D,(1)= Dl(t)— v Ep (1.68)
P(t):P(t)+PO+L8 L (t—1¢ )—K—Ds (1.69)
R 1 R 7\,S R 7\,S R 0 7\,§ R

and it takes place for £ — +o0,

DR(Z)_)_

e 1.70
Aphg (1.70)

PR(t)—)%sR(t—to)—FP,?+%8R—it—?aR (1.71)
S S S

avi(s,)

Since ¥ (to) =V} and =1} it takes place from Equations (1.1 —3),
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C C A
Vs(t): Ag k_SeXp{kl (t_to)}"'?‘S k_4€Xp{k2 (t_to)}"'(rz()) +08, _K_DSRJ(t_to)

1 2 N

2
+ 58 (p—g, Y + 10 —K—DSR —;eR +k—§’eR
2 e E T, T2
(1.72)
and it follows from Equations (1.60), (1.68), (1.72) for { — +o0,
A € ) A 1 A
VS(t)—{rg +8, —isRJ(t—to)+7R(t—to) + V) _k_jSR —meR +i8R
(1.73)
2
VD(t)e(rB—K—DsR](t—tOH Vg—i—DSR +§i—§eR (1.74)
S S N
g
SR(I):8R(t—tO)+7R(t—tO)2 (1.75)

Since lim }:R(t) =40 (as }:’*(I)—>8—R0(t—z0)+ 1+ SRO—XQS’; , t—>400)
= B(e) Ble) " Fy MBS R

. [V, Ay €
and hm( D( )jZI—M,ittakesplace,

o VD(t) s rDO
+ o0, sR<;:—Sr§
D
lim(KR(t)j: 1im(Mj: 0, g, =250 (1.76)
o VR(t) o PR(I)XVD(Z) Ap
— o0, sR>7b—Sr,§
7\’D

A A2
(b) If P4 L =, Ay the solution of Equation (1.62) is,

D0)=( G- Jexp{ =220, 0
where C| ZLSR and C, =0, +}L—D8R.
P7S 7\‘S
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If equality above holds, the solution of Equation (1.64) is

B(t)=(C,+C,(t - to))exp{—%(t - to)}, (1.78)
where C, = —LSR +K—?8R and C, = —isR + —&, are constants.
s s D s

Since Ap A, > 0 it takes place Dl(t)—) 0 and Pl(t)—> 0 for t —> +o00.

Then it follows from the change of variable,

DR(Z):Dl(t)_kPXSSR (1.79)

o 1 1 A
P(t)=B(t)+ By + =8, +—e,(t—t,)- "2, (1.80)

s © A 22

and it takes place for £ — +00,
DR(t)—>—KP » Ep (1.81)
PR(t)—>L8R(t—tO)+P1?+L8R—k—gsR (1.82)
7\‘5 7\’S S

dVilt
Since Vg (l‘o) = VDO and ;—50) = rg it takes place from Equations (1.1 —3),

Vs(z):(J“_Dq —Lq(xf’;”? (t—t0)+ljjexp{— bt (z_to)}{rgm _;_DSRJ(I_ZO)

2 Ap s
iR (g V4V —X—DSR +LSR
2 VR

(1.83)

and it follows from Equations (1.60), (1.81), (1.83) for { — +o0,

A A 3
V() - (r,g +3, —k—st](t—to)Jr%R(t —t,) +V,) _k_:SR +m8R (1.84)

A A 4
Vi) rl="Lg |(t—1)+V =28 +——c¢ 1.85
»(t) (D » Rj( o)+ Bt e (1.85)
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SR(t):ESR(t—tO)+%R(t—to)2 (1.86)

Since lim ]:R(t) =400 (as ]j - (t—t)+ 1+ “per , 1 —> +00)
e\ B(t) Polt) "B hs P A5 Py

and lim(VD (t)j =1- Mpen

70

>
“
b\o =

+ o0, sR<;:—Sr§
D
1im(KR(t)j:1im(§*(’)XKD(’)j: 0, &, =250 (1.87)
o VR(t) o R(t)x D(t) Ay
—w, € >7b—5r°
R 7\,D D

M
(c) If P4 D < 7\,P 7\‘3 the solution of Equation (1.62) is,

212 22
D(t) =exp{—%(l ~1, )}[C1 cos[ Aphg — 7“’47”’3 (t—1, )} +C, sin( Aphg — 7””47”0 (t-1, )D

(1.88)

A
AP
where €} =——¢€, and C, = il

Ap A \/ Ay — 76347%

If inequality above holds, the solution of Equation (1.64) is

212 22
B(t) =exp{— 7””27”0 (t—1, )}[Q co{ Ap g — 7””47”0 (t—1, )J +C, sin[ Aphg — 7“’47”’3 (t—1, )H

(1.89)
2
DETITON Al e
where Cy =——08, +2¢&, and C, = S 5 5 are constants.
As A A As
Aphg — 4

Since A, A, > 0 it takes place Dl(t)—)O and Pl(t)—>0 for t = +o0.
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Then it follows from the change of variable,

Dy (t)= D,(t)- k,,lks Ep (1.90)

PO RO+ B 5805 a1 =32, (191
and it takes place for  —> +00

DR(l)*—kaS €x (1.92)

PR(t)_)%SSR(t_to)‘F B +%58R —%SR (1.93)

dVl(t
Since Vg (to) =V} and :l’( 0) =7, it takes place from Equations (1.1 — 3),
!

242 242
—[q : kpsz +C, -1/7% Ay — kP:‘D J-cos[ Ap g — kP:‘D (t—to)J

Vs(t)zL-exp{—%(z—to)}x

A 2 52 272
" d ey Lo o Aeto |l g e e oy )
4 2 4
A £ 2 A 1 A
48, —L¢ j(t—t J+ R (t—t,f +V) -T2, ———e,+2¢
( D R }\.,S R 0 2 0 D }\.,S R 7\‘13 }\.,S R 7\,§ R
(1.94)
and it follows from Equations (1.60), (1.92), (1.94) for £ — +o0,
A € ) A 1 A\
VS(I)—>(7’3+8R—stj(t—to)+7R(t—to) ey -tes, Lo i,
(1.95)
2
v, (t)— (rg —K—DSRJ(t—t0)+ 28 —it—%R +§i—§eR (1.96)
S S S
€
SR(t):ESR(t—tO)+7R(t—to)2 (1.97)
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Since lim(}:"(t)Jeroo (as @z(t)%s—Ro(t—to)+(l+ SRO
= Bl) Rl) 2By I Py

and lim(KD(t)jzl—m,it takes place,
o VD(t) Mg

+00, 8R<;:—SI’[())

D
lim(VR(t)j: 1im(§*(’)x’f0(’)j: 0, &, =250

e Vp(t) ) e Ble)x 7, () b
— o0, 8R>X—Sr£

Ap

_7\’D8R
s Py

j, I —> +0)

(1.98)

Thus all cases to deduce the solutions of differential equations from the roots of related

characteristic equation are covered.

Therefore at the limit for # — +00 the withdrawal of product from the market causes a boundless

increase of the product’s price. Here at the limit for # — +00 the withdrawal of product from the market

increases or decreases the product’s demand depending on the acceleration rate. Savings withdrawal with

moderate acceleration rate increases the product demand on the market in the long run. Savings withdrawal

with intense acceleration rate decreases the product demand on the market in the

long run. Thus savings

withdrawal with moderate acceleration rate raises the monetary value v, (l‘ ) of product on the market in

the long run, and savings withdrawal with intense acceleration rate declines the product demand on the

market in the long run,

1im[3(t)j=+oo,
t—>+o0 Be(t)
A
>0, 8R<irD°
lim KD(t) =1 7‘”85 =0, SR—X—SFS,
e VD(t) As 1 7}\\“D
<0, eR>ir§
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+oo, g, <;:—Sr£
D
hm(ZR(t)] = lim(§(t)x KD(t)j =10, g, —hrg
o (t)) = B) V() Ap
—0, £, >—r)
D

That concludes the third scenario.

D Exponential Continuous Withdrawal of Product Savings from Market

According to this scenario I assume that amount of product’s savings S, (t) increases since time
t =1, according to following formula,

g (t)— 0, t<t,
e nexp{pR(t—tO)}—n, 121,

where SR(Z)ZO for t <t,,m >0,and p, >0.

(1.99)

Therefore taken into account the product’s withdrawal from the market in the form of product’s

savings S, (t) described by Equation (1.60) the volume of product’s surplus (or shortage) on the market

[Vs (t ) -V, (t )] in Equations (1.1 — 3) has to be replaced by the volume of product’s surplus (or shortage)
on the market expressed as D, = (Vs (l‘ ) -V, (t ) -5 (t )), that produces for £ > 7,

d’D dD
—dtf;(t)m,, ADTRt(’)wP hs Dyt)+7 piexplp, (1)} =0 (1.100)

with the following initial conditions,
Dy (to ) =0,

dDy(t,) _

— =

dt

R
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T Pp
Prthphy Prthphg

If one uses the new variable D, (l‘) =D, (l‘)-l— exp{pR (t —1, )}, then

Equation (1.100) becomes,

2210

Ap A

df() +h, kg Dy(t)=0 (1.101)

with the following initial conditions,

T pR
D (¢
)= PL4hphy Pr+hphg
le(to) _ T p13€
=-T P, + 3
dt PrtAphppr+hphg
— . A
Initial conditions for the product’s price PR(t ) are P, (to) =P, and 5 =0.

Similar to Equation (1.100) the product’s price Be(t) is described by the following second-order

ordinary differential equation for £ > £,

d; AU + A5 A dFy (1 )+/IP 2 Po(t) = A, (7 pexplpg (¢ =1, )1+ Ag P2) =0 (1.102)
A
If one uses the new variable Pl(t) = PR(t)— P - T, 2:/';::_ PR eXp{pR (l‘ —1, )},
then Equation (1.102) becomes,
2
dPlz() Ap A dP()+ﬂ AsP(t)=0 (1.103)
dt t
Therefore initial conditions for Pl(t ) are Pl(to) =4 7 P and
P+ Ap Pp+ Ap Ag
dR(to)_ —p 7 Pi

dt Pr+Ap Ay P+ Ap As
Equations (1.101) and (1.103) have the same characteristic equations. And the roots of these

characteristic equations are,
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2 192
k= _/IP;D iw/ )“PjD —Ap Ag (1.104)

Y
(a) If P=D /1P ﬁ“s the solution of Equation (1.101) is,
D,(t)= C, expik, (t -1, )} + C, explk, (t 2, )} (1.105)
7 p 1-k 7 p;
where constants C; and C, are equal to C, =— R+ 2. > R and
kl _kz kl _kz Pr +ﬂ“P2’DpR +2’Pﬂ“S
C. =_ TPk +1_k1 ) 7 Pr
) .
kz _kl kz _kl pzze +ﬂ“P2’DpR +2’P2’S
If inequality above holds, the solution of Equation (1.103) is
B(t)=C,expik, (t —1,)}+ C, explk, (t -1, )} . (1.106)
where C; = Pk, — A 7 Py and C, = Pe=ki — Ao 7 Py are
kz_kl pR+ﬂ“P2’DpR+2’Pﬂ“S kl_kz pR+ﬂ“P2’DpR+2’Pﬂ“S
constants.
Since k; <0 and k, <0 it takes place Dl(t)—) 0 and Pl(t)—> 0 for t —> +o00.
Then it follows from the change of variable,
2
7 Pr
D,\t)=D,\t)- ex -t 1.107
R( ) 1( ) D2t 2 A Pt A A p{PR( 0)} ( )
A7 p
P(t)=B(t)+ P + Lol ex t—t 1.108
2(1)=R(1)+ P R R ploe (1 =1,)} (1.108)
and it takes place for £ — +00,
Dylt)— K ex t—t 1.109
(1) T o i ploe (1 =1,)} (1.109)
P(t)—> P + 2ot P exp{p, (t—1,)} (1.110)

1012€+ﬂ“P2‘D10R+2‘P2‘S

dVilt
Since V (l‘o) = VDO and ;—50) = rg it takes place from Equations (1.1 —3),
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Vi(t)= ks%exp{kl (t—1,)1+ xs%exp{kz( iR (=t 1

1 2

- (1.111)

+ phsTt exp\pglt—1,)—m

p122+7\‘P7\’DpR+7\’P}\‘S { R( 0)}
and it follows from Equations (1.99), (1.109), (1.111) for £ — +o0,

Vo(t)> ri(t—1,)+ Vo + Aphsm expl{p,(t—1,)}-= (1.112)
P Prthphp Pyt hpig ‘ ’

Vo) (e —1,)+ V) - —— 2220 T e expfo (1.} (L13)

Prtrphp Prthphy
S.(t)=nexpip,(t—1,)}-n (1.114)

PR(t) ApT P

Since t—IEC}O(PR(t)] +00 (as PR(t)_) (pR+7u Ay P+ )P eXp{pR( )}+ )

and lim(VD(t)jz—oo (as KD(t)_> . —ApApT P O.GXp{pR(t_to)}_I_l when
(6) (P2 + 0 hy P+ Ap g )1 (t—1,)

lim (VR—@] = lim (MJ = 0 (1.115)

A\ Tpt) ) o Ble)x V(1)
}\‘2 2
(b) If —£—2 =, A the solution of Equation (1.101) is,
Ay A
D,(t)=(C, +C,(t —to))exp{—%(t —to)}, (1.116)
TP, AT PR (2hg + Ay )
where C, = & and C, = P_"R S DR

p12€+7\’P7\’DpR+7\’P7\‘S ’ 2(p12€+7\’P7\‘DpR+7\‘P7\’S)'

If equality above holds, the solution of Equation (1.103) is

B(t)=(c, +C4(t—t0))exp{—%(t—to)}, (1.117)

—ApT Py (2 PrtAphp )) are constants.

anR and C, =
4

where C, = >
Prthphy Prtiphg 2(pR+7\’P}\‘D Prtrphg
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Since Ap A, > 0 it takes place Dl(t)—) 0 and Pl(t)—> 0 for t — +o00.

Then it follows from the change of variable,

2
T Pr
D, (t)=D,(t)- explp, (1 —t (1.118)
(t)=D,(0) Pr+hphy Prthphs LAY

ApT Pp
pIZz +Aphp Pr A,

Poe)=R(e)+ By + explp (1= 1,)) (1.119)

and it takes place for £ — +00,

2
—T Pr
D,(t)— explp, (t—1¢ (1.120)
() Pr+hphy Prthshg CAG)

A, P
P.(t)—> P’ P PR t—t 1.121
R()_) r T p12€+7\’P7\‘D Dpt Iy eXp{pR( 0)} (1.121)

Since V (l‘o) = VDO and = rg it takes place from Equations (1.1 —3),

avi(,)
dt

ot e STARR) | e ECC NI RN

2 A,

(1.122)
0 Aphgm s 2\
+Vp + p; Fho ey Pt g exp{pR (t to)} n
and it follows from Equations (1.99), (1.120), (1.122) for { — +00,
Ve(t) > ri(t—1,)+ Vo + AT exp{p, (t—1,)}-= (1.123)
g ° ’ ° p122+}\‘P7\’DpR+}\‘P7\’S g ’
V()= ri(t—t,)+ Ve - M Aot P exp{p, (t—1,)} (1.124)
P ° ‘ P p12€+7\‘P7\’DpR+7\’P7\‘S ! ’
S.(t)=mexpip,(t—1,)}-m (1.125)
o P(t)j P,(t) AT P
Since lim| -& =400 (as =+~ —> Lo exp\pplt—1,)i+1)
im0 R T gy o iy iy 100
and lim( ~D( )j — 0 (as KD(t) > —ApApT P . .exp{pR (t_to)}_I_l when
===VAD Volt) " (P24 Mphy pr+ApAg ) (t—1,)

t — +00), it takes place,
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lim(KR (t)] = lim (MJ =—00 (1.126)

A
(c) If P4 D < 7\,P 7\‘3 the solution of Equation (1.101) is,

212 212
Dl(t)zexp{— }LP;LD (t—to)}[C1 cos[ Ap g — kPjD (t—to)}+C2 sin[ Aphg — }LP:LD (t—to)D

(1.127)

—hpm pR(2}\‘S+7\’D pR)_ 1

2(p122+}\‘P7\’DpR+}\‘P7\’S) oy _7\3)7\% .
pMNs
\ 4

If inequality above holds, the solution of Equation (1.103) is

212 22
B(t) =exp{— 7””27”0 (t—1, )}[Q cos( Ap g — 7””47”0 (t—1, )J +C, sin[ Aphg — 7“’47”’3 (t—1, )H

T p;
p12€+7\‘P7\‘D PrtAphg

where C, = and C, =

(1.128)
where C; = —; “ApT Py and C, = —KI;,TC pR(sz+kPKD)- 1 are
Pr+trphp prtiphy 2(pR+7\‘P7\‘D pR+7\‘P7\’S) \/ A
Aphg ———
constants.
Since Ap A, > 0 it takes place Dl(t)—) 0 and Pl(t)—>0 for £ — +00.
Then it follows from the change of variable,
T pa
Dy(t)=D(t)- 2 ex t—t 1.129
R() 1() 02+ 0y Pt on g p{pR( 0)} ( )
ApT P
P(t)=B(t)+ P} + pe ex t—t 1.130
2 (1)=R(0)+ Py T oA plpe(t=1,)} (1.130)
and it takes place for £ — +00,
D,(t)— R exp{p, (t—1,)} (1.131)

p12€+7\‘P7\‘D PrtAphg
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ApT Pp

P lt)—> P +
R() g Prthphy Prthphg

exp{p, (t—1,)} (1.132)

dVl(t
Since ¥ (to) =V} and % =1} it takes place from Equations (1.1 —3),
!

22 212
—{Q-"P;Mq- XPXS—XP}LD}COS{ xPxS—kPxD (t—to)J

1 2% 4 4
1) = enp| - 2222 -, _ _
’ +(C3 kPkS—kP}LD -C, }LPZKDJ-sm{ kpks—kpjl’ (t_tO)J

ApAgm

+ry(t—t,)+Vp+
D( 0) ? Prthohpy Prthphg

expipy (=1 )}

(1.133)
and it follows from Equations (1.99), (1.131), (1.133) for £ — +o0,
Vi) > ro(t =)+ V) +— M expl{p, (t—1,)} -7 (1.134)
PrtAphpPrthphg
Vo) >t —t,)+ V) —— A hpTe P exp{p, (t—1,)} (1.135)
Prtrphp Prthphg
S.(t)=mexpip,(t—1,)}-m (1.136)
o P(t)] P,(t) ApT p
S lim| 254 =400 (as X< — Lo expipgt—=1,);+1)
ot B0 o B G o)
i hm(KD(t)] N ) R 7, 7 PR (-1 ) SR
o 1V (t) Vo(t) " (p2+nhy pr+Aphg )i (t—1,)

. Vvall . Pt)x V¢t
lim NR—() = lim M =—00 (1.137)
A\ T0)) = Bl0)x (1)
Thus all cases to deduce the solutions of differential equations from the roots of related

characteristic equation are covered.

Therefore at the limit for # — +00 the withdrawal of product from the market causes a boundless

increase of the product’s price. Here at the limit for # — +00 the withdrawal of product from the market
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causes a boundless decrease of the product’s demand. These actions causes a boundless decrease of the

monetary value Vv, (t ) of product on the market in the long run,

ol
i)
R o

That concludes the forth scenario.

2 Model of Multiple Product Economy

Let me consider model with 7 products. I denote 173(1‘ )2 0 as a non-negative vector of the
products’ supply on the market, I7D(t)2 0 as a non-negative vector of the products’ demand on the
market, and E(l‘) > 0 as a non-negative vector of the products’ prices on the market. Each non-negative

component [Vs (t)]; >0 of the vector VS(t)Z O represents the supply on the market for particular
product; each non-negative component [VD (t)]l. >0 of the vector VD(Z)Z 0 represents the demand on

the market for particular product; and each non-negative component [PR (t )]l > ( of the vector ]_)R (l‘ ) >0

represents the price on the market for particular product (i =1,...,7).

As earlier, when there are no disturbing economic forces, the market is in equilibrium position for
each position, i.e. the product’s supply and demand are equal for every individual product, and they are
developing with constant rates and all the product’s prices are fixed.

When the balance between the product’s supply and demand is broken for any particular product,
the product’s market is experienced the economic forces, which act to bring the market to a new

equilibrium position.
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These economic forces are described by the following ordinary differential equations regarding to

each individual product of vectors of the product’s supply 175 (t ), demand I7D (l‘ ), and price }_)R (t )

d[R (1)), -], ([Vs(f)]l- _ [Vu(f)],-) (1.138)

dt
dz[ijf)] ], d[leff)]z (1.139)
dZ[Z,;Z(t)]I. ] dz[sz;z(l)]i (1.140)

In Equations (1.138 — 140) above the values [K P]ii, [KS]”., [K D]ﬁ > 0 are constants.
I assume that the markets had been in equilibrium position until time # =, the vectors of
volumes of product’s supply I7S(t ) and demand I7D(l‘ ) on the markets were equal, and they both were

developing with vector of constant rates 773 .

(1)=ry (1—1,)+ 7, (1.141)

.

(£)=7,() (1.142)

o

where I7D(t0) = I7DO .

I present below two scenarios describing the situation with withdrawal of products’ savings.

A Constant-Rate Continuous Withdrawal of Product Savings from Market

According to this scenario I assume that vector of products’ savings S, (t) increases since time

t =1, according to following formula in vector form,

0, t<t,

ER(t):{ (1.143)

S.(t—1,), t>1,
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where §R(t)=6 for t <t, and 5_R >0.

Hence taken into account the products’ withdrawal from the markets in the form of products’
savings S, R (t) described by Equation (1.143) the vector of products’ surpluses (or shortages) on the
markets [75 (t )— I7D(l‘ )] expressed component-wise in Equations (1.138 — 140) has to be replaced by the
vector of products’ surpluses (or shortages) on markets expressed as BR = (173 (t )— I7D(t )— S R (t )), that

produces the following matrix equation for > £,

+ALA, dl;’;(t)ﬂ\,, A D,(t)=0 (1.144)

d*D,(t)
2

with the following initial conditions,
Dy (t 0 ) =0,

dBR(tO) — _S_R'

In matrix Equation (1.144) above the matrices A, A, A, are non-negative diagonal matrices.

— — — dP,(t
Initial conditions for the vector of products’ prices P (l‘ ) are P, (to) = PR0 and % =
t

Similar to Equation (1.144) the vector of products’ prices FR(t) is described by the following

matrix equation for £ > f,

d*Py(r)
dt*

dPy(t)

+ALA, + A, AgB(t)+C =0 (1.145)

where C =—A, (A (P45, R) is a constant vector.

If one uses the new vector B (t) =P, (t) — P} — A3, Equation (1.145) becomes,

y— _

d%lz(thAPAD dPl(t)+APAS B(t)=0 (1.146)
o .. ) ) -1 dl_)l(to) n

Therefore the initial conditions for vector P1 (l‘ ) are Pl(to) =—A S o g and 7 =0
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As was shown in the model of single product economy, each component of the vectors 5}3 (t) and

R(t) approaches zero with the passage of time, [ER (t)]l. — 0 and [Fl (t )]l — 0 for # — +o0. Thus it

takes place DR(t)—>0 and Pl(t)—)O for t — +0.

Therefore from the change of vector it takes place for £ — +00,

P(t)—> P +A}S, (1.147)

dv(t,)
d

Since VS(ZO) = 17[;) and = 73 it takes place for # — +00 from Equations (1.138 — 140)

similar to the model of single product economy,

Vo(t) > (70 +8, )t —1,)+ 7 = A, A}, (1.148)
V() 7(t—t,)+ VY — Ay NS5, (1.149)
S.(t)=8,(t-1,) (1.150)

I calculate now the effect of the products’ savings by comparing two monetary values of vectors of
products taken at the limit # — +00 i.e. when the markets of products come to a new equilibrium. The first

monetary value is scalar product v, = FR(Z)X VD(t) = Zn:[PR (t)],-[VD (t)]l. of the vector of products’
=l

prices }_)R(t ) and the vector of products’ demand I7D(t ) at the limit after savings. The second monetary

~ ~

value is scalar product VR =P, (Z)X v, (t) of the vector of products’ prices ﬁR (l‘) = FRO and the vector of

products’ demand I7D (t) = 17[()) (t - t0)+ I7DO at the limit if there was no withdrawal of products from the
markets.

Therefore at the limit for # — +00 the withdrawal of product from the market causes an increase
of that product’s price.

(1RO

K - >1 (1.151)
o Be(t) ; [Ks]n B?
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Since at the limit for £ — +00 the withdrawal of product from the market practically doesn’t
change the vector of products’ demand, the monetary value v, (t ) of the vector of products on the market

will increase in the long run,

(5] i B50) m(Blellal) s

(][]

as it takes place for each component, lim [PR (l‘)]l. > [PRO]l. for [SR][ >0,i=1,...,n.

—>+w©

l

That concludes the first scenario.

B Constant-Accelerated Continuous Withdrawal of Product Savings from Market
According to this scenario I assume that vector of products’ savings S R (t ) increases since time

t =, according to following formula in vector form,
(1.153)

where ER(Z)=6 for t <t,,0,20,and €, >0.
Hence taken into account the products’ withdrawal from the markets in the form of products’

savings S R (l‘ ) described by Equation (1.143) the vector of products’ surpluses (or shortages) on the
markets [75 (t )— I7D(t )] expressed component-wise in Equations (1.138 — 140) has to be replaced by the
vector of products’ surpluses (or shortages) on markets expressed as 5}3 = (VS (t)— T7D(t)— S ® (t)); that

produces the following matrix equation for ¢ > ¢,

-
—d DR(Z)-FAPAD dDC;(t)-i_APASER(Z)'i_gR :6 (1.154)

dt’
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with the following initial conditions,

In matrix Equation (1.154) above the matrices A, A, A, are non-negative diagonal matrices.

If one uses the new vector of products El(t)z BR (t )+A_Sl A_P1 €, then Equation (1.154)

becomes,

y= _
d%lz(t)"'APADdlzl—lt(t)"'APAsﬁl(t):O (1.155)

with the following initial conditions,

Bl(to):A_slA_PlgRa

dD 1 (t 0 ) S
dt :
= - dP,(t
Initial conditions for the vector of products’ prices P, (l‘ ) are P, (to) = PR0 and % =
t

Similar to Equation (1.154) the vector of products’ prices FR(t) is described by the following

matrix equation for £ > f,

d’F(1) AQ

dt’

+ALA, Ay A P(t)= A, (B (1= 1,)+8, + A, BY)=0  (1156)

If one uses new vector E(t)ZFR(t)—EO -A{ S, - A g, (t—t0)+ Ay A, A E,, then

Equation (1.156) becomes,

20 A0

dr?
dP (¢ _
1(t0)_ A;SR'

Initial conditions for B, (t ) are P (to) =—A S, +AJA A&, and
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As was shown in the model of single product economy, each component of the vectors 5}3 (t) and

R(t) approaches zero with the passage of time, [ER (t)]l. — 0 and [Fl (t )]l — 0 for # — +o0. Thus it

takes place DR(t)—>0 and Pl(t)—)O for t — +0.

Therefore from the change of vectors it takes place for £ — 400,
D,(t) = -A] A, &, (1.158)
P(t) > Ale, (t—1t,)+ PY+ Ay S, — A A, AL E, (1.159)
= = dVgle)
Since Vg (ZO) =V, and % =7y it takes place for £ — +00 from Equations (1.138 — 140)
t

similar to the model of single product economy,

7o(6) > (7 +8, - A, A‘;§R)(t—t0)+7R(t—to)2 +V) A, ALS, L160)
—A_S1 A}is_R +ADA_S1AD A_SIS_R

7,(6) > (70 = Ay AL E St —1,)+ 70 = Ay A8 + Ay A Ay AL E, (1.161)
ER(t)zéS_R(t—to)+%(t—t0)2 (1.162)

As before I calculate the effect of the products’ savings by comparing two monetary values of

vectors of products taken at the limit # —> 400 i.e. when the markets of products come to a new

equilibrium. The first monetary value is scalar product v, = FR(l‘ )>< I7D(t ) of the vector of products’

prices }_)R(t ) and the vector of products’ demand I7D(t ) at the limit after savings. The second monetary

~ ~

value is scalar product vV, = P,(#)x V', (#) of the vector of products’ prices ﬁ t)= F O and the vector of
p R R D p p R R

products’ demand I7D (t ) at the limit if there was no withdrawal of products from the markets.
Therefore at the limit for # —> +00 the withdrawal of product from the market causes an

unlimited increase of that product’s price,

|7 (0)], 2.
lim| =1 | = 1i (-] = |
S BOL 5 sl PR°,-(t f) |=+e (1.163)
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when [SR]I. >0.

Thus at the limit for £ — +00 the monetary value Vv, (t) of the vector of products on the market

will increase unlimitedly in the long run (as long as each savings withdrawal is carried out with a moderate

acceleration rate),

>lrlk)

when it is fulfilled for each component, [8 ] <[7\, ] [ D]” [rD] for ] >0,

That concludes the second scenario.

3 Applied Models of Multiple Product Economy

(VR(t)] [ (1) @(t)j ’lir&((fnl e 2] -0l BV ]i)J(t_tO)J

= 400

(1.164)

=1,...,n.

I present here the continuous time mathematical models that are partially based on Input-Output

model of Wassily Leontief (see [2] — [5]).

As in [4], [5] I am going to use in the models a non-negative square matrix A4, which consists of

non-negative elements @, j > (0 showing the amount of product i needed to produce a unit of product j .

In continuous time production processes employed in the models I suppose that changes in input and output

vectors of products occur simultaneously i.e. production time periods are equal to zero. If one wants to

build a model for practical applications, she probably has to introduce a production time delay into the

model.

Apart from Leontief’s approach, the continuous time model described below utilizes a non-

negative square matrix B additionally to matrix A4, which consists of non-negative elements bl. j >0.

Matrix B is depreciation matrix and its elements b, ;2 0 show the depreciation rate of product i

occurred during the production of product j with the unit rate.
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I also use a mathematical fact that for inverse matrices (1 - A)71 and ([ -B )71 where [ is an

identity matrix of size #n to exist and be non-negative it is necessary and sufficient that Frobenius

cigenvalues (i.e. eigenvalue with a maximum module) of non-negative matrices 4 and B are less than
one [1].
I present situation describing the effect of depreciation expenses on the market dynamics and two

scenarios illustrating effect of products’ supplies for external customers.

A Continuous Depreciation Expenses and Market Dynamics

Here I consider effect of depreciation expenses on market dynamics in multiple product economy.

To solve the task I use the depreciation matrix B > 0 introduced above.

Then depreciation vector I7DP (t ) is represented by formula,

V,p(t)= BV(¢) (1.165)
where I7S(t) vector of products’ supply.

Since at the equilibrium point the vector of products’ supply T7S(t) is equal to the vector of

products’ demand ¥, (¢) and vector of depreciation expenses ¥, (¢),
Vslt) =V, () + Vplt) =V, (1) + BV ¢) (1.166)
it takes place there,
Ve(t)=(—=B)'V,(¢) (1.167)
Thus if T assume that in equilibrium position the vector of products’ demand ¥, (f) on the

markets is developing with vector of constant rates 17[? ,

Vo (t)=7(t—1,)+ V) (1.168)

then vector of products’ supply 175 (l‘ ) on the markets is also developing with the constant rates,
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dv.(¢ i
;t( ):(I—B) 7 (1.169)
Vs(t)=(-B) "7y (e —1,)+ 7 (1.170)

where I7S(t0)= vy = ([ —B)_IV;.
Similarly the vector of depreciation expenses I7DP (l‘ ) is developing with the constant rates,
7 -1-0 770
Voo(t)=B(I-BY'F(t—1,)+ V2, (1.171)

where I7013(’?0): I7L;)P = B([ _B)_IVDO'

B Constant-Rate Continuous External Supply of Products

Here I consider a task when multiple product economy has to provide a constant-rate continuous

supply of products to external customers. I also care about the effect of depreciation expenses on market
dynamics. To solve the task I use two matrices introduced above — input matrix 4 >0 and depreciation

matrix B>0.

According to this scenario the vector of products’ supply for external needs I7C(t ) and vector of

totally produced products I7T (t) are related via formula,

Vo(t)=V.(t)+ AV,(¢) (1.172)
therefore it takes place there,
Vi(t)=(1-A4)'V.(¢) (1.173)
Since the total vector of products VT(t ) is what economy is required to produce in order to satisfy

external needs, the vector of products’ demand T7D(t) is equal to the total vector of products VT(t) at the

equilibrium point,

Vp(t)=7,(t) (1.174)

Page 40 of 45



Mathematical Dynamics of Economic Growth

As before the depreciation vector T7DP (t ) is represented by formula,

»(t)=BV(t) (1.175)

o

where I7S(t ) vector of products’ supply.
Since at the equilibrium point the vector of products’ supply 175(1‘ ) is equal to the vector of

products’ demand VD (t) and vector of depreciation expenses VDP (t ),

Vs(e) =V (0)+ V()= 7, (1) + BV (1) (1.176)
it takes place there,
Vs(t)= (1= B) V,(e)=(1 - B) (1 - 4) V(1) (1.177)

Thus if T assume that in equilibrium position the vector of products’ supply for external needs

Ve (t ) is developing with vector of constant rates FCO >0,

Vot)=70(t—1,)+ 7 (1.178)
then the total vector of products’ demand VD (t) is also developing with the constant rates,

Vp(e)= (1 =A)' 72t =1,)+ 7y (1.179)
where I7D(t0) =V) = ([ - A)_IVCO .

Alike the vector of products’ supply I7S (t ) on the markets is developing with the constant rates,

V) =(I =By (I -4)"'7 (t—1,)+ V] (1.180)

where I7S(t0)= I7SO = (1 — B)ﬁl(] — A)%VCO.

C  Constant-Accelerated Continuous External Supply of Products

At this time I consider a task when multiple product economy has to provide a constant-

accelerated continuous supply of products to external customers.
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It means that it is assumed that in equilibrium position the vector of products’ supply for external

needs I7C(t ) is developing with vector of constant accelerations €, CO >0,

Vc(t):%c(t—to)z+FC°(t—t0)+I7C° (1.181)

then the total vector of products’ demand 170 (t ) is also developing with the constant accelerations,
V()= %(1 —A)' &t —t,f +(I—A)'F (e —1,)+ V) (1.182)

where I7D(t0) =V) = ([ - A)_IVCO .
Correspondingly the vector of products’ supply VS(t) on the markets is developing with the

constant accelerations,

Vs(t):%([ —B)' ([ -4)'&2(t -1, +(I-B)' (T =A)'F(t—1,)+ V"  (1.183)

where V(2,) =V =(I-B)'(I-4)'V.

4 Summary

Thus I described mathematical models describing long-time effects of real savings on economic
growth in economy.

First section contains research on long-term impact of real savings in single-product economy on
dynamics of economic growth. There I presented models describing distinction of economic growths when
savings are presented as either a one-time withdrawal of product, a constant-rate continuous withdrawal of
product, a constant-accelerated continuous withdrawal of product, or an exponential continuous withdrawal
of product from the market.

Modeling provided the following conceptual results. In case of a one-time (or occasional) savings
economy experiences a limited economic growth in the long run with minor increase in the product’s price
and slight increase in the amount of product on the market. In case of a constant-rate continuous (or

systematic) savings the effect is very similar — economy experiences a modest economic growth in the long

Page 42 of 45



Mathematical Dynamics of Economic Growth

run with minor increase in the product’s price and stable amount of product on the market. And only in
case of a constant-accelerated continuous (or systematic and increasing) savings economy can experience a
steady economic growth in the long run. With constant-accelerated continuous savings there is an effect of
continuous increase in the product’s price and continuous decrease in the amount of product on the market.
It produces a limit in the acceleration rate of internal savings — when it doesn’t exceed the limit an economy
experiences a continuous steady economic growth and when it exceeds the limit there is a continuous
steady economic decline. Model showed that with an exponential continuous savings economy is exposed
to an effect of continuous increase in the product’s price and continuous decrease in the amount of product
on the market. However the mutual combination of these outcomes always produces a continuous steady
economic decline. The last fact tells one that for an economic growth internal savings should be invested
directly into appropriate investment vehicles with exclusion from this process the interest-rate-bearing bank
accounts. The inclusion of interest-rate-bearing bank accounts into a savings-investment chain is forcing an
economy to suffer economic decline.

Second section contains a study of long-term impact of real savings in multiple-product economy
on dynamics of economic growth. It has models describing distinction of economic growths when savings
are presented as either a constant-rate continuous withdrawal of products or a constant-accelerated
continuous withdrawal of products from the markets.

Modeling was performed to verify with the model of multiple-product economy conceptual results
obtained above for a single-product economy. Results confirmed that in case of a constant-rate continuous
savings economy experiences a modest economic growth in the long run with minor increases in the
products’ prices and stable amounts of products on the markets. Results showed that in case of a constant-
accelerated continuous savings economy would experience a continuous steady economic growth in the
long run only if acceleration rate of internal savings for every product doesn’t exceed the appropriate limit
for industry. Otherwise economy would undergo a continuous steady economic decline.

Third section presents modification of the model of multiple-product economy above to include
there the effect of depreciation expenses and the products’ supplies for external customers on the market
dynamics. Modeling was done with the help of Input-Output model of Wassily Leontief [4], [S] where

technological factors in economy were assumed to be constant. There were considered two scenarios for
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situation with the products’ supplies for external customers — a constant-rate continuous supply of products
and a constant-accelerated continuous supply of products to external customers. Third section is mostly
technical in nature and shows what kind of adjustments can be made to theoretical mathematical model of

multiple-product economy to make it more applicable to the practical needs.
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