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Annals of Economic and Social Measurement, 5/3, 1976

FIRST ORDER DUAL CONTROL'

BY ALFRED L. NORMAN

For large econometric modeLc, computational simplicity is a desirable property of active learning
strategies. This paper presents and evaluates one such strategy, first order dual control, DUAL I. in the
development of DUAL I the unknown parameters are treated directly without augmentation to the states.
To calculate the current period control requires only one calculation of the Ricatti system. The Monte
Carlo comparisons with two passive iearning strategies, heuristic certainty equivalence, HCE and open
ioop mean variance, OLMV, indicate the relative perfonnance of the HCE and OLMV strateg,es is
problem specific and the;e exist problems where parameter estimation error can lead to poorer performance
for the DUAL I strategy than the OLMV strategy.

Consider the following stochastic control problem:
Determine

where

subject to

1. INTRO)UCTION

Jt'(X1)= mm J(X_1)

(1.1) J= E{' [(X,a,)' W1(X, a,)+(U, -a,)' W2(U, -I3)I-J}

(1.2) X,=AX,_1+BU,+CZ,+,

with the following observation pattern: ,_ 1:X,, k = N-f 1, N + 2,. . . I is
observed without error prior to executing U,, and where

X1 is an n-vector of state variables,
U, is an rn-vector of control variables,
Z, is an r-vector of exogenous variables which are assumed known through-

out the planning horizon,
c, is an n-vector of disturbances with the following characteristics Ec, = 0,

Ee,e 1, ,, and a. are statistically independent.
A, B, C, are n x n, n X m, and n x r matrices respectively. These matrices

which contain unknown constant elements can arise directly from a
model specified as a reduced form (1.2) a model specified as a structural
form

(1.3) A0X,=A5X,,+B5U,+c5Z,+e,

in which case, assuming A' exists, A = A'A5, B = A1BS, C=A'.
W1 and W2 are symmetric weighing matrices and [B'W1B + W2] is positive

definite.
'Research supported by NSF Grant Soc. 7 2-05254.
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Prior to the control experiment the system (1.2) has been Observed for N
periods under a regime of nonoptimal control.

For large conometric models there is a need for computationally simple active
learning strategies for non-Bayesian estimation. The purpose of this Paper is to
present and evaluate one such estimation and control strategy, first order dualcontrol, DUALI.

For the stochastic control problem under consideration the Optimal stochas
tic control law is not computable. To formulate an estimation and Control strategy
requires replacing the unknown parameters with proxy variables. Active learningstrategies are based on replacing the unknown parameters with random variableswhose means equal the parameter estimates and whose covariances are based onthe actual data plus anticipated path. The Bayesian dual control strategy [l}, [9],could be adapted to non-Bayesian estimation; however, this approach has a majordisadvantage for large econometric models. For unknown pararrieters Tse andBar-Shalom augment the state vector. As the computation of the Ricatti matricesis cubic in the number of states, [5], augmenting the state will incur largecomputational costs for a large econonletric model. The first order dual controlstrategy, which is derived in Appendix 1, approaches the estimation and controlprobiem without augmenting the unknown parameters to the states. As shown

in Appendix 1, the Ricatti matrices for the linear and quadratic term are equi-valent for the deterministic and perturbation control. This implies that theRicatti matrices need be computed only once to compute the current periodcontrol.
Two Monte Carlo experiments were designed to test the performances otDUAL1, with two passive learning strategies, heuristic certainty equivalence,HCE, and open loop mean variance, OLMV. In the 1-ICE strategy the unknownparameters are replaced with the estimates, which are updated with each newobservation. In the literature [2], [4], [7], lICE is generally known as certaintyequivalence, CE. The adjective heuristic is added to emphasize the fact thisstrategy is generally not optimal. HCE is also known as linear decision rule, LDR,[6], and also forced separation [3]. In the OLMV strategy the unknown parame-ters are replaced by statistically independent random variables whose meansequal the parameter estimates and whose covariances equal the estimatecovariances The means and covariances, which are updated with each observa-tion, are assumed fixed over the planning horizon. OLMV is known as uncertaintyadverse [4], unknown parameters without learning [2], adaptive decision rule[6], and sequential stochastic control SI [7]. The estimator considered in thispaper is ordinary least squares.

The two Monte Carlo experiments are presented in Section II. In the firstexperiment the terminal target is varied thus varying the value of anticipation.In the second experiment the dynami of the model are varied. For bothexperinlents the relative performance of the HCE and OLMV strategies variesbetween cases. The importance of active learning in the DUAL I is also problemspecific.
In the Concluding section statistical inferences are drawn concerning therelative effectiveness of the alternative strategies. The fact that there is no
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dominance between the HCE and OLMV strategies is inferred. In comparing the
OLMV and DUAL!, there is an indication that active learning can lead to poorer
performance in problems where estimation error leads to overestimating the
value of probing.

11. SINGLE EOUATJON EXPERiMENTS

To gain insights into the performance of alternative estimation and control
strategies, it is desirable to design experiments where a single parameter is varied.
The first experiment was designed to investigate the effect of varying the value of
the terminal state track. The effect of varying the terminal state track isto vary the
importance of accurately estimating the true control law for the final decision, i.e.
vary the importance of anticipating future observations on prior decisions. The
second experiment was designed to investigate the effect of varying the dynamics
of the system.

The specification of the two experiments is as follows:

Objective function
Weights: W1=1.0; W2'0.00l
Time horizon: 10 periods
Tracks: a1O t=1,2,.. .9 a10isdefinedbelow

!3,=!.0 t=!,2,... 10

Unknown system
Equation: X = + y2U1 + y3Z + E
Disturbance: - N(0, 1)
Exogenous variable: Z1 = 1.0 all t

Prior observations
Number of prior observations: 5
Initial state: X_5 = 0
Sequence of fixed controls: U, = 1, 2, 0,0, 2. r = 4, 3.....0
Exogenous Z, = 1.0 all t

Experiment!: yO.00OOi, Y2-0" y3= 1.0

ease I Case 2 Case 3 Case 4

0.0 10.0 100.0 1000.0

Experiment 2: a10 10.0, 71 = 72 = 7 = 1.0

Case I (ase 2 Case 3

0.1 1.0 2.0

Examining the specifications of the experiments, the following items are
noted: W2< W1 which implies "cheap" control; tracks imply do-nothing until the
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final period; the system in experiment I has very little dynamics; and the prior
observations were designed so that the variances of the parameters at the firstdecision were large.

Both experiments were evaluated by a Monte Carlo experiment for the threealternative estimation and control strategies together with the true stochasticcontrol law which could be employed if the parameters were known, KNOWN
The KNOWN strategy provides a lower bound to judge the performance Of theother strategies. A normal random number generator approximating N(O, 1) wasemployed to generate the disturbances. The process started with generating Priorobservations so that each realization started at a different position with differentinitial estimates and covariances. For each case the Monte Carlo experiment isbased on 100 realizations. The results for experiment I are as follows:

EXPERIMENT 1 RESULTS

Case 1
a10=O

Case 2
£klO= 10.0

Case 3
a10= 100.0

Case 4
io= 1000.0

The relative performance of the DUAL 1 to the HCE and OLMV strategiesdemonstrates the increasing importance of anticipation as o increases from 0 to1000. With increasing values of a10 the last term dominates the objectivefunction; hence it is not surprising that the performance of the DUAL 1 appears tobe converging towards the KNOWN as a increases.The relative performance of the HCE and OLMV strategy can be attributedto the fact that these two strategies have very different learning characteristi Todiscuss learning for problems involving more than one unknown parameterrequires a learning statistic. One possibility is the F statistic2 for the hypothesisthat A and B are equal to zero. If we examine the case for a= 100 for 70realizations, the HCE had a higher F statistic prior to the 10th decision and betterperformance For only 7 realizations did the OLMV have both a higher F statisticprior to the 10th decision and better performance. For the case where a10 = 100for 57 realizations, the OLMV had higher 10th period and better performance,whereas the same was true for the HCE in only 21 cases. As the OLMV strategyhas covariances in both the numerator and denominator, it cannot he a prioriassumed that the OLMV strategy is more "conservative" than the HCE strategy.As a10 is increased the OLMV strategy becomes less "conservative" that the 1-ICEstrategy especially in the 9th period decision. For a, 10,000 the OLMVstrategy was superior to the HCE strategy.
The results for experiment 2 are as follows:

2Th1s statistic may not he optimal as the relationsp between the F statistic and pcfformancc is
not known.
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Mean Std Mean Mean Std Mean Mean Std Mean Mean Std Mean
KNOWN
HCE

5.25
17.36

0.2 5.65 0.2 54 0.2 4,947 I

OLMV
DUAL1

9.67
10.49

3.8
0.4
0.5

31.98
46.53
18.72

4.0
1.6
0.9

1,726
3,512

163

226.7
256.1

5.6

161,511
83,697
5,963

22,096
15,894
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EXPERIMENT 2 RESULTS

Case I,'y=.l Casc2,y=1.0 Casc3.y=2.0

What is interesting about experiment 2 is that for case 2 the OLMV strategy
outperforms the DUAL1 strategy. As an aid to discussion a frequency graph of
the outcomes for case 1 and case 2 is displayed on figure 1.

EXPERIMENT 2

FREQUENCY DISTRIBUTION OF OBJECTIVE FUNCTION
CASE 1 y = 0.1 CASE 2 y = 1.0
INTERVALS: (M - 4, M + 4) INTERVALS: (M - 2, M + 2)

HCE HCE
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MIDPOINTS OF INTERVALS. M MIDPOINTS OF INTERVALS, M

DUAL 1

Mean Std Mean Mean Std Mean Mean Std Mean

KNOWN 5.65 0.2 5.22 0.2 5.3 0.2
HCE 38.45 6.7 72.1 .36.0 454.8 153.0
OLMV 45.61 1.8 15.1 1.0 289.0 102.0
DUALI 18.76 0.9 19.0 2.1 291.6 102.5

MIDPOINTS OF INTERVALS, M MIDPOINTS OF iNTERVALS. M

0
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As is explained in Appendix I the DUAL I control algorithm weighs between
two opposing methods of reducing the uncertainty: caution to reduce the effect of
the path on present uncertainty and probing to reduce the effect of future
uncertainty in the parameters. With increasing dynamics two effects will increase
the importance of caution. First, increasing learning will generally take place
without probing, thus decreasing the marginal value of probing. Second, probing
will have a larger effect on the subsequent path, thus increasing the marginal cost.

Consider first the case where y = 0.1 . The median of the UCE strategy lies to
the left of the OLMV strategy. The HCE strategy for this case is generally
more active than the OLMV. With little dynamics the cost of probing is primarily
one period. The HCE strategy generally outperforms the OLMV in the terminal
period. The DUAL 1 strategy appears to be probing in comparison to the OLMV
strategy. With respect to the I-ICE strategy the DUALI frequently is more
cautious.

What is interesting about case 2 is the performance of the OLMV strategy
relative to the DUAL 1 strategy. The distribution of the OLMV strategy appears
to lie slightly to the left of the DUAL I strategy distribution. An examination of
the output reveals that for cases where the initial estimate of B is close tozero, the
DUALI strategy frequently overestimates the value of probing. An example is
shown below:

Example of excessive probing

With ñ0 = 0.157 the DUAL I seriously underestimates the impact probingon
the subsequent path. In the second period the DUAL 1 must correct the first
period control, which has incurred a large cost on the first period state. From
experiment 1 one would assume that a10 were increased from 10 to 1000, the
performance of the DUAL 1 strategy would improve relative to the OLMV
strategy. The results for 20 realizations are as follows:

Experiment 2 Case 2a

y=I.0 a,0=1000
Mean Std Mean

OLMV 10,225 5,153
DUAL1 2,737 601

Increasing a10 to 1000 greatly increases the value of anticipating the futureobservation pattern. Errors in the first period decision arc dwarfed by the gain inperformance in the final period.
The effect of increasing the dynamics from 0.1 to 1.0 on the relativeperformance of the HCE strategy to the OLMV strategy is twofold. The increased
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HCE OLMV DUAL!
A0 0.607 0.607 0.607
B0 0.157 0.157 0.157
U1 0.631 0.978 8.109
X1 0.304 1.305 8.437
OBJ 39.0 12.4 47.7



dynamics generate more extreme values in the tail of the HCE distribution and at

the same time increase the passive learning of the OLMV strategy to a more
nearly optimal level.

In case 3 the DIJALI strategy utilizes very little probing. An example

follows:

With y=2.O the DUAL1 strategy probes slightly more than the OLMV

strategy. If y is increased to 3.0, the DUAL1 strategy is slightly more cautious

than the OLMV strategy.

Ill. CONCLUSIONS

For the Monte Carlo experiments statistical inference can be made concern-

ing the relative merits of the alternative estimation and control strategies. In
describing the tests the expression DUAL I > OLMV means

Ho: MeanDIJALL

The test employed is a 1-test of the difference of the two means for paired
observations. To test whether the performance of the HCE and OLMV strategy is

problem specific the following tests were considered

Experiment Test 1-statistic

I Case 4 OLMV>HCE 2.8
1 Case 2 HCE>OLMV 3.6

The conclusion is reached that the performance of the HCE and OLMV is

problem specific. This result amplifies the previous Monte Carlo experiments in

HCE and OLMV strategies [6], [71. In [6] Prescott found that the OLMV strategy

was superior to the HCE for each problem considered. in [7] Sarris and Athans

have an example with constant coefficients where the mean of HCE strategy is

lower than the mean of the OLMV for 20 realizations. In comparison with Monte

Carlo experiments of other passive learning strategies [3], [8] the conjecture is

reached that it is unlikely a particular passive learning strategy will dominate its

competitors.
The results of Experiment 2 Case 2 raise the issue of whether a passive

learning strategy can produce better results than an active learning strategy. The t

statistic for OLMV> DUAL1 is 2.0 Experiment 2 Case 2 was repeated twice

with the following results:

Meano,.s,v versus H, : MeanfluALl <Meani.siv.
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OLMV DUAL 1

Case Mean Std Mean Std I for OLMV> DUALI

2b 16.15 1.3 22.85 3.7 1.91
--2.09

2c 16.66 1.6 19.83 1.7

Sum 15.94 0.8 20.54 1.5 3.22

HCE OLMV 1)IJAL1

U, 72.06 65.151 65.161

OBJ 1520.0 855.7 856.5



From these results it can be assumed the OLMV strategy is superior to the
DUAL! strategy for this problem.

University of Texas at Austin
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APPENDIX 1

Like the Tse, Bar-Shalom Dual Control, the DUAL 1 approach divides the
problem to be solved into the current control, future deterministic control, and
future perturbation control.

The assumed dynamics for the DUAL I are
(A.!) X1=AX1+ñu+Z51
A, A,, t are random variables whose means are equal to the estimates obtained
from the observed data and whose covariances are obtained from the observed
data plus future nominal data through t - 1. Partitioning the random variables into
their deterministic and random components, e.g.,

X,=1-x,, A,=+A,,etc.,
the deterministic component can be written

X,=Ac1Bu,+cz,
and ignoring second order terms, e.g., LA4X,, the stochastic component is

tX, +BU, +A,)ç1 +iB1LJ + tC,Z+e,.
The deterministic component problem is

Determine J*(Xk)= mm J(Xk)
Uk.i,. - -'
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where

i = [(X, - a,)' W1(X, - a,) +(U, - 13,)' W2( U, - (3,)]

subject to

X,=AX,1+BU,+CZ.
By a straightforward application of recursive dynamic programming the

solution of this problem can be written as

J*(xk) = Q1(k + 1) ±XQ2(k + 1) +XQ3(k + 1)Xk.

The stochastic component problem is

J*(Ax)= mm J(LXk)
AU&,,

where

JE{
+ U W(U, - 13,)I-) }

subject to

(A1O) àX =AX +BMJ,+AA,X1 +B,U1+c,Z, +,.

Proceeding by the usual recursive dynamic programmirLgforinulatiOn assume
the solution can be expressed as a quadratic form

(A.1i) J*(X1)= Q4(j+ 1)+iXQ5(j+ l)+óXQ6(j+ 1)X +XQ7(j+1)LX,

then,

J*(,X)= rnn E{1(iX'1 X,+XW(X, a1)+4UW2U,

+LUW2(U 13) Q4(f 1)+XO5(j+ 1)

+ LXQ6(j + 1)X +x;Q7(j + 1)Xj,1}.
Substitution [or X, and collecting terms

J*(X)= i[(AX,1 +BM)'( W1 + O(j+ 1)(AAX1 +B(J,)

+(AX-1 +BU1)'[( WI + 06(1+ 1)) W1a1 + Q(j + 1)]

+UW2LU1 +iUW2( U, 13,)
± 'F, + E{( W1 + 07(1 + 1)),} + 04(1 + 1)]
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where

= E{AJXI +LB11} +xç,4)'( W, -- Q7(j -F- 1)flXA1X1 + AB1L, + ECZ)
Solving for LJ1

MI1 = [ff(W1 + O(j+ l))B+ W2J '[ff(W1 + 07(1 + 1))Ax
(A.14)

+B'W1+06(j-f J))X, Wjcr1+05(j-l- t)}+ W2(1J,_131)1
Let

(A15) S = Wi+Q7(j+1); D1 =[B'S,1B+ W2j; G1 =DI' 'i+1x,ji
Assuming Q7j+ 1)=Q6(j+1)

Q6(j+ 1)= 03(j+ 1) (from the deterministic component)
Qj+ 1)= 02(1+1) (from the deterministic Component)

then

U= G1 _1D7'[B'(s±1)x; W1a1+Q2(j+1)+ W2([-/31)i

Substituting for X, and U,, (A.16) can be reduced to

where G1 is the same as the deterministic component.
Substituting for LJJ, X, and U, in (A.13) and collecting terms

Q7(j) = A'SJIA4-GDIG1 = Q3(j)
(A. 19) 06(j) = A'S1 ,A+ GD1G, = 03(j) from the deterministic component

Q5(J)' G.BISJ+IBgI+A1SJjgj + GB'S,+ICZJ +A'S1Cz,

+A'(Q2(j+1) % 1)+GJ3(Q2j4-1)_ Wia1)+GW2(g1p
= Q2(j) (from the deterministic component)

+ E{-S1+1}
Thus, the cost to go. i.e., perturbation plus deterministic component prob-lems can be written

+ jC
(Xk )Ik -1 }
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JC(X) J*(X)+J*X)
= Q1(k + 1)+ Q4(k + l)+Xo2(k + 1)+XQ3x

The only term which depends on X, and U, is Q4(k + 1). Given the solution tothe perturbation control problem, L4 is obtained from
J*D(X ) E{(Xk_ak)'WI(Xka)+i(Lj 13k)W2(Uk(3k)



= mn[(Xk -"I(Xk -(k)+2(L'k '()k) .t/2(Uk 13k)O4(")

+ Q1(k + 1)+kO2(k + l)+kQ3(k + 1)Xk].

Because ,'s must he evaluated along the future nominal path, Uk must be

obtained by numerical methods. For the first order DUAL!, 02(k + I) and

Q3(k + 1) are equivalnt for the deterministic and perturbation component

problems; hence, Q1(k + 1), 02(k + 1) and Q3(k 1) need be solved only once to

compute Uk. For the example shown, a quadratic fit linear search was employed to

compute single control variable problems and a quasi-Newton algorithm can be

employed for multi-variable problems. It should be noted that there are two

considerations in reducing the value of 4,: the nominal path X,_1, U,, Z11 and the

covariance elements of the AB,, sc,].
To compare the DUAL! with the MacRae adaptive control Table 2 of [41

was computed for the DUAL! with the following results:

TABLE 2 of 17]

FIRST PERtOD POLICIES FOR DIFFERENT HORIZON LENGTHS

N Horizon; Goals = ()

a = 0.7 b -0.5 c = 3.5

G=0.2 1.kb05 x0=o.o

The DUAL I control is slightly more "aggressive" than the MacRae adaptive

control. Bar-Shalom and Tse have examined the case q: r is 5:5 and N = 2 in a

Monte Carlo experiment. They show that the original version of the dual control

produces a first period decision of 1.33. The basic difference between DUALI

and the Tse and Bar-Shalom dual is the fact that the DUAL1 contains no

covariances of the state and unknown parameters. If this term is eliminated from

the objective function for the Tse and Bar-Shalom dual control, the first period

decision is 1.746.
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q:r
N=2

DUAL! Adapt
N=4

DUAL! Adapt
N=8

DUAL! Adapt
N=16

DUALI Adapt

1:5
5:5

0.622
1.747

0.622
1.740

1.091
2.521

1.082
2.449

1.442
2.920

1,394
2.688

1.547
3.096

1.460
2.705
3.084

5:1
5:0

2.707
3.206

2.682
3.138

3.245
3.351

3.056
3.146

3.456
3.531

3.083
3.147

3.688
3.725 3.147


