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Abstract

We propose a novel generalized recursive smooth ambiguity model which allows a three-
way separation among risk aversion, ambiguity aversion, and intertemporal substitution.
We apply this utility to a consumption-based asset pricing model in which consumption
and dividends follow hidden Markov regime-switching processes. Our calibrated model can
match the mean equity premium, the mean riskfree rate, and the volatility of the equity
premium observed in the data. In addition, our model can generate a variety of dynamic
asset pricing phenomena, including the procyclical variation of price-dividend ratios, the
countercyclical variation of equity premia and equity volatility, and the mean reversion of
excess returns. The key intuition is that an ambiguity averse agent behaves pessimistically
by attaching more weight to the pricing kernel in bad times when his continuation values
are low.
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1. Introduction

Under the rational expectations hypothesis, there exists an objective probability law governing

the state process, and economic agents know this law which coincides with their subjective be-

liefs. This rational expectations hypothesis has become the workhorse in macroeconomics and

finance. However, it faces serious difficulties when confronting with asset markets data. Most

prominently, Mehra and Prescott (1985) show that for a standard rational, representative-agent

model to explain the high equity premium observed in the data, an implausibly high degree of

risk aversion is needed, resulting in the equity premium puzzle. Weil (1989) shows that this

high degree of risk aversion generates an implausibly high riskfree rate, resulting in the riskfree

rate puzzle. Shiller (1981) finds that equity volatility is too high to be justified by changes

in the fundamental. In addition, a number of empirical studies document puzzling links be-

tween aggregate asset markets and macroeconomics: Price-dividend ratios move procyclically

(Campbell and Shiller (1988a)) and conditional expected equity premia move countercyclically

(Campbell and Shiller (1988a) and Fama and French (1989)). Excess returns are serially corre-

lated and mean reverting (Fama and French (1988b) and Poterba and Summers (1988)). Excess

returns are forecastable; in particular, the log dividend yield predicts long-horizon realized ex-

cess returns (Campbell and Shiller (1988b), Fama and French (1988a)). Conditional volatility

of stock returns is persistent and moves countercyclically (Bollerslev et al. (1992)).

In this paper, we develop a representative-agent consumption-based asset-pricing model

that helps explain the preceding puzzles simultaneously by departing from the rational expec-

tations hypothesis. Our model has two main ingredients. First, we assume that consumption

and dividends follow a hidden Markov regime-switching model. The agent learns about the

hidden state based on past data. The posterior state beliefs capture fluctuating economic un-

certainty and drive asset return dynamics. Second, and more importantly, we assume that

the agent is ambiguous about the hidden state and his preferences are represented by a gen-

eralized recursive smooth ambiguity model that allows for a three-way separation among risk

aversion, ambiguity aversion and intertemporal substitution. We propose novel tractable homo-

thetic utility specifications. These specifications nest Epstein-Zin preferences (Epstein and Zin

(1989)), smooth ambiguity preferences (Klibanoff et al. (2005, 2008)), multiplier preferences

(Hansen and Sargent (2001)), and risk-sensitive preferences (Tallarini (2000)) as special cases.

Ambiguity aversion is manifested through a pessimistic distortion of the pricing kernel in the

sense that the agent attaches more weight on low continuation values in recessions. It is this

pessimistic behavior that allows our model to explain the asset pricing puzzles.

We motivate our adoption of the recursive ambiguity model in two ways. First, the Ellsberg
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Paradox (Ellsberg (1961)) and related experimental evidence demonstrate that the distinction

between risk and ambiguity is behaviorally meaningful. Roughly speaking, risk refers to the

situation where there is a probability measure to guide choice, while ambiguity refers to the sit-

uation where the decision maker is uncertain about this probability measure due to cognitive or

informational constraints. Knight (1921) and Keynes (1936) emphasize that ambiguity may be

important for economic decision-making. We assume that the agent in our model is ambiguous

about the hidden state in consumption and dividend growth. Our adopted ambiguity model

captures this ambiguity and attitude towards ambiguity. Our second motivation is related

to the robustness theory developed by Hansen and Sargent (2001, 2008) and Hansen (2007).

Specifically, the agent in our model may fear model misspecification. He is concerned about

model uncertainty, and thus, seeks robust decision-making. We may interpret our ambiguity

model as a model of robustness in the presence of model uncertainty.

Our modelling of learning echoes with Hansen’s (2007) suggestion that one should put

econometricians and economic agents on comparable footings in terms of statistical knowledge.

When estimating the regime-switching consumption process, econometricians typically apply

Hamilton’s (1989) maximum likelihood method and assume that they do not observe the hidden

state. However, the rational expectations hypothesis often requires economic agents to be

endowed with more precise information than econometricians. A typical assumption is that

agents know all parameter values underlying the consumption process (e.g., Cecchetti et al.

(1990, 2000)). In this paper, we show that there are important quantitative implications when

agents are concerned about statistical ambiguity by removing the information gap between them

and econometricians, while the standard Bayesian learning has small quantitative effects.1

Learning is naturally embedded in our recursive ambiguity model. In this model, the pos-

terior of the hidden state and the conditional distribution of the consumption process given a

state cannot be reduced to a compound predictive distribution, unlike in the standard Bayesian

analysis. It is this irreducibility that captures ambiguity or model uncertainty. An important

advantage of the smooth ambiguity model over other models of ambiguity such as the maxmin

expected utility (or multiple-priors) model of Gilboa and Schmeidler (1989) is that it achieves a

separation between ambiguity (beliefs) and ambiguity attitude (tastes). This feature allows us

to do comparative statics with respect to the ambiguity aversion parameter holding ambiguity

fixed, and to calibrate it for quantitative analysis. Another advantage is that we can apply the

usual differential analysis for the smooth ambiguity model under standard regularity conditions.

We can then derive the pricing kernel quite tractably. By contrast, the widely applied maxmin
1There is a large literature on learning in asset pricing using the standard Bayesian framework. Notable works

include Brandt et al. (2004), Brennan and Xia (2001), David (1997), Detemple (1986), Dothan and Feldman
(1986), Veronesi (1999, 2000), and Weitzman (2007).
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expected utility model lacks this smoothness property.

Our paper is related to a growing body of literature that studies the implications of am-

biguity and robustness for finance and macroeconomics.2 We contribute to this literature by

(i) proposing a novel generalized recursive ambiguity model and tractable homothetic specifi-

cations, and (ii) putting this utility model in quantitative work to address a variety of asset

pricing puzzles.

We now discuss closely related papers. In the max-min framework, Epstein and Schneider

(2007) model learning under ambiguity using a set of priors and a set of likelihoods. Both

sets are updated by Bayes’ Rule in a suitable way. Applying this learning model, Epstein and

Schneider (2008) analyze asset pricing implications. Leippold et al. (2008) embed this model in

a continuous-time environment. In contrast to our paper, there is no distinction between risk

aversion and intertemporal substitution and no separation between ambiguity and ambiguity

attitudes in the preceding three papers. Hansen and Sargent (2007a) formulate a learning

model that allows for two forms of model misspecification: (i) misspecification in the underlying

Markov law for the hidden states, and (ii) misspecification of the probabilities assigned to the

hidden Markov states. Hansen and Sargent (2007b) apply this learning model to study time-

varying model uncertainty premia. Hansen (2007) surveys models of learning and robustness.

He analyzes a continuous-time model similar to our log-exponential specification. But he does

not consider the general homothetic form and does not conduct a thorough quantitative analysis

as in our paper. Our paper is also related to Abel (2002), Brandt et al. (2004), and Cecchetti

et al. (2000) who model the agent’s pessimism and doubt in specific ways and show that their

modelling helps explain many asset pricing puzzles. Our adopted smooth ambiguity model

captures pessimism and doubt with a decision theoretic foundation.

The remainder of the paper proceeds as follows. Section 2 presents our generalized recursive

smooth ambiguity model. Section 3 analyzes its asset pricing implications in a Lucas-style

model. Section 4 calibrates the model and studies its quantitative implications. Section 5

concludes. Appendix A contains proofs.
2See Cao et al. (2005), Chen and Epstein (2002), Epstein and Miao (2003), Epstein and Wang (1994), Garlappi

et al. (2007), and Routledge and Zin (2001) for asset pricing applications of the multiple-priors utility model.
See Anderson et al. (2003), Cagetti, et al. (2002), Hansen and Sargent (2001), Hansen et al. (1999), Liu et al.
(2005), Maenhout (2004), and Uppal and Wang (2003) for models of robustness and applications. Maccheroni
et al. (2006) provide an axiomatic foundation for one of Hansen and Sargent’s robustness formulations – the
multiplier preferences. See Backus et al. (2005) and Hansen and Sargent (2008) for a survey.
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2. Generalized Recursive Ambiguity Preferences

In this section, we introduce the recursive ambiguity utility model adopted in our paper. In a

static setting, this utility model delivers essentially the same functional form that has appeared

in some other papers, e.g., Ergin and Gul (2009), Klibanoff et al. (2005), Nau (2006), and

Seo (2008). These papers provide various different axiomatic foundations and interpretations.

Our adopted dynamic model is axiomatized by Hayashi and Miao (2008) and closely related to

Klibanoff et al. (2008). Here we focus on the utility representation and refer the reader to the

preceding papers for axiomatic foundations.

We start with a static setting in which a decision maker’s ambiguity preferences over con-

sumption are represented by the following utility function:

v−1

(∫

Π
v

(
u−1

(∫

S
u (C) dπ

))
dµ (π)

)
, ∀C : S → R+, (1)

where u and v are increasing functions and µ is a subjective prior over the set Π of probability

measures on S that the decision maker thinks possible. We have defined utility in (1) in terms

of two certainty equivalents. When we define φ = v ◦ u−1, it is ordinally equivalent to the

smooth ambiguity model of Klibanoff et al. (2005):
∫

Π
φ

(∫

S
u (C) dπ

)
dµ (π) ≡ Eµφ (Eπu (C)) . (2)

A key feature of this model is that it achieves a separation between ambiguity, identified

as a characteristic of the decision maker’s subjective beliefs, and ambiguity attitude, identified

as a characteristic of the decision maker’s tastes.3 Specifically, ambiguity is characterized by

properties of the subjective set of measures Π. Attitudes towards ambiguity are characterized

by the shape of φ or v, while attitudes towards pure risk are characterized by the shape of u.

In particular, the decision maker displays risk aversion if and only if u is concave, while he

displays ambiguity aversion if and only if φ is concave or, equivalently, if and only if v is a con-

cave transformation of u. Intuitively, an ambiguity averse decision maker prefers consumption

that is more robust to the possible variation in probabilities. That is, he is averse to mean-

preserving spreads in the distribution µC induced by the prior µ and the consumption act C.

This distribution represents the uncertainty about the ex ante utility evaluation of C, Eπu (C)

for all π ∈ Π. Note that there is no reduction between µ and π in general. It is possible when
3The behavioral foundation of ambiguity and ambiguity attitude is based on the theory developed by Ghi-

rardato and Marinacci (2002) and Klibanoff et al. (2005). Epstein (1999) provides a different foundation. The
main difference is that the benchmark ambiguity neutral preference is the expected utility preference accord-
ing to Ghirardato and Marinacci (2002), while Epstein’s (1999) benchmark is the probabilistic sophisticated
preferences.
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φ is linear. In this case, the decision maker is ambiguity neutral and the smooth ambiguity

model reduces to the standard expected utility model.

Klibanoff et al. (2005) show that the multiple-priors model of Gilboa and Schmeidler (1989),

minπ∈Π Eπu (C) , is a limiting case of the smooth ambiguity model with infinite ambiguity aver-

sion. An important advantage of the smooth ambiguity model over other models of ambiguity,

such as the multiple-priors utility model, is that it is tractable and admits a clear-cut compara-

tive statics analysis. Tractability is revealed by the fact that the well-developed machinery for

dealing with risk attitudes can be applied to ambiguity attitudes. In addition, the indifference

curve implied by (2) is smooth under regularity conditions, rather than kinked as in the case

of the multiple-priors utility model. More importantly, comparative statics of ambiguity atti-

tudes can be easily analyzed using the function φ or v only, holding ambiguity fixed. Such a

comparative static analysis is not evident for the multiple-priors utility model since the set of

priors Π in that model may characterize ambiguity as well as ambiguity attitudes.

We may alternatively interpret the utility model defined in (1) as a model of robustness

in which the decision maker is concerned about model misspecification, and thus seeks robust

decision making. Specifically, each distribution π ∈ Π describes an economic model. The

decision maker is ambiguous about which is the right model specification. He has a subjective

prior µ over alternative models. He is averse to model uncertainty, and thus evaluates different

models using a concave function v.

We now embed the static model (1) in a dynamic setting. Time is denoted by t = 0, 1, 2, ....

The state space in each period is denoted by S. At time t, the decision maker’s information

consists of history st = {s0, s1, s2, ..., st} with s0 ∈ S given and st ∈ S. The decision maker

ranks adapted consumption plans C = (Ct)t≥0 . That is, Ct is a measurable function of st. The

decision maker is ambiguous about the probability distribution on the full state space S∞. This

uncertainty is described by an unobservable parameter z in the space Z. The parameter z can

be interpreted in several different ways. It could be an unknown model parameter, a discrete

indicator of alternative models, or a hidden state that evolves over time in a regime-switching

process (Hamilton (1989)).

The decision maker has a prior µ0 over the parameter z. Each parameter z gives a probability

distribution πz over the full state space. The posterior µt and the conditional likelihood πz,t

can be obtained by Bayes’ Rule. Inspired by Kreps and Porteus (1978) and Epstein and Zin

(1989), we consider the following generalized recursive ambiguity utility function:

Vt (C) = W (Ct,Rt (Vt+1 (C))) , Rt (x) = v−1
(
Eµt

{
v ◦ u−1Eπz,t [u (x)]

})
, (3)

where W is a time aggregator, R is an uncertainty aggregator, and u and v admit the same
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interpretation as in the static setting. When v◦u−1 is linear, (3) reduces to the recursive utility

model of Epstein and Zin (1989). In particular, the posterior µt and the likelihood πz,t can

be reduced to a predictive distribution, which is the key idea underlying the Bayesian analysis.

When v ◦ u−1 is nonlinear, the posterior µt and the likelihood πz,t cannot be reduced to a

single distribution. It is this irreducibility of compound distributions that captures ambiguity,

as pointed out by Hansen (2007), Klibanoff et al. (2005, 2008), and Segal (1987).

Our generalized recursive ambiguity utility model in (3) permits a three-way separation

among risk aversion, ambiguity aversion and intertemporal substitution. In application, it

proves tractable to consider the following homothetic specification:

W (c, y) =
[
(1− β) c1−ρ + βy1−ρ

] 1
1−ρ , ρ > 0, (4)

and u and v are given by:

u (c) =
c1−γ

1− γ
, γ > 0, 6= 1, (5)

v (x) =
x1−η

1− η
, η > 0, 6= 1, (6)

where β ∈ (0, 1) is the subjective discount factor, 1/ρ represents the elasticity of intertemporal

substitution (EIS), γ is the risk aversion parameter, and η is the ambiguity aversion parameter.

We then have

Vt (C) =
[
(1− β) C1−ρ

t + β {Rt (Vt+1 (C))}1−ρ
] 1

1−ρ
, (7)

Rt (Vt+1 (C)) =
{
Eµt

(
Eπz,t

[
V 1−γ

t+1 (C)
]) 1−η

1−γ

} 1
1−η

. (8)

If η = γ, the decision maker is ambiguity neutral and (7) reduces to the recursive utility model

of Epstein and Zin (1989) and Weil (1989). The decision maker displays ambiguity aversion if

and only if η > γ. By the property of certainty equivalent, a more ambiguity averse agent with

a higher value of η has a lower utility level.

In the limiting case with ρ = 1, (7) reduces to:

Ut = (1− β) ln Ct +
β

1− η
ln

{
Eµt exp

(
1− η

1− γ
ln

(
Eπz,t exp ((1− γ) Ut+1)

))}
, (9)

where Ut = lnVt. This specification is closely related to the robust control model studied by

Hansen (2007) and Hansen and Sargent (2001, 2007a, 2008). In particular, there are two risk-

sensitivity adjustments in (9). The first risk-sensitivity adjustment for the distribution πz,t

reflects the agent’s concerns about the misspecification in the underlying Markov law given

a hidden state z. The second risk-sensitivity adjustment for the distribution µt reflects the

agent’s concerns about the misspecification of the probabilities assigned to the hidden states.
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If we further take limit in (9) when γ → 1, equation (9) becomes:

Ut = (1− β) lnCt +
β

1− η
ln

{
Eµt exp

(
(1− η)Eπz,t [Ut+1]

)}
. (10)

This is the log-exponential specification studied by Ju and Miao (2007). In this case, there is

only one risk-sensitive adjustment for the state beliefs µt. Following Klibanoff et al. (2005), we

can show that when η →∞, (10) becomes:

Ut = (1− β) lnCt + β min
z
Eπz,t [Ut+1] . (11)

This utility function belongs to the class of the recursive multiple-priors model of Epstein and

Wang (1994) and Epstein and Schneider (2003, 2007). The agent is extremely ambiguity averse

by choosing the worst continuation utility value each period.

Klibanoff et al. (2008) propose the following closely related recursive smooth ambiguity

model:

Vt (C) = u (Ct) + βφ−1
(
Eµtφ

(
Eπz,t [Vt+1 (C)]

))
, (12)

where β ∈ (0, 1) is the discount factor, and u and φ admit the same interpretation as in the

static model (2). In this model, risk aversion and intertemporal substitution is confounded. In

addition, Ju and Miao (2007) find that when u is defined in (5) and φ (x) = x1−α/ (1− α) for

x > 0 and 1 6= α > 0, the model (12) is not well defined for γ > 1. Thus, they consider (7)

with γ = ρ and α ≡ 1− (1− η) / (1− γ), which is ordinally equivalent to (12) when γ ∈ (0, 1) .

The utility function in (12) is always well defined for the specification φ (x) = −e−
x
θ for θ > 0.

The nice feature of this specification is that it has a connection with risk-sensitive control and

robustness, as studied by Hansen (2007) and Hansen and Sargent (2008). The disadvantage of

this specification is that the utility function generally does not have the homogeneity property.

Thus, the curse of dimensionality makes the numerical analysis of the decision maker’s dynamic

programming problem complicated, except for the special case where u (c) = ln (c) as in (10)

(see Ju and Miao (2007) and Collard et al. (2009)). As a result, we will focus on the homothetic

specification (7) in our analysis below.

3. Asset Pricing Implications

3.1. The Economy

We consider a representative-agent pure-exchange economy. There is only one consumption

good with aggregate consumption given by Ct in period t. The agent trades multiple assets.

Among these assets, we focus on the riskfree bond with zero net supply and equity that pays

aggregate dividends Dt in period t = 0, 1, 2, .... Let Rf,t+1 and Re,t+1 denote their gross returns
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from period t to period t + 1, respectively. We specify aggregate consumption by a regime-

switching process as in Cecchetti et al. (1990, 1993, 2000) and Kandel and Stambaugh (1991):

ln
(

Ct+1

Ct

)
= κzt+1 + σεt+1, σ > 0, (13)

where εt is an independently and identically distributed (iid) standard normal random variable,

and zt+1 follows a Markov chain which takes values 1 or 2 with transition matrix (λij) where∑
j λij = 1, i, j = 1, 2. We may identify state 1 as the boom state and state 2 as the recession

state in that κ1 > κ2.

In a standard Lucas-style model (Lucas (1978)), dividends and consumption are identical

in equilibrium. This assumption is clearly violated in reality. There are several ways to model

dividends and consumption separately in the literature (Cecchetti, Lam, and Mark (1993)).

Here, we follow Bansal and Yaron (2004) and assume:

ln
(

Dt+1

Dt

)
= φ ln

(
Ct+1

Ct

)
+ gd + σdet+1, (14)

where et+1 is an iid standard normal random variable, and is independent of all other ran-

dom variables. The parameter φ > 0 can be interpreted as the leverage ratio on expected

consumption growth as in Abel (1999). This parameter and the parameter σd allows us to

calibrate volatility of dividends (which is significantly larger than consumption volatility) and

their correlation with consumption. The parameter gd helps match the expected growth rate of

dividends. Our modelling of the dividend process is convenient because it does not introduce

any new state variable in our model.

The model of consumption and dividends in (13) and (14) is a nonlinear counterpart of the

long-run risk processes discussed in Campbell (1999) and Bansal and Yaron (2004) in that both

consumption and dividends contain a common persistent component of Markov chain. Garcia et

al. (2008) show that the processes in (13) and (14) can be obtained by discretizing the long-run

risk model Case I in Bansal and Yaron (2004). Unlike Case II in Bansal and Yaron (2004), we

assume that volatility σ is constant and independent of regimes. In the Bansal-Yaron model,

fluctuating volatility of consumption growth is needed to generate time-varying expected equity

premium. Our assumption of constant σ intends to generate this feature through endogenous

learning rather than exogenous fluctuations in consumption volatility.

Unlike the long-run risks model, the regime-switching model can be easily estimated by the

maximum likelihood method. Following Hansen (2007), we put economic agents and econome-

tricians on equal footing by assuming that economic regimes are not observable. What is observ-

able in period t is the history of consumption and dividends st = {C0, D0, C1, D1, ..., Ct, Dt} .

The agent has ambiguous beliefs about the hidden states. His preferences are represented by

8



the generalized ambiguity utility defined in (7). To apply this utility function, we need to derive

the evolution of the posterior state beliefs. Let µt = Pr
(
zt+1 = 1|st

)
.4 The prior belief µ0 is

given. By Bayes’ Rule, we can derive:

µt+1 =
λ11f (ln (Ct+1/Ct) , 1)µt + λ21f (ln (Ct+1/Ct) , 2) (1− µt)

f (ln (Ct+1/Ct) , 1)µt + f (ln (Ct+1/Ct) , 2) (1− µt)
, (15)

where f (y, i) = 1√
2πσ

exp
[
− (y − κi)

2 /
(
2σ2

)]
is the density function of the normal distribution

with mean κi and variance σ2. By our modelling of dividends in (14), dividends do not provide

any new information for belief updating and for the estimation of the hidden states.

3.2. Asset Pricing

As is standard in the literature, we derive the pricing kernel or the stochastic discount factor

to understand asset prices. Following Duffie and Skiadas (1994) or Hansen et al. (2008), we

use the homogeneity property of the generalized recursive ambiguity utility (7) to show that its

pricing kernel is given by:

Mzt+1,t+1 = β

(
Ct+1

Ct

)−ρ (
Vt+1

Rt (Vt+1)

)ρ−γ




(
Ezt+1,t

[
V 1−γ

t+1

]) 1
1−γ

Rt (Vt+1)




−(η−γ)

, zt+1 = 1, 2, (16)

where Ezt+1,t denotes the expectation operator for the distribution of the consumption process

conditioned on the history st and the period-t + 1 state zt+1. Given this pricing kernel, the

return Rk,t+1 on any traded asset k satisfies the Euler equation:

Et

[
Mzt+1,t+1Rk,t+1

]
= 1, (17)

where Et is the expectation operator for the predictive distribution conditioned on history st. We

distinguish between the unobservable price of aggregate consumption claims and the observable

price of aggregate dividend claims. The return on the consumption claims is also the return on

the wealth portfolio, which is unobservable, but can be solved using equation (17).

A challenge in estimating our model empirically is that the continuation value Vt+1 in (16)

is not observable. One possible approach is to use the following relation between continuation

value and wealth proved in the appendix:

Wt

Ct
=

1
1− β

(
Vt

Ct

)1−ρ

, (18)

4We abuse notation here since we have used µt to denote the posterior distribution over the parameter space
in Section 2.
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where Wt is the wealth level at time t. We can then represent the pricing kernel (16) in terms

of consumption growth and the return on the wealth portfolio, as in Epstein and Zin (1989,

1991). However, the return on the wealth portfolio is also unobservable, which makes empirical

estimation of our model difficult.

We now turn to the interpretation of our pricing kernel in (16). The last multiplicative

factor in (16) reflects the effect of ambiguity aversion. In the case of ambiguity neutrality (i.e.,

η = γ), this term vanishes and the pricing kernel reduces to that for the recursive utility model

of Epstein and Zin (1989) and Weil (1989). When the agent is ambiguity averse with η > γ,

a recession is associated with a high value of the pricing kernel. Intuitively, the agent has a

lower continuation value Vt+1 in a recession state, causing the adjustment factor in (16) to take

a higher value in a recession than in a boom.

To explain asset pricing puzzles, a number of studies propose to adjust the standard pricing

kernel. As Campbell and Cochrane (1999) argue, they have to answer the basic question: Why

do people fear stocks so much? In the Campbell and Cochrane habit formation model, people

fear stocks because stocks do poorly in recessions, times when consumption falls low relative

to habits. Our model’s answer is that people fear stocks because they are pessimistic and have

low continuation values in recessions. This pessimistic behavior will reduce the stock price and

raise the stock return. In addition, it will reduce the riskfree rate because the agent wants to

save more for the future. More formally, using equation (17), we can derive:

Et [Re,t+1 −Rf,t+1] =
−Covt

(
Mzt+1,t+1, Re,t+1

)

Et

[
Mzt+1,t+1

] . (19)

Because stocks do poorly in recessions when ambiguous averse people put more weight on the

pricing kernel, ambiguity aversion helps generate high negative correlation between the pricing

kernel and stock returns. This high negative correlation increases equity premium as shown in

equation (19).5

To better understand an agent’s pessimistic behavior, we consider the special case of the

unitary EIS (ρ = 1). In this case, the recursive ambiguity utility function reduces to the Hansen

and Sargent (2008) robust control model (9) and the pricing kernel becomes:

Mzt+1,t+1 = β
Ct

Ct+1

V 1−γ
t+1

(
Ezt+1,t

[
V 1−γ

t+1

])− η−γ
1−γ

[Rt (Vt+1)]
1−η . (20)

The expression βCt/Ct+1 is the pricing kernel for the standard log utility. It is straightforward to

show that the adjustment factor in (20) is the density with respect to the predictive distribution
5Using a static smooth ambiguity model, Gollier (2006) analyzes the effect of ambiguity aversion on the

pricing kernel. He shows that ambiguity aversion may not generally reinforce risk aversion.
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because we can use the law of iterated expectations to show that:

Et





V 1−γ
t+1

(
Ezt+1,t

[
V 1−γ

t+1

])− η−γ
1−γ

[Rt (Vt+1)]
1−η





= 1.

As a result, we can write the Euler equation (17) as Êt [βCt/Ct+1Rk,t+1] = 1, where Êt is the

conditional expectation operator for the slanted predictive distribution. In this case, the model

is observational equivalent to an expected utility model with distorted beliefs. The distorted

beliefs attach more weight to the recession state. A similar observation equivalence result also

appears in the multiple-priors model. (see Epstein and Miao (2003) for a discussion.) An

undesirable feature of the unitary EIS case is that the consumption-wealth ratio is constant in

that Ct = (1− β) Wt by (18), which is inconsistent with empirical evidence.

Ju and Miao (2007) consider further the special case (10) with ρ = γ = 1. In this log-

exponential case, the pricing kernel becomes:

Mzt+1,t+1 = β
Ct

Ct+1

exp
(
(1− η)Ezt+1,t [lnVt+1]

)

µt exp ((1− η)E1,t [ln Vt+1]) + (1− µt) exp ((1− η)E2,t [ln Vt+1])
.

The agent slants his state beliefs towards the state with the lower continuation value or the

recession state. Ju and Miao (2007) also show that the return on equity satisfies Re,t+1 =
1
β Ct+1/Ct if dividends are equal to aggregate consumption, Ct = Dt. Consequently, this case

cannot generate interesting stock returns dynamics.

We now turn to the general homothetic specification with ρ 6= 1.6 In this case, the effect

of ambiguity aversion is not distorting beliefs because the multiplicative adjustment factor in

(16) is not a probability density. Thus, unlike in the case of ρ = 1, our model with ρ 6= 1 is

not observational equivalent to an expected utility model because one cannot find a change in

beliefs of an expected utility maximizer that can account for the ambiguity aversion behavior in

our model. However, our interpretation of the ambiguity aversion behavior as attaching more

weight (the preceding adjustment factor) to the recession state with worse continuation utility

is still valid, but the weight may not be mixture linear in state beliefs.

Let Pe,t denote the date t price of dividend claims. Using equations (16) and (17) and the

homogeneity property of Vt, we can show that the price-dividend ratio Pe,t/Dt is a function of

6Ju and Miao (2007) study the power-power case with ρ = γ 6= 1, in which risk aversion and intertemporal
substitution are confounded. They require γ < 1 to explain the asset pricing puzzles. Embedding the multiple-
priors model of Epstein and Schneider (2007) in a continuous-time framework, Leippold et al. (2008) also assume
ρ = γ < 1 as in Ju and Miao (2007). Unlike the present paper, they assume that (i) dividends are equal to
consumption, (ii) dividend growth takes finitely many unknown values without regime shifts, and (iii) the agent
receives an additional signal about dividends. In addition, they do not discuss their calibration procedure.
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the state beliefs, denoted by ϕ (µt). By definition, we can write the equity return as:

Re,t+1 =
Pe,t+1 + Dt+1

Pe,t
=

Dt+1

Dt

1 + ϕ (µt+1)
ϕ (µt)

.

This equation implies that the state beliefs drive changes in the price-dividend ratio, and

hence dynamics of equity returns. In the next section, we will show that ambiguity aversion

and learning under ambiguity help amplify consumption growth uncertainty, while Bayesian

learning has a modest quantitative effect.

4. Quantitative Results

We first describe stylized facts and calibrate our model. We then study properties of uncon-

ditional and conditional moments of returns generated by our model. Our model does not

admit an explicit analytical solution. We thus solve the model numerically using the projec-

tion method (Judd (1998)) and run Monte Carlo simulations to compute model moments.7

For comparison, we also solve two benchmark models. Benchmark model I is the fully ratio-

nal model with Epstein-Zin preferences under complete information similar to that studied by

Bansal and Yaron (2004). Benchmark model II incorporates learning and is otherwise the same

as benchmark model I. This model is a special case of our ambiguity model when η = γ. A

special case of benchmark model II with time-additive expected utility (η = γ = ρ) is similar

to the continuous-time model of Veronesi (1999, 2000).

4.1. Stylized Facts and Calibration

We start by summarizing some asset pricing puzzles documented in the empirical literature.

Using annual US data from 1891-1993, Cecchetti et al. (2000) find that the mean values of

equity premium and riskfree rate are given by 5.75 and 2.66 percent, respectively, as reported

in Panel A of Table 1.8 In addition, the volatility of equity premium is 19.02 percent. These

values are hard to match in a standard asset-pricing model under reasonable calibration. This

fact is often referred to as the equity premium, riskfree rate and equity volatility puzzles (see

Campbell (1999) for a survey). Panel B of Table 1 reports that the log dividend yield predicts

long-horizon realized excess returns. It also shows that the regression slopes and R2’s increase

with the return horizon. This return predictability puzzle is first documented by Campbell

and Shiller (1988b) and Fama and French (1988a). Panel B of Table 1 also reports variance
7The Fortran codes and a technical appendix detailing our numerical method are available upon request.
8Campbell (1999) and Campbell and Cochrane (1999) find similar estimates using log returns. We follow

Cecchetti et al. (2000) and report arithmetic average returns in both data and model solutions. Mehra and
Prescott (1985) also report arithmetic averages. Cecchetti et al. (2000) measure the riskfree rate using returns
on six-month commercial paper.
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ratio statistics for the equity premium. These ratios are generally less than 1 and fall with the

horizon. This evidence suggests that excess returns are negatively serially correlated, or asset

prices are mean reverting (Fama and French (1988b) and Poterba and Summers (1988)).

[Insert Table 1 Here.]

In addition to the preceding puzzles, we will use our model to explain three other stylized

facts: (i) procyclical variation in price-dividend ratios (Campbell and Shiller (1988a)), (ii)

countercyclical variation in conditional expected equity premia (Campbell and Shiller (1988a,b)

and Fama and French (1989)), and (iii) persistent and countercyclical variation in conditional

volatility of equity premium (Bollerslev et al. (1992)).

To explain the above asset pricing phenomena, we calibrate our model at the annual fre-

quency. We first calibrate parameters in consumption and dividends processes. Cecchetti et al.

(2000) apply Hamilton’s maximum likelihood method to estimate parameters in (13) using the

annual per capita US consumption data covering the period 1890-1994. Table 2 reproduces their

estimates. This table reveals that the high-growth state is highly persistent, with consumption

growth in this state being 2.251 percent. The economy spends most of the time in this state with

the unconditional probability of being in this state given by (1− λ22) / (2− λ11 − λ22) = 0.96.

The low-growth state is moderately persistent, but very bad, with consumption growth in this

state being −6.785 percent. The long-run average rate of consumption growth is 1.86 percent.

[Insert Table 2 Here.]

We next calibrate parameters in the dividend process (14). We follow Abel (1999) and set the

leverage parameter φ = 2.74. We then follow Bansal and Yaron (2004) and choose gd = −0.0323

so that the average rate of dividend growth is equal to that of consumption growth. We choose

σd to match the volatility of dividend growth in the data. Using different century-long annual

samples, this volatility is equal to 0.136 and 0.142, according to the estimates given by Cecchetti

et al. (1990) and Campbell (1999), respectively. Here, we take 0.13 and find σd = 0.084. Our

calibrated values of σd and φ imply that the correlation between consumption growth and

dividend growth is about 0.76. This value may seem high. However, Campbell and Cochrane

(1999) argue that the correlation is difficult to measure and it may approach 1.0 in the very

long run since dividends and consumption should share the same long-run trends.

Now, we select baseline preference parameters. We follow Bansal and Yaron (2004) and set

EIS to 1.5, implying ρ = 1/1.5. An EIS greater than 1 is critical to generate procyclical variation

of the price-consumption ratio. Researchers in macroeconomics and finance generally believe

that the risk aversion parameter is around 2. We thus set γ = 2, in order to demonstrate that
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the main force of our model comes from ambiguity aversion, but not risk aversion. We next

select the discount factor β and ambiguity aversion parameter η to match the mean riskfree

rate of 0.0266 and the mean equity premium of 0.0575 from the data reported in Table 1. We

find β = 0.975 and η = 8.864.

There is no independent study of the magnitude of ambiguity aversion in the literature. To

judge whether our calibrated value is reasonable, we conduct a thought experiment related to

the Ellsberg Paradox (Ellsberg (1961)) in a static setting. Suppose there are two urns. Subjects

are told that there are 50 black and 50 white balls in urn 1. Urn 2 also contains 100 balls,

but may contain either 100 black balls or 100 white balls. If a subject picks a black ball from

an urn, he wins a prize, otherwise he does not win or lose anything. Experimental evidence

reveals that most subjects prefer to bet on urn 1 rather than urn 2 (Camerer (1999) and Halevy

(2007)). Paradoxically, if the subject is asked to pick a white ball, he still prefers to bet on urn

1. The standard expected utility model with any beliefs or any risk aversion level cannot explain

this paradox. Our adopted smooth ambiguity model in the static setting (1) can explain this

paradox whenever subjects display ambiguity aversion (i.e., v is more concave than u). Thus,

ambiguity aversion and risk aversion have distinct behavioral meanings.

Formally, Let w be a subject’s wealth level and d be the prize money. Because the subject

knows that the distribution of black and white balls in urn 1 is (1/2, 1/2) , when he evaluates

a bet on urn 1, his utility level in terms of certainty equivalent is equal to:

u−1

(
1
2
u (w + d) +

1
2
u (w)

)
. (21)

The subject believes that there are two possible equally likely distributions (0, 1) and (1, 0) in

urn 2, and thus Π = {(0, 1) , (1, 0)} and µ = (1/2, 1/2). But he is not sure which one is the

true distribution and is averse to this uncertainty. When he evaluates a bet on urn 2, his utility

level in terms of certainty equivalent is equal to:

v−1

(∫

Π
v

(
u−1

(∫

S
u (c) dπ

))
dµ (π)

)
, (22)

where c = w+d or w and S = {black, white}. The expression in (21) is larger than that in (22) if

v is more concave than u, causing the subject to bet on urn 1 rather than urn 2. The difference

between the certainty equivalents in (21) and (22) is a measure of ambiguity premium. Given

power functions of u and v and fixing the risk aversion parameter, we can use the size of the

ambiguity premium to gauge the magnitude of ambiguity aversion.9 It is straightforward to

compute that the ambiguity premium is equal to 1.7 percent of the expected prize value for our
9See Chen, Ju and Miao (2009) for a more extensive discussion and an application of our generalized recursive

ambiguity model to a portfolio choice problem.
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calibrated ambiguity aversion parameter η = 8.864, when we set γ = 2 and the prize-wealth

ratio of 1 percent. Increasing the prize-wealth ratio raises the ambiguity premium. Camerer

(1999) reports that the ambiguity premium is typically in the order of 10-20 percent of the

expected value of a bet in the Ellsberg-Paradox type experiments. Given this evidence, our

calibrated ambiguity aversion parameter seems small and reasonable.

4.2. Unconditional Moments of Returns

As a first check of the performance of our calibrated model, we compare the model prediction of

the volatility of the equity premium and the volatility of the riskfree rate with the data. Panel

A of Table 3 reports model results. This table reveals that our model can match the volatility

of the equity premium in the data quite closely (0.1826 versus 0.1902). However, our model

generated volatility of the riskfree rate is lower than the data (0.0116 versus 0.0513). Campbell

(1999) argues that the high volatility of the riskfree rate in the century-long annual data could

be due to large swings in inflation in the interwar period, particularly in 1919-21. Much of this

volatility is probably due to unanticipated inflation and does not reflect the volatility in the ex

ante real interest rate. Campbell (1999) reports that the annualized volatility of the real return

on Treasury Bills is 1.8 percent using the US postwar quarterly data.

[Insert Table 3 Here.]

To understand why our model is successful in matching unconditional moments of returns,

we conduct a comparative statics analysis in Panels B-E of Table 3. The first row of each of

these panels gives the result of benchmark model II with Epstein-Zin preferences under Bayesian

learning. We first consider the effects of the three standard parameters (β, ρ, γ) familiar from

the Epstein-Zin model. Equation (17) implies that the riskfree rate Rf,t+1 = 1/Et

[
Mzt+1,t+1

]
.

Because the pricing kernel Mzt+1,t+1 increases with the subjective discount factor β, a high

value of β helps match the low riskfree rate. Table 3 reveals that an increase in EIS (or 1/ρ)

from 1.5 to 2.0 generally lowers the riskfree rate and stock returns due to the high intertemporal

substitution effect. In addition, an increase in γ from 2.0 to 5.0 also lowers the riskfree rate and

raises stock returns. These results follow from the usual intuition in the Epstein-Zin model.

Next, consider the role of ambiguity aversion, which is unique in our model. Table 3 reveals

that an increase in the ambiguity aversion parameter η lowers the riskfree rate and raises stock

returns. The intuition follows from the discussion in Section 3.2. An ambiguity averse agent

displays pessimistic behavior by attaching more weight to the worst state with low continuation

utilities. Thus, he saves more for the future and invests less in the stock. In addition, as more

weight is attached to the low-growth state, there is less variation of Et

[
Mzt+1,t+1

]
, and hence
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the riskfree rate Rf,t+1 is less volatile. By contrast, ambiguity aversion makes the pricing kernel

Mzt+1,t+1 more volatile as revealed by the last term in (16), leading to high and volatile equity

premium. It also generates a high market price of uncertainty defined by the ratio of the

volatility of the pricing kernel and the mean of the pricing kernel (Hansen and Jagannathan

(1991)). For our calibrated baseline parameter values, the market price of uncertainty is equal

to 0.60, as reported in Panel A Table 3. It is equal to 0.09 in benchmark model II with η = γ.

Finally, we analyze the role of learning under ambiguity. We decompose the riskfree rf in

our model into three components:

rf = r∗f +
(
rL
f − r∗f

)
+

(
rf − rL

f

)
, (23)

where r∗f , rL
f , and rf are the means of the riskfree rate delivered by benchmark model I,

benchmark model II, and our ambiguity model, respectively. We do a similar decomposition

for the mean stock returns and the volatility of the equity premium.10 Table 4 presents this

decomposition.

[Insert Table 4 Here.]

Panel A of this table shows that under the baseline parameter values, benchmark model I

with full information predicts that the mean riskfree rate r∗f = 0.0363, the mean equity returns

r∗e = 0.046, and the volatility of equity premium σ∗eq = 0.1448. For benchmark model II with

Epstein-Zin preferences, the standard Bayesian learning lowers the riskfree rate and raises the

equity return and equity volatility, but by a negligible amount. By contrast, the component

(rf − rL
f ) due to learning under ambiguity accounts for most of the decrease in the riskfree rate

and the increase in the equity return and the volatility of the equity premium. In addition, the

magnitude of this component is larger for a larger degree of ambiguity aversion. We find the

same result also for various values of the risk aversion parameter as presented in Panels B-C. In

particular, when the risk aversion parameter γ = 2 and 5, the corresponding effects of Bayesian

learning are to lower the mean riskfree rate by 0.01 and 0.03 percent, to raise the mean stock

return by 0.01 and 0.03 percent, and to raise the equity premium volatility by 0.02 and 0.05

percent. These effects are quantitatively negligible. Increasing EIS from 1.5 to 2.0 does not

change this result much as revealed by Panels D-E.

A surprising feature of benchmark model II with Bayesian learning is that equity premium

can become negative when risk aversion γ is sufficiently large in the special case of time-additive

utility γ = ρ. Increasing risk aversion may worsen the equity premium puzzle. In a similar
10In a continuous-time multiple-priors model without learning, Chen and Epstein (2002) provide a similar

decomposition and show that equity premium reflects a premium for risk and a premium for ambiguity.

16



continuous-time model, Veronesi (2000) proves this result analytically. The intuition is that

an increase in risk aversion raises the agent’s hedging demand for the stock after bad news in

dividends, thereby counterbalancing the negative pressure on prices due to the bad news in

dividends. The former effect may dominate so that the pricing kernel and stock returns are

positively correlated, resulting in negative equity premia (see equation (19)). By contrast, in

our model, an ambiguity averse agent invests less in the stock, thereby counterbalancing the

preceding hedging effect. In contrast to risk aversion, an increase in the degree of ambiguity

aversion helps increase equity premium.

4.3. Price-Consumption and Price-Dividend Ratios

Panel A of Figure 1 presents the price-consumption ratio as a function of the posterior proba-

bilities µt of the high-growth state for three values of η, holding other parameters fixed at the

baseline values. It reveals two properties. First, the price-consumption ratio is increasing and

convex. The intuition is similar to that described by Veronesi (1999) who analyzes time-additive

expected exponential utility. When times are good (µt is close to 1), a bad piece of news de-

creases µt, and hence decreases future expected consumption. But it also increases the agent’s

uncertainty about consumption growth since µt is now closer to 0.5, which gives approximately

the maximal conditional volatility of the posterior probability of the high-growth state in the

next period. Since the agent wants to be compensated for bearing more risk, they will require

an additional discount on the price of consumption claims. Thus, the price reduction due to a

bad piece of news in good times is higher than the reduction in expected future consumption.

By contrast, suppose the agent believes times are bad and hence µt is close to zero. A good

piece of news increases the expected future consumption, but also raises the agent’s perceived

uncertainty since it moves µt closer to 0.5. Thus, the price-consumption ratio increases, but

not as much as it would in a present-value model.

The second property of Panel A of Figure 1 is that an increase in the degree of ambiguity

aversion lowers the price-consumption ratio because it induces the agent to invest less in the

asset. In addition, an increase in the degree of ambiguity aversion raises the curvature of the

price-consumption ratio function, thereby helping increase the asset price volatility. In the

special case of benchmark model II with η = γ, the price-consumption ratio is close to be a

linear function of the state beliefs.11 Thus, this model cannot generate high asset price volatility.

[Insert Figure 1 Here]

11We can follow Veronesi (1999) to prove analytically that both the price-consumption and price-dividend
ratios are linear in state beliefs for time-additive expected utility.
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Panel B of Figure 1 presents the price-consumption ratio function for various values of ρ,

holding other parameters fixed at the baseline values. It reveals that the price-consumption

ratio is an increasing function of µt when ρ < 1, while it is a decreasing function when ρ > 1.

When ρ = 1, it is equal to β/ (1− β) by (18) because wealth is equal to consumption plus

the price of consumption claims. This result follows from the usual intuition in the Epstein-

Zin model (see Bansal and Yaron (2004)). When ρ < 1, EIS is greater than 1 and hence the

intertemporal substitution effect dominates the wealth effect. In response to good news of

consumption growth, the agent buys more assets and hence the price-consumption ratio rises.

The opposite result holds true when ρ > 1.

Panels C and D of Figure 1 present similar figures for the price-dividend ratio. We find that

the effects of η and ρ are similar. One difference is that the price-dividend ratio is not constant

when ρ = 1 because dividends and aggregate consumption are not identical in our model. Due

to leverage, we need a sufficiently small EIS (or a large ρ) to make the price-dividend ratio

decrease with µt. Bansal and Yaron (2004) find a similar result in a full information model with

Epstein-Zin preferences.

In summary, ambiguity aversion helps generate the variation in the price-consumption and

price-dividend ratios. An EIS greater than 1 is important for generating procyclical price-

consumption and price-dividend ratios.

4.4. Time-Varying Equity Premia and Equity Volatility

Panels A of Figure 2 plots the conditional expected equity premium as a function of the posterior

probability µt of the high-growth state for various values of η. We find that this function is

hump-shaped and peaks when µt is around 0.6. This shape seems to suggest that a negative

consumption shock can lead to either higher or lower equity premium, depending on whether

µt is close to 0 or to 1. However, since the economy spends most of the time in the high-

growth state, the steady-state distribution of the posterior is highly skewed. This implies that

µt is close to 1 in most of the time, leading to the pattern that equity premium rises following

negative consumption shocks. As a result, our model can generate the countercyclical variation

in equity premium observed in the data.

What is the role of ambiguity aversion? Panel A of Figure 2 shows that the curvature of

the conditional expected equity premium function increases with η, implying that ambiguity

aversion helps amplify the variation in equity premium. In benchmark model II with Bayesian

learning (η = γ = 2.0), the conditional expected equity premium is almost flat. Consequently, it

cannot generate highly time-varying expected equity premia. By contrast, when η is increased

from 2 to 8.864, conditional equity premium can rise from about 3 percent to 28 percent.
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[Insert Figure 2 Here.]

Panel B of Figure 2 plots the conditional volatility of equity premium as a function of µt

for various values of η. This function is also hump-shaped, with the maximum attained at

a value of µt close to 0.6. Following similar intuition discussed above, our model generates

countercyclical variation in conditional volatility of equity premium observed in the data. In

addition, ambiguity aversion helps amplify this variation.

Our model can also generate persistent changes in conditional volatility of equity premium,

documented by Bollerslev et al. (1992). The intuition is that the agent’s beliefs are persistent in

the sense that if he believes the high-growth state today has a high probability, then he expects

the high-growth state tomorrow also has a high probability on average. The persistence of

beliefs drives the persistence of the volatility of equity premium.

[Insert Figure 3 Here.]

Figure 3 illustrates the time-varying properties of the expected equity premium and the

volatility of equity premium by a Monte Carlo simulation. Panel A plots a time series of con-

sumption growth simulated using (13). Panel B plots the time series of the posterior probability

of the high-growth state µt, computed using (15). It reveals that in most of the time the agent

believes that the economy is in the high-growth state in that µt is close to 1. After a few

negative shocks to consumption growth, the agent believes the low-growth state is more likely

in that µt decreases and is close to 0.5. At this value, the agent’s perceived uncertainty about

the high-growth state in the next period is the highest. Using the simulated series of con-

sumption growth, dividend growth, and the posterior probabilities, we can compute the series

of conditional volatility of stock returns and conditional expected equity premium. We plot

these series in Panels C and D of Figure 3, respectively. From these panels, we can see that

both the conditional volatility of equity premium and conditional expected equity premium are

time-varying and move with business cycles countercyclically.

4.5. Serial Correlation and Predictability of Returns

To examine the ability of our model to generate the serial correlation and predictability of

returns reported in Table 2, we compare our model with benchmark models I and II. Table 5

reports the model implied values of the variance ratios, the regression slopes and the R2’s, at

horizons of 1, 2, 3, 5, and 8 years based on the baseline parameter values given in Table 3.

To account for the small sample bias in these statistics, we generate them using 10,000 Monte

Carlo experiments as described in Cecchetti et al. (2000).
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From Table 5, we observe that all three models can generate the pattern that variance ratios

are less than 1 and decrease with the horizon, suggesting that excess returns are negatively

serially correlated. In terms of predictive regressions, benchmark models I and II deliver very

small R2’s, implying weak predictability.12 One may expect that learning should help generate

return predictability. The intuition is that the change of state beliefs is persistent, and hence

the price-dividend ratio is also persistent and positively serially correlated. However, Table 5

reports that benchmark model II with Bayesian learning helps little quantitatively. In a related

model, Brandt et al. (2004) find a similar result.

We finally consider our model in which we introduce ambiguity aversion into benchmark

model II. Table 5 reveals that while all three models can generate the pattern that the regression

slopes increase with the horizon, our model with learning under ambiguity produces much more

significant quantitative effects. In particular, compared to benchmark models I and II, our

model implied values of the regression slopes and R2’s are much higher. However, our model

still cannot replicate the same numbers estimated from the data reported in Panel B of Table 2.

In addition, all three models cannot generate the pattern that R2’s increase with the horizon.

The model predicted R2’s first increase with the horizon and then decrease with it after period 3.

This could be due to the fact that the model generated price-dividend ratios are not persistent

enough.13 We should recognize that the predictability results in the empirical literature are

quite sensitive to data sets, changing samples, and estimation techniques (Welch and Goyal

(2008)). Thus, one should be cautious in interpreting empirical evidence on predictability.

[Insert Table 5 Here]

5. Conclusion

In this paper, we have proposed a novel generalized recursive smooth ambiguity model which

allows a three-way separation among risk aversion, ambiguity aversion and intertemporal sub-

stitution. This model nests some utility models commonly adopted in the literature as special

cases. We also propose a tractable homothetic specification and apply this model to asset pric-

ing. When modelling consumption growth and dividend growth as regime-switching processes

(nonlinear counterpart of the long-run risk processes as in Bansal and Yaron (2004)), our asset

pricing model can help explain a variety of asset pricing puzzles. Our calibrated model can

match the mean equity premium, the mean riskfree rate, and the volatility of equity premium
12Beeler and Campbell (2009) and Garcia et al. (2008) re-examine the Bansal-Yaron model and find that it

cannot match the predictability in the data, contrary to the finding of Bansal and Yaron (2004).
13See Campbell et al. (1997, pp. 271-273) for a theoretical analysis of why R2’s may first increase and then

decrease with the horizon.
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observed in the data. In addition, our model can generate a variety of dynamic asset pric-

ing phenomena, including the procyclical variation of price-dividend ratios, the countercyclical

variation of equity premia and equity volatility, and the mean reversion of excess returns.

We show that ambiguity aversion and learning under ambiguity play a key role in explain-

ing asset pricing puzzles. An ambiguity averse agent displays pessimistic behavior in that he

attaches more weight to the pricing kernel in bad times when his continuation values are low.

This pessimistic behavior helps propagate and amplify shocks to consumption growth, and gen-

erates time-varying equity premium. We also find that Bayesian learning in the expected utility

framework has a modest quantitative effect on asset returns, while learning under ambiguity is

important to explain dynamic asset pricing phenomena. One limitation of our model is that it

cannot reproduce the predictability pattern in the data.

Other models can also simultaneously generate the unconditional moments and dynamics

of asset returns observed in the data. For example, Campbell and Cochrane (1999) introduce

a slow moving habit or time-varying subsistence level into a standard power utility function.14

As a result, the agent’s risk aversion is time varying. Bansal and Yaron (2004) apply the

Epstein-Zin preferences, and incorporate fluctuating volatility and a persistent component in

consumption growth.15 Their calibrated risk aversion parameter is 10. Our model of con-

sumption and dividend processes is similar to Bansal and Yaron (2004), but is much easier to

estimate. We shut down exogenous fluctuations in consumption growth volatility and analyze

how endogenous learning under ambiguity can generate time-varying equity premium.

We view our model as a first step toward understanding the quantitative implications of

learning under ambiguity for asset returns. We have shown that our model can go a long way

to explain many asset pricing puzzles. Much work still remains to be done. For example,

how to empirically estimate parameters of ambiguity aversion, risk aversion, and intertempo-

ral substitution would be important future research topics. In addition, our proposed novel

generalized recursive ambiguity model can be applied to many other problems in finance and

macroeconomics.

14Ljungqvist and Uhlig (2009) show that government interventions that occasionally destroy part of endowment
can be welfare improving when endogenizing aggregate consumption choices in the Campbell-Cochrane habit
formation model.

15See Beeler and Campbell (2009) for a critique of the Bansal-Yaron model.
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Appendix

A Proofs of Results in Section 3.2

We follow the method of Hansen et al. (2008) to derive the marginal utility of consumption

and continuation value as:

MCt =
∂Vt (C)

∂Ct
= (1− β) V ρ

t C−ρ
t ,

MVzt+1,t+1 =
∂Vt (C)

∂Vzt+1,t+1
= βV ρ

t [Rt (Vt+1)]
η−ρ

(
Ezt+1,t

[
V 1−γ

t+1

])− η−γ
1−γ

V −γ
t+1,

where Vzt+1,t+1 denotes the continuation value Vt+1 (C) conditioned on the period t + 1 state

being zt+1. The pricing kernel is given by Mzt+1,t+1 =
(
MVzt+1,t+1

)
(MCt+1) /MCt, which

delivers (16).

We next use the dynamic programming method of Epstein and Zin (1989) to derive other

results in Section 3.2. Suppose the agent trades N assets. The budget constraint is Wt+1 =

(Wt − Ct) Rw,t+1, where the return on the wealth portfolio Rw,t+1 is equal to
∑N

k=1 ψktRk,t+1,

ψkt is the portfolio weight on asset k, and Rk,t+1 denotes its return. The value function J (Wt, µt)

satisfies the Bellman equation:

J (Wt, µt) = max
[
(1− β)C1−ρ

t + β

{(
µt

(
E1,t

[
J1−γ (Wt+1, µt+1)

]) 1−η
1−γ (A.1)

+ (1− µt)
(
E2,t

[
J1−γ (Wt+1, µt+1)

]) 1−η
1−γ

)} 1−ρ
1−η

] 1
1−ρ

.

Conjecture

J (Wt, µt) = AtWt, and Ct = atWt, (A.2)

where At and at are to be determined. Substituting (A.2) and the budget constraint into (A.1),

we can then rewrite the Bellman equation as:

At = max
at,{ψkt}


(1− β) a1−ρ

t + (1− at)
1−ρ β

(
Eµt

(
Ezt+1,t

[
(At+1Rw,t+1)

1−γ
]) 1−η

1−γ

) 1−ρ
1−η




1
1−ρ

Use the first-order condition for consumption to derive:
(

at

1− at

)−ρ

=
β

1− β

(
Eµt

(
Ezt+1,t

[
(At+1Rw,t+1)

1−γ
]) 1−η

1−γ

) 1−ρ
1−η

. (A.3)

From the above two equations, we have:

At = (1− β)1/(1−ρ) a
−ρ/(1−ρ)
t = (1− β)1/(1−ρ)

(
Ct

Wt

)−ρ/(1−ρ)

. (A.4)

Substituting equation (A.4) into (A.2) yields equation (18).
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Table 1. Stylized facts of equity and short-term
bond returns using annual observations from 1871-1993

A. First and second moments as a percentage

Mean equity premium µeq 5.75
Mean risk-free rate rf 2.66
Standard deviation

Equity premium σ(µeq) 19.02
Risk-free rate σ(rf ) 5.13

B. Predictability and persistence of excess returns

Horizon Regression slope R2 Variance ratio

1 0.148 0.043 1.000
2 0.295 0.081 1.038
3 0.370 0.096 0.921
5 0.662 0.191 0.879
8 0.945 0.278 0.766

Notes: The regression slope and R2 are for regressions of the k−year (k = 1, 2, 3, 5, 8) ahead
equity premium on the current log dividend-price ratio. The variance ratio is the variance of
the k−year equity premium divided by k times the variance of the one-year equity premium.
This table is taken from Table 1 in Cecchetti et al. (2000).

Table 2. Maximum likelihood estimates of the consumption process

λ11 λ22 κ1 κ2 σ

0.978 0.516 2.251 −6.785 3.127

Notes: The numbers in the last three columns are expressed in percentage. This table is taken
from Table 2 in Cecchetti et al. (2000).
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Table 3. Unconditional Moments and Comparative Statistics

η rf σ(rf ) re σ(re) µeq σ(µeq)
σ(M)
E[M ]

Panel A (Baseline): γ = 2.0, ρ = 1/1.5
8.864 2.66 1.16 8.41 17.98 5.75 18.26 0.60

Panel B: ρ = 1/1.5, γ = 2.0
2.0 3.61 0.63 4.60 14.49 0.99 14.50 0.09
3.0 3.55 0.70 4.81 14.72 1.26 14.75 0.12
8.0 2.88 1.10 7.44 17.28 4.56 17.51 0.47
15.0 -0.18 1.06 16.44 18.75 16.62 19.01 2.20

Panel C: ρ = 1/1.5, γ = 5.0
5.0 3.02 0.89 6.48 15.73 3.46 15.83 0.30
8.0 2.40 1.12 9.02 17.72 6.62 17.97 0.59
15.0 -0.87 0.97 17.88 18.48 18.75 18.68 2.43

Panel D: ρ = 1/2, γ = 2.0
2.0 3.30 0.51 4.31 14.57 1.02 14.58 0.09
3.0 3.23 0.58 4.53 14.82 1.30 14.85 0.12
8.0 2.52 1.00 7.30 17.59 4.79 17.82 0.48
15.0 -0.82 0.96 16.42 19.10 17.23 19.34 2.22

Panel E: ρ = 1/2, γ = 5.0
5.0 2.71 0.77 6.29 15.92 3.58 16.01 0.30
8.0 2.04 1.02 8.93 18.04 6.89 18.29 0.60
15.0 -1.52 0.88 17.88 18.80 19.39 19.00 2.45

Notes: Except for the numbers in the first and the last columns, all other numbers are in
percentage. Columns 2-7 present the means and standard deviations of the riskfree rate, the
equity return, and the equity premium, respectively. σ(M)/E[M ] is the ratio of the standard
deviation to the mean of the pricing kernel. We set β = 0.975 in all cases.
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Table 4. Decomposition of rf , re and σeq

η r∗f ∆rL
f ∆rf r∗e ∆rL

e ∆re σ∗eq ∆σL
eq ∆σeq

Panel A (Baseline): γ = 2.0, ρ = 1/1.5
8.864 3.63 -0.01 -0.96 4.60 0.01 3.80 14.48 0.02 3.76

Panel B: ρ = 1/1.5, γ = 2.0
2.0 3.62 -0.01 0.00 4.59 0.01 0.00 14.48 0.02 0.00
3.0 3.62 -0.01 -0.06 4.59 0.01 0.21 14.48 0.02 0.25
8.0 3.62 -0.01 -0.73 4.59 0.01 2.85 14.48 0.02 3.01
15.0 3.62 -0.01 -3.80 4.59 0.01 11.84 14.48 0.02 4.51

Panel C: ρ = 1/1.5, γ = 5.0
5.0 3.05 -0.03 0.00 6.45 0.03 0.00 15.78 0.05 0.000
8.0 3.05 -0.03 -0.61 6.45 0.03 2.54 15.78 0.05 2.14
15.0 3.05 -0.03 -3.89 6.45 0.03 11.40 15.78 0.05 2.85

Panel D: ρ = 1/2, γ = 2.0
2.0 3.30 -0.01 0.00 4.31 0.01 0.00 14.58 0.01 0.00
3.0 3.30 -0.01 -0.07 4.31 0.01 0.22 14.58 0.01 0.27
8.0 3.30 -0.01 -0.78 4.31 0.01 2.99 14.58 0.01 3.24
15.0 3.30 -0.01 -4.11 4.31 0.01 12.10 14.58 0.01 4.76

Panel E: ρ = 1/2, γ = 5.0
5.0 2.73 -0.02 0.00 6.26 0.02 0.00 15.99 0.03 0.00
8.0 2.73 -0.02 -0.67 6.26 0.02 2.64 15.99 0.03 2.28
15.0 2.73 -0.02 -4.22 6.26 0.02 11.59 15.99 0.03 2.99

Notes: Except for the numbers in Column 1, all numbers are in percentage. The variables r∗f ,
r∗e , and σ∗eq are the mean riskfree rate, the mean stock return, and the equity premium volatility,
respectively, for benchmark model I. The variables rL

f , rL
e , and σL

eq are the mean riskfree rate,
the mean stock return, and the equity premium volatility, respectively, for benchmark model
II. We denote by ∆rL

f = rL
f − r∗f the change of the mean riskfree rate due to Bayesian learning,

and by ∆rf = rf − rL
f the change of the mean riskfree rate due to learning under ambiguity.

The other variables ∆rL
e , ∆re, ∆σL

eq, ∆σeq, are defined similarly. We set β = 0.975 in all cases.

30



Table 5. Predictability and Persistence of Excess Returns

Baseline parameter values Benchmark model I Benchmark model II
Variance Variance Variance

Horizon Slope R2 ratio Slope R2 ratio Slope R2 ratio
1 0.810 0.134 1.000 0.368 0.034 1.000 0.537 0.029 1.000
2 1.089 0.160 0.825 0.503 0.037 0.967 0.712 0.032 0.962
3 1.209 0.158 0.719 0.575 0.035 0.944 0.802 0.030 0.936
5 1.294 0.140 0.598 0.643 0.030 0.909 0.902 0.027 0.900
8 1.323 0.115 0.509 0.688 0.026 0.871 0.985 0.025 0.862

Notes: The slope and R2 are obtained from an OLS regression of the excess returns on the
log dividend yield at different horizons. The variance ratio is computed in the same way as
Cecchetti (1990, 2000). The reported numbers are the mean values of 10,000 Monte Carlo
simulations, each consisting of 123 excess returns and dividend yields.
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Figure 1: The price-dividend ratio and the price-consumption ratio. Panels A and B
plot the price-consumption ratio as a function of the posterior probabilities of the high-growth
state. Panels C and D plot the price-dividend ratio as a function of the posterior probabilities
of the high-growth state.
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Figure 2: Conditional expected equity premium and conditional volatility of equity
premium. Panels A and B plot the conditional expected equity premium and conditional
volatility of equity premium as functions of the posterior probabilities of the high-growth state.
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Figure 3: Simulated time series of consumption growth, posterior probabilities of the
high-growth state, conditional volatility of stock returns, and conditional expected
equity premium. Parameter values are set as the baseline values given in Table 3.
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