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Abstract

We study several aspects of the dynamic programming approach to

optimal control of abstract evolution equations, including a class of semi-

linear partial di�erential equations. We introduce and prove a veri�cation

theorem which provides a su�cient condition for optimality. Moreover we

prove sub- and superoptimality principles of dynamic programming and

give an explicit construction of ε-optimal controls.
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1 Introduction

In this paper we investigate several aspects of the dynamic programming ap-
proach to optimal control of abstract evolution equations. The optimal control
problem we have in mind has the following form. The state equation is{

ẋ(t) = Ax(t) + b(t, x(t), u(t)),
x(0) = x,
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A is a linear, densely de�ned maximal dissipative operator in a real separable
Hilbert space H, and we want to minimize a cost functional

J(x;u(·)) =
∫ T

0

L(t, x(t), u(t))dt+ h(x(T )) (2)

over all controls

u(·) ∈ U [0, T ] = {u : [0, T ] → U : u is measurable},

where U is a metric space.
The dynamic programming approach studies the properties of the so called

value function for the problem, identi�es it as a solution of the associated
Hamilton-Jacobi-Bellman (HJB) equation through the dynamic programming
principle, and then tries to use this PDE to construct optimal feedback controls,
obtain conditions for optimality, do numerical computations, etc.. There exists
an extensive literature on the subject for optimal control of ordinary di�erential
equations, i.e. when the HJB equations are �nite dimensional (see for instance
the books [12, 26, 36, 37, 47, 55, 56] and the references therein). The situation
is much more complicated for optimal control of partial di�erential equations
(PDE) or abstract evolution equations, i.e. when the HJB equations are in�nite
dimensional, nevertheless there is by now a large body of results on such HJB
equations and the dynamic programming approach ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 38, 41, 45, 46, 50, 51, 53, 54]
and the references therein). Numerous notions of solutions are introduced in
these works, the value functions are proved to be solutions of the dynamic
programming equations, and various veri�cation theorems and results on ex-
istence and explicit forms of optimal feedback controls in particular cases are
established. However, despite of these results, so far the use of the dynamic pro-
gramming approach in the resolution of the general optimal control problems in
in�nite dimensions has been rather limited. In�nite dimensionality of the state
space, unboundedness in the equations, lack of regularity of solutions, and often
complicated notions of solutions requiring the use of sophisticated test functions
are only some of the di�culties.

We will discuss two aspects of the dynamic programming approach for a
fairly general control problem: a veri�cation theorem which gives a su�cient
condition for optimality, and the problem of construction of ε-optimal feedback
controls.

The veri�cation theorem we prove in this paper is an in�nite dimensional
version of such a result for �nite dimensional problems obtained in [57]. It is
based on the notion of viscosity solution (see De�nitions 2.4-2.6). Regarding
previous result in this direction we mention [21, 22] and the material in Chapter
6 �5 of [46], in particular Theorem 5.5 there which is based on [21]. We brie�y
discuss this result in Remark 3.6.

The construction of ε-optimal controls we present here is a fairly explicit
procedure which relies on the proof of superoptimality inequality of dynamic
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programming for viscosity supersolutions of the corresponding Hamilton-Jacobi-
Bellman equation. It is a delicate generalization of such a method for the �nite
dimensional case from [52]. Similar method has been used in [25] to construct
stabilizing feedbacks for nonlinear systems and later in [42] for state constraint
problems. The idea here is to approximate the value function by its appropri-
ate inf-convolution which is more regular and satis�es a slightly perturbed HJB
inequality pointwise. One can then use this inequality to construct ε-optimal
piecewise constant controls. This procedure in fact gives the superoptimal-
ity inequality of dynamic programming and the suboptimality inequality can
be proved similarly. There are other possible approaches to construction of ε-
optimal controls. For instance under compactness assumption on the operator
B (see Section 4) one can approximate the value function by solutions of �nite
dimensional HJB equations with the operator A replaced by some �nite dimen-
sional operators An (see [28]) and then use results of [52] directly to construct
near optimal controls. Other approximation procedures are also possible. The
method we present in this paper seems to have some advantages: it uses only
one layer of approximations, it is very explicit and the errors in many cases can
be made precise, and it does not require any compactness of the operator B.
It does however require some weak continuity of the Hamiltonian and uniform
continuity of the trajectories, uniformly in u(·). Finally we mention that the
sub- and superoptimality inequalities of dynamic programming are interesting
on their own.

The paper is organized as follows. De�nitions and the preliminary material
is presented in Section 2. Section 3 is devoted to the veri�cation theorem and an
example where it applies in a nonsmooth case. In Section 4 we prove sub- and
superoptimality principles of dynamic programming and show how to construct
ε-optimal controls.

2 Notation, de�nitions and background

Throughout this paper H is a real separable Hilbert space equipped with the
inner product 〈·, ·〉 and the norm ‖ · ‖. We recall that A is a linear, densely
de�ned operator such that −A is maximal monotone, i.e. A generates a C0

semigroup of contractions esA, i.e.

‖esA‖ ≤ 1 for all s ≥ 0 (3)

We make the following assumptions on b and L.

Hypothesis 2.1.

b : [0, T ]×H× U → H is continuous

and there exist a constant M > 0 and a local modulus of continuity ω(·, ·) such
that

‖b(t, x, u)− b(s, y, u)‖ ≤M‖x− y‖+ ω(|t− s|, ‖x‖ ∨ ‖y‖)
for all t, s ∈ [0, T ], u ∈ U x, y ∈ H

‖b(t, 0, u)‖ ≤M for all (t, u) ∈ [0, T ]× U
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Hypothesis 2.2.

L : [0, T ]×H× U → R and h : H → R are continuous

and there exist M > 0 and a local modulus of continuity ω(·, ·) such that

|L(t, x, u)− L(s, y, u)|, |h(x)− h(y)| ≤ ω(‖x− y‖+ |t− s|, ‖x‖ ∨ ‖y‖)
for all t, s ∈ [0, T ], u ∈ U x, y ∈ H

|L(t, 0, u)|, |h(0)| ≤M for all (t, u) ∈ [0, T ]× U

Remark 2.3. Notice that if we replace A and b by Ã = A − ωI and b(t, x, u)
with b̃(t, x, u) = b(t, x, u)+ωx the above assumptions would cover a more general
case

‖esA‖ ≤ eωs for all s ≥ 0 (4)

for some ω ≥ 0. However such b̃ does not satisfy the assumptions of Section
4 and may not satisfy the assumptions needed for comparison for equation (8).
Alternatively, by making a change of variables ṽ(t, x) = v(t, eωtx) in equation
(8) (see [28], page 275) we can always reduce the case (4) to the case when A
satis�es (3).

Following the dynamic programming approach we consider a family of prob-
lems for every t ∈ [0, T ], y ∈ H{

ẋt,x(s) = Axt,x(s) + b(s, xt,x(s), u(s))
xt,x(t) = x

(5)

We will write x(·) for xt,x(·) when there is no possibility of confusion. We
consider the function

J(t, x;u(·)) =
∫ T

t

L(s, x(s), u(s))dt+ h(x(T )), (6)

where u(·) is in the set of admissible controls

U [t, T ] = {u : [t, T ] → U : u is measurable}.

The associated value function V : [0, T ]×H → R is de�ned by

V (t, x) = inf
u(·)∈U [t,T ]

J(t, x;u(·)). (7)

The Hamilton-Jacobi-Bellman (HJB) equation related to such optimal control
problems is {

vt(t, x) + 〈Dv(t, x), Ax〉+H(t, x,Dv(t, x)) = 0
v(T, x) = h(x), (8)

where {
H : [0, T ]×H×H → R,
H(t, x, p) = infu∈U (〈p, b(t, x, u)〉+ L(t, x, u))
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The solution of the above HJB equation is understood in the viscosity sense
of Crandall and Lions [28, 29] which is slightly modi�ed here. We consider two
sets of tests functions:

test1 = {ϕ ∈ C1((0, T )×H) : ϕ is weakly sequentially lower
semicontinuous and A∗Dϕ ∈ C((0, T )×H)}

and

test2 = {g ∈ C1((0, T )×H) : ∃g0, : [0,+∞) → [0,+∞),
and η ∈ C1((0, T )) positive s.t.
g0 ∈ C1([0,+∞)), g′0(r) ≥ 0 ∀r ≥ 0,
g′0(0) = 0 and g(t, x) = η(t)g0(‖x‖)
∀(t, x) ∈ (0, T )×H}

We use test2 functions that are a little di�erent from the ones used in [28]. The
extra term η(·) in test2 functions is added to deal with unbounded solutions.
We recall that Dϕ and Dg stand for the Frechet derivatives of these functions.

De�nition 2.4. A function v ∈ C((0, T ] × H) is a (viscosity) subsolution of
the HJB equation (8) if

v(T, x) ≤ h(x) for all x ∈ H

and whenever v−ϕ− g has a local maximum at (t̄, x̄) ∈ [0, T )×H for ϕ ∈ test1
and g ∈ test2, we have

ϕt(t̄, x̄) + gt(t̄, x̄) + 〈A∗Dϕ(t̄, x̄), x̄〉+H(t̄, x̄, Dϕ(t̄, x̄) +Dg(t̄, x̄)) ≥ 0. (9)

De�nition 2.5. A function v ∈ C((0, T ]×H) is a (viscosity) supersolution of
the HJB equation (8) if

v(T, x) ≥ h(x) for all x ∈ H

and whenever v+ϕ+ g has a local minimum at (t̄, x̄) ∈ [0, T )×H for ϕ ∈ test1
and g ∈ test2, we have

−ϕt(t̄, x̄)− gt(t̄, x̄)− 〈A∗Dϕ(t̄, x̄), x̄〉+H(t̄, x̄,−Dϕ(t̄, x̄)−Dg(t̄, x̄)) ≤ 0. (10)

De�nition 2.6. A function v ∈ C((0, T ] × H) is a (viscosity) solution of the
HJB equation (8) if it is at the same time a subsolution and a supersolution.

We will be also using viscosity sub- and supersolutions in situations where
no terminal values are given in (8). We will then call a viscosity subsolution
(respectively, supersolution) simply a function that satis�es (9) (respectively,
(10)).
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Lemma 2.7. Let Hypotheses 2.1 and 2.2 hold. Let φ ∈ test1 and (t, x) ∈
(0, T )×H. Then the following convergence holds uniformly in u(·) ∈ U [t, T ]:

lim
s↓t

(
1

s− t
(ϕ(s, xt,x(s))− ϕ(t, x))− ϕt(t, x)− 〈A∗Dϕ(t, x), x〉

− 1
s− t

∫ s

t

〈Dϕ(t, x), b(t, x, u(r))〉dr
)

= 0 (11)

Moreover we have for s− t su�ciently small

ϕ(s, xt,x(s))− ϕ(t, x) =
∫ s

t

ϕt(r, xt,x(r)) + 〈A∗Dϕ(r, xt,x(r)), xt,x(r)〉

+ 〈Dϕ(r, xt,x(r)), b(r, xt,x(r), u(r))〉dr (12)

Proof. See [46] Lemma 3.3 page 240 and Proposition 5.5 page 67.

Lemma 2.8. Let Hypotheses 2.1 and 2.2 hold. Let g ∈ test2 and (t, x) ∈
(0, T )×H. Then for s− t→ 0+

1
s− t

(g(s, xt,x(s))− g(t, x)) ≤ gt(t, x)

+
1

s− t

∫ s

t

〈Dg(t, x), b(t, x, u(r))〉dr + o(1) (13)

where o(1) is uniform in u(·) ∈ U [t, T ]

Proof. To prove the statement when x 6= 0 we use the fact that, in this case
(see [46] page 241, equation (3.11)),

‖xt,x(s)‖ ≤ ‖x‖+
∫ s

t

〈
x

‖x‖
, b(t, x, u(r))

〉
dr + o(s− t)

So we have

g(s, xt,x(s))− g(t, x) = η(s)g0(‖xt,x(s)‖)− η(t)g0(‖x‖)

≤ η(s)g0

(
‖x‖+

∫ s

t

〈
x

‖x‖
, b(t, x, u(r))

〉
dr + o(s− t)

)
− η(t)g0(‖x‖)

≤ η′(t)g0(‖x‖)(s− t) + η(t)g′0(‖x‖)
(∫ s

t

〈
x

‖x‖
, b(t, x, u(r))

〉
dr
)

+ o(s− t)

= gt(t, x)(s− t) +
∫ s

t

〈Dg(t, x), b(t, x, u(r))〉dr + o(s− t) (14)

where o(s− t) is uniform in u(·). When x = 0, using the fact that g′0(0) = 0, we
get

g(s, xt,x(s))− g(t, x) = gt(t, x)(s− t) + o(s− t+ ‖xt,x(s)‖)
and (13) follows upon noticing that ‖xt,x(s)‖ ≤ C(s−t) for some C independent
of u(·) ∈ U [t, T ].
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Theorem 2.9. Let Hypotheses 2.1 and 2.2 hold. Then the value function V
(de�ned in (7)) is a viscosity solution of the HJB equation (8).

Proof. The proof is quite standard and can be obtained with small changes
(due to the small di�erences in the de�nition of test2 functions) from Theorem
2.2, page 229 of [46] and the proof of Theorem 3.2, page 240 of [46] (or from
[29]).

We will need a comparison result in the proof of the veri�cation theorem.
There are various versions of such results for equation (8) available in the lit-
erature, several su�cient sets of hypotheses can be found in [28, 29]. Since we
are not interested in the comparison result itself we choose to assume a form of
comparison theorem as a hypothesis.

Hypothesis 2.10. There exists a set G ⊆ C([0, T ]×H) such that:

(i) the value function V is in G;

(ii) if v1, v2 ∈ G, v1 is a subsolution of the HJB equation (8) and v2 is a
supersolution of the HJB equation (8) then v1 ≤ v2.

Note that from (i) and (ii) we know that V is the only solution of the HJB
equation (8) in G.

We will use the following lemma whose proof can be found in [56], page 270.

Lemma 2.11. Let g ∈ C([0, T ]; R). We extend g to a function (still denoted
by g) on (−∞,+∞) by setting g(t) = g(T ) for t > T and g(t) = g(0) for t < 0.
Suppose there is a function ρ ∈ L1(0, T ; R) such that

lim sup
h→0+

g(t+ h)− g(t)
h

≤ ρ(t) a.e. t ∈ [0, T ].

Then

g(β)− g(α) ≤
∫ β

α

lim sup
h→0+

g(t+ h)− g(t)
h

dt ∀ 0 ≤ α ≤ β ≤ T.

We will denote by BR the open ball of radius R centered at 0 in H.

3 The veri�cation theorem

We �rst introduce a set related to a subset of the superdi�erential of a function
in C((0, T ) × H). Its de�nition is suggested by the de�nition of a sub/super
solution. We recall that the superdi�erential D1,+v(t, x) of v ∈ C((0, T )×H) at
(t, x) is given by the pairs (q, p) ∈ R×H such that v(s, y)−v(t, x)−〈p, y − x〉−
q(s − t) ≤ o(‖x − y‖ + |t − s|), and the subdi�erential D1,−v(t, x) at (t, x) is
the set of all (q, p) ∈ R×H such that v(s, y)− v(t, x)− 〈p, y − x〉 − q(s− t) ≥
o(‖x− y‖+ |t− s|).
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De�nition 3.1. Given v ∈ C((0, T ) × H) and (t, x) ∈ (0, T ) × H we de�ne
E1,+v(t, x) as

E1,+v(t, x) = {(q, p1, p2) ∈ R×D(A∗)×H : ∃ϕ ∈ test1, g ∈ test2 s.t.
v − ϕ− g attains a local
maximum at (t, x),
∂t(ϕ+ g)(t, x) = q,
Dϕ(t, x) = p1, Dg(t, x) = p2

and v(t, x) = ϕ(t, x) + g(t, x)}
Remark 3.2. If we de�ne

E1,+
1 v(t, x) = {(q, p) ∈ R×H : p = p1 + p2 with (q, p1, p2) ∈ E1,+v(t, x)}

then E1,+
1 v(t, x) ⊆ D1,+v(t, x) and in the �nite dimensional case we have

E1,+
1 v(t, x) = D1,+v(t, x). Here we have to use E1,+v(t, x) instead of E1,+

1 v(t, x)
because of the di�erent roles of g and ϕ. It is not clear if the sets E1,+v(t, x) and
E1,+

1 v(t, x) are convex. However if we took �nite sums of functions η(t)g0(‖x‖)
as test2 functions then they would be convex. All the results obtained are un-
changed if we use the de�nition of viscosity solution with this enlarged class of
test2 functions.

De�nition 3.3. A trajectory-strategy pair (x(·), u(·)) will be called an admissi-
ble couple for (t, x) if u ∈ U [t, T ] and x(·) is the corresponding solution of the
state equation (5).

A trajectory-strategy pair (x∗(·), u∗(·)) will be called an optimal couple for
(t, x) if it is admissible for (t, x) and if we have

−∞ < J(t, x;u∗(·)) ≤ J(t, x;u(·))

for every admissible control u(·) ∈ U [t, T ].

We can now state and prove the veri�cation theorem.

Theorem 3.4. Let Hypotheses 2.1, 2.2 and 2.10 hold. Let v ∈ G be a subsolu-
tion of the HJB equation (8) such that

v(T, x) = h(x) for all x in H. (15)

(a) We have v(t, x) ≤ V (t, x) ≤ J(t, x, u(·)) ∀(t, x) ∈ (0, T ] × H, u(·) ∈
U [t, T ].

(b) Let (t, x) ∈ (0, T ) × H and let (xt,x(·), u(·)) be an admissible couple
at (t, x). Assume that there exist q ∈ L1(t, T ; R), p1 ∈ L1(t, T ;D(A∗)) and
p2 ∈ L1(t, T ;H) such that

(q(s), p1(s), p2(s)) ∈ E1,+v(s, xt,x(s)) for almost all s ∈ (t, T ) (16)

and that∫ T

t

(〈p1(s) + p2(s), b(s, xt,x(s), u(s))〉+ q(s) + 〈A∗p1(s), xt,x(s)〉)dt

≤
∫ T

t

−L(s, xt,x(s), u(s))ds. (17)
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Then (xt,x(·), u(·)) is an optimal couple at (t, x) and v(t, x) = V (t, x). Moreover
we have equality in (17).

Remark 3.5. It is tempting to try to prove, along the lines of Theorem 3.9,
p.243 of [56], that a condition like (17) can also be necessary if v is a viscosity
solution (or maybe simply a supersolution). However this is not an easy task:
the main problem is that E1,+ and the analogous object E1,− are fundamentally
di�erent so a natural generalization of a result like Theorem 3.9, p.243 of [56]
does not seem possible. Moreover our veri�cation theorem has some drawbacks.
Condition (17) implicitly implies that < p2(r), Axt,x(r) >= 0 a.e. if the trajec-
tory is in the domain of A. This follows from the fact that we would then have
an additional term < p2(r), Axt,x(r) > in the integrand of the middle line of
(20) so (17) would also have to be an equality with this additional term. There-
fore the applicability of the theorem is somehow limited as in practice (17) may
be satis�ed only if the function is �nice" (i.e. its superdi�erential should really
only consist of p1). Still it applies in some cases where other results fail (see
Remarks 3.6 and 3.8). Many issues are not fully resolved yet and we plan to
work on them in the future.

Proof. The �rst statement (v ≤ V ) follows from Hypothesis 2.10, it remains to
prove second one. The function{

[t, T ] → H× R
s 7→ (b(s, xt,x(s), u(s)), L(s, xt,x(s), u(s))

in view of Hypotheses 2.1 and 2.2 is in L1(t, T ;H× R) (in fact it is bounded).
So the set of the right-Lebesgue points of this function that in addition satisfy
(16) is of full measure. We choose r to be a point in this set. We will denote
y = xt,x(r).

Consider now two functions ϕr,y ∈ test1 and gr,y ∈ test2 such that (we
will avoid the index r,y in the sequel) v ≤ ϕ + g in a neighborhood of (r, y),
v(r, y) − ϕ(r, y) − g(r, y) = 0,(∂t)(ϕ + g)(r, y)) = q(r), Dφ(r, y) = p1(r) and
Dg(r, y) = p2(r). Then for τ ∈ (r, T ] such that (τ − r) is small enough we have
by Lemmas 2.7 and 2.8

v(τ, xt,x(τ))− v(r, y)
τ − r

≤ g(τ, xt,x(τ))− g(r, y)
τ − r

+
ϕ(τ, xt,x(τ))− ϕ(r, y)

τ − r

≤ gt(r, y) +

∫ τ

r
〈Dg(r, y), b(r, y, u(s))〉ds

τ − r

+ ϕt(r, y) +

∫ τ

r
〈Dϕ(r, y), b(r, y, u(s))〉ds

τ − r
+ 〈A∗Dϕ(r, y), y〉+ o(1). (18)

In view of the choice of r we know that∫ τ

r
〈Dg(r, y), b(r, y, u(s))〉ds

τ − r

τ→r−−−→ 〈Dg(r, y), b(r, y, u(r))〉

9



and ∫ τ

r
〈Dϕ(r, y), b(r, y, u(s))〉ds

τ − r

τ→r−−−→ 〈Dϕ(r, y), b(r, y, u(r))〉 .

Therefore for almost every r in [t, T ] we have

lim sup
τ↓r

v(τ, xt,x(τ))− v(r, xt,x(r)))
τ − r

≤ 〈Dg(r, xt,x(r)) +Dϕ(r, xt,x(r)), b(r, xt,x(r), u(r))〉
+ gt(r, xt,x(r)) + ϕt(r, xt,x(r)) + 〈A∗Dϕ(r, xt,x(r)), xt,x(r)〉
= 〈p1(r) + p2(r), b(r, xt,x(r), u(r))〉+ q(r) + 〈A∗p1(r), xt,x(r)〉 . (19)

We can then use Lemma 2.11 and (17) to obtain

v(T, xt,x(T ))− v(t, x)

≤
∫ T

t

(〈p(r), b(r, xt,x(r), u(r))〉+ q(r) + 〈A∗p1(r), xt,x(r)〉)dr

≤
∫ T

t

−L(r, xt,x(r), u(r))dr. (20)

Thus, using (a), we �nally arrive at

V (T, xt,x(T ))− V (t, x) = h(xt,x(T ))− V (t, x) ≤ h(xt,x(T ))− v(t, x)

= v(T, xt,x(T ))− v(t, x) ≤
∫ T

t

−L(r, xt,x(r), u(r))dr (21)

which implies that (xt,x(·), u(·)) is an optimal pair and that v(t, x) = V (t, x).

Remark 3.6. In the book [46] (page 263, Theorem 5.5) the authors present a
veri�cation theorem (based on a previous result of [22], see also [21] for similar
results) in which it is required that the trajectory of the system remains in the
domain of A a.e. for the admissible control u(·) in question. This is not required
here and in fact this is not satis�ed in the example of the next section.

It is shown in [46] (under assumptions similar to Hypotheses 2.1 and 2.2)
that the couple x(·), u(·)) is optimal if and only if

u(s) ∈
{
u ∈ U : lim

δ→0

V ((s+ δ), x(s) + δ(Ax(s) + b(s, x(s), u)))− V (s, x(s))
δ

= −L(s, x(s), u)
}

(22)

for almost every s ∈ [t, T ], where V is the value function.
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3.1 An example

We present an example of a control problem for which the value function is
a nonsmooth viscosity solution of the corresponding HJB equation, however
we can apply our veri�cation theorem. The problem can model a number of
phenomena, for example in age-structured population models (see [39, 1, 40]),
in population economics [35], optimal technology adoption in a vintage capital
context [13, 14].

Consider the state equation{
ẋ(s) = Ax(s) +Ru(s)
x(t) = x

(23)

whereA is a linear, densely de�ned maximal dissipative operator in H, R is a
continuous linear operator R : R → H, so it is of the form R : u 7→ uβ for some
β ∈ H. Let B be an operator as in Section 4 satisfying (30). We will be using
the notation of Section 4.

We will assume that A∗ has an eigenvalue λ with an eigenvector α belonging
to the range of B.

We consider the functional to be minimized

J(x, u(·)) =
∫ T

t

− |〈α, x(s)〉|+ 1
2
u(s)2ds. (24)

We de�ne

ᾱ(t)
def
=
∫ T

t

e(s−t)A∗αds

and we take M
def
= supt∈[0,T ] | 〈ᾱ(t), β〉 |. We consider as control set U the

compact subset of R given by U = [−M − 1,M + 1]. So we specify the gen-
eral problem characterized by (1) and (2) taking b(t, x, u) = Ru, L(t, x, u) =
− |〈α, x(s)〉|+ 1/2u(t)2, h = 0, U = [−M − 1,M + 1].

The HJB equation (8) becomes{
vt + 〈Dv,Ax〉 − |〈α, x〉|+ infu∈U

(
〈u,R∗Dv〉R + 1

2u
2
)

= 0
v(T, x) = 0 (25)

Note that the operator R∗ : H → R can be explicitly expressed using β which
was used to de�ne the operator R: R∗x = 〈β, x〉.

Now we observe that for 〈α, x〉 < 0 (respectively > 0) the HJB equation is
the same as the one for the optimal control problem with the objective functional∫ T

t
〈α, x(s)〉+ 1

2u(s)
2ds (respectively

∫ T

t
−〈α, x(s)〉+ 1

2u(s)
2ds) and it is known

in the literature (see [34] Theorem 5.5) that its solution is

v1(t, x) = 〈ᾱ(t), x〉 −
∫ T

t

1
2

(R∗ᾱ(s))2 ds

(respectively

v2(t, x) = −〈ᾱ(t), x〉 −
∫ T

t

1
2

(R∗ᾱ(s))2 ds).
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Note that on the separating hyperplane 〈α, x〉 = 0 the two functions assume the
same values. Indeed, since α an eigenvector for A∗,

ᾱ(t) = G(t)α

where

G(t) =
∫ T

t

eλ(s−t)ds

So, if 〈α, x〉 = 0,
〈ᾱ(t), x〉 = 0 for all t ∈ [0, T ].

Therefore we can glue v1 and v2 writing

W (t, x) =
{
v1(t, x) if 〈α, x〉 ≤ 0
v2(t, x) if 〈α, x〉 > 0

It is easy to see that W is continuous and concave in x. We claim that W is a
viscosity solution of (25). For 〈α, x〉 < 0 and 〈α, x〉 > 0 it follows from the fact
that v1 and v2 are explicit regular solutions of the corresponding HJB equations.

For the points x where 〈α, x〉 = 0 it is not di�cult to see that{
D1,+W (t, x) =

{(
1
2 (R∗ᾱ(t))2 , γG(t)α

)
: γ ∈ [−1, 1]

}
⊆ D(A∗)

D1,−W (t, x) = ∅

So we have to verify that W is a subsolution on 〈α, x〉 = 0. If W − ϕ − g

attains a maximum at (t, x) with 〈α, x〉 = 0 we have that p
def
= (p1 + p2)

def
=

D(ϕ+ g)(t, x) ∈ {γG(t)α : γ ∈ [−1, 1]} ⊆ D(A∗). From the de�nition of test1
function p1 = Dϕ(t, x) ∈ D(A∗) so η(t)g′0(|x|) x

|x| = p2 = Dg(t, x) ∈ D(A∗).
W (·, x) is a C1 function and then, recalling that 〈ᾱ(t), x〉t = 〈G′(t)α, x〉 = 0,
we have

∂t(ϕ+ g)(t, x) = ∂tW (t, x) =
1
2

(R∗ᾱ(t))2 , (26)

and for p = γᾱ(t) we have

inf
u∈U

(
〈Ru, p〉+

1
2
u2

)
= −1

2
γ2 (R∗ᾱ(t))2 (27)

Moreover, recalling that g′0(|x|) ≥ 0 and −A∗ is monotone, we have

〈A∗p1, x〉 = 〈A∗(p− p2), x〉 = 〈A∗γG(t)α, x〉 − g′0(|x|)
|x|

〈A∗x, x〉 ≥

≥ γG(t) 〈A∗α, x〉 = 0 (28)

So, by (26), (27) and (28),

∂t(ϕ+ g)(t, x) + 〈A∗p1, x〉 − |〈α, x〉|+

+ inf
u∈U

(
〈Ru,D(ϕ+ g)(t, x)〉+

1
2
u2

)
≥ 1

2
(1− γ2) (R∗ᾱ(s))2 ≥ 0 (29)
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and so the claim in proved.
It is easy to see that both W and the value function V for the problem are

continuous on [0, T ]×H and moreover ψ = W and ψ = V satisfy

|ψ(t, x)− ψ(t, y)| ≤ C‖x− y‖−1 for all t ∈ [0, T ], x, y ∈ H

for some C ≥ 0. In particularW and V have at most linear growth as ‖x‖ → ∞.
By Theorem 2.9, the value function V is a a viscosity solution of the HJB
equation (25) in (0, T ]×H. Moreover, since α = By for some y ∈ H, comparison
holds for equation (25) which yieldsW = V on [0, T ]×H. (Comparison theorem
can be easily obtained by a modi�cation of techniques of [29] but we cannot
refer to any result there since both V and W are unbounded. However the
result follows directly from Theorem 3.1 together with Remark 3.3 of [43]. The
reader can also consult the proof of Theorem 4.4 of [44]. We point out that our
assumptions are di�erent from the assumptions of the uniqueness Theorem 4.6
of [46], page 250).

Therefore we have an explicit formula for the value function V given by
V (t, x) = W (t, x). We see that V is di�erentiable at points (t, x) if 〈α, x〉 6= 0
and

DV (t, x) =
{
ᾱ(t) if 〈α, x〉 < 0
−ᾱ(t) if 〈α, x〉 > 0

and is not di�erentiable whenever 〈α, x〉 = 0. However we can apply Theorem
3.4 and prove the following result.

Proposition 3.7. The feedback map given by

uop(t, x) =
{
−〈β, ᾱ(t)〉 if 〈α, x〉 ≤ 0
〈β, ᾱ(t)〉 if 〈α, x〉 > 0

is optimal. Similarly, also the feedback map

ūop(t, x) =
{
−〈β, ᾱ(t)〉 if 〈α, x〉 < 0
〈β, ᾱ(t)〉 if 〈α, x〉 ≥ 0

is optimal.

Proof. Let (t, x) ∈ (0, T ] × H be the initial datum. If 〈α, x〉 ≤ 0, taking the
control −〈β, ᾱ(t)〉 the associated state trajectory is

xop(s) = e(s−t)Ax−
∫ s

t

e(s−r)AR(〈β, ᾱ(r)〉)dr

and it easy to check that it satis�es 〈α, xop(s)〉 ≤ 0 for every s ≥ t. Indeed,
using the form of R and the fact that α is eigenvector of A∗ we get

〈α, xop(s)〉 = eλ(s−t) 〈α, x〉 − 〈α, β〉
∫ s

t

eλ(s−r) 〈β, ᾱ(r)〉dr

= eλ(s−t) 〈α, x〉 − 〈α, β〉2
∫ s

t

eλ(s−r)G(r)dr.

13



Similarly if 〈α, x〉 > 0, taking the control 〈β, ᾱ(t)〉 the associated state tra-
jectory is

xop(s) = e(s−t)Ax+
∫ s

t

e(s−r)AR(〈β, ᾱ(r)〉)dr

and it easy to check that it satis�es 〈α, xop(s)〉 > 0 for every s ≥ t.
We now apply Theorem 3.4 taking q(s) = ∂tV (s, xop(s)),

p1(s) =
{
ᾱ(s) if 〈α, xop(s)〉 ≤ 0
−ᾱ(s) if 〈α, xop(s)〉 > 0

and p2(s) = 0. It is easy to see that (q(s), p1(s), p2(s)) ∈ E1,+V (s, xop(s)). The
argument for ūop is completely analogous.

We continue by giving a speci�c example of the Hilbert spaceH, the operator
A, and the data α and β. This example is related to the vintage capital problem
in economics, see e.g. [14, 13]. Let H = L2(0, 1). Let {etA; t ≥ 0} be the
semigroup that, if we identify the points 0 and 1 of the interval [0, 1], �rotates�
the function:

etAf(s) = f(t+ s− [t+ s])

where [·] is the greatest natural number n such that n ≤ t+ s. The domain of
A will be

D(A) =
{
f ∈W 1,2(0, 1) : f(0) = f(1)

}
and for all f in D(A) A(f)(s) = d

dsf(s). We choose α to be the constant
function equal to 1 at every point of the interval [0, 1]. (We can take for instance
B = (I − ∆)−

1
2 .) Moreover we choose β(s) = χ[0, 1

2 ](s) − χ[0, 1
2 ](s) (χΩ is the

characteristic function of a set Ω). Consider an initial datum (t, x) such that
〈α, x〉 = 0. In view of Proposition 3.7 an optimal strategy uop is

uop(s) = −〈β, ᾱ(s)〉 = 0

The related optimal trajectory is

xop(s) = e(s−t)Ay.

Remark 3.8. We observe that, using such strategy, 〈α, xop(t)〉 = 0 for all s ≥ t.
So the trajectory remains for a whole interval in a set in which the value function
is not di�erentiable. Anyway, applying Theorem 3.4, the optimality is proved.
Moreover x can be chosen out of the domain of A and so the assumptions of
the veri�cation theorem given in [46] (page 263, Theorem 5.5) are not veri�ed
in this case.

4 Sub- and superoptimality principles and con-

struction of ε-optimal controls

Let B be a bounded linear positive self-adjoint operator on H such that A∗B
bounded on H and let c0 ≤ 0 be a constant such that

〈(A∗B + c0B)x, x〉 ≤ 0 for all x ∈ H. (30)
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Such an operator always exists [49] and we refer to [28] for various examples.
Using the operator B we de�ne for γ > 0 the space H−γ to be the completion
of H under the norm

‖x‖−γ = ‖B
γ
2 x‖.

We need to impose another set of assumptions on b and L.

Hypothesis 4.1. There exist a constant K > 0 and a local modulus of conti-
nuity ω(·, ·) such that:

‖b(t, x, u)− b(s, y, u)‖ ≤ K‖x− y‖−1 + ω(|t− s|, ‖x‖ ∨ ‖y‖)

and
|L(t, x, u)− L(s, y, u)| ≤ ω(‖x− y‖−1 + |t− s|, ‖x‖ ∨ ‖y‖)

Let m ≥ 2. Modifying slightly the functions introduced in [29] we de�ne for
a function w : (0, T )×H → R and ε, β, λ > 0 its sup- and inf-convolutions by

wλ,ε,β(t, x) = sup
(s,y)∈(0,T )×H

{
w(s, y)−

‖x− y‖2
−1

2ε
− (t− s)2

2β
− λe2mK(T−s)‖y‖m

}
,

wλ,ε,β(t, x) = inf
(s,y)∈(0,T )×H

{
w(s, y) +

‖x− y‖2
−1

2ε
+

(t− s)2

2β
+ λe2mK(T−s)‖y‖m

}
.

Lemma 4.2. Let w be such that

w(t, x) ≤ C(1 + ‖x‖k) (respectively, w(t, x) ≥ −C(1 + ‖x‖k)) (31)

on (0, T )×H for some k ≥ 0. Let m > k. Then:

(i) For every R > 0 there exists MR,ε,β such that if v = wλ,ε,β (respectively,
v = wλ,ε,β) then

|v(t, x)− v(s, y)| ≤MR,ε,β(|t− s|+ ‖x− y‖−2) on (0, T )×BR (32)

(ii) The function

wλ,ε,β(t, x) +
‖x‖2

−1

2ε
+
t2

2β

is convex (respectively,

wλ,ε,β(t, x)−
‖x‖2

−1

2ε
− t2

2β

is concave).

(iii) If v = wλ,ε,β (respectively, v = wλ,ε,β) and v is di�erentiable at (t, x) ∈
(0, T ) × BR then |vt(t, x)| ≤ MR,ε,β, and Dv(t, x) = Bq, where ‖q‖ ≤
MR,ε,β
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Proof. (i) Consider the case v = wλ,ε,β . Observe �rst that if ‖x‖ ≤ R then

wλ,ε,β(t, x) =

= sup
(s,y)∈(0,T )×H, ‖y‖≤N

{
w(s, y)−

‖x− y‖2
−1

2ε
− (t− s)2

2β
− λe2mK(T−s)‖y‖m

}
,

(33)

where N depends only on R and λ.
Now suppose wλ,ε,β(t, x) ≥ wλ,ε,β(s, y). We choose a small σ > 0 and (t̃, x̃)

such that

wλ,ε,β(t, x) ≤ σ + w(t̃, x̃)−
‖x− x̃‖2

−1

2ε
− (t− t̃)2

2β
− λe2mK(T−t̃)‖x̃‖m.

Then

|wλ,ε,β(t, x)−wλ,ε,β(s, y)| ≤ σ−
‖x− x̃‖2

−1

2ε
− (t− t̃)2

2β
+
‖x̃− y‖2

−1

2ε
+

(t̃− s)2

2β

≤ σ − 〈B(x− y), x+ y〉
2ε

+
〈B(x− y), x̃〉

ε
+

(2t̃− t− s)(t− s)
2β

≤ (2R+N)
2ε

‖B(x− y)‖+
2T
2β

|t− s|+ σ (34)

and we conclude because of the arbitrariness of σ. The case of wλ,ε,β is similar.
(ii) It is a standard fact, see for example the Appendix of [27].
(iii) The fact that |vt(t, x)| ≤MR,ε,β is obvious. Moreover if α > 0 is small

and ‖y‖ = 1 then

αMR,ε,β‖y‖−2 ≥ |v(t, x+ αy)− v(x)| = α| 〈Dv(t, x), y〉 |+ o(α)

which upon dividing by α and letting α→ 0 gives

| 〈Dv(t, x), y〉 | ≤MR,ε,β‖y‖−2

which then holds for every y ∈ H. This implies that 〈Dv(t, x), y〉 is a bounded
linear functional inH−2 and soDv(t, x) = Bq for some q ∈ H. Since | 〈q,By〉 | ≤
MR,ε,β‖By‖ we obtain ‖q‖ ≤MR,ε,β .

Lemma 4.3. Let Hypotheses 2.1, 2.2 and 4.1 be satis�ed. Let w be a locally
bounded viscosity subsolution (respectively, supersolution) of (8) satisfying (31).
Let m > k. Then for every R, δ > 0 there exists a non-negative function
γR,δ(λ, ε, β), where

lim
λ→0

lim sup
ε→0

lim sup
β→0

γR,δ(λ, ε, β) = 0, (35)

such that wλ,ε,β (respectively, wλ,ε,β) is a viscosity subsolution (respectively,
supersolution) of

vt(t, x) + 〈Dv(t, x), Ax〉+H(t, x,Dv(t, x)) = −γR,δ(λ, ε, β) in (δ, T − δ)×BR

(36)
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(respectively,

vt(t, x) + 〈Dv(t, x), Ax〉+H(t, x,Dv(t, x)) = γR,δ(λ, ε, β) in (δ, T − δ)×BR)
(37)

for β su�ciently small (depending on δ).

Proof. The proof is similar to the proof of Proposition 5.3 of [29]. We notice
that wλ,ε,β is bounded from above.

Let (t0, x0) ∈ (δ, T − δ) × H be a local maximum of wλ,ε,β − φ − g. We
can assume that the maximum is global and strict (see Proposition 2.4 of [29])
and that wλ,ε,β − φ − g → −∞ as ‖x‖ → ∞ uniformly in t. In view of these
facts and (33) we can choose S > 2‖x0‖, depending on λ such that, for all
‖x‖+ ‖y‖ > S − 1 and s, t ∈ (0, T ),

w(s, y)− 1
2ε
‖(x− y)‖2

−1 −
(t− s)2

2β
− λe2mK(T−s)‖y‖m − φ(t, x)− g(t, x)

≤ w(t0, x0)− λe2mK(T−t0)‖x0‖m − φ(t0, x0)− g(t0, x0)− 1. (38)

We can then use a perturbed optimization technique of [29] (see page 424 there)
which is a version of the Ekeland-Lebourg Lemma [33] to obtain for every α > 0
elements p, q ∈ H and a, b ∈ R with ‖p‖, ‖q‖ ≤ α and |a|, |b| ≤ α such that the
function

ψ(t, x, s, y)
def
= w(s, y)− 1

2ε
‖(x− y)‖2

−1 −
(t− s)2

2β
− λe2mK(T−s)‖y‖m

− g(t, x)− φ(t, x)− 〈Bp, y〉 − 〈Bq, x〉 − at− bs (39)

attains a local maximum (t̄, x̄, s̄, ȳ) over [δ/2, T −δ/2]×BS× [δ/2, T −δ/2]×BS .
It follows from (38) that if α is su�ciently small then ‖x̄‖, ‖ȳ‖ ≤ S − 1.

By possibly making S bigger we can assume that (0, T ) × BS contains a
maximizing sequence for

sup
(s,y)∈(0,T ), ‖y‖≤N

{
w(s, y)−

‖x0 − y‖2
−1

2ε
− (t0 − s)2

2β
− λe2mK(T−s)‖y‖m

}
.

Then
ψ(t̄, x̄, s̄, ȳ) ≥ wλ,ε,β(t0, x0)− φ(t0, x0)− g(t0, x0)− Cα

where the constant C does not depend on α > 0, and

ψ(t̄, x̄, s̄, ȳ) ≤ wλ,ε,β(t̄, x̄)− φ(t̄, x̄)− g(t̄, x̄) + Cα.

Therefore, since (t0, x0) is a strict maximum, we have that (t̄, x̄)
α↓0−−→ (t0, x0)

and so for small α t̄ ∈ (δ, T − δ). It then easily follows that if β is big enough
(depending on λ and δ) then s̄ ∈ (δ/2, T − δ/2).

Moreover, standard arguments (see for instance [41]) give us
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lim
β→0

lim sup
α→0

|s̄− t̄|2

2β
= 0, (40)

lim
ε→0

lim sup
β→0

lim sup
α→0

|x̄− ȳ|2−1

2ε
= 0. (41)

We can now use the fact that w is a subsolution to obtain

− (t̄− s̄)
β

− 2λmKe2mK(T−s̄)‖ȳ‖m + b− 〈A∗B(x̄− ȳ), ȳ〉
ε

+ 〈A∗Bp, ȳ〉

+H

(
s̄, ȳ,

1
ε
B(ȳ − x̄) + λme2mK(T−s̄)‖y‖m−1 y

‖y‖
+Bp

)
≥ 0. (42)

We notice that

− (t̄− s̄)
β

= φt(t̄, x̄) + gt(t̄, x̄) + a

and
1
ε
B(ȳ − x̄) = Dφ(t̄, x̄) +Dg(t̄, x̄) +Bq

which in particular implies that Dg(t̄, x̄) ∈ D(A∗), i.e. x̄ ∈ D(A∗), and so it
follows that 〈A∗x̄,Dg(t̄, x̄)〉 ≤ 0. Therefore using this, the assumptions on b and
L, and (40) and (41) we have

φt(t̄, x̄) + gt(t̄, x̄) + 〈x̄, A∗Dφ(t̄, x̄)〉+H (t̄, x̄, Dφ(t̄, x̄) +Dg(t̄, x̄))

≥ 2λmKe2mK(T−s̄)‖ȳ‖m − 〈A∗Bp, ȳ〉 − a− b

−
〈

(ȳ − x̄), A∗
1
ε
B(ȳ − x̄)

〉
− 〈x̄, A∗Dg(t̄, x̄) +A∗Bq)〉

+H
(
t̄, x̄,

1
ε
B(ȳ − x̄)−Bq

)
−H

(
s̄, ȳ,

1
ε
B(ȳ − x̄) + λme2mK(T−s̄)‖y‖m−1 y

‖y‖

)
≥ 2λmKe2mK(T−s̄)‖ȳ‖m − Cλ,εα+

c0
ε
‖x̄− ȳ‖2

−1

−K‖x̄− ȳ‖−1
‖B(x̄− ȳ)‖

ε
− γλ,ε(|t̄− s̄|)− λm(M +K‖ȳ‖)e2mK(T−s̄)‖ȳ‖m−1

≥ −Cλ,εα− γ(λ, ε, β, α) (43)

for some γ(λ, ε, β, α) such that

lim
λ→0

lim sup
ε→0

lim sup
β→0

lim sup
α→0

γ(λ, ε, β, α) = 0.

We obtain the claim by letting α→ 0. The proof for wλ,β,ε is similar.

Remark 4.4. Similar argument would also work for problems with discounting
if w was uniformly continuous in | · | × ‖ · ‖−1 norm uniformly on bounded sets
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of (0, T ) × H. Moreover in some cases the function γR,δ could be explicitly
computed. For instance if w is bounded and

|w(t, x)− w(s, y)| ≤ σ(‖x− y‖−1) + σ1(|t− s|; ‖x‖ ∨ ‖y‖) (44)

for t, s ∈ (0, T ), ‖x‖, ‖y‖ ∈ H, we can replace λe2mK(T−s̄)‖ȳ‖m by λµ(y) for
some radial nondecreasing function µ such that Dµ is bounded and µ(y) → +∞
as ‖y‖ → ∞ (see [29], page 446). If we then replace the order in which we pass
to the limits we can get an explicit (but complicated) form for γR,δ satisfying

lim
ε→0

lim sup
λ→0

lim sup
β→0

γR,δ(ε, λ, β) = 0.

The proofs of Theorem 3.7 and Proposition 5.3 in [29] can give hints how to do
this.

Lemma 4.5. Let the assumptions of Lemma 4.3 be satis�ed. Then:

(a) If (a, p) ∈ D1,−wλ,ε,β(t, x) for (t, x) ∈ (δ, T − δ)×BR then

a+ 〈A∗p, x〉+H(t, x, p) ≥ −γR,δ(λ, ε, β) (45)

for β su�ciently small.

(b) If in addition H(s, y, q) is weakly lower-semicontinuous with respect to
the q-variable and (a, p) ∈ D1,+wλ,ε,β(t, x) for (t, x) ∈ (δ, T − δ) × BR

is such that Dwλ,ε,β(tn, xn) ⇀ p for some (tn, xn) → (t, x), (tn, xn) ∈
(δ, T − δ)×BR, then

a+ 〈A∗p, x〉+H(t, x, p) ≤ γR,δ(λ, ε, β)

for β su�ciently small.

Remark 4.6. The Hamiltonian H is weakly lower-semicontinuous with respect
to the q-variable for instance if U is compact. To see this we observe that thanks
to the compactness of U the in�mum in the de�nition of the Hamiltonian is a
minimum. Let now qn ⇀ q and let

H(s, y, qn) = 〈qn, b(s, y, un)〉+ L(s, y, un)

for some un ∈ U . Passing to a subsequence if necessary we can assume that
un −→ ū, and then passing to the limit in the above expression we obtain

lim inf
n→∞

H(s, y, qn) = 〈q, b(s, y, ū)〉+ L(s, y, ū) ≥ H(s, y, q).

We also remark that since H is concave in q it is weakly upper-semicontinuous
in q. Therefore in (b) the Hamiltonian H is assumed to be weakly continuous
in q.
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Proof. (of Lemma 4.5) Recall �rst that for a convex/concave function v its
sub/super-di�erential at a point (s, z) is equal to

conv{((a, p) : vt(sn, zn) → a,Dv(sn, zn) ⇀ p, sn → s, zn → z}

(see [48], page 319).
(a) Step 1: Denote v = wλ,ε,β . At points of di�erentiability, it follows from

Lemma 4.2(iii) and the �semiconvexity" (see Lemma 4.2(ii)) of wλ,ε,β that there
exists a test1 function ϕ such that v − ϕ has a local maximum and the result
then follows from Lemma 4.3.

Step 2: Consider �rst the case Dv(tn, xn) ⇀ p with (tn, xn) → (t, x). From
Lemma 4.2 (iii) Dv(tn, xn) = Bqn with ‖qn‖ ≤MR,ε,β , so, it is always possible
to extract a subsequence qnk

⇀ q for some q ∈ H. Then Dv(tnk
, xnk

) = Bqnk
⇀

Bq and Bq = p. Therefore

〈A∗Bqnk
, xnk

〉 = 〈qnk
, (A∗B)∗xnk

〉 −→ 〈q, (A∗B)∗x〉 = 〈A∗Bq, x〉 = 〈A∗p, x〉

Moreover, since H is concave in p it is weakly upper-semicontinuous so we have

H(t, x, p) ≥ lim sup
k→+∞

H(tnk
, xnk

, Dv(tnk
, xnk

))

and we conclude from Step 1.
Step 3: If p is a generic point of conv{p : Dv(tn, xn) ⇀ p, (tn, xn) → (t, x)},

i.e. p = limn→∞
∑n

i=1 λ
n
i Bq

n
i , where

∑n
i=1 λ

n
i = 1, ‖qn

i ‖ ≤MR,ε,β , and the Bqn
i

are weak limits of gradients. By passing to a subsequence if necessary we can
assume that

∑n
i=1 λ

n
i q

n
i ⇀ q and p = Bq. But then〈

A∗

(
n∑

i=1

λn
i Bq

n
i

)
, xn

〉
=

〈
A∗B

(
n∑

i=1

λn
i q

n
i

)
, xn

〉
→ 〈A∗Bq, x〉 = 〈A∗p, x〉

as n→∞. The result now follows from Step 2 and the concavity of

p 7→ 〈A∗p, x〉+H(t, x, p).

(b) As in (a) at the points of di�erentiability the claim follows from Lemmas
4.2 and 4.3. Denote v = wλ,ε,β . If Dv(tn, xn) ⇀ p for some (tn, xn) → (t, x),
(tn, xn) ∈ (δ, T − δ)×BR we have that

vt(tn, xn) + 〈A∗Dv(tn, xn), xn〉+H(tn, xn, Dv(tn, xn)) ≤ γR,δ(λ, ε, β). (46)

Observing as in Step 2 of (a) that

〈A∗Dv(tn, xn), xn〉 → 〈A∗p, x〉

we can pass to the limit in (46), using the weak lower semicontinuity of H with
respect to the third variable, to get

a+ 〈A∗p, x〉+H(t, x, p) ≤ γR,δ(λ, ε, β).
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Theorem 4.7. Let the assumptions of Lemma 4.3 be satis�ed and let w be a
function such that for every R > 0 there exists a modulus σR such that

|w(t, x)−w(s, y)| ≤ σR(|t−s|+‖x−y‖−1) for t, s ∈ (0, T ), ‖x‖, ‖y‖ ≤ R. (47)

Then:

(a) If w is a viscosity subsolution of (8) satisfying (31) for subsolutions then
for every 0 < t < t+ h < T , x ∈ H

w(t, x) ≤ inf
u(·)∈U [t,T ]

{∫ t+h

t

L(s, x(s), u(s))ds+ w(t+ h, x(t+ h))

}
.

(48)

(b) Assume in addition that H(s, y, q) is weakly lower-semicontinuous in q
and that for every (t, x) there exists a modulus ωt,x such that

‖xt,x(s2)− xt,x(s1)‖ ≤ ωt,x(s2 − s1) (49)

for all t ≤ s1 ≤ s2 ≤ T and all u(·) ∈ U [t, T ], where xt,x(·) is the solution
of (5). If w is a viscosity supersolution of (8) satisfying (31) for superso-
lutions then for every 0 < t < t+ h < T, x ∈ H, and ν > 0 there exists a
piecewise constant control uν ∈ U [t, T ] such that

w(t, x) ≥
∫ t+h

t

L(s, x(s), uν(s))ds+ w(t+ h, x(t+ h))− ν. (50)

In particular we obtain the superoptimality principle

w(t, x) ≥ inf
u(·)∈U [t,T ]

{∫ t+h

t

L(s, x(s), u(s))ds+ w(t+ h, x(t+ h))

}
(51)

and if w is the value function V we have existence (together with the
explicit construction) of piecewise constant ν-optimal controls.

Proof. We will only prove (b) as the proof of (a) follows the same strategy after
we �x any control u(·) and is in fact much easier. We follow the ideas of [52]
(that treats the �nite dimensional case).

Step 1. Let n ≥ 1. We approximate w by wλ,ε,β with m > k. We notice
that for any u(·) if xt,x(·) is the solution of (5) then

sup
t≤s≤T

‖xt,x(s)‖ ≤ R = R(T, ‖x‖).

Step 2. Take any (a, p) ∈ D1,+wλ,ε,β(t, x) as in Lemma 4.5(b) (i.e. p is the
weak limit of derivatives nearby). Such elements always exist because wλ,ε,β is
�semiconcave". Then we choose u1 ∈ U such that

a+ 〈A∗p, x〉+ 〈p, b(t, x, u1)〉+ L(t, x, u1) ≤ γR,δ(λ, ε, β) +
1
n2
. (52)
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By the �semiconcavity" of wλ,ε,β

wλ,ε,β(s, y) ≤ wλ,ε,β(t, x) + a(s− t) + 〈p, y − x〉+
‖x− y‖2

−1

2ε
+

(t− s)2

2β
. (53)

But the right hand side of the above inequality is a test1 function so if s ≥ t
and x(s) = xt,x(s) with constant control u(s) = u1, we can use (12) and write

∣∣∣∣a(s− t) + 〈p, x(s)− x〉+ ‖x(s)−x‖2−1
2ε + (s−t)2

2β

s− t

− (a+ 〈p, b(t, x, u1)〉+ 〈A∗p, x〉)
∣∣∣∣

≤ |t− s|
2β

+

∣∣∣∣∣
∫ s

t
〈A∗p, x(r)− x〉dr

s− t

∣∣∣∣∣
+

∣∣∣∣∣
∫ s

t
〈p, b(r, x(r), u1)− b(t, x, u1)〉dr

s− t

∣∣∣∣∣+
∣∣∣∣∣
∫ s

t
〈A∗B(x(r)− x), x(r)〉dr

ε(s− t)

∣∣∣∣∣
+

∣∣∣∣∣
∫ s

t
〈B(x(r)− x), b(r, x(r), u1)〉dr

ε(s− t)

∣∣∣∣∣
≤ ω′t,x(|s− t|+ sup

t≤r≤s
‖x(r)− x‖) ≤ ω̃t,x(s− t) (54)

for some moduli ω′t,x and ω̃t,x that depend on (t, x), ε, β but not on u1. We can
now use (52), (53) and (54) to estimate

wλ,ε,β(t+ h
n , x(t+ h

n ))− wλ,ε,β(t, x)
h/n

≤ ω̃t,x

(
h

n

)
+ γR,δ(λ, ε, β) +

1
n2

− L(t, x, u1) (55)

Step 3. Denote ti = t + (t−1)h
n for i = 1, ..., n. We now repeat the above

procedure starting at x(t2) to abtain u2 satisfying (55) with (t2, x(t2)) replaced
by (t3, x(t3)), (t, x) = (t1, x(t1)) replaced by (t2, x(t2)), and u1 replaced by u2.
After n iterations of this process we obtain a piecewise constant control u(n),
where u(n)(s) = ui if s ∈ [ti, ti+1). Then if x(r) solves (5) with the control u(n)

we have

wλ,ε,β(t+ h, x(t+ h))− wλ,ε,β(t, x)
h/n

≤ ω̃t,x

(
h

n

)
n+ γR,δ(λ, ε, β)n+

n

n2
−

n∑
i=1

L(ti−1, x(ti−1), ui).
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We remind that (49) is needed here to guarantee that supti−1≤r≤ti
‖x(r) −

x(ti−1)‖ is independent of ui and x(ti−1) and depends only on x and t. We
then easily obtain

wλ,ε,β(t+ h, x(t+ h))− wλ,ε,β(t, x)

≤ ω̃t,x

(
h

n

)
h+ γR,δ(λ, ε, β)h+

h

n2
−
∫ t+h

t

L(r, x(r), u(n))dr + ω̃′t,x

(
h

n

)
h

(56)

for some modulus ω̃′t,x, where we have used Hypothesis 4.1 and (49) to estimate
how the sum converges to the integral. We now �nally notice that it follows
from (47) that

|wλ,ε,β(s, y)− w(s, y)| ≤ σ̃R(λ+ ε+ β;R) for s ∈ (δ, T − δ), ‖y‖ ≤ R,

where the modulus σ̃R can be explicitly calculated from σR. Therefore, choosing
β, λ, ε small and then n big enough, and using (35), we arrive at (50).

We show below one example when condition (49) is satis�ed.

Example 4.8. Condition (49) holds for example if A = A∗, it generates a
di�erentiable semigroup, and ‖AetA‖ ≤ C/tδ for some δ < 2. Indeed under
these assumptions, if u(·) ∈ U [t, T ] and writing x(s) = xt,x(s), we have

‖(A+ I)
1
2x(s)‖ ≤ ‖(A+ I)

1
2 e(s−t)Ax‖+

∫ s

t

‖(A+ I)
1
2 e(s−τ)Ab(τ, x(τ), u(τ))‖dτ

However for every y ∈ H and 0 ≤ τ ≤ T

‖(A+ I)
1
2 eτAy‖2 ≤ ‖(A+ I)eτAy‖ ‖y‖ ≤ C1

τ δ
‖y‖2.

This yields

‖(A+ I)
1
2 eτA‖ ≤

√
C1

τ
δ
2

and therefore

‖(A+ I)
1
2x(s)‖ ≤ C2

(
1

(s− t)
δ
2

+ (s− t)1−
δ
2

)
≤ C3

(s− t)
δ
2
.

We will �rst show that for every ε > 0 there exists a modulus σε (also depending
on x but independent of u(·)) such that ‖e(s2−s1)Ax(s1) − x(s1)‖ ≤ σε(s2 − s1)
for all t+ ε ≤ s1 < s2 ≤ T . This is now rather obvious since

e(s2−s1)Ax(s1)− x(s1) =
∫ s2−s1

0

AesAx(s1)ds

=
∫ s2−s1

0

(A+ I)
1
2 esA(A+ I)

1
2x(s1)ds−

∫ s2−s1

0

esAx(s1)ds
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and thus

‖e(s2−s1)Ax(s1)− x(s1)‖ ≤ ‖(A+ I)
1
2x(s1)‖

∫ s2−s1

0

√
C1

s
δ
2
ds+ (s2 − s1)‖x(s1)‖

≤ C4

ε
δ
2

(s2 − s1)1−
δ
2 + C5(s2 − s1).

We also notice that there exists a modulus σ, depending on x and independent
of u(·), such that

‖x(s)− x‖ ≤ σ(s− t).

Let now t ≤ s1 < s2 ≤ T . Denote s̄ = max(s1, t+ ε). If s2 ≤ t+ ε then

‖x(s2)− x(s1)‖ ≤ 2σ(ε).

Otherwise

‖x(s2)− x(s1)‖ ≤ 2σ(ε) + ‖x(s2)− x(s̄)‖

≤ 2σ(ε) + ‖e(s2−s̄)Ax(s1)− x(s̄)‖+
∫ s2

s̄

‖e(s2−τ)Ab(τ, x(τ), u(τ))‖dτ

≤ 2σ(ε) + σε(s2 − s1) + C4(s2 − s1) (57)

for some constant C4 independent of u(·). Therefore (49) is satis�ed with the
modulus

ωt,x(τ) = inf
0<ε<T−t

{2σ(ε) + σε(τ) + C(τ)} .
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