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Abstract 
 
 This paper puts forward a technique based on the characteristic function to tackle the problem of the 
sum of stochastic variables.  We consider independent processes whose reduced variables are identically 
distributed, including those that violate the conditions for the central limit theorem to hold.  We also consider 
processes that are correlated and analyze the role of nonlinear autocorrelations in their convergence to a 
Gaussian.  We demonstrate that nonidentity in independent processes is related to autocorrelations in 
nonindependent processes.  We exemplify our approach with data from foreign exchange rates. 
 
Keywords: Central limit theorem; characteristic function; reduced variables; autocorrelation 
 
 
1 Introduction 
 
The problem of the limit of sums of random variables attracted great interest in the second 
half of the 19th century and the first one of the 20th century.  At the time mathematicians 
extending Bernoulli’s and Moivre-Laplace’s theorems were also pioneering the modern 
theory of the sum of random variables. 
 Hot topics in the research agenda included searching for general conditions under 
which the sum of random variables converges to a Gaussian.  Liapunoff, Lindberg, and 
Levy are among those who contributed to clarify the problem. 
 Liapunoff suggested his statistical moments approach (Liapunoff, 1900); Lindberg 
came up with his convolution technique (Lindberg, 1922), and Levy focused on the classic 
approach to the characteristic function (CF) (Levy, 1924, 1929). 
 Levy not only analyzed the convergence of sums of random variables but also 
extended the classic approach to consider infinite first and second moments.  He also 
examined the role of stable distributions in characterizing the limits of sums of random 
variables.  In particular, he put forward ‘extraordinary laws’ to show how his stable 
distributions (today’s Levy-stable distributions) play a role similar to that of the Gaussian 
when the second moment is infinite. 

                                                 
  * Corresponding author. 
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 Levy’s central limit theorem settles the conditions under which sums of random 
variables converge to a Levy-stable distribution.  Here the Gaussian collapses to a special 
case of the entire family of Levy-stable distributions. 
 Roughly Levy’s approach can be seen as an application of Kolmogorov’s triangular 
scheme (Gnedenko and Kolmogorov, 1954), which encompasses previous results in terms 
of limit theorems.  In what follows we will discuss the triangular scheme in greater detail 
since it helps to put our results in this paper into perspective. 
 A triangular arrangement of random variables takes the form 
 

( ) ( ) ( ) ( )
1 2( , ,..., );   1, 2,...,n n n n

nx x x n= = ∞X                                                                                 (1) 
 
where the random variables )(n

ix ( ni ,,1…= ) are defined in the same probability space so as 
to satisfy two properties. (1) Random variables )()(

1 ,, n
n

n xx …  are independent for every n , 

and (2) for all R∈ε , it holds true that { }( )

1
lim  sup 1 ( ) 0n

in i n
f ε

→ ∞ ≤ ≤
− = , where )(n

if  is the CF 

of )(n
ix .  These are the conditions of independence and infinitesimality respectively. 

 We consider sum sequence 
 

( ) ( )
1 ...n n

n n nS x x a= + + +                                                                                                          (2) 
 
that is related to the nth row of the triangular arrangement in Eq. (1) (the na  is a constant of 
fine tuning). 
 Our problem is to examine the limit of the distribution of nS  assuming the 
probability distributions of variables )(n

ix  ( ni ,,1…= ) to be known.  If the limit of the 
distribution of nS  does exist, we are able to tackle the problem of its slow convergence.  
Here our two main tasks are to characterize the class of each possible limit of sums in Eq. 
(2), and to devise convergence criteria for sum nS  as a function of the properties of the 
distributions of )(n

ix  ( ni ,,1…= ). 
 Kolmogorov hypothesized that the class of possible limits of nS  matches the class 
of Finetti’s (Finetti, 1929) infinitely divisible distributions.  Kolmogorov’s student Bavly 
(Bavly, 1936) confirmed the hypothesis to the case where second moments of )(n

ix  
( ni ,,1…= ) are finite.  And a broader proof was presented soon afterwards (Khintchine, 
1938).  (A comprehensive discussion can be found elsewhere (Zolotarev, 1990)).  And 
Gnedenko and Kolmogorov (Gnedenko and Kolmogorov, 1954), and Levy (Levy, 1937) 
are primers on the classic theory of the sum of random variables.) 
 Another key question is to address the conditions for sum nS  to converge to a Levy-
stable distribution under the independence and infinitesimality conditions (Feller, 1935), 
(Feller, 1937).  Lindberg-Feller condition is currently known as the central limit theorem.  
Yet this condition is valid only for sums satisfying independence and infinitesimality. 
 By the end of the 1940s, Kolmogorov’s problem vanished.  Subsequent work was 
devoted to refine the characterization of convergence of sums under independence and 
infinitesimality.  Meanwhile Levy alone tackled the convergence problem in the absence of 
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independence and infinitesimality.  He showed convergence of nS  to a Gaussian without 
relying on infinitesimality (Levy, 1937).  Unfortunately this finding made negligible impact 
on literature. 
 From the mid-1960s to the 1970s and 1980s, Russian mathematician Zolotarev 
made a significant breakthrough (Zolotarev, 1965, 1997).  He examined convergence of the 
sum of random variables without relying on the classic assumptions.  Zolotarev dubbed 
‘non-classic’ the limit theorems lacking the independence and infinitesimality conditions.  
His work gave rise to a broader theory of the existence of limits in sums of random 
variables.  The infinitesimality condition was left out and asymptotic independence was 
assumed (Zolotarev, 1990).  One key result is his Theorem 5 (at page 131) showing 
necessary and sufficient conditions for convergence of sums of random variables. 
 Our own work in this paper elaborates further on such a non-classic framework.  
Yet our interest goes beyond theory in that we also devise applications to the statistical 
analysis of actual time series. 

Our previous work is motivated by Mantegna and Stanley’s (Mantegna and Stanley, 
1994, 1995).  We show the general approach of the CF to the sum of random variables to be 
useful to tracking convergence in time series of financial returns (Figueiredo et al., 2003).  
And also how correlations are key in curbing convergence to the Gaussian (Figueiredo et 
al., 2004).  We put forward that Mantegna and Stanley’s truncated Levy flights can be 
explained by linear and nonlinear autocorrelation in data.  Moreover we show how 
departures from infinitesimality are related to financial volatility in that they can explain 
lack of convergence to the Gaussian (Figueiredo et al., 2005). 
 In particular, our aim in this paper is to develop a general technique to approaching 
convergence without relying on independence and infinitesimality.  Our technique belongs 
to the class of non-classic methods that are based on the analysis of empirical CFs 
(Feuerverger, 1977, 1981).  An important role is played by a function ( )zω  univocally 
associated with a reduced distribution, which is the canonical form of Levy’s CF (Levy, 
1924).  We confine ourselves to the analysis of processes with finite second moment, 
thereby rendering it useful for applications. 
 This paper departs from Zolotarev’s in two ways.  (1) We propose theorems without 
relying on infinitesimality (like him); the latter is replaced with volatility change in the 
sum.  (2) We put forward general results that alow one to gauge the effect of 
autocorrelations in convergence without imposing any specific functional form to the CF.  
Indeed we are able to reckon the part of function ( )zω  that is exclusively related to the 
autocorrelations. 
 Employing the canonical form of the CF allows one to get fruitful results based 
solely on classic theory.  And using function ( )zω  enables one to devise statistical gauges 
of the distance of a given distribution to the Gaussian.  What is more, the convergence rate 
of an actual process can be measured and then compared to that of an independent and 
identically distributed (IID) one. 
 
2  Existence of limits in the sum of random variables 
 
Let us consider that each variable in the triangular arrangement (1) has finite standard 
deviation and mean given respectively by ( )n

im  and ( )n
iµ .  Without loss of generality we can 
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consider these variables to be sorted such that ( ) ( )n n
i jm m≥ for  i j> and , 1, ...,i j n= .  

We define the reduced variable as )(

)()(
)(

n
i

n
i

n
in

i m
x

x
µ−

=  and can then rewrite the sum in Eq. (2) 

as 
 

( ) ( )

1

n
n n

n n i i
i

S a m x
=

− = ∑                                       (3) 

 
where na  now stands for the mean of nS . 
 One of the most important issues concerning the sequences of sums given by Eq. (3) 
is related to convergence of the probability distribution of nS  as n → ∞ .  To answer this 
question we apply the CF method as developed by Levy in his 1924 seminal work (Levy, 
1924).  The method consists in calculating the CF of the reduced variable 
 

n n
n

n

S aS
M
−

=                                                   (4) 

where nM  is standard deviation of nS .  Assuming variables ( )n
ix  to be statistically 

independent one has 
 

2 ( ) 2

1
( )

n
n

n i
i

M m
=

= ∑                                                        (5) 

 
For a reduced random real variable (i.e. one with zero mean and unit variance), its CF is 
(Levy, 1922) 
 

( )
2

1 ( )
2( ) , ( ) ( ) ( ), (0) 0
z zIz

R Iz e e z z I z
ω

ψ ω ω ω ω
− +

= 〈 〉 = = + =  
 
Denoting ( ) ( ) ( )R Iz z I zψ ψ ψ= +  yields 
 

2

2 2

2 ln 2, arctan ,I R
R I

z
z z
ψ ψ ψω ω

ψ ψ
 − −

= = −  
 

 

 
For Gaussian distributions one has 0)( =zω  for all Rz ∈ .  Function ( )zω  uniquely 
determines the distribution function of a given reduced variable.  The CF of reduced 
variable ( )n

ix  is 

( )
2

( )1 ( )( ) 2( )
n

i
z zn

i z e
ω

ψ
− +

=                                                                                                             (6) 
 
and then the CF of nS  is (Levy, 1924) 
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( )

2
1 ( )

2( )  n
z z

n z e
− +Ω

Ψ =                                                                                                              (7) 
 
where 
 

∑
=





















=Ω

n

j n

n
jn

j
n

n
j

n z
M
m

M
m

z
1

)(
)(

)(

)( ω                                                                                           (8) 

 
In the framework of the classic central limit theorem one condition for the CF in (7) to 
converge to a Gaussian ( ( )lim 0nn

z
→∞

Ω = ) is precisely the infinitesimality hypothesis 

(referred to in Section 1).  It states that 
 

{ })(

1
max ,0lim n

inin
n

n

n
m

M ≤≤∞→
== µ

µ
 

 
Yet infinitesimality does not hold for ( )n

im .  As a consequence, if we wish to track 
asymptotical behaviour, we need to develop tools capable of evaluating limit distributions 
for sums nS  without relying on infinitesimality. 
 As observed, Zolotarev and co-workers (Zolotarev, 1990) established the conditions 
for convergence of sum nS  in a non-classic limit theorem.  Inspired by the works of 
Zolotarev, and using Levy’s CF formalism, we state a theorem as follows. 
 
Theorem 1. Consider the sum in Eq. (2) and assume 
 

(1) 
( )

lim
n

i
i n

n

m
M

λ
→∞

=  to exist for all i N∈ .  And 

 
(2) ( )( )

i ( ) lim n
in

z zω ω
→∞

=  to exist for all i N∈ . 

 
Thus ( ) ( )lim n

n
z z

→∞
Ψ ≡ Ψ  too exists and can be written as 

 
2

(1 ( ))
2( )
z z

z e
− +Ω

Ψ =                                                                                                                   (9) 
 
Such a limit defines the limit distribution’s CF for nS .  And function ( )zΩ  is given by 
 

1
( ) ( )i i i

i
z zλ ω λ

∞

=

Ω = ∑                                                                                                             (10) 
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Proof.  Define the sequence of random variables 1 2, ,..., ny y y  such that 
(1) the means of 1 2, ,..., ny y y  are zero, 
(2) the standard deviation of iy  is iλ , and 

(3) reduced variables /i iy λ  have a CF given by 
( )

2
1 ( )

2( ) i

i

z z
z e

ω
φ

− +
=  

 
Then let us consider the sum 1 2 ... n ny y y Y+ + + = , and its reduced variable 

1 2, ...n
n n n

n

YY σ λ λ λ
σ

= = + + + .  It is clear that lim 1nn
σ

→∞
= .  According to a Kolmogorov`s 

(Kolmogorov, 1921) theorem, variable nY  converges in probability to a finite value.  Its CF 
is given by (9) and (10).  Thus the series in (10) converges to all z, and is continuous in the 
neighborhood of the origin. According hypothesis (1) and (2) the function )(znΩ , given by 
Eq. (8), converges to the function given in Eq. (10), then we conclude that sequence in Eq. 
(7)  converges for all z and its limit is continuous around the origin.  Thus, according to 
Levy’s continuity theorem, we conclude that the distribution of n nS M  converges to a 
well-defined limit distribution. 
 Now we move on to define an identically distributed reduced process (IDRP) as one 
in which ( ) ( ) ( ), 1,...,n

i z z i nω ω= = . In this case the stochastic variables )(n
ix  have the same 

reduced distribution. 
 Since the )()( zn

iω s are the same, then hypothesis 2 of Theorem 1 holds.  We assume 
hypothesis 1 to hold as well.  Considering Eq. (6) yields 
 

2
(1 ( ))( ) 2( ) ( )

z zn
i z e z

ω
ψ ψ

− +
= ≡                               (11) 

 
If ( )zψ  is analytic, then all statistical moments of the distribution are finite.  As a result, one 
gets Taylor expansion 
 

( )2 2 3 3 4 4 ( )3 41( ) 1 ...,
2! 3! 4!

pn
p iz I z I z I z Xµ µψ µ= + + + + = 〈 〉                                               (12) 

 
 Function ( ) ( ) ( )R Iz z I zω ω ω= +  in Eq. (11) can also be expanded in series to produce 
 

2 4 2
2 4 2

1 3 2 1
1 3 2 1

( ) ... ...

( ) ... ...

p
R p

p
I p

z K z K z K z

z K z K z K z

ω

ω −
−

= + + + +

= + + + +
                     (13) 

 
Employing Eq. (12) one gets the ik s as a function of iµ .  For instance 
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.K

,K,K,K

64
2
34

5334231

360
1

24
1

36
1

12
1

60
1

6
1

12
1

4
1

3
1

µµµ

µµµµ

+−−=

+−=−=−=
                  (14) 

 
Now we expand function ( ) ( ) ( )R Iz z I zΩ = Ω + Ω  in Eq. (10) in series 
 

2 4 2
2 4 2

3 2 1
1 3 2 1

( ) ...

( ) ...

p
R p

p
I p

z L z L z L z

z L z L z L z −
−

Ω = + + +

Ω = + + +
                 (15) 

 
So 
 

2 2

1 1
( ) ( ), ( ) ( )R i R i I i I i

n n
z z z zλ ω λ λ ω λ

∞ ∞

= =

Ω = Ω =∑ ∑                       (16) 

 
Substituting Eq. (13) in Eq. (16) and comparing the output with Eq. (15) produce 
 

2

1

, lim , 1p i
p p i i n nn

m
L K p

M
λ λ

∞
+

→ ∞
=

= = ≥∑                                    (17) 

 
Thus one gets an expression for the CF of IDRPs with analytical distributions of )(n

ix .  
What if this condition is not fulfilled?  Here )(n

ix  will have infinite moments.  To examine 
this case we first show that the CF in Eq. (11) can be expanded in terms of the finite 
moments of the distribution. 
 
 
3  Another theorem on the existence of limits to the sum of random variables 
 
Now we consider that a variable )(n

ix  has finite moments up to order 4.  Its kurtosis will be 
denoted by ( )n

iK  and its skewness by ( )n
iS .  The reduced variable’s CF satisfies 

 
2

( )(1 ( ))( ) 2( ) , (0) 0
n

i
z zn

i iz e
ω

ψ ω
− +

= =                 (18) 
 
and 
 

( ) ( )
( ) 2 ( )( ) ( )

3 12

n n
n ni i

i i
S Kz I z z zω ρ= − − +                                                     (19) 

 
where 
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( )
( ) 2

2

( )( ) ( ), 0, 0
n

n i
i

zz O z z
z

ρρ = → →                       

The CF of reduced variable nS  can be obtained using ( )n zΩ .  From Eq. (19) we can write 
 

( )2( )4 3 ( )
( ) 2 ( )

4 3 2 ( )
1 1 1

1 1
12 3

n nn n n
in ni i i

n i i i n
i i in n n n

mm m mK z I S z z
M M M M

ρ
= = =

     
Ω = − − +     

     
∑ ∑ ∑                         (20) 

 
At this point we make the same hypotheses 1 and 2 of Theorem 1, apart from the fact that 
now we replace functions )()( zn

iω  with functions )()( zn
iρ  and consider an extra hypothesis 

as follows. 
 

(3) Both series 
4

4
1

i
i

i n

mK
M

∞

=

 
 
 
∑  and 

3

3
1

i
i

i n

mS
M

∞

=

 
 
 
∑  converge. 

 
Thus we can state another theorem. 
 
Theorem 2.  If the sum of random variables in Eq. (2) is such that hypotheses 1−3 hold, 
then there exists a distribution F (associated with the reduced variable) that is the limit of 
the process as ∞→n . 
 
 
4  Limits to the sum of random variables when the variance follows a formation law 
 
Now we reckon functions )(zΩ  and )(znΩ  to processes following a formation law in the 
second moment.  We consider two cases in IDRPs, namely 
 
(1) Exponential law: ( ) , 0,n Bi

i im m Ae A B≡ = > ∈ ℜ , and 
(2) Power law: ( ) , 0,n B

i im m Ai A B≡ = > ∈ ℜ . 
 
 
4.1 Analysis of the exponential law 
 

To fully understand lim i
n

n

m
M→∞

 
 
 

, we need to evaluate Mn.  For Bi
im Ae= , 

2
21

2 0Bi

i

m e r
m

+ = ≡ >                                                                                                                (21) 

 
holds.  Here Mn is given by 
 

( )2 2 2 1
1 1 ... n

nM m r r r −= + + + +                   (22) 
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Taking the sum in Eq. (22) yields 
 

2 2
1

1
1

n

n
rM m
r

 −
=  − 

                                                                                        (23) 

 
We assess two possibilities, namely 

 

(1) 1/ 2lim (1 ) 0n

n
n

r
M
µ

→∞

 
= − > 

 
, if 10 << r  

 
and 
 

(2) 
1 21

lim n

n n

r
M r
µ

→∞

  − =   
  

, if 1>r  

 
where { }, 1,...,maxn i

i
m i nµ = = .  Thus according to Theorem 1, sum variable nS  presents a 

limit distribution function that fails to be Gaussian. 
 
 
4.2 Analysis of the power law 
 
Now we turn to the power law.  It is appropriate to introduce function 
 

( , ) 1 2 3 ... ,r r rZ n r n r= + + + + ∈ℜ                   (24) 
 
We can then write 
 

2 2 2 2, ( , ), 2r
i nm A i M A Z n r r B= = =                                (25) 

 
We consider the cases 1r < −  and 1r ≥ − .  Calculations (not shown) for 1r < −  take 

account of the fact that 
 

1lim lim
( , )

n

n n
nM Z n r

µ
→∞ →∞

 
= 

 
                  (26) 

 
where 
 

0

1 1lim ( , ) ( ) lim 0, ( )
( )

n
rn n pn

Z n r r r
M pr
µξ ξ

ξ

∞

→∞ →∞ =
= → = > = ∑                          (27) 
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and )r(ξ  is Riemman’s zeta function.  Thus the limit distribution fails to be Gaussian and 
lim nn

M
→∞

 has a finite value. 

For case 1r ≥ − , we have lim 0n

n
nM

µ
→∞

= , and the limit distribution function is 

Gaussian. 
 
 
4.3  Characteristic function of identically distributed reduced processes 
 
Now we tackle the problem of determination of the CF in IDRPs.  We take the case of an 
analytical CF.  If the CF is analytic, function ( )zω  can be expanded in series as in Eqs. (13) 

and (15).  Considering these equations we have 
2

1

pn
i

np p
i n

mL K
M

+

=

 
=  

 
∑ .  Our task is to 

calculate an expression for 
2

1

pn
i

i n

m
M

+

=

 
 
 

∑ . 

We again illustrate our case with exponential and power laws.  As for the 
exponential law one has 
 

21 2
2 12 2

1 ( )
pi p

B i
i p

i

mm m r r e r R
m

+− +
+ 

= = → = = 
 

                (28) 

 
Thus sum 1 2 ...p p p

nm m m+ + +  is geometric and accordingly 
 

2
1 2 1

1
...

1

n
pp p p p

n
p

R
m m m m

R
+

 −
+ + + =   − 

                              (29) 

 
Using Eq. (23) for Mn yields 
 

2
2

2
1

1
1

p
n

p p
n

rM m
r

+

+  −
=  − 

                   (30) 

 
And from Eqs. (29) and (30) one gets 
 

( )

( )

22
22

2 2
2 2

1 1
,0 1

1 1

pp n

np p p p
n

r r
L K r

r r

++

+ +

 
− − 

 = < <
 

− − 
 

                   (31) 
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and 
 

( )

( )
1

11

11

2
2

2
2

2
2

2
2

>

−









−











−−

=
++

++

r,
rr

rr
KL

p
n

p

n
pp

pnp                  (32) 

 
As ∞→n  function ( )zΩ  becomes 

 
( ) p p

p p
i even i odd

z L z I L z
= =

Ω = +∑ ∑  

 
where 
 

2 2
2 2

2 2
2 2

(1 ) ( 1)lim ,0 1, lim , 1
1 1

p p

p np p p np pp pn n

r rL L K r L L K r
r r

+ +

+ +→∞ →∞

− −
= = < < = = >

   
− −   

   

            (33) 

 
As for the power law, it can be shown that 

 
2

2 2 2 2 22
1

2( , ) , ... ,
2

p
p p p p p

n n
pM A Z n r m m A Z n r

+
+ + + + + + = + + =  

 
             (34) 

 
and then one gets 
 

2
2

2,
2

( , )
np p p

pZ n r
L K

Z n r
+

+ 
 
 =                      (35) 

 
Thus as ∞→n  function ( )zΩ  is either 
 

2
2,

2
2lim , 1p np p pn

p r
L L K r

r

ξ

ξ
+→∞

 + 
 
 = = < −

 
 
 

                   (36) 

 
or 
 

lim 0 ( ) 0, 1p npn
L L z r

→∞
= = → Ω = ≥ −                                                                                    (37) 
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In the latter case the process will reach the Gaussian regime.  For the distinct processes 
defined by 12 −>= Br  there will be different ‘convergence speeds’, as measured by npL  
in Eq. (35). 
 Now we will examine the asymptotic behavior of both nM  and the terms in the 
expansion of nΩ .  Our approach relies heavily on analysis of Z(n,r).  It can be shown that 
 

1

( , ) ( )    1
( , ) log   1

( , )   1
1

r

Z n r r r
Z n r (n) r

nZ n r r
r

ξ

+

→ < −
→ = −

→ > −
+

                  (38) 

 
 As for the analytical IDRPs with second moment 2

1
/r

i imm = , we consider results 
for five distinct values of r. 
 (1) For 1−<r , using Eqs. (35) and (38) one can show that a process converges to a 
non-Gaussian distribution where variance nM  and the asymptotic terms in the series of 

nΩ are 
 

( )
( )( )
( )( )

1 / 2
1 2 / 2

2 /
, ,n np p p

p r
M m r L K p N

r

ξ
ξ

ξ

−

+

+
→ → ∈                                           (39) 

 
 (2) For 1−=r , a process converges to a Gaussian distribution where the variance 
and the asymptotic terms in the series of nΩ  are 
 

( ) ( )( )1 / 2 1
1 log , 2 / 2 (log ) ,n np pM m n L K p n p Nξ −→ → + ∈                           (40) 

 
 (3) For 01 <<− r , a process converges to a Gaussian where the variance and the 
asymptotic terms in the series of nΩ  are 
 

( )
( )

( )

1 / 21
1 / 2

( 2 ) / 2
/ 2

( 2 ) / 2
( 2 )( 1) / 2

( 2 ) / 2
( 2 )( 1) / 2

1

2( 1) , ( 2) / 2 1
2 ( 2)

log( 1) , ( 2) / 2 1

( 2) / 2
( 1) , ( 2) / 2 1

r
n

p
p

np p

p
np p p r

p
np p p r

mM n
r

rL K n p r
p r

nL K r p r
n

p r
L K r p r

n
ξ

+

+
−

+
+ +

+
+ +

→
+

+
→ + > −

+ +

→ + + = −

+
→ + + < −

                                   (41) 

 
with p N∈ .  The second possibility occurs only if p  satisfies ( ) 122 −=+ /rp . 
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 (4) For 0=r  (IID process) the second moment is the same for all i, i.e. 
1mmi i =→∀ .  The process converges to a Gaussian with the variance and asymptotic 

terms in the series of nΩ  given by 
 

1 / 2 / 2
1 , ,p

n np pM m n L K n p N−→ → ∈                            (42) 
 
 (5) For 0>r , one has 
 

( )
( )

( 2 ) / 2
1 / 2 / 21 2( 1), ,

1 2 ( 2)

p
r p

n np p
m rM n L K n p N

r p r

+
+ −+

→ → ∈
+ + +

                                (43) 

 
 At this point some remarks are worthwhile.  As for 1−>r  the cumulative standard 
deviation nM  is governed by power law 21 /)r(n +  as ∞→n .  And a logarithm law holds for 

1−=r .  The process then bifurcates into two ones, namely (1) convergence to a Gaussian 
( 1−>r ), and (2) no convergence ( 1−<r ).  In the latter situation the second moment has a 
saturation value at 1 / 2

1 ( )m rξ . 
 As for the power laws in 0≥r , npL  (which defines the series for ( )n zΩ ) shows an 

asymptotic decay with same power law 2/pn− .  This process thus converges at the same 
pace to the Gaussian regime as n approaches infinity.  But the process can show distinct 
transient behavior at the onset of aggregation.  A large transient phase means a slow 
convergence, suggesting that ( )n zΩ  varies sluggishly.  This kind of behavior can be 
observed in truncated Lévy flights (TLFs) (Mantegna and Stanley, 1995). 
 
 
4.4  A class of nonidentically distributed processes 
 
Now we consider a class of stochastic processes with finite fourth moment. We assume 
every ( ) ( )n

i zω  to be distinct for alternative i.  If the fourth moment is finite one has 
 

( ) 2( ) ( ) ( )
12 3

n i i
i i

K Sz z z I z zω ω ρ= = − − +                                                                             (44) 

 

where 2( ) ( )ii z o zρ∀ ⇒ = , i.e. 2

( ) 0i z
z

ρ
→  when 0z → .  The power laws we take are 

 
/ 2 3 / 2 2

1 1 1 1 1, , , , , , , 0r y x
i i im m i S S i K K i r x y S K= = = ∈ℜ ≥                                                     (45) 

 
In such cases 
 

2 2( )
12 3

n n
n

K Sz I z o zΩ = − − +                    (46) 
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where 
 

3 4

3 4
1 1

,
n n

i i
n i n i

i in n

m mS S K K
M M= =

   
= =   

   
∑ ∑                   (47) 

 
Employing Eqs. (21) and (36) yields 
 

( ) ( )1/ 2
1 1 13/ 2 2

,3( ) / 2 ,2( )
( , ) , ,

( , ) ( , )n n n

Z n r y Z n r x
M m Z n r S S K K

Z n r Z n r
+ +

= = =             (48) 

 
The IDRP calculated in this section encompasses that of previous section, where 0x =  and 

0y = .  And the suggested formulas are suitable for description of a class for which 
,im m i= ∀ , i.e. an IID process where 0, 0x y= = , and 0r = . 

 Now we examine the asymptotic behavior of the above processes.  We take into 
account the standard deviation, skewness, and kurtosis, as defined in Eq. (48).  We consider 
the evolving laws in Eq. (45) with 1, 0r y> − >  and 0x > . 
 As ∞→n  then 
 

( )
( )1 / 21

1 / 2

3 / 2
(3 1) / 2

1

2
2 1

1

1

2( 1)
2 3( )

( 1)
2( ) 1

r
n

y
n

x
n

mM n
r

rS S n
r y

rK K n
r x

+

−

−

→
+

+
→

+ +

+
→

+ +

               (49) 

 
Quantities nM , nS , and nK  follow power laws of distinct exponents.  It is intriguing (1) 
that nM  depends only on r, which describes the evolution of im , (2) that nS  depends on y, 
which shows how skewness iS  evolves over time, and (3) that nK  depends only on x, 
which gives the evolution of kurtosis iK . 
 Note that for 310 /y <<  one has ∞→→ nSn   as  0 .  If 31 /y =  then the 
skewness approaches a finite value and the limit distribution will fail to be Gaussian.  For 

31 /y >  one has ∞→∞→ nSn   as  , i.e. a limit process at an infinite distance from the 
Gaussian. 
 A similar analysis can be delivered to the kurtosis.  As ∞→n , 
 
0 1/ 2 0

1/ 2
1/ 2

n

n

n

x K
x K C
x K

< < → →
= → →
> → → ∞

                  (50) 
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After a threshold value at bifurcation point ½, the third and fourth moments diverge.  The 
bifurcation parameters are then x = 1/2 and y = 1/3. 
 
 
4.5 Probability of return to the origin and scaling properties of statistical moments 
 
Now we sketch an explanation for asymptotic laws in the ‘probability of return to the 
origin’ of TLFs (Mantegna and Stanley, 1995).  First we introduce the concept of 
asymptotic Ω -stability. 
 
Definition 1.  There exists an 0n  such that, for all 0nn > , function nΩ  is nearly constant. 
 
The notion captures the idea of a process whose CF approaches a threshold.  This is 
equivalent to 0( ) ( ),n z z n nΩ = Ω ∀ > . Thus (0)nP  becomes 
 

( )21 1 ( )
21 constant(0)

z z

n
n n

P e dz
M M

∞
− +Ω

−∞

= =∫                 (51) 

 
Once we have learned the asymptotic laws governing nM  (from the cases studied here), the 
asymptotic laws for (0)nP  end up known.  For the exponential law one has 
 

( )

( )

1/ 2

1
1/ 2

1

1
(0)   for  1,

1
(0)  for  1

n

n
n

C r
P r

m

C r
P e r

m
−

−
= <

−
= >

                                                      (52) 

 
And for the power law it holds that 
 

( )1

1/ 2
1

1/ 2

(1 ) / 2
1

(0) constant,  for  1

(0)   for  1
(log )

(1 ) 1(0)   for  1

n

n

n r

CP r
m r

CP r
m n

C rP r
m n

ξ

+

= = < −

= = −

+
= > −

                           (53) 

 
So there are distinct evolution laws for the probability of return.  These can be either a 
constant, an exponential law, or a power law.  If we take the latter (usually dubbed 
‘scaling’) we get 
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1/

1/ 2
1/ (1 ) / 2

1

constant(0)

(1 ) 2, , 1
1

n
n

r

DP
M n

C rD n n r
m r

α

α α+

= = ⇒

+
= = ⇒ = > −

+

                                                              (54) 

 
i.e. 0>α .  If 01 <<− r  then ∞<< α2 .  If 0=r  then 2=α .  And if 0>r  then 

20 << α .  The latter case is that of a TLF.  The probability of return in the remaining 
cases still scales with n, but surely they cannot converge to the TLF. 
 For the asymptotic stable processes the evolution of moments 〉〈 p

nS  is entirely 
determined by the evolution law of dispersion nM .  To see this remember that a CF of nS  
is 
 

( )
2 2 31 ( ) 2 32

3 0( ) 1 ...,
2! 3!

z z

n
I Iz e z K z n n

− +Ω
Ψ = = + + + ∀ >               (55) 

 
And that the CF of nS  is 
 

2 3
2 2 3 3

3( ) ( ) 1 ...
2! 3!n n n n n
I Iz M z M z M K zΨ = Ψ = + + +                                                             (56) 

 
These two equations produce 
 

2 3
2 2 3 3( ) 1 ...,

2! 3!
p p

n n n n p n
I Iz S z S z S K MΨ = + 〈 〉 + 〈 〉 + 〈 〉 =                                                         (57) 

 
Thus the evolution law of nM  fully determines other moments’ motion laws. 
 
 
5  Example 
 
This section employs some of the results in previous sections to examine a financial time 
series, namely the Brazilian real–US dollar exchange rate.  We take returns Z rather than 
raw data as our stochastic variable, i.e. )()()( tYttYtZ t −∆+=∆  where )(tY  is a rate at day t.  
Returns ix  are ranked, i.e. 1 2 ... nm m m≥ ≥ ≥ .  We define vector ( )1 2, , ...,n nx x x=X  and 

permutation operator P such that ( )1
, ...

nn i iP x x=X  with 1( , ..., )ni i  being any 

permutation of (1, ..., )n .  Sum variable is ( )
1

...
nn i i nX x x S P= + + = X . 

Then we define an event as an n-dimensional, real vector generated by the following 
rule. 
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Definition 2.  To create event E  we first select vector nX  and permutation operator P , 
and then build up another vector in which the k th component is randomly generated by a 
number from the distribution of 

ki
x . 

 
The event is a realization of vector nX  followed by a permutation of any of its 

components.  The sum of N events ( )1 2, ,...i i i inE E E=E  is defined as 

1( ) ...i i i inS S E E= = + +E .  For N large enough, sequence 1, 2, ,..., NS S S  presents the same 
distribution as that of sum variable nX . 

For series of events 1 2, ,..., NE E E , a list of nN'N =  numbers can be obtained, i.e. 
 

1 1 2 ( 1) 1,..., , ,..., ,..., ,...,n n n N n nNu u u u u u+ − + =  u                     (58) 
 
where 1 11 2 12 1 1 21, ,..., ,n n nu E u E u E u E+= = = = .  Eq. (58) can be thought of as an n-periodic 
stochastic process.  If a period is known with certainty, Eq. (58) can be used to produce list 

1[ ,..., ]NU U=U , where 1 1 2 1 2... , ... ,...n n nU u u U u u+= + + = + + , and so on.  How to get the 
standard deviations im ?  One is aware by the very nature of the process that they are not 
ordered.  Besides, it is not generally possible to evaluate the standard variation of a 
stochastic variable from a single measure.  But such problems can still be overcome (see 
(Figueiredo et al. 2005).) 

We then employ such a routine to the 15-minute spaced Brazilian real-US dollar 
rate from year 2002 (Fig. 1).  Using Eq. (58) we get list u  from this set of data.  The list is 
made up of N′ = 6140 numbers.  Then we get list U  from a ‘daily’ set of data, which is 
built up as follows.  A ‘day’ is considered to have 20 data points from the original 15-
minute series.  So the process’ period is n = 20.  Since N′ = nN, list U ends up with 307 
numbers. 

The skewness and kurtosis of the two lists are 
 

( ) 3.0653, ( ) 114.4593
( ) 1.5288, ( ) 19.3846

Sk K
Sk K

= =
= =

u u
U U

                             (59) 

 
As can be seen, the hypothesis of an IID is promptly discarded because 
 

1/ 2 1/ 2

1 1( ) ( ) 3.0653 0.6854
20

1 1( ) ( ) 114.4593 5.2965
20

Sk Sk
n

K K
n

= = =

= = =

U u

U u
                                      (60) 

 
So we evaluate whether the process above can be explained in terms of our 

suggested IDRP.  To apply the technique summed up in (Figueiredo et al., 2005) we take N 
= 309 periods of size n – 1 = 19.  Standard deviations im  are shown in Fig. 2.  Using the 
values of im  produces 
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( )

( )

3 3
1

3/ 22 2
1

4 4
1

22 2
1

...( ) ( ) 1.3497
...

...( ) ( ) 25.6804
...

n

n

n

n

m mSk Sk
m m

m mK K
m m

+ +
= =

+ +

+ +
= =

+ +

U u

U u
                                              (61) 

 
which is in good agreement with experimental data. 

Now we examine whether there is a law governing the standard deviations in Fig. 2.  
First we try out exponential law Bi

i Aem −= .  Fig. 3 displays the data in Fig. 2 together with 
Bi

i Aem −= .  Using this exponential law it can be shown with some algebra that 
 

( )
( ) ( )

( )
( )

( )
( )

3
23

2

3/ 23/ 2

2 2
2

22

1
1

( ) ( )
1 1

11
( ) ( ) , 1

1 1

n

n

n
B

n

r
r

Sk Sk
r r

rr
K K r e

r r
−

 
− −  =

− −

−−
= = <

− −

U u

U u

                                                                       (62) 

 
Eq. (62) and B (Table 1) together yield 
 

( ) 1.3086
( ) 23.9674

Sk
K

=
=

U
U

                         (63) 

 
which is in agreement with the experimental data. 

Power laws B
i Aim −=  and C/

i )iBA(m 1−+=  are presented in (Figueiredo et al. 
2005).  Table 2 sums up results.  So the best fit is found with the assumption of an IDRP 
together with the exponential law describing second moment’s behavior. 
 
 
6  Characteristic function approach to the sum of autocorrelated variables 
 
So far only independent stochastic variables have been considered.  Now we tackle the 
problem of the sum of nonindependent variables (Figueiredo et al., 2004).  Here we restrict 
ourselves to sequence ( )n

i ix x= .  We denote the moments of order p of ix  and nS  as 
p

ip ixµ = 〈 〉  and p
np nSν = 〈 〉  respectively.  The CFs of ix  and nS  are 

 
2

2 2(1 ( )) / 2( ) i i ii z zIx z
i z e e µ ω µψ − += 〈 〉 =                                                                                     (64) 

 
and 
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2

2 2(1 ( )) / 2( ) n n nn z zIS z
n z e e ν ν− +ΩΨ = 〈 〉 =                                                                                  (65) 

 
respectively. 
 The existence of a CF in sum variable as ∞→n  is assured by Levy’s continuity 
theorem.  As for independent variables it holds that 1( ) ( )... ( )n nz z zψ ψΨ = .  Yet this does 
not extend to autocorrelated processes where 
 

1( ) ( ) ( )... ( )n n nz C z z zψ ψΨ =                                                                                             (66) 
 
Written ( )nC z  as 

( )
2

22 ( )
2( ) n n
z C W z

nC z e
− − +

= ,                                                                                                    (67) 
 
The CF in Eq. (66) then becomes 
 

2 1 / 2
2 2 2

1
( ) ( ) / 2

( )

n

n i i i n
i

z z W z

n z e
ν µ ω µ

=

 
− + +  

 
∑

Ψ =                                                                            (68) 
 
After writing the CF of the reduced variable as 
 

( ) ( )2 (1) ( 2 )1 ( ) ( ) / 2
2( ) / n nz z z

n n nz z eν − +Ω +Ω
Ψ = Ψ =                                                                   (69) 

 
one gets 
 

( )(1)
2 2 2

12

1( ) /
n

n i i i n
in

z zµ ω µ ν
ν =

Ω = ∑                                                                             (70) 

 
and 
 

( )2
2

)2( /1)( nn
n

n zWz ν
ν

=Ω                                                                                                (71) 

Function )()1( znΩ  matches that for uncorrelated series, i.e. as n → ∞ it approaches zero.  
And term )()2( znΩ  is related to the existence of autocorrelations.  This term gives sum 
variable’s CF, which can be used to obtain its PDF as ∞→n . 
 
6.1  Autocorrelation and convergence 
 
Now we put forward an expression for )()2( znΩ  containing only statistical moments.  
Expanding the CFs in series and assuming 
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2 3 4 4
2 3 4( ) 1 ( )n n n nC z C z C z C z o z= + + + + ,                                                                     (72) 

 
)(zWn  can be extended to )()( 22

21 zozWzIWzW nnn ++= .  Comparing equal order terms 
produces 
 

( ) ( )

( ) ( )( )

2 2 2 3 3 3

4 4 4 2 2 2

1 ,
2 3!

1 1
4! 2!2!

n n n n n n

n n n n n n n

IC C

C

ν σ ν σ

ν σ σ ν σ γ

= − − = − −

= − − − +
                                                               (73) 

 

where 
1 1

2 2
2 2

1 1 1 1

n n n n

n i j i j
i j i i j i

x xγ µ µ
− −

= = + = = +

= = 〈 〉〈 〉∑ ∑ ∑ ∑  and np ipi
σ µ= ∑ .  It can also be shown that 

 

( ) ( )2
1 3 3 2 2 2 4

1 1, 2
3 4n n n n n n nW W Cν σ ν σ= − = − −                                                                  (74) 

 
That renders a distribution suitable for practical purposes.  First we define nonlinear 
autocorrelation term 
 

( )1 1

1

1 2
... 1

... ... ...k k

i k i k

k

n
p pp p

k n i i i i
i i

p p p x x x x
=

〈 〉 = 〈 〉 − 〈 〉 〈 〉∑                                                                    (75) 

 
where 1 2... kp p p  are positive integers, and 1 2 ... ki i i≠ ≠ ≠ . 
 Using Eq. (69) it can be shown that (2) (2) (2) 2

1 2n n nI z zΩ = Ω + Ω , where                                                            
 

(2) 3 3
1 3 / 2 3 / 2

2 2

2
(2) 4 4 2

2 2 2
2 2

2
2

111 3 121 ,
3

61 1 1
12 4

( 1/12)( 1111 6 112 4 13 3 22 ) /

n n n n
n

n n

n n n n
n

n n

n n n n nR

ν σ
ν ν

ν σ γ σ
ν ν

ν

− 〈 〉 + 〈 〉
Ω = =

 − −
Ω = − + − 

 
= − 〈 〉 + 〈 〉 + 〈 〉 + 〈 〉 +

                                                     (76) 

 
so (2)

1nΩ  and (2)
2nΩ  are functions of third- and fourth-order correlations respectively. 

 We conclude that, although linear autocorrelations play a key role in a distribution 
convergence, it is still necessary to take the nonlinear autocorrelations into account to fully 
characterize a process.  Although that is arguably well known in literature for long, our 
novel technique presents formulas capturing the nonlinear terms explicitly. 
 
6.2  Example 
 
Now we illustrate our approach with data coming from the daily variations of the British 
pound against the US dollar.  Our set is made up of 8780 data points, covering the time 
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period from 1 April 1971 to 30 December 2005.  As before, we take single returns rather 
than raw data. 
 Fig. 4a displays kurtosis behavior, and Fig. 4b that of skewness.  These are the 
leading terms in the expansion of nS .  Curves of IID processes are shown for comparison.  
The skewness is clearly bounded by real values.  This limits )2(

1nΩ  and prevents convergence 
to the Gaussian regime.  (Figs. 5a and 5b show )2(

1nΩ  and )2(
2nΩ  respectively.)  Further details 

can be found elsewhere (Figueiredo et al., 2004). 
 
 
7  Relating identically distributed reduced processes to autocorrelated ones 
 
Section 5 dealt with IDRP behavior, and Section 6 examined the sum of autocorrelated 
variables.  The purpose of this section is to relate IDRPs to autocorrelated processes. 

Nonidentity of a process is entirely determined by average values 1, 1,...,i i Nµ =  and 

standard deviations 2 , 1,...,i i Nµ = .  We define a reduced random generator (RRG) with 
zero mean and unit standard deviation.  Every ix  obtained in an IDRP are then given by 

2 1i i r ix Gµ µ= + , where rG  is a random choice from a reduced distribution )(xg  of zero 
mean and unit standard deviation.  Time series from an IDRP can be obtained as follows.  
First we pick a particular RRG, say rG .  Secondly we choose 1, 1,...,i i Nµ =  to track how 

the mean evolves over time.  And finally we select 2 , 1,...,i i Nµ =  to capture standard 
deviation’s time evolution. 

Time series obtained from an IDRP generator can then be theoretically evaluated.  
We take a particular RRG derived from a truncated Cauchy (TC) distribution, i.e. 
 

1 22

1 1

( ) 1
0  or 

A L x L
f x x

x L x L

 − ≤ ≤= +
 < − >

                                           (77) 

 

with 0, 21 >LL  and ( ) ( ).
Larctanarctan

1

21 +
=

L
A  

Defining a random generator associated with x  with distribution function )(xf  is a 
well-known problem.  We can relate x  to, say, y  (which is uniformly distributed within 
interval [0,1] ), and use the property of probability conservation to show that 
 

( ) ( ) ( )( )1 2 1tan arctan arctan arctanx L L y L= + −                             (78) 

 
Since y  is uniformly distributed within ]1,0[ , x  is distributed in ],[ 21 LL−  with a TC.  Then 
reduced variable ( )1 2x x µ µ= −  has a TC distribution.  A TC RRG of 1=α  can be 
derived from 
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( ) ( ) ( )( )1 2 1 1

2

tan arctan arctan rand() arctan
r

L L L
G

µ

µ

 + − − =                         (79) 

 
where rand() stands for a uniform random generator within [0,1].  Thus to fully characterize 
an IDRP generator we should first set 1iµ  and 2iµ  ( Ni ,,2,1 …= ). 
 
 
7.1  Example 
 
We again take the time series from the daily changes of the British pound−US dollar rate to 
illustrate our case.  The heart of our technique is as follows.  We divide such a sequence 
into equal, non-overlapped time periods.  Then we compute the means and standard 
deviations of these periods.  For instance, defining a p-sized period as a sequence of p days 
means the series of 8780 days will have pn  periods of p days that are consecutive and non-
overlapped ( 8780=× pn p ). We then calculate (for each of these periods) the means and 
standard deviations using the pound-dollar series. 

Once p  and pn  are characterized, we are ready to define IIDR random generator 
 

( )2 1, 1, 2,3,...,8615i r iG A iµ µ+ =                                                                                      (80) 
 
where A  is a real number within ]1,0[ .  The 1iµ  and 2iµ  are given by 
 

11 21 31 1... pµ µ µ µ= = = = = first-period mean,...                                                                 (81) 
 
and 
 

12 22 32 2... pµ µ µ µ= = = = = first-period standard deviation,...                               (82) 
 
If 0=A  then we discard weekly mean’s time evolution.  In this case the generator 

produces a zero mean for all time periods and gets nonstationary in second moments.  If 
1=A  the generator is able to mimic the actual time series since it presents the same mean 

profile. 
Now we compare the properties of the pound-dollar rate with the IDRP RRG of 1iµ  

and 2iµ  as above.  We show how time evolution of the two series’ moments are similar if 
one selects appropriate 1,A L , and 2L . 

If 0=A  time evolution of a week’s mean is discarded.  In this case the generator 
will feature a zero mean forever and second moments will be nonstationary.  If 1=A  the 
generator mimics the actual time series’ mean. 
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When comparing the statistical properties of the pound-dollar time series with those 
of an RRG (obtained with 1iµ  and 2iµ ) we realize that moments over time of the two series 
are similar (as long as we calibrate using appropriate 1,A L , and 2L ).  Thus an identically 
distributed process with autocorrelations can be obtained from an independently, yet 
nonidentically distributed, random generator. 

Both symmetric ( 21 LL = ) and asymmetric ( 21 LL ≠ ) cases are considered.  For 
robustness, the routine is repeated twenty times to take mean values.  In every case we pick 
a different seed for the uniformly distributed generator.  Outcomes for processes with 

20=p   (trading months of 20 days) are also considered. 
Fig. 6 displays a symmetric RRG.  We get 21 LL =  from maximum likelihood 

estimates.  Kurtosis behavior in the IIDR process is very similar to actual value.  This 
suggests that kurtosis behavior can be explained in terms of the time evolution 
characterizing the RRG.  Skewness behavior is not that clear-cut, however.  This is 
somewhat expected because the generator is symmetric, and A = 0.  Standard deviation 
behaves as if the process had a Hurst exponent of ½.   
 
8  Concluding remarks 
 
This paper approaches the issue of the sum of stochastic variables and take independent 
processes that are identically distributed in their reduced variables as well as autocorrelated 
processes that are identically distributed.  We extend the classic central limit theorem that 
features finite variance. 

The paper also examines cases where a formation law for series’ variance is present.  
Our suggested reduced variable (that is independent and identically distributed) seems to fit 
well a financial data set sampled from the intraday Brazilian real-US dollar rate of year 
2002.  We find the reduced variable together with an exponential law to mimic the series’ 
volatility behavior.  And we also find the reduced variable to fail reaching zero as sample 
size approaches infinity. 

We too investigate the role of nonlinear autocorrelations in the dynamics of 
convergence to a Gaussian.  We find sluggish convergence to be due to the nonlinear 
autocorrelations. 

Thus some features of the nonlinear autocorrelations can be rationalized in terms of 
an independently distributed, reduced process.  Information about the autocorrelations is 
already encompassed in mean and standard deviation’s time paths.  This is in line with the 
fact that a process is independent but not identically distributed.  Nonidentity satisfactorily 
explains slow convergence to the Gaussian regime as well as greater-than-½ Hurst 
exponents.  And it is possible to observe a non-IID behavior of skewness and kurtosis even 
when the Hurst equals ½. 
 Nonconvergence to a Gaussian is thus explained by departures from the 
infinitesimality hypothesis of independently distributed, reduced processes. 
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 Estimated Value ± Standard Error 
IIDR 
Exponential law Bi

i Aem −=  
A = 0.0156 ±  0.000599 

B = 0.2070 ±  0.0101 
 

IIDR 
Power law B

i Aim −=  
A = 0.0149 ±  0.000899 

B = 0.7711 ±  0.0521 
 

IIDR 
Power law C/

i )iBA(m 1−+=  
A = 4.2267 ±  1.3063 
B = 0.4973 ±  0.3191 
C = 0.3607 ±  0.0807 

Table 1. Estimated models 
 
 
 
 Experimental Data IID IIRD Exponential Law Power Law Power Law 

Skewness 1.5287 0.6854 1.3497 1.3086 1.4296 1.3493 
Kurtosis 19.3846 5.7230 25.6804 23.9674 31.0246 25.5359 
Table 2.  Skewness and kurtosis of experimental data under alternative assumptions 
As can be seen, the exponential law gives a kurtosis that is closer to that of the 
experimental data 
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Fig. 1.  Brazilian real-US dollar 15-minute spaced returns for year 2002 

 
 
 

 
Fig. 2.  Standard deviations im  against i  

 

 
Fig. 3.  Fitting exponential law Bi

i Aem −=  
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(a)       (b) 

Fig. 4. Behavior of kurtosis (a) and skewness (b) for daily returns of the pound-dollar rate 
Curves for an IID process are shown for comparison 

 
 

 
(a)       (b) 

Fig. 5. 
(a) Behavior of )2(

1nΩ  for the daily pound-dollar rate 
(b) Behavior of )2(

2nΩ  
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Fig. 6. 

Scaling in standard deviations (upper panel), skewness (mid panel) and kurtosis (lower 
panel) of daily observations of the pound-dollar rate 

The IIRD process on left plots is generated with P = 5, A = 0, and symmetric case L = L1 = 
L2 

The maximum likelihood estimate of L is 7.52 
The IIRD process on the right plots is generated with P = 20 


