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Abstract

This paper studies the impact of a small probability event on strate-
gic behavior in incomplete information games with non-common priors.
It is shown that the global impact of a small probability event (i.e.,
its propensity to affect strategic behavior at all states in the state
space) has an upper bound that is an increasing function of a measure
of discrepancy from the common prior assumption. In particular, its
global impact can be arbitrarily large under non-common priors, but
is bounded from above under common priors. These results quantify
the different implications common prior and non-common prior mod-
els have on the (infinite) hierarchies of beliefs. Journal of Economic
Literature Classification Numbers: C72, D82.

Keywords: common prior assumption; higher order belief; ratio-
nalizability; contagion; belief potential.
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1 Introduction

While controversial, the common prior assumption (hereafter, CPA) is used
in most models of incomplete information in game theory and economics.
This assumption says that the beliefs of all players are generated from a
single prior, updated by Bayes’ rule, so that differences in their beliefs are
due solely to differences in information that they receive. It is well known
that the CPA is crucial for many results in incomplete information games
(e.g., Aumann’s (1976) result on agreeing to disagree and no trade theorems
by Milgrom and Stokey (1982)). The purpose of this paper is to clarify the
restrictions that we implicitly impose on strategic behavior in game theoretic
models when we accept the CPA. Specifically, we focus on “contagion” effects
that a small amount of payoff uncertainty has on strategic behavior through
players beliefs about payoffs, their beliefs about others’ beliefs, and so on,
i.e., hierarchies of beliefs.

It has been known that once we depart from common knowledge of pay-
offs by introducing a small amount of incomplete information, strategic be-
havior may change dramatically through higher order beliefs. Rubinstein
(1989), Carlsson and van Damme (1993), and Morris, Rob, and Shin (1995),
among others, show how a small probability event can have a large impact
on strategic behavior (under common prior). To see the logic behind, sup-
pose that player 1 is known to take a certain action at some information set
which has a very small ex ante probability. If player 2 puts high conditional
probability on that event at his information sets where the first information
set is thought possible, this knowledge might imply a unique best response
by player 2 at these information sets. This, in turn, implies how player 1
responds to that knowledge at larger information sets, and so on. If this
iterative argument results in a unique action profile played everywhere on
the state space, then we have a contagion of this action profile. Then the
question is when it is the case that a certain action profile being chosen at
some event (which, again, may have a very small probability) implies that
this action profile is chosen everywhere on the state space: in other words,
when is an action profile contagious?

To answer this question, Morris, Rob, and Shin (1995) propose to mea-
sure the impact of an event by the notion of belief potential. First, say that
an event E has an impact p on a state ω (we refer to this as the local impact
of event E) if the statement of the form “player 1 believes with probability
at least p that 2 believes with probability at least p that 1 believes . . . that
the true state is in the original event E” is true at state ω. Then, the belief
potential of event E is the largest probability p such that E has impact p
on all states in the state space.

In Section 2, we first demonstrate with an example that under hetero-
geneous priors, there exists an information system where small probability
events have an arbitrarily large belief potential. In the example, we show
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that any strict Nash equilibrium can be contagious under heterogeneous
prior beliefs.

We then find the measure of discrepancy from the CPA that provides an
upper bound on the global impact of small probability events as an increasing
function of this measure. The measure of discrepancy is the supremum of
the ratios between the players’ prior probabilities over the states in the state
space. This result implies, first, that for a small probability event to have
a maximum global impact, this measure of discrepancy from the CPA has
to be large. Second, it implies that the global impact of a small probability
event is bounded from above under the CPA. The latter result also quantifies
the implications of the CPA on infinite hierarchies of beliefs.

For a small probability event to have a large impact on all states in the
state space, it is necessary to drop the CPA. However, we point out that if
we are interested in the local impact of this small probability event (i.e., on
a given state), then this impact can be arbitrarily large even under CPA.
Indeed, we show that for any integer N > 0, we can find an information
system with a common prior, and a small probability event E such that at
some state ω players mutually know up to order N that E did not occur
but where still this small probability event has an arbitrarily large impact
on state ω. This construction sheds light on a result by Yildiz (2004) that
for any strict Nash equilibrium a∗ of a complete information type,1 there
exist nearby types (with respect to product topology in the universal type
space, see Mertens and Zamir (1985) and Brandenburger and Dekel (1993))
from models with common prior such that a∗ is the unique rationalizable
outcome for these types.2 This result crucially relies on Lipman (2003, 2005)
who considers the implications of the CPA for finite hierarchies of beliefs.
He shows that for any state in a partition model where players may have
heterogenous priors (but with common support), there is a corresponding
state in another partition model with a common prior that is close to the
original state with respect to product topology. That is, the CPA does
not have any implication on finite order beliefs, if one is interested only in
local properties of the beliefs (i.e., properties at a given state). However,
Lipman’s (2003, 2005) results say nothing about the restrictions imposed on
global properties of the whole state space. Indeed, we show that under the
CPA, the set of states on which a vanishingly probability event has a large
local impact has an arbitrarily small probability with respect to the common
prior distribution. This is the sense in which we say that the global impact

1A complete information type is a degenerate type in the universal type space where
it is common knowledge that a given complete information game is played.

2Yildiz’ (2004) result is much more general: firstly he consider types that need not be
complete information types, secondly he deals not only with strict Nash equilibria but also
with rationalizable outcomes that need not be strict Nash equilibria. For our purpose, it
is not necessary to consider the most general version of Yildiz’ result. See also Weinstein
and Yildiz (2007).
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of a small probability event cannot be arbitrarily large under the CPA. In
relation to Yildiz’ (2004) result, this implies that for some complete infor-
mation type and for some strict Nash equilibria a∗ (e.g., the risk-dominated
equilibrium in a 2 × 2 coordination game), the ex ante probability of the
set of types (in models from which nearby types are extracted) for which a∗

is uniquely rationalizable vanishes, if we require the set of types such that
the complete information game is not played to be vanishingly small with
respect to the common prior. Hence, our result is strongly related to the
so-called “critical path result” found by Kajii and Morris (1997). Indeed,
using the critical path result in two player games, one can show that our
result that under the CPA, the set of states on which a vanishingly prob-
ability event has a large local impact has an arbitrarily small probability
with respect to the common prior distribution.

Our example in Section 2 shows that in 2×2 coordination games, where
there are two strict Nash equilibria, the risk-dominated equilibrium can
be contagious if the players are allowed to have heterogenous priors. On
the other hand, Kajii and Morris (1997) have shown that under the CPA,
this is not possible. In their terminology, the risk-dominant equilibrium
is robust to incomplete information. In a companion paper (Oyama and
Tercieux (2005)), we show that in generic games, a Nash equilibrium is
robust to incomplete information under heterogeneous priors if and only if
it is a unique action profile that survives iterative elimination of strictly
dominated actions.

The remainder of the paper is organized as follows. Section 2 provides
examples that summarizes the analyses in the subsequent sections. It illus-
trates why without the CPA, every strict Nash equilibrium can be contagious
and how it is related to the discrepancy from the CPA. It also provide a first
insight of why the local impact of a small probability event can be arbitrarily
large even under CPA and relates this to Yildiz (2004). Section 3 introduces
the concept of belief potential and states our results relating the measure
of discrepancy from the CPA with the belief potential of small probability
events. Section 4 compares the local and the global impacts of small proba-
bility events, relating our result to the results by Lipman (2003, 2005) and
Yildiz (2004). Section 5 discusses an alternative distance measure from the
CPA as well as an extension to the many player case.

2 Example

In this section, we illustrate the analyses in the subsequent sections with
a simple example. Consider the following 2 × 2 coordination game with
complete information which we denote by g. There are two players, 1 and 2,
each of whom has two actions L and R. Throughout the paper, for i = 1, 2
we write −i for player j 6= i. The payoffs are given by
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L R

L p, p 0, 0

R 0, 0 1− p, 1− p

where p ∈ (1/2, 1), so that (L,L) is (both Pareto-dominant and) risk-
dominant. We will say that (L,L) is a strict (1 − p)-dominant equilibrium
while (R,R) is a strict p-dominant equilibrium (see Definition 3.3). As p
becomes close to one, the strict Nash equilibrium (R,R) becomes “weaker”.

Now, we ask the following question: For each strict Nash equilibrium
a∗ = (L,L), (R,R) of g, are there “perturbations” arbitrarily “close” to g
in which a∗ is played as a unique rationalizable strategy outcome? The ques-
tion, of course, is not well defined unless what we mean by “perturbations”
being “close” to g is specified.

2.1 Perturbations via Incomplete Information Games

Here, as perturbations of g we consider incomplete information games with
an information partition structure as well as the same sets of players and
actions as in g, where we allow the players to have different prior beliefs.
The complete information game g is considered as a degenerate incomplete
information game. We regard a perturbed incomplete information game
to be close to g if the event that both players know that their payoffs are
given by g has probability close to one with respect to both players’ prior
distributions.

To address the question, we consider the following class of perturbations
of g. The state space Ω is given by {1, 2} × Z+. Player i = 1, 2 has in-
formation partition Qi which consists of (i) the event {(−i, 0)} and (ii) all
the events of the form {(i, k − 1), (−i, k)} for k ≥ 1. Observe that this par-
tition structure is of the same type as that in the electronic mail game of
Rubinstein (1989).

The players may have different prior beliefs. For r ∈ [1,∞) and ε ∈ (0, 1),
let player i’s prior Pi be defined by

Pi(i, k) =
r

r + 1
· ε(1− ε)k,

Pi(−i, k) =
1

r + 1
· ε(1− ε)k.

The players have a common prior if and only if r = 1. Observe that for all
ω ∈ Ω, Pi(ω)/P−i(ω) = r if ω = (i, k), while P−i(ω)/Pi(ω) = r if ω = (−i, k).
We will use the parameter r to measure the degree of discrepancy from the
CPA.

Finally, let Ei = {(−i, 0)} and E = E1 ∪ E2. The payoffs of each player
i are given by g at all states in Ω \Ei, while a∗i is a strictly dominant action
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for player i on event Ei, where a∗ = (a∗1, a
∗
2) will be (L,L) or (R,R). Verify

that Pi(E) = ε for each i. Let us denote this incomplete information game
by U(r, ε; a∗).

(1) Common prior case (r = 1): As demonstrated by Morris, Rob, and
Shin (1995),3 if L is a dominant action for each player i at state (−i, 0), then
however small ε > 0 is, the incomplete information game U(1, ε; (L,L)) has
a unique rationalizable strategy profile, where (L,L) is played at all ω ∈ Ω:
that is, we have a “contagion” of the risk-dominant action L. On the other
hand, as established by Kajii and Morris (1997), even if R is a dominant
action for each player i at state (−i, 0), the incomplete information game
U(1, ε; (R,R)) has a Bayesian Nash equilibrium in which (L,L) is played
with high (ex ante) probability whenever ε is sufficiently small. We may
say that under a common prior, the event E, however small its (ex ante)
probability is, has an impact large enough to make the risk-dominant action
contagious, but not large enough to make the risk-dominated one contagious.

(2) Non-common prior case (r > 1): We show that for r sufficiently
large, each action is contagious: for each equilibrium a∗, if a∗i is a dominant
action at state (−i, 0) for each player i, then there exists r̄ such that for all
r > r̄ and all ε ∈ (0, 1), the incomplete information game U(r, ε; a∗) has a
unique rationalizable strategy profile, where a∗ is played at all ω ∈ Ω. To
see this, suppose that for each player i, R is a dominant action at (−i, 0).
Observe that

Pi({(i, k − 1)}|{(i, k − 1), (−i, k)}) =
r

r + 1− ε
(2.1)

for all k ≥ 1. Now, given p ∈ (1/2, 1), let r̄ = p/(1 − p) (> 1), and take
any r ≥ r̄ and ε ∈ (0, 1). Then, if player −i plays R at (i, k − 1) in any
rationalizable strategy, then it implies that player i plays R at (−i, k) in
any rationalizable strategy, since i assigns a probability r/(r + 1 − ε) > p
to the event −i plays R, which makes R the unique best response. We may
hence say that under non-common priors, the event E, however small its
(ex ante) probability is, may have an impact large enough that any strict
Nash equilibrium is contagious. The key to this result is that by increasing
the value of r, we can have the relevant conditional probabilities, Pi({(i, k−
1)}|{(i, k − 1), (−i, k)}), be as close to one as possible. The supremum of
such conditional probabilities relevant to the contagion argument will be
called the belief potential of the event E (see Definition 3.1 for the precise
definition). In this particular information system with given r and ε, the
belief potential of E is r/(r + 1 − ε), as given by (2.1). But it will turn
out that this is the “best case”, in which a small probability event has the
largest impact. We will show that given values of discrepancy measure, r,
and small probability, ε, the value r/(r + 1 − ε) is the maximum of the
belief potential of a small probability event over information systems (see

3Kajii and Morris (1997) extend their argument to the countable state space case.
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Theorem 3.4 for the precise statement). This implies that an event can have
a larger impact on higher order beliefs under non-common prior than under
common prior.

2.2 Perturbations via Types

The second notion uses as perturbations, states instead of incomplete infor-
mation games. A state is considered to be close to the complete information
game g if at this state (together with the associated partition model) players
know up high level that payoffs are given by g. The corresponding notion
in the universal type space is known as the product topology and has been
studied by Yildiz (2004), among others. He identifies the complete informa-
tion game g with a point tg in the universal type space, i.e., the hierarchy
of degenerate beliefs, and considers as “perturbations” being “close” to g,
types in the universal type space that are close to tg with respect to product
topology.4 His results imply, in particular, that for any strict Nash equilib-
rium a∗ of complete information game g, there exists a sequence of types
converging to tg each of which plays a∗ as a unique rationalizable strategy
outcome. Moreover, by appealing to Lipman’s (2003) result, he shows that
those converging types can be taken from models (i.e., belief-closed sub-
spaces) with common prior. We will discuss in Section 4 the relationship
between Lipman’s (2003, 2005) and Yildiz’ (2004) results and ours.

Yildiz’ (2004) result can be stated in our framework as follows: for any
strict Nash equilibrium a∗ of complete information game g, there exists a
sequence of perturbed incomplete information games Uk with common prior
and states ωk such that any rationalizable strategy profile of Uk plays a∗

at ωk, where in each Uk, a∗i is a strictly dominant action for player i on
an event Ek

i , and at each ωk, players mutually know up to kth order that
the payoffs are given by g. To see this in our example, let a∗ = (R,R).
Modifying the incomplete information game in the previous subsection with
given p ∈ (1/2, 1), Uk can be constructed as follows (common for all k). Let
the state space be Ω̄ = Ω ∪ {∞}, and the information partition for each
player i be Q̄i = Qi ∪ {{∞}}, where Ω and Qi are the state space and
the information partitions defined in the previous subsection. Define the
common prior P̄ by

P̄ (1, k) = P̄ (2, k) =
1
2
ε

(
1− ε

r

)k

for k ≥ 0 and
P̄ (∞) = 1− r

r − (1− ε)
ε,

4A formal definition of the universal type space and of the product topology is given
in Subsection 4.2.
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where r is such that r ≥ p/(1−p). Note that we need to add a state, denoted
∞, in order for P̄ to sum up to one. The payoffs of each player i are given
by g at all states in Ω̄ \Ei, while a∗i is a strictly dominant action for player
i on event Ei. Then, since the relevant posteriors are given by

P̄ ({(i, k − 1)}|{(i, k − 1), (−i, k)}) =
r

r + 1− ε

for all k ≥ 1, the same argument in the previous subsection shows that any
rationalizable strategy plays R in every state in Ω̄ \ {∞}. In addition, it is
easy to check that for each k, at (i, k + 1) (i = 1, 2), it is mutually known
up to order k that payoffs are given by g.

Now, if we require that P̄ (E1∪E2) (= ε) vanish along the sequence, then
P̄ (Ω̄ \ {∞}) must vanish accordingly, and so the ex ante probability of the
event that R is played as a unique rationalizable strategy action converges
to 0. In fact, as we will argue in Section 4, this is the case not only in
this particular construction of incomplete information games, but also in
any such construction. This is to be contrasted with the non-common prior
case in the previous subsection, where any strict Nash equilibrium can be
contagious over the state space. In this sense, if one is interested in strategic
behavior on the whole state space, rather than local behavior (i.e., behavior
at a particular state as in Yildiz (2004)), then models with common priors
may be significantly different from those with non-common priors.

Remark 2.1. In the construction above, we could have assumed that the
payoffs of each player i are given by g at all states in Ω \ Ei, while a∗i is a
strictly dominant action for player i on event Ei and at state ∞ some action
b∗i (possibly equal to a∗i ) is a strictly dominant action for each player i.
Clearly, we would have obtained a dominance solvable game with a common
prior (note, however, that the prior probability of the event “payoffs are
given by g” converges to 0 as ε vanishes). As we will show in Section 4, this
implies that for any strict Nash equilibrium a∗ of complete information game
g, there exists a sequence of types in the universal type space converging to tg
(in the product topology) each of which plays a∗ as a unique rationalizable
strategy outcome. Moreover, those converging types can be taken from
models (i.e., belief-closed subspaces) that are both dominance-solvable and
with a common prior.

3 Belief Potential

3.1 Information Systems and Belief Potential

An information system is the structure (Ω, (Pi)i=1,2, (Qi)i=1,2), where Ω
is a countable set of states, Pi is the prior distribution on Ω for player
i = 1, 2, and Qi is the partition of Ω representing the information of player
i. We write Qi(ω) for the element of Qi containing ω. Given an information
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system, we write Fi for the sigma algebra generated by Qi, We assume that
Pi(Qi(ω)) > 0 for all i = 1, 2 and ω ∈ Ω. Under this assumption, the
conditional probability of ω′ given Qi(ω), Pi(ω′|Qi(ω)), is well-defined by
Pi(ω′|Qi(ω)) = Pi(ω′)/Pi(Qi(ω)). Given an information system, define the
following measure of discrepancy from the common prior case, ρ, by

ρ
(
(Pi)i=1,2

)
= max

i6=j
sup

ω∈Ω: Pj(ω)>0

Pi(ω)
Pj(ω)

(3.1)

with a convention that q/0 = ∞ for q > 0, and 0/0 = 1. Note that
ρ
(
(Pi)i=1,2

)
< ∞ only if (Pi)i=1,2 has common support. The information

system satisfies the CPA if and only if ρ((Pi)i=1,2) = 1.
We use the notion of p-belief as defined by Monderer and Samet (1989).

For p ∈ (0, 1], the p-belief operator for player i = 1, 2, Bp
i : 2Ω → 2Ω, is

defined by
Bp

i (E) = {ω ∈ Ω | Pi(E|Qi(ω)) ≥ p}.

That is, Bp
i (E) is the set of states where player i believes E with probability

at least p (with respect to his own prior Pi). We will also use the knowledge
operator for player i, Ki : 2Ω → 2Ω, is defined by

Ki(E) = {ω ∈ Ω | Qi(ω) ⊂ E}.

That is, Ki(E) is the set of states where player i knows that event E is true.
Let K∗(E) =

⋂
i∈I Ki(E) be the set of states where it is mutual knowledge

that event E is true, i.e., where every player knows that event E is true.
At a state ω, an event E is said to be mutual knowledge at order N if
ω ∈

⋂N
n=1[K∗]n(E). Finally, at state ω, an event E is said to be common

knowledge if ω ∈
⋂∞

n=1[K∗]n(E).
We define the operator Hp

i : 2Ω → 2Ω by

Hp
i (E) = Bp

i (Bp
−i(E)) ∪ E.

We denote (Hp
i )0(E) = E and for k ≥ 1, (Hp

i )k(E) = Hp
i ((Hp

i )k−1(E)).
Denote (Hp

i )∞(E) =
⋃∞

k=1(H
p
i )k(E). We follow Morris, Rob, and

Shin (1995) to measure the impact of an event by the notion of belief poten-
tial. The belief potential of an event E is the largest probability p such that
a statement of the form “player i believes with probability at least p that
player −i believes with probability at least p that i believes . . . that the true
state is in E” is true at every state in Ω.

Definition 3.1. The belief potential of event E, σ(E), is

σ(E) = max
i=1,2

σi(E),

where
σi(E) = sup{p ∈ [0, 1] | (Hp

i )∞(E) = Ω}.
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Similarly, we measure the impact of an event at a given state in the
following way. Event E is said to have impact p on a state ω if a statement
of the form “player i believes with probability a least p that player −i
believes with probability at least p that i believes . . . that the true state is
in E” is true at ω.

Definition 3.2. Event E is said to have impact p at state ω if ω ∈
(Hp

1 )∞(E) ∩ (Hp
2 )∞(E).

The belief potential of event E at state ω, σ(ω|E), is

σ(ω|E) = sup{p ∈ [0, 1] | E has impact p at ω}.

To illustrate these concepts, consider first the information system and
the event E = {(1, 0), (2, 0)} in Subsection 2.1. Note that this infor-
mation system satisfies ρ

(
(Pi)i=1,2

)
= r. Observe first that for each

i = 1, 2, Bp
i (E) = {(−i, 0)} ∪ {(i, 0), (−i, 0)} if p ≤ r/(r + 1 − ε), and

Bp
i (E) = {(−i, 0)} otherwise. Thus,

(Hp
i )K(E) = {(−i, 0)} ∪

K⋃
k=1

{(i, k − 1), (−i, k)}

and therefore (Hp
i )∞(E) = Ω if p ≤ r/(r+1−ε), and (Hp

i )∞(E) = {(−i, 0)}
otherwise. This implies that for this information system,

σ(E) =
r

r + 1− ε
.

In Subsection 3.3, we will show that, given r ≥ 1 and ε > 0, this is the
maximum value of the belief potential of an event with probability ε over
the information systems such that ρ

(
(Pi)i=1,2

)
= r.

Now, consider the information system and the event E = {(1, 0), (2, 0)}
in Subsection 2.2. Recall that this information system satisfies the CPA.
Note that, for any p ∈ [0, 1), if r ≥ p/(1−p), we have (Hp

i )∞(E) = Ω (6= Ω̄).
This implies that, for any p ∈ [0, 1) and N > 0 (provided that r is large
enough), there exists ω, such that it is mutually known up to order N that
payoffs are given by the complete information game and where still E has
a large impact on ω, more formally ω ∈

⋂N
n=1(K∗)n(Ec) and σ(ω | E) ≥ p.

This is the sense in which we will say that a small probability event can
have an arbitrarily large local impact. This is true irrespective of whether
one assumes the CPA.

3.2 Incomplete Information Games and p-Dominance

To relate the impact of a small probability event to the contagion of Nash
equilibria played at that event (as demonstrated in Section 2), we consider
both complete and incomplete information games.
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A (two-player) complete information game consists of a finite set of ac-
tion Ai and a payoff function gi for each i = 1, 2. Throughout our analysis,
we fix a complete information game, simply denoted by g = (gi)i=1,2. We
restate the definition of strict p-dominant equilibrium as defined by Morris,
Rob, and Shin (1995) and Kajii and Morris (1997).

Definition 3.3. Let p ∈ [0, 1). An action profile a∗ ∈ A is a strict p-
dominant equilibrium if for each i = 1, 2 and all ai 6= a∗i ,

gi(a∗i , πi) > gi(ai, πi)

holds for all πi ∈ ∆(A−i) with πi(a∗−i) > p.

An incomplete information game is represented by U =
(IS , (Ai)i=1,2, (ui)i=1,2), where IS is an information system as described
above, Ai is the set of actions for player i, and ui : A × Ω → R is the
payoff function for player i. We denote A = A1 × A2. We assume that
players know their own payoffs, i.e., for each i and every a ∈ A, ui(a, ·) is
measurable with respect to Qi. We also note Ωg,i = {ω | ui(., ω) = gi(.)}
and Ωg =

⋂
i=1,2 Ωg,i. Note that by the latter assumption, Ωg,i ∈ Fi. For

player i = 1, 2 and action ai ∈ Ai, we write the expected payoff against a
conjecture νi ∈ ∆(Ω×A−i) as

Ui(ai, νi) =
∑
ω∈Ω

∑
a−i∈A−i

νi(ω, a−i) ui(ai, a−i, ω).

The set of i’s (pure) best responses against νi ∈ ∆(Ω×A−i) is denoted by

BRi(νi) = arg max
ai∈Ai

Ui(ai, νi).

As the solution concept, we employ interim correlated rationalizability
(Battigalli and Siniscalchi (2003) and Dekel, Fudenberg, and Morris (2007)).
For each i = 1, 2, let R0

i [Qi] = Ai for all Qi ∈ Qi. Then, for each i = 1, 2,
and for Qi ∈ Qi and for k = 1, 2, . . ., define Rk

i [Qi] recursively by

Rk
i [Qi] =

ai ∈ Ai

∣∣∣∣∣∣∣∣
∃ νi ∈ ∆(Ω×A−i) :
νi

({
(ω, a−i)

∣∣ a−i ∈ Rk−1
−i [Q−i(ω)]

})
= 1;

margΩ νi = Pi(·|Qi);
ai ∈ BRi(νi)

 .

Let R∞
i [Qi] =

⋂∞
k=1 Rk

i [Qi].

Definition 3.4. An action ai ∈ Ai is a rationalizable action of player i at
ω ∈ Ω in U if ai ∈ R∞

i [Qi(ω)].

The following proposition is a variant of the result by Morris, Rob, and
Shin (1995, Theorem 5.1). Roughly, it states that if E has a belief potential
equal to σ, then any strict p-dominant equilibrium with p < σ can be
contagious.
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Proposition 3.1. Consider an incomplete information game U . Suppose
that (1) Ωc

g has belief potential σ > 0, (2) (a∗1, a
∗
2) is a strict p-dominant

equilibrium of g for some p < σ, and (3) for each player i, a∗i is a strictly
dominant action at each ω ∈ Ωc

g,i. Then, for each player i, a∗i is the unique
rationalizable action at all ω ∈ Ω.

Proof. See Appendix.

Now we relate the notion of strict p-dominance to the belief potential of
an event on a given state. Roughly, it states that if E has a belief potential
σ at a given state ω, then any strict p-dominant equilibrium with p < σ will
be played at ω.

Proposition 3.2. Consider an incomplete information game U and a state
ω. Suppose that (1) Ωc

g has belief potential σ > 0 at state ω, (2) (a∗1, a
∗
2) is a

strict p-dominant equilibrium of g for some p < σ, and (3) for each player
i, a∗i is a strictly dominant action at each ω ∈ Ωc

g,i. Then, for each player
i, a∗i is the unique rationalizable action at ω.

Proof. See Appendix.

3.3 Upper Bound of Belief Potential

Now we want to characterize the upper bound of the belief potential of
small probability events over information systems with a given value of the
discrepancy from the CPA (i.e., ρ((Pi)i=1,2)). Given an information system,
we denote

F1 ⊕F2 = {E ⊂ Ω | E = E1 ∪ E2 for some Ei ∈ Fi for each i = 1, 2}.

For p ∈ (0, 1] and E ∈ F1 ⊕F2, we define

Hp
∗ (E) = Bp

1(E) ∪Bp
2(E).

We denote (Hp
∗ )k(E) = Hp

∗ ((H
p
∗ )k−1(E)) for k ≥ 1, where (Hp

∗ )0(E) = E,
and (Hp

∗ )∞(E) =
⋃∞

k=1(H
p
∗ )k(E). Verify that (Hp

1 )∞(E) ∪ (Hp
2 )∞(E) =

(Hp
∗ )∞(E), so that if (Hp

i )∞(E) = Ω, then (Hp
∗ )∞(E) = (Hp

i )∞(E). It
is thus sufficient to characterize the (ex ante) probability of (Hp

∗ )∞(E).
The following result is the “conjugate” of Proposition 5.2 in Oyama and
Tercieux (2005), where the upper bound for Pj([(H

p
∗ )∞(Ec)]c) is obtained

for the many-player case. For its proof, we thus report only crucial steps in
the Appendix.

Lemma 3.3. For any r ≥ 1, if p > r/(1 + r), then in any information
system with ρ((Pi)i=1,2) = r, any event E ∈ F1 ⊕F2 satisfies

Pi((Hp
∗ )
∞(E)) ≤ p

(1 + r)p− r
max{P1(E), P2(E)}

for all i = 1, 2.

11



Proof. See Appendix.

The following is the main result of this section, which shows that the
belief potential of small probability events has an upper bound that is an
increasing function of the discrepancy from the CPA.

Theorem 3.4. For any r ≥ 1 and any information system with
ρ((Pi)i=1,2) = r, if E ∈ F1 ⊕F2 and Pi(E) ≤ ε for each i = 1, 2, then

σ(E) ≤ r

1 + r − ε
.

Proof. Take any q > r/(1+ r− ε) (> r/(1+ r)). If max{P1(E), P2(E)} ≤ ε,
then by Lemma 3.3, for each i = 1, 2,

Pi((Hq
∗)
∞(E)) ≤ q

(1 + r)q − r
ε < 1,

meaning that (Hq
∗)∞(E) 6= Ω, and hence (Hq

i )∞(E) 6= Ω. This implies that
σ(E) ≤ r/(1 + r − ε), as claimed.

Note that the upper bound given above is tight: it is attained by the
event E in the information system considered in Subsection 2.1.

Theorem 3.4 proves that for small probability events to have a large
global impact, the measure ρ((Pi)i=1,2), must be large. In light of Proposi-
tion 3.1, this shows that for any strict Nash equilibrium to be contagious,
the discrepancy from the CPA (measured by ρ((Pi)i=1,2)) must also be (ar-
bitrarily) large. Otherwise stated, whenever this measure is assumed to be
bounded, we can find complete information games and strict Nash equilib-
ria that cannot be contagious. In addition, under CPA where this measure
is by definition minimal, the global impact of a small probability event is
bounded from above.

Remark 3.1. By the previous result, it is clear that any strict Nash equi-
librium may be contagious under non-common priors even if Pi(Ωg) can be
made arbitrarily close to 1 for each i = 1, 2. Indeed, more than this, it is also
true that for all N > 0, Pi(

⋂N
n=1(K∗)n(Ωg)) for each i = 1, 2 can be made

arbitrarily close to 1. This latter notion of proximity between incomplete in-
formation games and complete information game is studied in a companion
paper Oyama and Tercieux (2005). In that paper, we characterize equilibria
that cannot be “eliminated” by such perturbations.

4 Common Prior versus Non-Common Prior

Lipman (2003, 2005) shows that given any partition model IS with common
support (and tail consistency in the case of infinite state space) and any state
ω in the model, for any finite N > 0 there is a partition model with a common
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prior ĪS and a state ω̄ in that model at which all the same facts about the
world are true and all the same statements about beliefs and knowledge of
order less than N are true. That is, the common prior assumption does not
impose any restriction on finite order beliefs. A similar argument allowed us
to show in the example of Subsection 2.2 that the small probability E can
have an arbitrarily large local impact even if the common prior assumption
holds.

On the other hand, the global properties of the state space in ĪS may
be very different from the one in IS (as illustrated by the example). If
one is interested in global properties of the whole state space, models with
non-common priors may be quite far from any model with a common prior.
In this section, we formalize this observation with the notions of global and
local impact as well as with the universal type space setting.

4.1 Local versus Global Impact of an Event

By the example in Subsection 2.2, we know that the local impact of a small
probability event E can be arbitrarily large on a given state irrespective of
whether one assumes a common prior. This is true even if at the given state
it is mutually known at arbitrarily large order that E did not occur.

This result allows us to show the following. Fix some strict Nash equi-
librium (a∗1, a

∗
2) of g. Given any arbitrarily large number N , we can find

an information system and a state ω such that, it is mutually known at
order N at ω that g is played, but the strict Nash equilibrium is the unique
rationalizable action profile at ω.

To understand this point, let us state the following proposition.

Proposition 4.1. Let g be a complete information game and (a∗1, a
∗
2) a

strict p-dominant equilibrium for some p < 1. For all N > 0 and ε > 0,
there exists an incomplete information game U with a common prior and a
state ω ∈ Ω such that (1) P (Ωc

g) < ε; (2) ω ∈
⋂N

n=1(K∗)n(Ωg); (3) for each
player i, a∗i is the unique rationalizable action at ω.

However, we show that the global impact of a small probability event E
cannot be arbitrarily large under the CPA. The main point of this section is
that under common prior, the set of states on which a given small probability
event has a “large” impact is small with respect to prior probabilities. The
following lemma formalizes this point.

Lemma 4.2. Let r ≥ 1 and p > r/(r+1). For any δ > 0, there exists ε > 0
such that for any information system IS with ρ((Pi)i∈I) ≤ r and any event
E ∈ F1 ⊕F2 such that Pi(E) ≤ ε for all i ∈ I, we have

Pi({ω ∈ Ω | σ(ω|E) ≥ p}) ≤ δ

for all i ∈ I.
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Proof. Given p > r/(r + 1) and δ > 0, set ε = δ{(1 + r)p − r}/p. Then by
Lemma 3.3, we have for each i = 1, 2,

Pi((H
p
i )∞(E)) ≤ Pi((Hp

∗ )
∞(E)) ≤ p

(1 + r)p− r
ε ≤ δ,

as claimed.

As a corollary of the previous lemma, we have the following main result
of this subsection.

Proposition 4.3. For any p > 1/2 and any δ > 0, there exists ε > 0 such
that for any information system IS that satisfies the CPA and any event
Ē ∈ F̄1 ⊕ F̄2 such that P̄ (Ē) ≤ ε, we have

P̄ ({ω ∈ Ω̄ | σ(ω|Ē) ≥ p}) ≤ δ.

In terms of contagion of Nash equilibria, while any strict Nash equi-
librium at a small probability event can spread in some partition model
with non-common priors, it may not be the case for partition models with
a common prior. Indeed, in 2 × 2 coordination games, the risk-dominated
equilibrium cannot spread from a small probability event when we assume
the existence of a common prior, as shown by Kajii and Morris (1997).

To summarize, under heterogeneous priors, both the local and the global
impact of any small probability event can be arbitrarily large, whereas under
common prior, only the local impact can be arbitrarily large.

This distinction will allow us to shed light on a result of Yildiz (2004)
which shows that for any type in the universal type space, there exists
arbitrarily close types where rationalizability yields a unique action profile,
and moreover, such a type can always be taken from a model with a common
prior.

We will first see the connection between this point and the local impact
of an event. Then, we will see that if one is interested in such a statement
on a whole model (and not only on a specific state of the world / type)
dropping the common prior assumption is necessary (and sufficient).

4.2 Topology on Types versus Topology on Subspaces

In this subsection, we embed our results in the universal type space setting.
This allows us to compare our results with those of Yildiz (2004), who
shows that, under standard assumptions, for any type in the universal type
space, there exists nearby types where a unique rationalizable action profile
is played. This result is obtained irrespective of whether one assumes that
players share a common prior. We claim that if one is interested in the
behavior of players not only at a given type but on a whole model, then
dropping the common prior assumption is crucial to obtain Yildiz’ (2004)
type of statement.
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4.2.1 The Universal Type Space Setting

Let Θ be a compact metric space of payoff-relevant parameters θ, which is
identified as the set of possible payoff functions. To make things simple, we
assume that Θ = Θ1 × Θ2 where Θi = [0, 1]A. We write ∆(X) for the set
of probability measures on the Borel field B(X) of any topological space X.
When X is a set of probability measures, it will be endowed with the weak
topology.

Define recursively X0 = Θ, X1 = ∆(X0), X2 = ∆(X0 ×X1) . . . . Let us
now describe a type in the setting of the universal type space. A type of a
player i is an infinite hierarchy of beliefs ti = (t1i , t

2
i , . . .) where t1i ∈ X1 is a

probability distribution on Θ, representing the (first order) beliefs of player
i about Θ, t2i ∈ X2 is a probability distribution representing the (second
order) beliefs of player i, i.e., his beliefs about Θ as well as his beliefs about
the other player’s beliefs over Θ, and so on. We also assume that it is
common knowledge that the beliefs are coherent.5 Denote the set of all such
types by T ∗

i , and let T ∗ = T ∗
1 × T ∗

2 .
For each type ti, let κti ∈ ∆(Θ×T ∗

−i) be the unique probability distribu-
tion that represents the beliefs of ti about (θ, t−i). Mertens and Zamir (1985)
show that the mapping ti 7→ κti is a homeomorphism. A set T ⊂ T ∗ is said
to be a belief-closed subspace (or subspace, in short) if κti(Θ× T−i) = 1 for
each ti ∈ Ti.

Also for a complete information game g ∈ Θ, we define the complete
information type tg as the type in the universal type space where g is com-
mon knowledge, formally for each i, t1g,i = δ1

g where δ1
g is the probability

distribution in X1 assigning probability 1 to g, and tkg,i = δk
g where δk

g is the
probability distribution in Xk assigning probability 1 to (g, δ1

g, . . . , δk−1
g ).

We denote tg = (tg,1, tg,2).
We now describe the connection between the partition model setting

and the universal type space setting. In particular, we show how a partition
model together with a state induces a type in the universal type space. Since
the parameter space (namely Θ) has been added to the description of the
basic uncertainty, we now need to refer to it in the definition of a partition
model. Hence a partition model M now consists of an information system
[Ω, (Qi)i∈I , (Pi)i∈I ] together with a function f : Ω → Θ where f(ω) is the
value of the unknown parameter at state ω.

Any partition model together with any state ω in that model uniquely
identifies a particular type in the universal type space denoted t[ω] by the
the so-called unravelling procedure.6 Given a state ω in a partition model,

5A type of player i, ti is coherent if for every n ≥ 2, margXn−2
tn
i = tn−1

i .
6The converse of this statement (i.e., that any type in the universal type space can be

constructed using the unravelling procedure from some partition model) is true as long as
we allow for a less restrictive class of partitions models from those we use in this paper.
See, e.g., Brandenburger and Dekel (1993).
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we can identify each player’s first order beliefs at ω. Denote player i’s first
order beliefs at state ω by t1i [ω] ∈ X1. For each measurable set B ⊂ Θ, we
define

t1i [ω](B) = Pi(f−1(B) | Qi(ω)).

In the same way, player i’s second order beliefs at ω, say, t2i [ω] ∈ X2 is
defined by

t2i [ω](B) = Pi({ω′ | (f(ω′), t1−i[ω
′]) ∈ B} | Qi(ω))

for each measurable set B ⊂ Θ × ∆(Θ). Continuing recursively, we can
define tni [ω] for every n. Let ti[ω] = (t1i [ω], t2i [ω], ...) and t[ω] = (t1[ω], t2[ω]).

4.2.2 Product Topology

The straightforward topology used in the universal type space, and in par-
ticular the one used by Yildiz (2004), is the product topology. Let us review
convergence of a sequence of types in the universal type space with respect
to product topology. For our purpose, it is sufficient to restrict our attention
to convergence toward a complete information type. For a complete infor-
mation game g, we will write tg for the complete information type where g is
common knowledge. Since complete information types, considered as single-
ton sets, can also be seen as complete information subspaces, this will allow
us to compare convergence of a sequence of types toward tg and convergence
of sequences of subspaces toward {tg}.

Definition 4.1. Let tg be a complete information type where g is common
knowledge. tm → tg as m →∞ if for each i and k, tki,m → tki,g as m →∞.

To relate the statements of the previous subsection to statements
in the universal type space as in Yildiz (2004), note first that if ω ∈⋂N

n=1(K∗)n(f−1(g)), then for each i, tN
′

i [ω] = δN ′
g for all N ′ ≤ N . Let

us now state the following simple observation.

Observation 4.4. Consider a sequence (Mm, ωm) of partition models and
states in this model. If for all N > 0, there exists m̄ such that for all m ≥ m̄
(Mm, ωm) satisfies ωm ∈

⋂N
n=1(K∗)n(f−1(g)), then t[ωm] → tg as m →∞.

We also use a notion of convergence of subspaces toward complete infor-
mation subspaces. First, we provide a definition that will allow us to extract
a (set of) measure(s) from a given subspace.

Definition 4.2. Let T ⊂ T ∗ be a subspace. A profile of priors over T ,
(Pi)i∈I , is said to be belief consistent with T if for all i and all type ti,
κti = Pi(·|{ti} × T−i).

We say that T satisfies the common prior assumption if there is a profile
(Pi)i∈I of priors belief consistent with T such that P1 = P2.
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Definition 4.3. Let ({tg}, (δg)i=1,2) be a complete information subspace.
(Tm, (Pm

i )i=1,2) → ({tg}, (δg)i=1,2) as m →∞ if for all δ > 0,

Pm
i ({t ∈ Tm | t1i,m = t1g,i for i = 1, 2}) → 1 as m →∞.

To discuss the relationship between our results and Yildiz’ result on
generic uniqueness, we first define the impact of an event in the universal
type space which is the corresponding definition of belief potential in the
universal type space.

Consider Θ̂ ∈ B(Θ). Define recursively the sequence of sets of distribu-
tions:

Πp
1(Θ̂) = {π ∈ X1 | π(Θ̂) ≥ p}

and for all k ≥ 2,

Πp
k(Θ̂) = {π ∈ Xk | margXk−1

π(Πp
k−1(Θ̂)) ≥ p}.

Definition 4.4. Θ̂ ∈ B(Θ) has impact p on type t if for all i ∈ {1, 2} and
K such that

margXK−1
tKi (Πp

K−1(Θ̂)) ≥ p.

We say that Θ̂ has impact p on the subspace T if it has impact p on any
t ∈ T .

Proposition 4.5. Fix any g ∈ Θ, p ∈ [0, 1) and Θ̂ ∈ B(Θ). There exists a
sequence of profiles {(Tm, tm)}∞m=0 such that for each m, Tm is a subspace
satisfying the common prior assumption and tm is a type in Tm such that
tm → tg (as m →∞) and where for each m, Θ̂ has impact p on tm.

Proof. Pick (θ1, θ2) ∈ Θ̂. Add to the information system in the example
in Subsection 2.2 a function f so that f(ω) = (gi, θ−i) when ω ∈ Ei and
f(ω) = g otherwise. Define the subspace T = T1×T2 where Ti =

⋃
ω∈Ω̄ ti[ω].

Note that for all N > 0, there exists ω such that ω ∈
⋂N

n=1(K∗)n(f−1(g)).
Observation 4.4 completes the proof.

In terms of contagion of strict Nash equilibria, we have the following
result.

Proposition 4.6. Fix any g ∈ Θ, and consider (a∗1, a
∗
2) a strict p-

dominant equilibrium for some p < 1. There exists a sequence of profiles
{(Tm, tm)}∞m=0 such that for each m, Tm is a subspace satisfying the common
prior assumption and tm is a type in Tm such that tm → tg (as m → ∞)
and where for each m, (a∗1, a

∗
2) is the unique rationalizable action profile at

tm.

Remark 4.1. Using Remark 2.1, we can have that Tm is a subspace that
satisfies both the common prior assumption and dominance-solvability.
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Note that it is easy to show that T k can indeed be chosen to be finite.
Thus, it is now clear that for any Θ̂ and any p < 1, for any open neighbor-
hood (with respect to product topology) of any complete information type
tg, there exists a type t coming from a subspace with common prior so that
Θ̂ has impact p on t.

However, as we have claimed earlier, in the subspace to which t belongs,
the set of types where Θ̂ has impact p > 1/2 is assigned probability close to
zero by the common prior whenever this prior assigns a small probability to
Θ̂.

However, allowing for heterogeneous priors enables us to obtain a result
that explicitly refers to subspaces. We want to underline that when the
object of interest for a modeler is a subspace, then a statement of the type
of proposition 4.6 holds only when we allow for heterogeneous priors.

Proposition 4.7. Fix any g ∈ Θ, p ∈ [0, 1) and Θ̂ ∈ B(Θ). There ex-
ists a sequence of subspaces {(Tm, (Pm

i )i=1,2)}∞m=0 where (Tm, (Pm
i )i=1,2) →

({tg}, (δg)i=1,2) as m →∞ and for each m: Θ̂ has impact p on Tm.

Remark 4.2. The notion of convergence of subspaces provided in defini-
tion 4.3 could have been strengthened as follows. Say that Tm → {tg} as
m →∞ if for all k > 0,

Pi,m({t ∈ Tm | tki,m = tkg,i for i = 1, 2}) → 1 as m →∞

where for each m, (Pi,m)i∈I is some profile of priors belief consistent with
Tm. Proposition 4.7 would stay unchanged under this definition.

5 Discussion

5.1 Alternative Discrepancy Measure

In this subsection, we consider an alternative measure of discrepancy from
the CPA. This measure is denoted by d0 and defined by

d0

(
(Pi)i=1,2

)
= sup

E⊂Ω
|P1(E)− P2(E)|.

Note that the information system satisfies the CPA if and only if
d0((Pi)i=1,2) = 0.

The analogue of Lemma 3.3 using the distance d0 is the following.

Lemma 5.1. For any ξ ≥ 0, if p > 1/2, then in any information system
with d0((Pi)i=1,2) ≤ ξ, any event E ∈ F1 ⊕F2 satisfies

Pi((Hp
∗ )
∞(E)) ≤ p

2p− 1
Pi(E) +

ξ

2p− 1

for all i = 1, 2.
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Proof. See Appendix.

The following theorem is the analogue of Theorem 3.4.

Proposition 5.2. For any ξ ≥ 0 and any information system with
d0(P1, P2) ≤ ξ, if E ∈ F1 ⊕F2 and Pi(E) ≤ ε for each i = 1, 2, then

σ(E) ≤ 1 + ξ

2− ε
.

Proof. Take any q > (1 + ξ)/(2 − ε) (> 1/2). If max{P1(E), P2(E)} ≤ ε,
then by Lemma 5.1, for each i = 1, 2,

Pi((Hq
∗)
∞(E)) ≤ p

2p− 1
ε

ξ

2p− 1
< 1,

meaning that (Hq
∗)∞(E) 6= Ω, and hence (Hq

i )∞(E) 6= Ω. This implies that
σ(E) ≤ (1 + ξ)/(2− ε), as claimed.

One can show that the upper bound given above is asymptotically tight.
However, this measure does not allow to prove the analogue of Lemma 4.2.
We illustrate this in the following simple example.7 Let the state space
and the information partition for each player i be as in subsection 2.1. Let
player i’s prior Pi be defined by Pi(j, 0) = ε/2 for j = 1, 2; Pi(i, 1) = ξ and
Pi(−i, 1) = ε2/2. Finally, for each k ≥ 2, let

Pi(j, k) =
α(1− α)k−2

2
×

{
1− ε(1− ε)− ξ

}
for j = 1, 2, where α ∈ (0, 1). Note that this information system satisfies
d0

(
(Pi)i=1,2

)
≤ ξ. In addition, fixing p ∈ [0, 1), whenever ε is small enough,

we have Pi({ω | σ(ω | E) ≤ p}) ≥ ξ for each i = 1, 2.
Note that following Proposition 3.2, this example shows that contagion of

any strict Nash equilibrium can occur on a set of states of probability greater
than ξ that does not vanish when the prior probability of Ωc

g converges to
0.

The point behind this example is that there exists no direct connec-
tion between proximity of priors using d0 and proximity of conditional be-
liefs. This has to be contrasted with the measure ρ used in this paper. To
understand this point, let us consider (without loss of generality) a fixed
Ω. For the measure ρ, we have that for any sequence {

(
Pm

i

)
i=1,2

}∞m=0:
ρ
(
(Pm

i )i=1,2

)
→ 0 if and only if

max
i6=j

sup
E,F⊂Ω

Pm
i (E|F )

Pm
j (E|F )

→ 0,

7This example also shows that a result of the type of the critical path result found by
Kajii and Morris (1997) cannot hold even if we only consider information systems where
d0(P1, P2) is arbitrarily small (as long as it is strictly positive). This has to be contrasted
again with the measure ρ(P1, P2).
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where Pm
i (E|F ) is i’s conditional belief on event E given F in the informa-

tion system
(
Ω, (Pm

i )i=1,2, (Qi)i=1,2

)
.

5.2 Many-Player Extension

In this subsection, we briefly discuss an extension of belief potential to the
case of many players. We denote by I = (1, 2, . . . , I) the finite set of play-
ers. As previously, an information system (Ω, (Pi)i∈I , (Qi)i∈I) consists of a
countable state space Ω, the prior distribution Pi and the information par-
tition Qi for each player i ∈ I. Denote by Fi the sigma algebra generated
by Qi.

Let E be a profile (E1, . . . , EI) where Ei ∈ Fi. Define(
B̂p

)
i
(E) = Bp

i

(⋂
j 6=i Ej

)
,

and B̂p(E) =
((

B̂p
)
i
(E)

)
i∈I .

Then, define
{(

Ĥp
)k(E)

}∞
k=0

recursively by
(
Ĥp

)0

i
(E) = Ei and for k ≥

1, (
Ĥp

)k

i
(E) = Bp

i

(⋂
j 6=i

(
Ĥp

)k−1

j
(E)

)
∪

(
Ĥp

)k−1

i
(E)

=
(
B̂p

)
i

(
(Ĥp

)k−1(E)
)
∪

(
Ĥp

)k−1

i
(E).

Definition 5.1. Let E = (E1, . . . , EI) where Ei ∈ Fi. The belief potential
of event profile E, σ(E), is

σ(E) = max
i∈I

min
j 6=i

σj(E),

where
σi(E) = sup

{
p ∈ [0, 1]

∣∣ ⋃∞
k=0

(
Ĥp

)k

i
(E) = Ω

}
.

We want to relate the belief potential to the p-dominance of Nash equi-
libria. Incomplete information games U = (IS , (Ai)i∈I , (ui)i∈I) are defined
analogously to the two player case, where IS is an information system as
described above. We denote A =

∏
i∈I Ai and A−i =

∏
j 6=i Aj .

Definition 5.2. Let p ∈ [0, 1). An action profile a∗ ∈ A is a strict p-
dominant equilibrium of g if for each i ∈ I and all ai 6= a∗i ,

gi(a∗i , πi) > gi(ai, πi)

holds for all πi ∈ ∆(A−i) with πi(a∗−i) > p.

We have the following.

Proposition 5.3. Suppose that (1) Ωc
g has belief potential σ > 0, (2) a∗ is

a strict p-dominant equilibrium at every state for some p < σ, and (3) for
each player i ∈ I, a∗i is a strictly dominant action at every ω ∈ Ωc

g,i. Then,
for each player i, a∗i is the unique rationalizable action at all ω ∈ Ω.
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Appendix

A.1 Proof of Proposition 3.1

Given (a∗1, a
∗
2), denote Ωi = {ω ∈ Ω | R∞[Qi(ω)] = {a∗i }} for each i = 1, 2.

Lemma A.1.1. Consider an incomplete information game U . Suppose that
(i) (a∗1, a

∗
2) is a strict p-dominant equilibrium of g, and (ii) for each player

i, a∗i is a strictly dominant action at each ω ∈ Ωc
g,i. Then, for any q > p,

(Hq
i )∞(Ωc

g) ⊂ Ωi for each i.

Proof. Fix q > p and i = 1, 2. We first show by induction that (Hq
i )k(Ωc

g) ⊂
Ωi ∪ Ωc

g,−i for all k. This is true for k = 0 since Ωc
g,i ⊂ Ωi by assumption

(ii). Assume now that it is true for k−1, that is, (Hq
i )k−1(Ωc

g) ⊂ Ωi∪Ωc
g,−i.

Then we have

Bq
−i((H

q
i )k−1(Ωc

g)) ⊂ Bq
−i(Ωi ∪ Ωc

g,−i) = Bq
−i(Ωi) ∪ Ωc

g,−i,

where the equality follows from Ωc
g,−i ∈ F−i. Since Bq

−i(Ωi) ⊂ Ω−i and
Ωc

g,−i ⊂ Ω−i by assumptions (i) and (ii), respectively, it follows that
Bq
−i((H

q
i )k−1(Ωc

g)) ⊂ Ω−i. Again by (i) and (ii) as well as the induction
hypothesis, we have

(Hq
i )k(Ωc

g) = Bq
i (B

q
−i((H

q
i )k−1(Ωc

g))) ∪ (Hq
i )k−1(Ωc

g)

⊂ Bq
i (Ω−i) ∪ (Hq

i )k−1(Ωc
g) ⊂ Ωi ∪ (Ωi ∪ Ωc

g,−i) = Ωi ∪ Ωc
g,−i,

as desired.
Now note that since (Hq

i )∞(Ωc
g)\Ωi ∈ Fi, we have Bq

i ((H
q
i )∞(Ωc

g)\Ωi) =
(Hq

i )∞(Ωc
g) \ Ωi. Thus, by (i), together with (Hq

i )∞(Ωc
g) \ Ωi ⊂ Ωc

g,−i, we
get (Hq

i )∞(Ωc
g) \ Ωi ⊂ Ωi. Hence, (Hq

i )∞(Ωc
g) ⊂ Ωi.

Proof of Proposition 3.1. Let σ(Ωc
g) = σi(Ωc

g). By Lemma A.1.1, assump-
tions (2) and (3) imply that (Hσ

i )∞(Ωc
g) ⊂ Ωi. But (1) implies that

(Hσ
i )∞(Ωc

g) = Ω, so that Ωi = Ω. Also, by (2) it must be that Ω−i = Ω.

Proof of Proposition 3.2. By Lemma A.1.1, assumptions (2) and (3) im-
ply that (Hσ

i )∞(Ωc
g) ⊂ Ωi for each i = 1, 2. But (1) implies that

ω ∈ (Hσ
1 )∞(Ωc

g) ∩ (Hσ
2 )∞(Ωc

g) ⊂ Ω1 ∩ Ω2.

A.2 Proof of Lemma 3.3

We first note the following, which is essentially equivalent to Lemma A in
Kajii and Morris (1997).

Lemma A.2.1. Let p > 0. For any event E and player i, if Fi ∈ Fi and
Fi ⊂ Bp

i (E), then Pi(Fi \ E) ≤ ((1− p)/p)Pi(Fi ∩ E).
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Fix r ≥ 1, and consider any information system with ρ((Pi)i=1,2) = r
and any event E = E1 ∪ E2, each Ei ∈ Fi. In the following, we want to
obtain an upper bound for Pj((H

p
∗ )K(E)).

Let E0
i = Ei and E0 = E0

1 ∪ E0
2 . Given K ≥ 1 and p ∈ (0, 1], define

{Ek
1 , Ek

2 , Ek}K+1
k=1 recursively by

Ek
i = Bp

i (Ek−1), Ek = Ek
1 ∪ Ek

2 .

Then, (Hp
∗ )K(E) = EK . Let D0

i = E0
i and Dk

i = Ek
i \ Ek−1

i for k =
1, . . . ,K + 1. Observe that {Dk

i }
K+1
k=0 is a partition of Ω, which is coarser

than Qi.
For i, j = 1, 2, let xi(j, 0) = 0, and

xi(j, k) =
k∑

`=1

Pi(D`
j \ E`−1) (A.1)

and
xi(k) = xi(1, k) + xi(2, k)

for k = 1, . . . ,K. Let also

zi(j, k) =
k∑

`=1

Pi(D`
j ∩ E`−1) (A.2)

for k = 1, . . . ,K. Note that

Pi((Hp
∗ )

K(E)) ≤ Pi(E) + xi(1,K) + xi(2,K) (A.3)

and that
zi(j, k) ≤ xi(−j, k − 1) + Pi(E0

−j \ E0
j ). (A.4)

By using Lemma A.2.1, we have the following.

Lemma A.2.2. For all k = 1, . . . ,K and i = 1, 2,

xi(i, k) ≤ 1− p

p
zi(i, k).

Now, ρ((Pi)i=1,2) = r implies that xi(j, k) ≤ rx−i(j, k) and zi(j, k) ≤
rz−i(j, k). Thus by Lemma A.2.2, we have the following.

Lemma A.2.3. For all k = 1, . . . ,K and i = 1, 2,

xi(k) ≤ r(1− p)
p

x−i(k − 1) +
r(1− p)

p
P−i(E0).
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Proof. By Lemma A.2.2 and (A.4),

xi(k) = xi(i, k) + xi(−i, k)
≤ xi(i, k) + rx−i(−i, k)

≤ 1− p

p
zi(i, k) +

r(1− p)
p

z−i(−i, k)

≤ r(1− p)
p

(
z−i(i, k) + z−i(−i, k)

)
≤ r(1− p)

p
x−i(k − 1) +

r(1− p)
p

P−i(E0),

as claimed.

By recursively using Lemma A.2.3, we obtain the upper bound of
Pi((H

p
∗ )K(E)).

Lemma A.2.4. In any information system with ρ((Pi)i=1,2) = r, any event
E ∈ F1 ⊕F2 satisfies

Pi((Hp
∗ )

K(E)) ≤ max{P1(E), P2(E)}
K∑

k=0

{
r(1− p)

p

}k

(A.5)

for all i = 1, 2.

We are now in a position to prove Lemma 3.3. It remains to consider
the limit of the right hand side of (A.5) as K → ∞. This is where the
assumption that p > r/(1 + r) is used.

Proof of Lemma 3.3. If p > r/(1+r), or r(1−p)/p < 1, then the right hand
side of (A.5),

∑K
k=0{r(1− p)/p}k, converges to

1

1− r(1− p)
p

=
p

(1 + r)p− r

as K →∞. Hence, by Lemma A.2.4 we have the desired inequality.

A.3 Proof of Lemma 5.1

Fix ξ ≥ 0, and consider any information system with d0((Pi)i=1,2) = ξ and
any event E = E1∪E2, each Ei ∈ Fi. We use the same labeling of events as
in Subsection A.2. Let E0

i = Ei and E0 = E0
1 ∪E0

2 . Define {Ek
1 , Ek

2 , Ek}∞k=1

recursively by Ek
i = Bp

i (Ek−1) and Ek = Ek
1 ∪ Ek

2 . Let Dk
i = Ek

i \ Ek−1
i .

Note again that for all k ≥ 0, (Hp
∗ )k(E) = Ek.
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Observe that

zi(i,∞) + zi(−i,∞) ≤ Pi((Hp
∗ )
∞(E))

≤ Pi(E) + xi(i,∞) + xi(−i,∞), (A.6)

where xi(·) and zi(·) are as in (A.1) and (A.2), respectively. The condition
d0((Pi)i=1,2) = ξ implies that xi(j,∞) ≤ x−i(j,∞) + ξ and zi(j,∞) ≤
z−i(j,∞) + ξ.

Proof of Lemma 5.1. By Lemma A.2.2 and (A.6),

Pi((Hp
∗ )
∞(E)) ≤ Pi(E) + xi(i,∞) + xi(−i,∞)

≤ Pi(E) + xi(i,∞) +
(
x−i(−i,∞) + ξ

)
≤ Pi(E) +

1− p

p
zi(i,∞) +

1− p

p
z−i(−i,∞) + ξ

≤ Pi(E) +
1− p

p

(
zi(i,∞) + zi(−i,∞)

)
+

1
p
ξ

≤ Pi(E) +
1− p

p
Pi((Hp

∗ )
∞(E)) +

1
p
ξ.

If p > 1/2, or (2p− 1)/p > 0, then this implies

Pi((Hp
∗ )
∞(E)) ≤ p

2p− 1
Pi(E) +

ξ

2p− 1
,

as claimed.
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