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Abstract

Models such as the mixed logit are often used to measure the

distribution of the marginal value of a good based on discrete choice

panel data. There are however serious speci�cation and identi�cation

issues that are rarely addressed. The consequences for results may be

dramatic. This paper points out the issues and presents an approach

to dealing with them that may be applied under some circumstances.

The issues and the approach are illustrated using a dataset designed

to measure the value of travel time.
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1 Introduction

A great number of studies in environmental, energy, health and trans-

port economics attempt to measure the value of non-market goods from

discrete choice data (Bateman et al., 2002). Many valuation studies use

discrete choice data from stated preference or stated choice experiments.

In such experiments, respondents are asked to indicate which alternative

they prefer out of two or more. Alternatives are described in terms of a

small number of characteristics one of which is price. Respondents typically

make a series of choices.

A popular model for such data is the mixed logit model (McFadden and

Train, 2000; Train, 2003). One often speci�es indirect utilities of the alter-

natives as linear in characteristics plus extreme value error terms. Consider

for example the indirect utility for an alternative with cost c and an amount

of some good (or bad) t given by

U = αc + βt + ε. (1)

The parameters α and β represent the marginal utilities of cost and the

good and ε is an error term. In this model, the marginal value of the

good is w = β/α, the ratio of marginal utilities.1 In the mixed logit

model, α, β or both are assumed to be random variables to allow for taste

heterogeneity in the population. The distribution of α, β is known as a

mixing distribution. It is common to assume "nice" distributions such

as the normal or lognormal for these random parameters. However, the

lognormal distribution is quite hard to apply while the normal distribution

takes on both positive and negative values, which is unhelpful when there

is an a priori sign restriction on the parameter.

The parameters α, β are a product of the true parameters and the true

scale of the errors ε which is assumed to be a �xed value. If the errors are in

fact heteroskedastic, then the scale is random and ignoring this will induce

correlation between α and β, making the model even harder to estimate

(Train and Weeks, 2004).

1In section 3.2 we shall distinguish between willingness to pay, willingness to accept,

equivalent gain and equivalent loss, which is why we use terms such as marginal value

with care.
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With random parameters, the estimate of the mean marginal value be-

comes E(β/α). This quantity is hard to estimate and it is very sensitive

to the assumptions made regarding the distributions of α and β, especially

since α appears in the denominator.

In view of these disadvantages of the model in (1) it seems quite relevant

to consider alternative model formulations, where the marginal value is not

obtained as a ratio of random parameters, and where the scale of the error

term is not confounded with w. In this paper we formulate a mixed logit

model in terms of logw = log(β/α). Then we have only a unidimensional

mixing distribution to worry about. Taking logs imposes a sign restriction

on w that is desirable in many cases. By modelling the marginal value

directly, the problem of the scale is moved to a less disturbing place.

Another issue is the distributional assumptions regarding α, β or w.

Bad assumptions and identi�cation problems can lead to the estimated

mean of w being wrong by any order of magnitude (Fosgerau, 2006), and

hence the choice of an adequate mixing distribution is of crucial impor-

tance. This issue is easier to tackle when there is only one dimension of

mixing. We shall make use of the results in Fosgerau and Bierlaire (2007)

to specify a exible mixing distribution that nests a desired mixing dis-

tribution such as the normal. We will also examine the extent to which

the mixing distribution is nonparametrically identi�ed. This is relevant in

our application where insu�cient range of the data gives us identi�cation

problems. We conjecture that such problems are common in applications.

The �nal issue we shall take with the mixed logit model as it is usually

implemented is that it is somewhat hard in practice to let the marginal value

of the good vary with observables. It is not obvious how to parametrise

α, β as background variables may enter either coe�cient and complicated

functional forms may arise. When the model is formulated in terms of

logw it is straight-forward to parametrise logw. In this paper we will

show how parametrising the log marginal value along with an independence

assumption can assist with identi�cation of the distribution of w as well

as it will allow us to take account of reference-dependent preferences in a

simple way (Kahneman and Tversky, 1979; Tversky and Kahneman, 1991;

Bateman et al., 1997; De Borger and Fosgerau, 2006).
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We apply our approach to a dataset collected to evaluate the value of

travel time. Our example application indicates the relevance of the concerns

mentioned above. We see no reason that these issues should be speci�c to

our data. This paper provides a readily usable approach to dealing with

them. Our hope for this paper is hence that the methodology that we

describe will see some use.

The methodology is presented in section 2. Section 3 presents an ap-

plication to stated preference data designed to measure the value of travel

time. Section 4 concludes.

2 Methodology

In this section we describe a simple modelling approach that allows us to

deal with the problems mentioned concerning the model in (1). Section 2.1

sets out the model, section 2.2 discusses extension of the mixing distribu-

tion using the method of sieves, while section 2.3 discusses estimation of

the mean of w.

2.1 Model formulation

Consider a choice between two alternatives characterised by (ci, ti), i = 1, 2,

where ci is cost and ti is a bad. Assume further a linear indirect utility as in

(1), but for now excluding the error term, i.e., Ui = αci +βti where α, β <

0. We do not consider dominated choices and freely reorder alternatives

such that alternative 1 is cheaper but worse in terms of t: t1 > t2 and

c1 < c2. Then alternative 1 is preferred if U1 > U2 or equivalently if

log

(
β

α

)
< log

(
−

c2 − c1

t2 − t1

)
(2)

For use below we de�ne v =
(
−c2−c1

t2−t1

)
, the rate of trade-o� between

money and time presented in the choice situation. We formulate a choice

model directly in terms of the marginal value w = β/α. By assumption w

is positive such that we can decompose w as logw = δx+u, where the sys-

tematic part represents observed heterogeneity x through the index δx and
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where u is a random variable representing unobserved heterogeneity. We

assume that x and u are independent. By including a constant in x we may

assume that u has mean zero. We take u to be constant across observations

from the same individual, x may depend on individual characteristics and

on the choice situation itself.

We introduce subscript n to distinguish individuals and subscript r to

distinguish choice situations. Then the model is that we observe

ynr = 1 ⇔ δxnr + un +
1

λ
εnr < log vnr, (3)

where εnr are independent standard logistic errors and λ is the scale of

the error term. Thus we have formulated a mixed logit model, where

the distribution of u is the mixing distribution. The distribution of u

determines the distribution of marginal values w conditional on x. The

next section discusses the choice of mixing distribution. Note that the scale

of the time and cost variables is now irrelevant for the choice probability,

since only log v enters the model.

The present formulation allows us to work directly with the distribution

of marginal values rather than with a ratio of random marginal utilities. It

is hence better directed towards our object of interest, which is w. Some-

what similar approaches are used in Cameron and James (1987), Cameron

(1988), and Train and Weeks (2004), who specify models where choices

depend on a directly parameterized willingness-to-pay. Fosgerau (2007)

uses nonparametrics to support the present model formulation in favour of

model (1).

2.2 Approximating and testing the mixing distribution

We assume that the unobserved heterogeneity u is absolutely continuous,

such that it has a density function φ. Many applications just assume a

convenient density such as normal or lognormal. However, as the conse-

quences of misspeci�cation may be grave, we shall use the methodology in

Fosgerau and Bierlaire (2007) to test an assumed density against a quite

5



general alternative.2 In case the assumed distribution is rejected against

the more exible alternative, we can just use the alternative instead.

The idea in brief is the following. Let φ be an assumed base density

with corresponding distribution Φ and let g,G be the true density and

distribution. In this paper we shall take φ as the normal density with

standard deviation σ, but other densities are equally possible. Then pro-

vided the support of g is contained in the support of φ it is possible to

transform Φ into G using G = Q ◦ Φ, where Q is a continuous distribu-

tion on the unit interval. Letting the density corresponding to Q be q, we

approximate q using the method of sieves. We take qK(z|γ) as a exible

density on the unit interval with K parameters in γ and the property that

any well-behaved density on the unit interval may be approximated as K

tends to in�nity. Following Bierens (2007), Fosgerau and Bierlaire (2007)

use Legendre polynomials to approximate the true q, but other sieves may

be used as well.

Let P(y|x, v, u) be the choice probability conditional on u. Then we

may approximate the true choice probability as follows.∫
g(u)P(y|x, v, u)du =

∫
q(Φ(u))φ(u)P(y|x, v, u)du

=

∫ 1

0

q(z)P(y, x, v, Φ−1(z))dz

≈
∫ 1

0

qK(z|γ)P(y, x, v, Φ−1(z))dz

Note that this formulation allows for panel data. This is in contrast to non-

parametric approaches which do not take panel data into account and are

only able to estimate the distribution of u+ε/λ (Lewbel et al., 2002). The

term Φ−1(z) is just what one would get when this integral is approximated

by simulation (Train, 2003). So the only di�erence from the standard mixed

logit is the weight qK(z|γ).

Now the hypothesis that g = φ may be tested simply by testing whether

qK = 1, i.e., whether qK is the density of the uniform distribution. If this

2The approach is implemented in freeware designed for the estimation of discrete choice

models (Bierlaire, 2005) and is hence easy to use.
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test is accepted, then qK disappears from the likelihood and we are back

to the standard mixed logit model. If not, then it is feasible to work with

the more exible distribution QK(Φ(·)|γ).

2.3 Estimating the mean of w

2.3.1 Identification

Calculation of the mean of the marginal value w requires that we know

the distribution of w or, given δx, the distribution of u. Even though we

are able to check the �t of the distribution of u as described above, this

only informs us about the distribution over the range where we have data.

What we observe from data is whether δxnr + un + εnr/λ < log vnr. So if

the range of δxnr − log vnr is small, then we are not able to identify the

distribution of u.

As an illustration we might consider estimating the mean of a random

variable with distribution F. Say we have an estimate of F over some interval

[a; b] . If F(b) < 1, then there is a positive probability mass located to

the right of b, hence the mean may be arbitrarily high. Changing the

assumptions we might make about the unobserved tail may have dramatic

impact on the estimated mean. However, if F(a) = 0 and F(b) = 1 then

the whole distribution is observed and the mean is identi�ed.

In the present case, the data inform us about the distribution of u+ε/λ.

Because of ε, this sum has support on the whole real line, so in principle

it is necessary to have data such that δxnr − log vnr varies also over the

whole real line. In this case, the distribution of u is identi�ed (Fosgerau

and Nielsen, 2005).

Note that the index assumption embodied in δx together with the as-

sumption of independence between x and u contributes by extending the

range over which we observe the distribution of u + ε/λ. Without the

covariates in x then only the variation in log v would contribute toward

identi�cation of the distribution of u.

With �nite data it is not possible to have δxnr − log vnr cover the whole

real line. It is, however, useful to check how close we are to observing

u + ε/λ over its entire support as this will help detect a poorly identi�ed
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distribution of u. A way to perform this check is simply to compute the

range of predicted choice probabilities and to check how close this range is

to the unit interval.

2.3.2 Derivation of the mean of w

From the de�nition of w and the assumption of independence between x

and u, the mean of w is

E(w) = E(exp(δx))E(exp(u)) (4)

The �rst part may be estimated as an average over the sample. If u ∼

N(0, σ2) then exp(u) has a lognormal distribution with mean E(exp(u)) =

exp(σ2/2).

In the generalised model the distribution of u is approximated by a

exible transformation of the normal distribution. Recall that we denote

by φ and Φ the density and distribution of a normal random variable with

mean 0 and standard deviation σ. The density of u is

g(u) = q(Φ(u)φ(u) (5)

where the transformation q is a density on the unit interval. Using E(exp(u)) =∫1

0
exp(Φ−1(s))q(s)ds, it is possible to approximate E(exp(u)) by simula-

tion.

3 Application

We illustrate the use of the ideas presented in the preceding section on a

discrete choice dataset collected to evaluate the value of travel time. The

value of travel time (VTT) is an essential notion in transport economics

as the time savings evaluated by the VTT often constitute the major part

of user bene�ts for an infrastructure investment. Many countries have

launched VTT studies and o�cial sets of VTT are provided in most Western

countries.

In principle it is possible to study the distribution of the VTT from

revealed preference data. However, the time and cost of trips are generally
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correlated. Therefore most studies of the VTT are based on stated choice

experiments, where the time and cost variables may be controlled by the

researcher (Gunn, 2000).

Section 3.1 introduces the dataset, section 3.2 speci�es the models to

be estimated and presents estimation results, while section 3.3 is concerned

with the estimation of the mean VTT.

3.1 Data

Data are extracted from the Danish value of time study (Fosgerau et al.,

2007). We use data from one stated choice design, an abstract time-cost

exercise for in-vehicle time - and consider only car drivers.

All subjects in the experiment had to choose between two alternatives,

described by travel time and travel cost. Alternatives di�er only with

respect to time and cost, so that issues such as heterogeneous preferences

for various transport modes play no role. The travel time and cost was

recorded for a recent actual trip subjects had made, these variables are

labelled t0 and c0. We use observations with trip durations greater than

10 minutes, since for shorter durations it is hard to generate meaningful

faster alternatives. We interpret the recent trip as the reference situation

and generated choice situations by varying travel time and cost around the

reference.

Each subject was presented with eight non-dominated choices, two in

each of the four choice quadrants as shown in �gure 1. Thus, each respon-

dent had two equivalent gain (EG) type choices where one alternative was

faster than the reference while the other alternative was cheaper than the

reference. Equivalent loss (EL) choices are the mirror image of this. Sim-

ilarly, respondents where presented with willingness to pay choices, where

one alternative was the reference while the other alternative was faster but

more expensive, and with willingness to accept choices, where again one

alternative was the reference while the other alternative was slower but

cheaper.3

3Subjects were also presented with a dominated choice situation, where one alternative

was both faster and cheaper than the other. The quadrant for this choice situation was
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cost

time

Willingness to pay

Willingness to accept

Equivalent loss

Equivalent gain

Figure 1: Choice quadrants

The eight choice situations were generated in the following way. First,

eight choices were assigned to quadrants at random: two to each quadrant

in random sequence. Second, two absolute travel time di�erences were

drawn from a set, depending on the reference travel time, in such a way

that respondents with short reference trips were only o�ered small time

di�erences. Thus there is no asymmetry in the size of the time di�erences

up and down. Both travel time di�erences were applied to the two situa-

tions assigned to each of the four quadrants. Third, eight trade-o� values

of time were drawn at random from the interval [2 ; 200] DKK per hour4,

using strati�cation to ensure that all subjects were presented with both

low and high values. The trade-o� values correspond to v in the econo-

metric model. The absolute cost di�erence was then found for each choice

situation by multiplying the absolute time di�erence by the trade-o� value

of time. Fourth, the sign of the cost and time di�erences relative to the

random. Respondents who chose the dominated alternative (the one being slower and

more expensive) in the check question were excluded.
47.5 DKK = 1 EUR
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Table 1: Descriptive statistics

Variable Min Mean Max

y 1.00 1.61 2.00

log v −3.00 −0.54 1.21

c −1.00 −1.20·10−3 1.00

t −1.00 1.35·10−3 1.00

log∆t 1.10 1.92 4.09

log c0 0.00 3.41 6.75

log t0 2.40 3.61 5.48

age 16.00 49.87 89.00

age2/100 2.56 27.02 79.21

female 0.00 0.44 1.00

log(income) − 12 −1.33 −0.04 1.06

low income 0.00 0.07 1.00

miss. income 0.00 0.07 1.00

reference were determined from the quadrant. The di�erences were added

to the reference to get the numbers that were presented to respondents on

screen. Travel costs were rounded to the nearest 0.5 DKK.5

Unrealistic answers from the respondents concerning travel distance,

main mode journey time, travel cost, calculated speed, share of travel time

due to congestion or travel group size led to exclusion of respondents. The

remaining sample of car drivers consists of 1,709 respondents (13,311 ob-

servations). Note that we have excluded trips less than 10 minutes.

The background variables available from the interview are sociodemo-

graphic characteristics (e.g., age, income, sex) together with details of the

actual trip. Subjects stated their gross annual income, grouped into inter-

vals of 100,000 DKK up to 1 million DKK. We have computed net annual

income by applying national tax rates to interval midpoints. Table 1 pro-

vides some descriptive statistics for the estimation sample.

5In some cases, rounding caused the cost di�erence to be zero. These observations are

omitted from the analysis.
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3.2 Model specification and estimation results

We estimate two models, one with a minimal set of covariates (M1) and

one with a range of covariates (M2). Each model occurs in two versions

(M1,M1x and M2,M2x). In the �rst version u is assumed to be normal, in

the second version the transformation of the density described in section

2.2 is applied.

Estimation is carried out in Biogeme (Bierlaire, 2003; Bierlaire, 2005),

which allows for explicit estimation of the error scale λ, as well as for the

generalised mixing density described above. We use 500 Halton draws to

simulate the likelihood and note that this is su�cient to achieve stable

results. Parameter estimates are presented in table 2 while table 3 shows

the estimated likelihoods. We shall discuss each model in turn.

M1 comprises �rst a mean and standard deviation for the normal u.

These parameters are very signi�cant.

Bateman et al. (1997) and many others6 indicate that people's choices

di�er from classical utility maximisation in systematic ways, such that the

four valuation measures corresponding to the quadrants in �gure 1 are

generally di�erent, with WTP < (EG, EL) < WTA. De Borger and Fosgerau

(2006) develop the theory in Tversky and Kahneman (1991) to �nd that

the di�erences between the four valuation measures can be captured by a

constant level and two variables in the index δx that capture loss aversion

in the time and cost dimension, respectively. In our experiment one of the

suggested travel times is always equal to the reference t0, while one of the

costs is always equal to the reference c0. De�ne t = t1 + t2 − 2t0 and c =

c1+c2−2c0 and note that the sign of t and c indicates the quadrant as shown

in table 5. We included the signs of t and c in the index with corresponding

parameters labelled ηt and ηc in table 2. These parameters capture loss

aversion and we expect ηc < 0 < ηt (De Borger and Fosgerau, 2006). We

�nd that the loss aversion parameters have the expected signs and that they

are strongly signi�cant. Their relative size indicates more loss aversion in

the time dimension than in the cost dimension. Finally, the scale of the

6E.g., Hess et al. (2007) �nd evidence in stated choice data of asymmetric preferences

around the reference.
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Table 3: Model resume

Log Likelihood Parameters Obs Individuals

M1 −7145.13 5 13311 1709

M1x −7131.59 9 13311 1709

M2 −6903.93 14 13311 1709

M2x −6888.20 18 13311 1709

Table 4: Likelihood ratio tests

Log Likelihood

Unrestricted Restricted di�erence dof p-value

M1x M1 13.54 4 1.9 · 10−5

M2x M2 15.73 4 2.5 · 10−6

M2 M1 241.20 9 3.4 · 10−98

M2x M1x 243.39 9 3.9 · 10−99

error term in λ is close to 1.

In M1x we generalise the distribution of u with four additional param-

eters γ.7 This extension is strongly signi�cant as can be seen from tables 3

and 4. Hence we reject normality of u. In this case, the mean and standard

deviation of the underlying normal distribution changes only a little when

the mixing distribution becomes exible, but there is no a priori reason the

change could not be larger. The loss aversion parameters and the scale of

the error term are una�ected.

7Further extension is not signi�cant.

Table 5: Quadrants

WTP t < 0 , c > 0

EG t < 0 , c < 0

EL t > 0 , c > 0

WTA t > 0 , c < 0
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M2 extends on M1 by including a number of variables in the index δx.

Taken as a whole this extension is very signi�cant.

� The �rst variable is the absolute time di�erence between alternatives.

This variable allows for the e�ect that w increases with the size of

the time di�erence. This e�ect strongly signi�cant, it is not con-

sistent with classical utility maximisation but it is consistent with

reference-dependent preferences (Fosgerau, 2007; De Borger and Fos-

gerau, 2006).

� The next two variables are the log of reference cost and travel time.

The corresponding parameters are again very signi�cant. The esti-

mates indicate that w increases in reference cost and decreases in

reference travel time. The e�ect could be due to self-selection or

maybe to the fact that travel times and costs are self-reported.

� Next we have included age and age squared. These variables are not

signi�cant at 5 per cent.

� The dummy for gender is signi�cantly di�erent from zero and indi-

cates a lower value of travel time for women.

� Finally, we included log of personal net income together with dum-

mies for the low income group and for missing income. We estimate

an income elasticity of the value of travel time of 0.7.

Note that the estimate of σ has decreased relative to M1, indicating

that inclusion of observed heterogeneity reduces the role for unobserved

heterogeneity.

Finally, M2x again generalises the distribution of u with four additional

terms and again this extension is very signi�cant. Except for the mean and

standard variable of the underlying normal mixing distribution there is

only little change from M2 in the parameter estimates.

3.3 The mean value of travel time

Table 6 presents the ranges over the sample of the predicted probabilities of

the four models. We have computed the probabilities for the cheaper and
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Table 6: Range of estimated probabilities

Min Max

M1 0.137 0.911

M1x 0.146 0.909

M2 0.007 0.995

M2x 0.012 0.992

slower alternative 1. We see that large tails are missing in both the low and

the high end for models M1 and M1x. The fact that the lowest probability

is greater than zero indicates that we have not made the price of time

v su�ciently low to make everybody choose the faster, more expensive

alternative. This is an issue in models M1 and M1x where we miss the

lowest 14 per cent. However, for the determination of E(w) this is a minor

issue since we have assumed that w is positive. The fact that the highest

probability is less than one, 9 per cent in models M1 and M1x, is a greater

concern as it indicates that we lack information about the high end of

the distribution of w. This means that the estimate of E(w) is to a large

extent determined by functional form and not by data. Introducing in M2

and M2x a range of variables in the index together with the independence

assumption reduces this problem signi�cantly.

We have simulated the distribution of w conditional on x for each in-

dividual in the sample. Together with the sample distribution of x this

gives us the distribution of w conditional on the sample. Before doing this,

however, we have removed the e�ect of loss aversion by setting the corre-

sponding parameters to zero. Thus we obtain a distribution of marginal

values rather than a mixture of WTP, WTA, EG and EL (De Borger and

Fosgerau, 2006). We have also �xed the time di�erence between alterna-

tives ∆t to 10 minutes as this di�erence is also set by design. Table 7

presents some features of the estimated distribution of w for each model.

Consider �rst M1. The mean value of time is estimated at 60.8 DKK per

hour which is a reasonable value considering that the sample average net

hourly wage is about 100 DKK per hour. This might have been considered

a plausible result had we not now been aware of the problems discussed
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Table 7: Estimated VTT distributions

Model Median 99% Truncated mean Mean

quantile (at 99% quantile)

M1 18.3 673.7 54.2 60.8

M1x 19.1 1110.7 69.3 79.6

M2 22.9 535.2 53.3 57.5

M2x 23.2 789.0 60.2 67.6

above. We have rejected normality of u and we have seen that the range of

data is rather small such that we can put no trust in the estimated right tail

of the distribution of w. Relaxing the normality assumption in M1x deals

with the �rst problem, not with the second. Moreover, the more exible

distribution has a very long tail to the right.

A way to resolve the issue would of course be to go back to collect more

data, increasing the range of v. When this option is not available, we may

instead choose to further parametrise w. We have done this in models

M2 and M2x and found that this signi�cantly reduces the problem of the

missing tails.

Comparing M2 and M2x we �nd again that making the distribution of

u more exible reveals a longer left tail although the tendency is not as

pronounced as for models M1 and M1x. So if we want to base our estimate

of E(w) on data less than on functional form assumptions then we must

opt for model M2x.

4 Conclusion

We have presented an approach to the estimation of a distribution of

marginal valuations from discrete choice data where the marginal valua-

tion is a latent variable. The approach collects several ideas: formulation

of the model directly in terms of the random marginal value rather than in

terms of marginal utilities, parametrisation of the marginal value distribu-

tion, a method of sieves approach to model unobserved heterogeneity and a
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simple informal check on identi�cation. These ideas allow us to work with

the distribution of the latent variable in an informed way.

Our example application has shown that the identi�cation and speci�-

cation of the latent variable distribution are potentially problematic. The

problems are not unique to our model formulation. It is rather the case

that our model formulation makes these problems more visible than they

would be in a discrete choice model formulated in terms of marginal utili-

ties. We think it not unlikely that identi�cation and speci�cation problems

occur in many applications of the mixed logit model.

The approach that we propose was clearly useful in our application and

lead us to the speci�cation of a model with a better identi�ed and exible

latent variable distribution. Moreover, we were able to estimate quite many

signi�cant e�ects on the marginal valuation, something which is often hard

to achieve. The main di�culty in applying the approach is implementing

the method of sieves approximation to an arbitrary mixing distribution.

This approximation is implemented in generally available freeware.
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