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Endogenous Structure of Polycentric Urban Area I: Isolated City

Alexander V. Sidorov∗

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

Abstract

The purpose of this paper is to investigate how the interplay between production, commuting
and commuting and costs shapes the economy at intra-urban level. Specifically, we study how
economic integration affects the internal stricture of cities and how decentralizing of production
and consumption of goods in secondary employment centers allows firms located in a large city
to maintain their performance. The main distinctive feature of the model is two-dimensional
city structure with variable number of secondary business districts. Several new results in urban
economics are established, which all agree with empirical evidence and some of them cannot be
obtained in framework of the linear city model.

Keywords and Phrases: City structure, Secondary business centers, Commuting costs, Com-
munication costs

JEL Codes: F12, F22, R12, R14

Introduction

A weakness in urban economic theory is that it has relied too heavily on the monocentric city model.1

A single job center runs counter to the evidence that has accumulated in the empirical literature on
employment subcenters. But, the main drawback of the monocentric model is that it fails to explain
that job location – even in a single center – is not exogenous but depends on other determinants of
urban form. Would an alternative polycentric model be too complex and intractable? A reasonably
tractable polycentric model can be based on the assumption that production and residential uses
can occur everywhere in an initially featureless space but become interdependent by the commuting
decisions of workers and the communication linkages among firms. Producers value access to other
producers, to labor, and to facilities that help to run its business. The location of production and,
hence, of jobs is endogenous as is the location of residences and, hence, of labor. From this perspective
the monocentric city arises as the total clustering of jobs.

We are about to explain how decentralizing the production of goods in secondary employment
centers may allow large cities to retain a large share of firms and jobs in an integrating world. Our
starting point is that firms’ performances are affected by the level of housing and commuting costs,
which we call “urban costs”. This occurs through the land rent they pay to occupy central urban
locations, and through the higher wages they have to pay to their workers to compensate them for their
longer commutes and/or higher land rents. Hence, high urban costs render firms less competitive on
local and foreign markets alike. As a result, despite scale economies arising from urban agglomeration,

∗This research is supportred by Economic Education and Research Consortium grant No.11-5111 and by Russian
Federation Government grant No. 11.G34.31.0059t

1See Wheaton (1979) and Berry and Kim (1993) for critiques of the monocentric paradigm.
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increasing urban costs could shift employment from large monocentric cities either to their suburbs or
to distant and smaller cities. In other words, economic integration could well challenge the supremacy
of large cities in favor of small cities.

Creation of subcenters within a city, i.e. the formation of a polycentric city, appears to be a natural
way to alleviate the burden of urban costs. It is, therefore, no surprise that Anas et al. (1998) observe
that “polycentricity is an increasingly prominent feature of the landscape.” Thus, the escalation of
urban costs in large cities seems to prompt a redeployment of activities in a polycentric pattern, while
smaller cities retain their monocentric shape. However, for this to happen, firms set up in the secondary
centers must maintain a very good access to the main urban center, which requires low communication
costs.

Comparison to other approaches

Trying to explain the emergence of cities with various sizes our framework, unlike Helpman (1998),
Tabuchi (1998) and others, allows cities to be polycentric. Moreover, in contrast to A. Sullivan (1986),
K. Wieand (1987), and (Helsley and Sullivan, 1991), in our treatment, there are no pre-specified
locations or numbers of subcenters, and our model is a fully closed general equilibrium spatial economy.
As mentioned above, emergence of additional job centers is based on the urge towards decreasing of
urban costs, rather than mysterious consumer’s “propensity to big malls”, as suggested Anas and
Kim (1996). Our approach, that takes into account various types of costs (trade, commuting, and
communication) is similar to J. Cavailhès et al. (2007) with one important exception. We drop very
convenient (yet usually non-realistic) assumption on “long narrow city”. Our analysis is extended
to the two-dimension because the geographical space in the real world is better approximated by a
two-dimensional space.

1 Model overview

1.1 Spatial structure

Consider an economy with one sector and two primary goods, labor and land. The region can be
urbanized by accommodating firms and workers within a city, and is formally described by a two-
dimensional space X = R2 (or by sufficiently large area around origin). Whenever a city exists, it
has a central business district (in short CBD) located at the origin 0 ∈ X. Residence zone around
CBD assumed to be a circle due to geographical homogeneity. One would expect us to explain why
this CBD exists as well as why firms leaving the CBD want to be together and form a secondary
business districts, in short SBDs (see Figure 1). Doing that would require the introduction of local
spatial externalities and local public goods that would render the analysis much more involved from
the technical point of view, without adding much to our results. Indeed, our model has nothing new to
add to what is known in this domain. By contrast, we determine the sizes of the CBD and the SBDs,
thus the structure of each city, in the presence of inter-city trade and factor mobility.

Firms are free to locate in the CBD or to set up in the suburbs of the metro where they form a
SBDs. Both the CBD and SBDs are assumed to be dimensionless, while residence zones around SBDs
are also circles. In what follows, the superscript C is used to describe variables related to the CBD,
whereas S describes the variables associated with a SBDs. Without loss of generality, we focus on the
only one of SBDs, because all SBDs are supposed to be identical. Locations are expressed by variable
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Figure 1: Polycentric city

x ∈ X while distances are measured as Euclidean norm ||x|| for CBD-zone, whereas the SBD, if any,
is established at xS 6= 0, which is endogenous. Even though firms consume services supplied in each
SBD, the higher-order functions (specific local public goods and non-tradeable business-to-business
services such as marketing, banking, insurance) are still located in the CBDs.

Hence, for using such services, firms set up in a SBD must incur a communication cost, which is
given by

K(xS) = K + k · ||xS || (1)

where K and k are two positive constants. Indeed, communicating requires the acquisition of specific
facilities, thus explaining why communication costs have a fixed component. However, relationships
between the CBD and a SBD also involves face-to-face communication. Therefore, some workers must
go to the CBD, thus making communication costs dependent on the distance ||xS || between the CBD
and the SBD. For simplicity, we assume that this cost is linear in distance, but this does not affect
the nature of our results. Both the CBD and the SBD are surrounded by residential areas occupied by
workers. Furthermore, as the distance between the CBD and SBD is small compared to the intercity
distance, we disregard the intra-urban transport cost of goods. Finally, we consider the case where the
CBD is surrounded by m ≥ 1 SBDs. Under those various assumptions, the location, number and size
of the SBDs as well as the size of the CBD are endogenously determined. In other words, apart from
the assumed existence of the CBD, the internal structure of each city is endogenous.

1.2 Workers

The economy city is endowed with L mobile workers. The welfare of a worker depends on her con-
sumption of the following three goods. The first good is unproduced (or produced outside of city),
homogeneous and chosen as the numéraire. The second good is produced as a continuum n of vari-
eties of a horizontally differentiated good under monopolistic competition and increasing returns, using
labor as the only input. The third good is land; without loss of generality, we set the opportunity
cost of land to zero. Each worker consumes a residential plot of fixed size chosen as the unit of area.
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The worker also chooses a quantity q(i) of variety i ∈ [0, n], and a quantity q0 of the numéraire. She
is endowed with one unit of labor and q̄0 > 0 units of the numéraire. This initial endowment may
be also interpreted as monetary income additional to wage. The possible sources of this endowment
will be discussed in proper time. At this moment initial q̄0 are considered as exogenous parameters.
Each worker commutes to her employment center — without cross-commuting — and bears a unit
commuting cost given by t > 0, so that for the worker located at x the commuting cost is either t||x||
or t||x− xS || according to the employment center.

The budget constraint of an individual residing at x ∈ X and working in the corresponding CBD
can then be written as follows:

nˆ

0

p(i)q(i)di+ q0 +RC(||x||) + t||x|| = wC + q̄0 (2)

where RC(x) is the land rent prevailing at location x (in fact, it depends on distance ||x|| from the
CBD only). The budget constraint of an individual working in the SBD, located at specific place xS is

nˆ

0

p(i)q(i)di+ q0 +RS(||x-xS ||) + t||x-xS || = wS + q̄0. (3)

In fact rents in suburb depend on distance to the corresponding employment center only (see subsection
2.1). Preferences over the differentiated product and the numéraire are identical across workers and
represented by a utility function U(q0; q(i), i ∈ [0, n]).

The results of this paper are universal, they do not depend on specification of utility unlike the
most part of similar papers. For example, one of the popular functions is Ottaviano’s quasi-linear
utility function incapsulating quadratic sub-utility

U(q0; q(i), i ∈ [0, n]) = α

nˆ

0

q(i)di− β − γ
2

nˆ

0

[q(i)]2di− γ

2

 nˆ

0

q(i)di

2

+ q0

where α > 0, β > γ > 0. Comprehensive analysis of linear city with two SBDs with this function
was carried out in Cavailhès et al. (2007). Another popular type is two-tier (Cobb-Douglas over CES)
utility function

U(q0; q(i), i ∈ [0, n]) =

 nˆ

0

[q(i)]
σ−1
σ di


σµ
σ−1

· q1−µ0

where 0 < µ < 1 is expenditure share of differentiated good, σ > 1 is constant elasticity of substitution.
This one was used in Tabuchi (2009) and (Tabuchi and Thisse, 2006). In both settings we may study
the indirect utility functions in analytical form.

1.3 Firms

Technology in manufacturing is such that producing q(i) units of variety i requires a given number
ϕ of labor units. There are no scope economies so that, due to increasing returns to scale, there is
a one-to-one relationship between firms and varieties. Thus, the total number of firms is given by
n = L/ϕ.

Denote by ΠC (respectively ΠS ) the profit of a firm set up in the CBD (respectively the SBD).
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Let θ be the share of firms located in the CBD and, therefore, by (1− θ)/m the share of firms in each
SBD. When the firm producing variety i is located in the CBD, its profit function is given by:

ΠC(i) = I(i)− ϕ · wC (4)

where I(i) stands for the firm’s revenue earned from local sales and from exports. When the firm sets
up in the SBDs of the same city, its profit function becomes:

ΠS
r (i) = I(i)−K(xS)− ϕ · wS (5)

the firm’s revenue is the same as in the CBD because shipping varieties within the city is costless so
that prices and outputs do not depend on firm’s location in the city. Those two expressions encapsulate
the trade-off faced by firms located in city: by locating at the SBD, firms are able to pay a lower wage
to workers, but must incur the communication cost K(xS). At this step we don’t specify exact form
of revenues I(i) that, in turn, requires specifying of utility U(q0; q(i), i ∈ [0, n]).

1.4 Two-dimensional features

The short overview of the model allows to point out some differences two-dimensional model from
model of “long narrow city” that could be substantial for final outcomes. Urban costs (commuting
and communication) mainly depend on distances or geographic size of the city, which is proportional
to population or demographic size in linear city and less than proportional in two-dimensional model
(to be more specific, geographic size increases as square root of population). Moreover, an additional
economy on scale in urban costs comes from possibility to allocate more than two SBDs around central
zone. It means that linear model (possibly) overestimates dispersion forces (caused by urban costs)
in comparison to agglomeration forces (related to monopolistic competition). In other words, two-
dimensional model is “more favorable” to formation of larger city agglomeration.

2 Decentralization within a city

A city equilibrium is such that each individual maximizes her utility subject to her budget constraint,
each firm maximizes its profits, and markets clear. Individuals choose their workplace (CBD or SBDs)
and their residential location with respect to given wages and land rents. In each workplace (CBD or
SBDs), the equilibrium wages are determined by a bidding process in which firms compete for workers
by offering them higher wages until no firm can profitably enter the market. Given such equilibrium
wages and the location of workers, firms choose to locate either in the CBD or in the SBDs. At the
city equilibrium, no firm has an incentive to change place within the city, and no worker wants to
change her working place and/or her residence. In this section, we analyze such an equilibrium, taking
as fixed the number of workers L.

2.1 Land rents, wages and workplaces

Within each city, a worker chooses her location so as to maximize her utility U(q0, q(i); i ∈ [0, n])

under the corresponding budget constraint, (2) or (3). Let ΨC(x) and ΨS(x) be the bid rent at
x ∈ X of an individual working respectively in the CBD and the SBD. Land is allocated to the
highest bidder. Because there is only one type of labor, at the city equilibrium it must be that
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Figure 2: City with CBD and representative SBD

R(x) = max
{

ΨC(x),ΨS(x), 0
}

(see Figure 2). The question “Who is recipient of rent?” will be
discussed in proper time. At this moment we may assume that there exists some collecting agency.

Without loss of generality we assume that SBD resides at axis of abscissas, which allows to drop
Euclidean norms and consider positive scalars only. Denote by y the radius of the area formed by
residents working in the CBD while z is from CBD of the most remote point of SBD residential areas.
(Here and further x, y, z and so on are the positive numbers or, equivalently, points on positive part of

x-axis.) Then obviously xS =
y + z

2
. Because communication costs to the CBD increase with distance,

the secondary residential areas are adjacent to central one when the city is polycentric.
Suppose for this moment that CBD’s share of firms θ, number of SBDs m and city’s population L

are given exogenously. Then the critical points are as follows:

y =

√
θL

π
, z =

√
θL

π
+ 2

√
(1− θ)L
mπ

, xS =

√
θL

π
+

√
(1− θ)L
mπ

. (6)

Indeed, the equilibrium population of CBD θL is equal to area of circle πy2, while the total population
of SBDs (1− θ)L is equal to sum of SBD’s areas mπ(xS − y)2.

Because of the fixed lot size assumption, at the city equilibrium the value of the equilibrium
consumption of the nonspatial goods

E =

nˆ

0

p(i)q(i)di+ q0

is the same regardless of the worker’s location. Then, the budget constraint of an individual residing at
x and working in the CBD implies that wC + q̄0−R(x)− tx = E, whereas the budget constraint of an
individual working in the SBD is wS + q̄0 −R(x)− t|x− xS | = E. At the city equilibrium, the worker
living at the border of the CBD residential area (or at the point of the SBD residential area closest to
CBD) is indifferent between working in the CBD or in the SBD, which implies wC + q̄0 −R(y)− ty =

wS + q̄0 − R(y) − t|y − xS |. This equation may be considered also as a parity of disposable incomes.
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After reduction and substituting of (6) this equation becomes

wC − wS = t

(√
θL

π
−
√

(1− θ)L
mπ

)
. (7)

Thus, the difference in the wages paid in the CBD and in the SBD compensates exactly the worker
for the difference in the corresponding commuting costs. The wage wedge wC −wS is positive as long

as θ >
1

1 +m
, thus implying that the size of the CBD exceeds the size of each SBD. In this case

∂

∂L
(wC−wS) > 0, i.e. rise in the population size increases the wage wedge: as the average commuting

cost rises, firms located in the CBD must pay a higher wage to their workers.
Finally, it is worth noting that the equilibrium land rents for arbitrary location x ∈ X are given by

R(x) = ΨC(x) = t ·

(√
θL

π
− ||x||

)
, for ||x|| ≤ y =

√
θL

π
(8)

and

R(x) = ΨS(x) = t ·max

{
0,

√
(1− θ)L
mπ

− ||xS − x||

}
, for ||x|| > y (9)

where θ is endogenously defined in the following subsection and xS ∈ X is SBD closest to x ∈ X.
At this moment we left behind two unanswered questions:

• What is a source of initial endowment q̄0 of numéraire?

• Who is/are recipient(s) of rent?

We answer them simultaneously. Assume that collecting agency, mentioned at start of this subsection,
is non-profit and redistribute uniformly all of collected rent among all population of city. So initial
endowment q̄0 is in fact an individual share of numéraire good, financed by the equal share of total
raised rent in specific city. Due to (4)-(5) plot of the rent function is a bunch of cone surfaces: one
for central zone and m for secondary residence zones (see right-hand side of Figure 2, representing the
section of cone surfaces). Thus, the total rent sum is equal to the sum of cone volumes: one central

cone and m secondary cones. From (4)-(5) heights of these cones are, respectively, hC = t ·
√

θL
π and

hS = t ·
√

(1−θ)L
mπ , while the corresponding radii are respectively, rC =

√
θL
π and rS =

√
(1−θ)L
mπ . Using

formula of cone volume (V = 1
3πr

2h) we obtain the total rent sum as follows

L · t
3

[
θ ·
√
θ · L
π

+ (1− θ) ·
√

(1− θ) · L
m · π

]

while the total initial endowment is L · q̄0. Closing our model, we obtain

q̄0 =
t

3
·
√
L

π

[
θ3/2 +

(1− θ)3/2√
m

]
.

2.2 Equilibrium wages and the city structure

Regarding the labor markets, the equilibrium wages of workers are determined by the zero-profit condi-
tion. In other words, operating profits are completely absorbed by the wage bill. Hence, the equilibrium
wage rates in the CBD and in the SBDs must satisfy the conditions ΠC(wC∗) = 0 and ΠS(wS∗) = 0,
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respectively. Thus, setting (4) (respectively (5)) equal to zero, solving for wC∗ (respectively wS∗), we
get:

wC∗ =
I

ϕ
, wS∗ =

I−K(xS)

ϕ
(10)

Hence

wC∗ − wS∗ =
K + kxS

ϕ
,

which means that the equilibrium wage wedge is proportional to the level of the communication cost
that prevails at the SBD. Substituting of (7) and (6) into previous formula yields:

(ϕt− k)

√
θL

π
= K + (ϕt+ k)

√
(1− θ)L
mπ

> 0 (11)

which implies that inequality ϕt− k > 0 is necessary condition. More exactly, the opposite inequality
k ≥ ϕt means that distance-sensitive communication costs are too large relative to commuting costs,
so in fact we have rather communicatively separated cities, than connected CBD and SBD. When
condition ϕt− k > 0 is not satisfied, the city is monocentric regardless other values of parameters.

Assuming from now on that ϕt − k > 0 holds, we have to solve this equation with respect to θ.
First we consider more simple limit case K = 0, i.e. fixed communication costs are negligible. Then
the solution is

θ∗ =
(ϕt+ k)2

(ϕt+ k)2 + (ϕt− k)2m
=

1

1 +mg2

where g stands for
ϕt− k
ϕt+ k

∈ (0, 1). Note that θ∗ >
1

1 +m
, because g2 < 1. The following statement

is obvious.

Proposition 1. Let K = 0, then polycentric city equilibrium exists if and only if ϕt > k and share of
firms in CBD does not depend on city population l and decreases to zero with unlimited increasing of
SBD’s number m.

Generalize this result to the case K > 0.

Proposition 2. i) Let ϕt < k + K

√
π

L
then equation (11) is unsolvable, i.e. city is, in fact, mono-

centric.
ii) Let ϕt = k + K

√
π

L
then equation (11) has unique solution θ∗ = 1, i.e. city is, in fact,

monocentric.
iii) Let ϕt > k + K

√
π

L
then equation (11) has unique solution θ∗ ∈

(
1

1 +mg2
, 1

)
, i.e. for each

m ≥ 1 there exists an equilibrium distribution of firms. Moreover, CBD’s share of firms θ∗(m, l)
decreases with respect to both population L and number of SBDs m and

lim
L→∞

θ∗(m,L) =
1

1 +mg2
, lim

m→∞
θ∗(m,L) =

πK2

(ϕt− k)2L
∈ (0, 1). (12)

For analytical proof see Appendix A.

Discussion

Note that rmono(L) =

√
L

π
is in fact a radius of monocentric city with population size L. Therefore,

would be polycentric if and only if ϕ · t · rmono(L) > K + krmono(L) = K(rmono(L)), i.e. commuting
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costs of delivering labor to produce the next unit of output exceed corresponding communication costs.
Thus, producing on periphery (in SBDs) is more efficient. For any given K > 0, k, t, ϕ satisfying

ϕt > k we define monocentric maximum population lmax as a root of equation ϕt = k +K

√
π

L
, which

implies:

lmax =
πK2

(ϕt− k)2
.

The corresponding maximum radius of monocentric city is

rmax =

√
lmax

π
=

K

ϕt− k
.

From perspective of production efficiency, if city population L exceeds lmax it give raise to SBDs and

fraction
lmax

L
is an infimum of CBD firm’s share under unlimited increasing of number of SBDs. What

determines sufficient number of m will be considered below. The most striking implication of (12)
(not quite realistic, however) is that limit size of population of central zone limm→∞ θ

∗(m,L) · L =
πK2

(ϕt−k)2 = lmax does not depend on L, i.e. even unlimited growth of city population in case of very
large value of m will be completely absorbed by suburbia. The only difficulty is that infinite number
of SBDs could not be placed around bounded CBD-zone without overlapping.

2.3 How to “endogenize” of SBD’s number m

In what follows we assume that L > lmax (or, equivalently, ϕt > k +K

√
π

L
). Previous considerations

show that then appear some number m ≥ 1 of SBDs. What determines its number? There is no
simple and unambiguous answer, because in practice it depends on many factors, that are not always
economic ones.

One of the main questions is the following: “Who can afford the building of additional suburb?” If
answer is “None”, we find ourself in setting with predefined number of SBDs (like model of Cavailhès
et al.). Let’s consider the opposite situation when each firm could freely (without any costs) establish
new SBD “at empty place”.

2.3.1 Free foundation and maximum number of SBDs

To estimate the maximum possible number of SBDs, consider the following simple trigonometric prob-
lem. If we place m SBDs around CBD, each of them takes 2α of angular size, where α = ŜOT (see
Figure 3). It is obvious that

sinα =
rS

rC + rS
=

√
1− θ∗√

mθ∗ +
√

1− θ∗
,

where θ∗ is equilibrium CBD share, defined as root of equation (11). Allocation of m SBDs without
overlapping requires 2mα of angular size, that implies inequality mα ≤ π. Thus the estimation
of maximum number of SBDs M∗ (and the corresponding θ∗) may be obtained as solution of the
following system of equations

(ϕt− k)

√
θL

π
= K + (ϕt+ k)

√
(1− θ)L
mπ

9
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Figure 3: How many SBDs could we place around

m · arcsin

√
1− θ√

mθ +
√

1− θ
= π.

Note that for sufficiently large population size L (to be more specific, when
K√
L

may be considered

as negligible costs) the equilibrium share θ∗ ≈ 1
1+mg2

(see Proposition 1) and

√
1− θ∗√

mθ∗ +
√

1− θ∗
≈ g

1 + g
,

where g stands for
ϕt− k
ϕt+ k

. Thus,

M∗ ≈ π

arcsin g
1+g

=
π

arcsin ϕ·t−k
2ϕ·t

. (13)

Moreover, for sufficiently small g we can approximate arcsin g
1+g ≈

g
1+g and obtain the following simple

(yet may be far from the exact value) estimation of maximum number of SBDs

M∗ ≈ (1 + g)π

g
=

2π · ϕ · t
ϕ · t− k

.

Note that accordingly to estimation (13) (as well as its linearization) the maximum number M∗ de-
creases with respect to marginal commuting costs t. It can be easily explained, because the larger
commuting costs (in comparison to communication ones) force firms (and their workers) to locate
themselves in SBDs. As result, size of each SBD zone increases, while free place around central zone
decreases.

The general answer to the question that started this section is the following: “Decision on building
of additional suburb is up to ‘City Developer’, who takes into account the social welfare considerations.”
The very simple example of such decision-making is considered in the following subsection.
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2.3.2 “People are not robots”

Usually people (and firms) cannot choose to build (or not to build) new suburb, thus for the individual
or firm decision making number of SBDs m seems to be exogenous. Yet they can vote for mayor
(city council) who can. For example, people are angry when commuting trip takes a lot of time. For
example, if commuting takes over 1-2 hours, it could be unacceptable regardless any wage difference. It
means that we should introduce in our model an exogenous parameter rSmax of maximum SBD radius,
or equivalently, maximum SBD population lSmax = π

(
rSmax

)2.Thus population constraint for SBD is as
follows:

(1− θ∗(m,L))L

m
≤ lSmax ⇐⇒ 1− θ∗(m,L) ≤ lSmax

L
m.

Allowing non-integer values of m, consider equation

1− θ∗(m,L) =
lSmax

L
m (14)

with respect to m, where the positive root (if exists) define the lower bound of SBD number. Recall

that rmono(L) =
√

L
π denotes a radius of monocentric city with population l and rmax =

√
lmax
π = K

ϕt−k
is a maximum cost-efficient radius of mononocentric city.

Proposition 3. Let rmono(L) > rmax +
rSmax

g
then there exists the unique positive root m∗ of equation

(14)

m∗ =
L

lSmax

−

ϕt+ k +K
√

π
lSmax

ϕt− k

2

(generally, non-integer). If rmono(L) ≤ rmax +
rSmax

g
, then inequality

(1− θ∗(m,L))L

m
≤ lSmax holds for

all admissible m.

For analytical proof see Appendix B.
Discussion. Recall that inequality rmono ≤ rmax is exactly condition of monocentricity without

restriction on suburb size, so the inequality just obtained may be interpreted as “one suburb is quite
enough”. Note also that equation (11) that determines the city equilibrium share θ∗ (without any
restrictions), for m = 1 takes the following form:

(ϕt− k)

√
θL

π
= K + (ϕt+ k)

√
(1− θ)L

π

which is equivalent to

rC = rmax +
rS

g

where rC =
√

θL
π is radius of central zone, rS =

√
(1−θ)L

π is a radius of the single suburb. Now
the endogenously defined sufficient number m of SBDs is minimum positive integer number exceeding
m∗. It is obvious that m∗ increases with respect to city population L, moreover it also increases
with respect to commuting costs t (see Appendix B). Both theoretical conclusions are supported by
empirical evidences (see MacMillen and Smith, 2003).

Note that the same considerations may be applied to CBD, which may lower the value of lmax.
This would not change our basic conclusion, so we assume that CBD is more attractive for workers
than SBDs and firm’s allocation in SBD’s is due to production efficiency reasons.
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Moreover, the above considerations imply that SBD zones have no overlapping. This assumption
generates the upper bound of SBDs number, that is different from M∗ due to SBD’s size limitations.
Nevertheless, its definition is very similar:

m · arcsin
rSmax

rC + rSmax

= π ⇐⇒ G(m) := m · arcsin
1√

L

lSmax

−m+ 1

= π. (15)

Without loss of generality we may assume that
L

lSmax

> 2, otherwise SBD’s size limitations are

inessential. The left-hand side of equation (15) G(m) is an strictly increasing function of m, while

G(2) = 2 arcsin 1√
L

lSmax
−2+1

< 2 arcsin 1√
2−2+1

= π and G
(

L

lSmax

)
=

L

lSmax

· π
2
> π . Thus, there exists

a unique solution of this equation M∗∗ ∈
(

2,
L

lSmax

)
and its integer part is theoretical maximum of

SBDs with size limitations.

2.3.3 Hierarchy of Business Districts.

Is the maximum number M∗ (or M∗∗) the insuperable obstacle? Not yet. Let’s assume that each
SBD is surrounded by BDs of lesser rank: Tertiary Business Districts (TBD), possibly surrounded by
Quarternary Business Districts (QBD) and so on. Here we consider model with TBDs, that could be
easily extended on hierarchy of any complicacy.

Suppose that there exists m1 of identical SBDs and each SBD is surrounded by m2 TBDs (see,
for example, left panel of Figure 5 in Appendix D). We assume that SBD has no own communication
facilities and communication of any TBD with CBD is carried out via adjacent SBD. Let xS still denote
distance of any SBD from CBD, while xT is a distance of TBD from adjacent SBD. Further, let θ0
denote a share of firms, located at CBD, θ1 is share of firms, located at each SBD and θ2, respectively,
is a share of firms, located at each TBD.

Proposition 4. Let ϕt > k +K

√
π

L
then exists unique city equilibrium and the corresponding shares

are as follows:

θ∗2 =
1− θ∗0 −m1θ

∗
1

m1m2
, θ∗1 =

1− θ∗0
m1(m2 · g2 + 1)

,

where θ∗0 ∈
(

1

1 +m1g2 · (m2 · g2 + 1)
, 1

)
is a unique root of equation

(ϕt− k)

√
θ0L

π
= K + (ϕt+ k)

√
(1− θ0)L

m1(m2 · g2 + 1)π
.

See Appendix C for analytical proof.
Discussion. Note that city structure with m1 SBDs, each surrounded by m2 TBDs, is technically

equivalent to city structure with m1(m2 ·g2+1) SBDs. It is easy to understand that city structure with
m1 SBDs, each surrounded bym2 TBDs, each surrounded bym3 QBDs, is also technically equivalent to
city with non-integer “number” of SBDsm = m1(m2·g2+1)(m3·g2+1), and so on. Note that sequence of
numbers
m1(m2 · g2 + 1)(m3 · g2 + 1) . . . (mn · g2 + 1) increases boundlessly with n even if all mi are bounded.
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CBD SBD1

SBD2

SBD3

TBD11

TBD12

TBD13

TBD21

TBD22

TBD23

TBD31

TBD32

TBD33

Three-tier city with m1 = m2 = 3 “Equivalent” two-tier city for g =
2

3
.

Figure 4: City with TBDs and “equivalent” two-tier city

For example, suppose that m1 = m2 = 3 and k = 1, ϕ = 1, t = 5, then g =
ϕt− k
ϕt+ k

=
2

3
and

“effective” number of SBDs is m = 3 ·

(
3 ·
(

2

3

)2

+ 1

)
= 7 (see right panel of Figure 4). Note that the

similar considerations on multi-level system of marketplaces with Christaller-Lösch system of hexagonal
market areas was used by Tabuchi (2009). Unlike this we do not use any pre-defined location grid.
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APPENDIX

A. Proof of Proposition 2

Raising to the second power both sides of equation

(ϕt− k)

√
θL

π
= K + (ϕt+ k)

√
(1− θ)L
mπ

we obtain, after simple transformations, the following one

2f
√

1− θ = −(1 +mg2)(1− θ) + [mg2 − f2], (16)

where g =
ϕt− k
ϕt+ k

∈ (0, 1) and f =
K
√
mπ

(ϕt+ k)
√
L
> 0. Note that,

[mg2 − f2] > 0 ⇐⇒ ϕt > k +K

√
π

L
.

Consider three possible cases:
i) ϕt < k +K

√
π
L then [mg2 − f2] < 0 and equation (16) has no real roots.

ii) ϕt = k +K
√

π
L then [mg2 − f2] = 0 and equation (16) has unique positive root θ∗ = 1.

iii) ϕt > k + K
√

π
L then [mg2 − f2] > 0. To obtain the admissible root of equation (16), let’s

substitute 1− θ with v2 for v ∈ (0, 1). Then this equation transforms into

F (v) = (1 +mg2)v2 + 2fv − [mg2 − f2] = 0.

This quadratic equation has two real roots, positive and negative. Moreover, F (0) = −[mg2 − f2] < 0

while F (1) = 1+2f+f2 > 0, thus there is unique root v∗ ∈ (0, 1), and, therefore θ∗ = 1−(v∗)2 ∈ (0, 1)

is uniquely defined.
Being a root of quadratic equation, term v∗, as well as θ∗, could be represented in closed form in

terms of the model parameters, yet is is more convenient consider v∗ as implicit function of parameters,
in particular, of population L and number of SBDs m. Accordingly to Theorem on Implicit Function
Derivative, we obtain

∂v∗

∂L
= −

(
∂F
∂L

)(
∂F
∂v

) = −
(v + f) · ∂f∂l

(1 +mg2)v + f
> 0,

because obviously
∂f

∂l
= − K

√
mπ

2(ϕt+ k)
√
L3

< 0. It implies that θ∗(l) = 1−(v∗(l))2 is decreasing function.

Moreover, f → 0 when l→ +∞, thus (v∗)2 → mg2

1 +mg2
and θ∗ = 1− (v∗)2 → 1

1 +mg2
. It means that

for all l < +∞ inequality θ∗ >
1

1 +mg2
>

1

1 +m
holds. Note that, m

∂f

∂m
=

K
√
mπ

2(ϕt+ k)
√
L

=
f

2
, thus

m · ∂F
∂m

= mg2v2 + 2v ·m ∂f

∂m
+ 2f ·m ∂f

∂m
−mg2 = mg2v2 + vf + f2 −mg2 = F (v)− v2 − fv.

Therefore,
∂v∗

∂m
= −

(
∂F
∂m

)(
∂F
∂v

) = − F (v∗)− (v∗)2 − fv∗

((1 +mg2)v∗ + f) ·m
=

(v∗)2 + fv∗

((1 +mg2)v∗ + f) ·m
> 0
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and
∂θ∗

∂m
< 0.

Consider equation

F (v)

m
= (

1

m
+ g2)v2 + 2

f

m
v −

[
g2 −

(
f√
m

)2
]

= 0

that is equivalent to (16). Note that,
f

m
→ 0, when m→ +∞ and

f√
m
≡ K

√
π

(ϕt+ k)
√
L
, thus

(v∗)2 → 1− K2π

g2(ϕt+ k)2L
= 1− K2π

(ϕt− k)2L

and θ∗ = 1− (v∗)2 → K2π

(ϕt− k)2L
.

B. Proof of Proposition 3

Substituting 1− θ∗(m) = lSmax
L m into equation (16)

2f
√

1− θ = −(1 +mg2)(1− θ) + [mg2 − f2],

where g =
ϕt− k
ϕt+ k

and f =
K
√
mπ

(ϕt+ k)
√
L

we obtain

2f̃

√
lSmax

L
·m = −(1 +mg2)

lSmax

L
m+ [g2 − f̃2]m,

where f̃ =
K
√
π

(ϕt+ k)
√
L
> 0. Reducing improper root m = 0 we obtain, after obvious transformations,

that the unique root is

m∗ =
L

lSmax

−

ϕt+ k +K
√

π
lSmax

ϕt− k

2

.

Direct calculations show that m∗ > 0 if and only if rmono(L) > rmax +
rSmax

g
. Unsolvability of equation

1 − θ∗(m) = lSmax
L m means that inequality 1 − θ∗(m) < lSmax

l m holds for all m > 0, because left-

hand side is bounded while right-hand side is not. It is obvious that
∂m∗

∂l
> 0, moreover fraction

ϕt+k+K
√

π

lSmax

ϕt−k = 1 +
2k+K

√
π

lSmax

ϕt−k decreases with respect to t, thus
∂m∗

∂t
> 0.

C. Proof of Proposition 4

Obviously, share of firms at each TBD may be calculated as follows:

θ2 =
1− θ0 −m1θ1

m1m2
.

Considerations similar to ones from subsection 2.2 show that on production side wage differences are

wC − wS =
K + kxS

ϕ
, wS − wT =

kxT

ϕ
,
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where wT is wage at TBD, while wCand wS are the same as earlier. For given θ0 and θ1 equilibrium
distances of SBDs and TBDs are as follows

xS =

√
θ0L

π
+

√
θ1L

π
,

xT =

√
θ1L

π
+

√
(1− θ0 −m1θ1)L

m1m2π
.

(Recall that xT denote distance of TBD from adjacent SBD. On the other hand, considerations on
rents and wages, similar to subsection 2.1, show that

wC − wS = t

(√
θ0L

π
−
√
θ1L

π

)
,

wS − wT = t

√θ1L

π
−

√
(1− θ0 −m1θ1)L

m1m2π

 .

Putting altogether we obtain system of equations

(ϕt− k)

√
θ0L

π
= K + (ϕt+ k)

√
θ1L

π

(ϕt− k)

√
θ1L

π
= (ϕt+ k)

√
(1− θ0 −m1θ1)L

m1m2π
.

From latter equation follows that

θ1 =
1− θ0

m1(m2 · g2 + 1)
,

where g, as usual, stands for
ϕt− k
ϕt+ k

. Thus, the first equation of this system turns into

(ϕt− k)

√
θ0L

π
= K + (ϕt+ k)

√
(1− θ0)L

m1(m2 · g2 + 1)π
.

Note that substituting m for m1(m2 · g2 + 1) we obtain exactly equation (11), thus we may apply
considerations from proof of Proposition 2 (see Appendix A).
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