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CMS SWAPS IN SEPARABLE ONE-FACTOR GAUSSIAN LLM AND HJM
MODEL

MARC HENRARD

ABSTRACT. An approximation approach to Constant Maturity Swaps (CMS) pricing in the sep-
arable one-factor Gaussian LLM and HJM models is presented. The approximation used is a
Taylor expansion on the swap rate as a function of a random variable which is intuitively similar
to a (short) rate. This approach is different from the standard approach in CMS where the
discounting is written as a function of the swap rate. The approximation is very efficient.
Copyright (© 2006-2007 by Marc Henrard.

1. INTRODUCTION

Constant Maturity Swaps (CMS) are easy to describe and at first sight may seem easy to price.
A CMS is composed of several payments. Like for the floating leg of a standard IRS the payment
are done on a regular short term basis (typically three or six months). The rate fixing take place
two' business days before the start of the period. The rate is multiplied by the accrual factor of
the period and paid at the end. The difference with the floating leg of an IRS is that the rate used
for the fixing is not the rate corresponding to the period but a swap rate. The tenor of the swap
is longer than the one of the payment period; typically the tenor is five or ten year.

The valuation involved both the swap rate and the discounting from the payment date. The
price is usually obtained using some approximations. The standard approach is to approximate
the discounting to payment date adjusted by the numeraire by a function of the swap rate. Then
further approximation (often of order two) is required to obtain an explicit price. This approach
is briefly described in Hull (2006) and in a more general and detailed way in Hagan (2003).

In this paper the CMS are studied in two different models: the one-factor separable Gaussian
LMM and HJM models. For the HJM model, the term Gaussian refers to a model where the
volatility is deterministic and the instantaneous forward rate are normally distributed. For the
LMM, the term Gaussian refers to the model where the Libor rates satisfy a Bachelier-type equation
dL; = odW; and the rates are normally distributed (in their own forward measure). The models
are discribed with more details in the next section.

A different approach to the standard one is used for the approximation. The exact swap rate
and the discounting are written as function of an underlying random variable. Intuitively the
variable is the stochastic integral of the volatility along the underlying Brownian motion. In the
models used the rates are normally distributed and the rates are more or less linear in the variable.
The “more or less” comes from the fact that in both models it is not the swap rate which is
modelled and normally distributed but respectively the instantaneous forward and the Libor rates.
Nevertheless using a Taylor expansion of the swap rate in term of the underlying random variable,
very precise results can be obtained. Moreover by expanding around a specific point (which is not
0), the symmetry of the distribution can be used to obtain a price expansion with only even terms;
one order of approximation is obtained for free.
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IThe fixing lag is two business days in most of the currencies, the GBP being the most noticeable exception.
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2 M. HENRARD

The CMS prices are often described in term of adjusted forward rate (including in some places
in this note). There is no reason why the forward rate should be used in the computation except
a similarity with a standard swap where the floating payment can be valued using the forward
rate discounted to today. Also it is usually easier to express the valuation in term of rate than in
term of price. The price of a CMS payment can be written as the discounted expected value of the
forward rate multiplied by a factor. The adjustement is not only in the factor but also in the fact
that the expected value is not taken in the measure for which the rate is a martingale.

2. MODEL AND HYPOTHESIS

In general, the HIM framework describes the behavior of P(t,u), the price in ¢ of the zero-
coupon bond paying 1 inu (0 < ¢,u < T). When the discount curve P(t,.) is absolutely continuous,
which is something that is always the case in practice as the curve is constructed by some kind of
interpolation, there exists f(¢,u) such that

(1) P(t,u) = exp ( /t ", s)ds) .

The idea of Heath et al. (1992) was to exploit this property by modeling f with a stochastic
differential equation
df (t,u) = p(t,u)dt + o(t, u).dW;

for some suitable (potentially stochastic) ;1 and o and deducing the behavior of P from there. To
ensure the arbitrage-free property of the model, a relationship between the drift and the volatility
is required. The model technical details can be found in the original paper or in the chapter
Dynamical term structure model of Hunt and Kennedy (2004).

The probability space is (Q,{F;}, F,P). The filtration F; is the (augmented) filtration of a
one-dimensional standard Brownian motion (W;)o<;<7. To simplify the writing in the rest of the
paper, the notation

v(t,u) = / o(t,s)ds
¢

is used.

Let N, = exp(fot rsds) be the cash-account numeraire with (ry)o<s<r the short rate given by
ry = f(t,t). The equations of the model in the numeraire measure associated to Ny are

df (t,u) = o(t,w)v(t,u)dt + o(t, u)dW;
or
dPN (t,u) = —PN (t,u)v(t,u)dW;
The notation PV (t,s) designates the numeraire rebased value of P, i.e. PN(t,s) = N; ' P(t,s).
The following technical lemma was presented in Henrard (2005) for the Gaussian one-factor

HJM. Similar formulas can be found in (Brody and Hughston, 2004, (3.3),(3.4)) in the framework
of coherent interest-rate models.

Lemma 1. Let 0 < 0 <ty <t;. In the HIM framework the price of the zero coupon bond is
P tz 6 1 [
P(((()): 9)) exp </0 (v(s,t;) —v(s,8))dW, — 5/0 (v3(s,t:) — v2(s,0)) ds) .

To be able to use the explicit formula for the valuation of the European swaptions, we will also
use the following hypothesis.

PO, t;) =

H1: The function o satisfies o(t,u) = g(t)h(u) for some positive function g and h.

The idea behind the Libor Market model is to embed different Black-like equations for the
forward (Libor) rate between standard dates (0 <ty < ¢; < --- < t,,) into a unique HJM model.
The Libor rates L(t,t;) are defined by
P(87 tz)

LHoills,t) = pr= 5
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The equations underlying the Bachelier (or normal or Gaussian) Libor Market Model are
(2) dL(t,t;) = ~v; (L(t, t;), t)dWwit

in the probability space with numeraire P(t,t;11). The v; (0 < j < n — 1) are one-dimensional
functions. To merit the full qualification of Bachelier model, v; should be purely deterministic
(not involving L). For fundamental reasons explained in the appendix of Henrard (2007) such
a model would be ill-defined. In this section the v are used with their most general form. The
next section will consider them in their simple deterministic form (with the understanding that
they are modified far away from reasonable rates as suggested in Henrard (2007) to obtain a well
defined model). The coefficients can be considered also as affine functions leading to a displaced
log-normal dynamic as also described in appendix of the above mentioned paper.
The Brownian motion change between the N; and the P(¢,¢;11) numeraires is given by

AW = AW, + v(t, tj41)dt.

The difference v(t,t;41) — v(t,t;) can be written as

v(t, tjv1) —v(t,ty) = 5 (L(t, t5),t)

L(t,t;) + 5-
The model will be studied under the separability conditions
H2: ~;(s) = §;7(s) with 8; > 0 and ~(s) > 0.
As mentionned in the introduction, this type of conditions appeared in interest rate modelling in

different circumstances. The reader is reffered to Pelsser et al. (2004) for more on this nonrestrictive
requirement in the LLM framework.

3. CMS PRICING

The price of the CMS payments are analysed in the two models described in the previous section.
The fixing of the swap rate take place in 6 for a swap with reference dates {t;}o<i<n. The first
date tg is the settlement date, the next are the coupon payments, and the maturity is in ¢,,. The
accrual fraction of the different periods of the swap are {v;}1<i<n. The rate obtained is paid in
t, > 0 with an accrual fraction ¢ usually corresponding with the period to — .

The numeraire is changed to the price P(t, ). The associated Brownian motion is W/ given by
dW{ = dW; +v(t,0)dt. With that change of numeraire and Lemma 1, the price of the zero-coupon
is

. 0 0
P(0,t;) = ]P;((%’,Z)) exp (—/0 v(s,t;) — v(s,0)dW? — %/0 (v(s,ti) — 1/(3,0))st> .

In the Guassian HJM, the volatility is deterministic and the integrals can be written explicitely.
Let

0
3) (@f = [ .t~ v(s,6)%ds.
0

The price of the zero-coupon is then

P(0,t:) G L Gy
—a8X — —Z(af

P g o (-afx - ()
with X standard normally distributed. Like in Henrard (2003) and Henrard (2006) the random
valiable X is the same for all the maturities thanks to the separability hypothesis (H1).

In the normal LMM, the volatility is not deterministic any more and approximations are used:

v(s,t;) —v(s,0) ~v(s,t;) —v(s,to).
The difference between the fixing # and the settlement ¢y is minimal, usually two business days.
It could be imposed that the dates coincide but to have more transparancy the market conditions

and the technical constraints are handeled separately. A volatility approximation is used between
the expiry and the start date as only the equally spaced dates t; can be used in the volatilities.

P(0,t;) =
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The difference can be written in term of the LMM parameters

(4) v(s,t;) —v(s,0) =~ N v(s,tjp1) — v(s,t;)
j=0
i—1
_ 75(s)
(5) B 32::0 Li+1/6;

The last term contains the random variables L%. Like in Henrard (2007) the value on the path can
be approximated by its initial value L. Using the notations

1 2
Aj=—"7, F2:/725ds,
L) +1/8; 0 )

i—1
(6) al =Y NBT
j=0
one obtains
i—1
(s, ti) —v(s,0) ~ Z AiBiv(s)-
j=0
The two integrals appearing in the zero-coupon bond price become

0 0
/ v(s,t;) — v(s,0)dW? ~ ol X and/ (v(s,t;) — v(s,0))%ds ~ (o).
0 0

2

For both models, the price of the zero-coupon is approximated by
P(0,t;) ~ I;D((%:Z))exp (—aiLX - ;(af)2> .
The swap rate is
P(0,s0) exp (—aoX — 2ad) — P(0,s,) exp (—a, X — 2a2)
S vP(0,s;) exp (i X — 1a?)
The rate is almost linear in the variable X. The graph of Ry for X between -5 and 5 is given in
Figure 1.

For the two models the zero-coupon price can be written in the same way. The difference is that
one is exact and the other is an approximation. Also the meaning of the constants «; are different.

Ro(X) ~

Theorem 1. In the separable one-factor Gaussian HIM and normal LMM the price of the CMS
payment is approrimated to the order m by
[m/2]

Ay
Vit = oP(0,t,) | Ao+ D> 2
1=1

214!

where || is the integer part of r and the coefficient A; are the one of the Taylor expansion of Ry
around o,:

m
Ro(X)=>_ %Ai(X +ap)’

and the coefficients a are given respectively l;y_()(S) and (6).

Proof. The CMS pays the swap rate Ry fixed in 6 at the payment date ¢,. The value of one CMS

payment at the fixing date is ¢RyP(0,t,). Using the P(¢,60) numeraire the value is

(7) Vo = o¢P(0,0)E[RgP(6,t,)]

(8) = ¢P(0.t,) E [Ro(X) exp(—, X — ap/2)] .
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Rate Re

FIGURE 1. Swap rate Ry as function of the underlying random variable X.

Using the expansion of Ry(X) around —c, one only needs to compute the expected values

1 0 i odd
E [(X + ap)’exp <—apX — 20412))] =< 1 s i=0
[1Z1(25 —1) ieven

The result is obtained by notting that the product can be written as a factorial:

oo (26 —1)!
,U(zj V=5
Jj=1

O
Note that only the even terms appear in the final price. An approximation of order 3 can be
obtained with Ay and A, only. By adding A4, one has an approximation of order 5. To the order
4, the price is
¢P(0,1,) (Ao + A2/2 + A4/8).
The explicit computation of the factors A; corresponding to the Taylor expansion of Ry around oy,
is quite long. In our implementation the factors A, and As are computed explicitely. The formula
for Ay (second order derivative) take around ten lines of code. The factor A4 is computed through
a numerical computation as teh second order derivative of As:

Ay = (As(ap +€) + As(ap —€) — 2A2(ap))/62.

The next section shows that in practice it is enough to use the second order development.

4. IMPLEMENTATION

The approximation with terms up to Ag, A2 and A, are compared with a numerical integration
approach to assess the precision of the approximation for the Hull-White extended Vasicek model.

The example is a 10y x 10y semi-annual CMS with a flat curve at 5% and Vasicek parameters
(a,0) = (0.01,0.01).

The differences between the different approaches are given in Table 1. The table consits of 20
rows corresponding to the 20 payments of the swap. The figures are the adjusted forward rates.
There are 11 versions of the adjusted forward rates. Seven for the numerical integration with
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50 100 500 1000 5000 10000 50000 Ap A, Ay | Forward
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.002 0.001 0.000 0.000 0.000 0.000 0.000| -0.157 0.000 -0.000 -2.093
0.005 0.002 0.000 0.000 0.000 0.000 0.000| -0.312 0.000 -0.000 -4.080
0.007 0.003 0.001 0.000 0.000 0.000 0.000| -0.461 0.000 -0.000 -6.113
0.009 0.005 0.001 0.000 0.000 0.000 0.000| -0.614 0.000 -0.000 -8.080
0.011 0.006 0.001 0.001 0.000 0.000 0.000 | -0.753 0.000 -0.000| -10.021
0.013 0.007 0.001 0.001 0.000 0.000 0.000 | -0.912 0.000 -0.000| -11.972
0.016 0.008 0.002 0.001 0.000 0.000 0.000 | -1.044 0.000 -0.000| -13.870
0.018 0.009 0.002 0.001 0.000 0.000 0.000| -1.200 0.000 -0.000 | -15.771
0.019 0.010 0.002 0.001 0.000 0.000 0.000 | -1.330 0.001 -0.000| -17.687
0.022 0.011 0.002 0.001 0.000 0.000 0.000 | -1.488 0.001 -0.000| -19.498
0.023 0.012 0.002 0.001 0.000 0.000 0.000 | -1.612 0.001 -0.000| -21.373
0.026 0.013 0.003 0.001 0.000 0.000 0.000 | -1.763 0.001 -0.000| -23.134
0.027 0.014 0.003 0.001 0.000 0.000 0.000 | -1.878 0.001 -0.000| -25.034
0.030 0.015 0.003 0.002 0.000 0.000 0.000 | -2.038 0.001 -0.000| -26.724
0.032 0.016 0.003 0.002 0.000 0.000 0.000 | -2.147 0.001 -0.000| -28.517
0.033 0.017 0.003 0.002 0.000 0.000 0.000 | -2.303 0.002 -0.000| -30.296
0.036 0.018 0.004 0.002 0.000 0.000 0.000 | -2.405 0.002 -0.000| -31.976
0.038 0.019 0.004 0.002 0.000 0.000 0.000 | -2.570 0.002 -0.000| -33.706
0.040 0.020 0.004 0.002 0.000 0.000 0.000 | -2.667 0.002 -0.000| -35.369
0.407 0.206 0.042 0.021 0.004 0.002 0.000 |-27.654 0.016 -0.000 | -365.315
0.147 0.074 0.015 0.008 0.001 0.001 0.000 |-10.003 0.006 -0.000 | -132.139

TABLE 1. Error of the different approaches in basis points. The errors are reported

as difference of the adjusted forward rate to the most precise number. The first

six columns are numerical integrations with increased number of points, the last

three are the approximations of order 0, 2 and 4. The second last row is the sum

of previous ones. The last row is the total difference in price.

increasing number of points (from 50 to 50,000), three for the approximation of order 0, 2, 4 and
one for the non-adjusted forward rate.

Given a maximal precision of quotation in interest reate swaps of 0.05bps, anything below this
level would have no impact. For the price the numerical integration would be precise enough from
100 points. The approximation approach is more than precise enough from the second order (1073
basis points).

The graph of the error of the numerical integration in term of the number of points is given in
2. The figure represent the difference in price between the different approaches. The second order
approximation perform in a similar way to the 1000 points integration.

In term of speed one expect the numerical scheme to perform worst than the explicit (approx-
imated) results, at least with enough points. Also the more precise appoximation requires more
terms and should be slower. Those expectations are verified in practice. What is maybe not di-
rectly expected is the fact that there is an amount of computation required before starting the
valuation is-self which is not negligeable. That time is mainly spend in computing the dates and
accrual factors (using calendars and market conventions) of the swap. The results are graphed in
Figure 3.

5. CONCLUSION

An approximation approach to CMS pricing in the separable one-factor gaussian LLM and HJM
model is presented. The approximation used is a Taylor expansion on the swap rate as a function
of a random variable which is intuitively similar to a (short) rate. This approach is different from
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the standard approach in CMS where the discounting is written as a function of the swap rate.
The result of the approximation is very good with a rate precision of 10~7 for the second order
and 1078 for the fourth order. For any practical purpose the second order approach is more than

enough precise.

Disclaimer: The views expressed here are those of the author and not necessarily those of the
Bank for International Settlements.
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