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1 Introduction

In this study, we evaluate the evidence in favor of excess stock return predictability from

the perspective of a Bayesian investor. We focus on the case of a single predictor variable

to highlight the complex statistical issues that come into play in this deceptively simple

problem.

The investor in our model considers the evidence in favor of the following linear model

for excess returns:

rt+1 = α + βxt + ut+1, (1)

where rt+1 denotes the return on a broad stock index in excess of the riskfree rate, xt denotes

a predictor variable, and ut+1 the unpredictable component of the return. The investor also

places a finite probability on the following model:

rt+1 = α + ut+1. (2)

Namely, the investor assigns a prior probability q to the state of the world in which returns

are predictable (because the prior on β will be smooth, the chance of β = 0 in (1) is

infinitesimal), and a probability 1−q to the state of the world in which returns are completely

unpredictable. In both cases, the parameters are unknown. Thus our model allows for both

parameter uncertainty and “model uncertainty”.1

Allowing for a non-zero probability on (2) is one way in which we depart from previous

studies. Previous Bayesian studies of return predictability allow for uncertainty in the pa-

rameters in (1), but assume flat priors (see Barberis (2000), Brandt, Goyal, Santa-Clara,

and Stroud (2005), Johannes, Polson, and Stroud (2002), Skoulakis (2007) and Stambaugh

(1999)). As Wachter (2010) shows, flat or nearly-flat priors imply a degree of predictability

that is hard to justify economically. Other studies (Kandel and Stambaugh (1996), Pastor

and Stambaugh (2009), Shanken and Tamayo (2011), Wachter and Warusawitharana (2009))

1However, note that our investor is Bayesian, rather than ambiguity averse (e.g. Chen and Epstein

(2002)).Our priors are equivalent to placing a point mass on β = 0 in (1).
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investigate the impact of economically informed prior beliefs. These studies nonetheless as-

sume that the investor places a probability of one on the predictability of returns. However,

an investor who thinks that (2) represents a compelling null hypothesis will have a prior that

places some weight on the possibility that returns are not predictable at all.

Our work also relates to the Bayesian model selection methods of Avramov (2002) and

Cremers (2002). In these studies, the investor has a prior probability over the full set of

possible linear models that make use of a given set of predictor variables. Thus the setting

of these papers is more complex than ours in that many predictor variables are considered.

However, these papers also make the assumption that the predictor variables are either non-

stochastic, or that their shocks are uncorrelated with shocks to returns. These assumptions

are frequently satisfied in a standard ordinary least squares regression, but rarely satisfied

in a predictive regression. In contrast, we are able to formulate and solve the Bayesian

investor’s problem when the regressor is stochastic and correlated with returns.

When we apply our methods to the dividend-price ratio, we find that an investor who

believes that there is a 50% probability of predictability prior to seeing the data updates to

a 86% posterior probability after viewing quarterly postwar data. We find average certainty

equivalent returns of 1% per year for an investor whose prior probability in favor of pre-

dictability is just 20%. For an investor who believes that there is a 50/50 chance of return

predictability, certainty equivalent returns are 1.72%.

We also empirically evaluate the effect of correctly incorporating the initial observation of

the dividend-price ratio into the likelihood (the exact likelihood approach) versus the more

common conditional likelihood approach. In the conditional likelihood approach, the initial

observation of the predictor variable is treated as a known parameter rather than as a draw

from the data generating process. We find that the the unconditional risk premium is poorly

estimated when we condition on the first observation. However, when this is treated as a draw

from the data generating process, the expected return is estimated reliably. Surprisingly, the

posterior mean of the unconditional risk premium differs from the sample average.

Finally, when we examine the evolution of posterior beliefs over the postwar period, we
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find substantial differences between the beliefs implied by our approach, which treats the

regressor as stochastic and realistically captures the relation between the regressor and re-

turns, and beliefs implied by assuming non-stochastic regressors. In particular, our approach

implies that the belief in the predictability of returns rises dramatically over the 2000-2005

period while approaches assuming fixed regressors imply a decline.

The remainder of the paper is organized as follows. Section 2 describes our statistical

method and contrasts it with alternative approaches. Section 3 describes our empirical

results. Section 4 concludes.

2 Statistical Method

2.1 Data generating processes

Let rt+1 denote continuously compounded excess returns on a stock index from time t to

t+1 and xt the value of a (scalar) predictor variable. We assume that this predictor variable

follows the process

xt+1 = θ + ρxt + vt+1. (3)

Stock returns can be predictable, in which case they follow the process (1) or unpredictable,

in which case they follow the process (2). In either case, errors are serially uncorrelated,

homoskedastic, and jointly normal: ut+1

vt+1

 | rt, . . . , r1, xt, . . . , x0 ∼ N (0,Σ) , (4)

and

Σ =

 σ2
u σuv

σuv σ2
v

 . (5)

As we show below, the correlation between innovations to returns and innovations to the

predictor variable implies that (3) affects inference about returns, even when there is no

predictability.
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When the process (3) is stationary, i.e. ρ is between -1 and 1, the predictor variable has

an unconditional mean of

µx =
θ

1− ρ
(6)

and a variance of

σ2
x =

σ2
v

1− ρ2
. (7)

These follow from taking unconditional means and variances on either side of (3). Note

that these are population values conditional on knowing the parameters. Given these, the

population R2 is defined as

Population R2 =
β2σ2

x

β2σ2
x + σ2

u

.

2.2 Prior Beliefs

The investor faces uncertainty both about the model (i.e. whether returns are predictable

or not), and about the parameters of the model. We represent this uncertainty through a

hierarchical prior. There is a probability q, that investors face the distribution given by (1),

(3) and (4). We denote this state of the world H1. There is a probability 1− q that investors

face the distribution given by (2), (3) and (4). We denote this state of the world H0. As we

will show, the stochastic properties of x have relevance in both cases.

The prior information on the parameters is conditional on Hi. Let

b0 = [α, θ, ρ]>

and

b1 = [α, β, θ, ρ]>.

Note that p(b1,Σ|H1) can also be written as p(β, b0,Σ|H1).
2 We set the prior on b0 and Σ

so that

p(b0,Σ|H0) = p(b0,Σ|H1) = p(b0,Σ).

2Formally we could write down p(b1,Σ|H0) by assuming p(β|b0,Σ, H0) is a point mass at zero.
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We assume the investor has uninformative beliefs on these parameters. We follow the ap-

proach of Stambaugh (1999) and Zellner (1996), and derive a limiting Jeffreys prior as

explained in Appendix A. As Appendix A shows, this limiting prior takes the form

p(b0,Σ) ∝ σxσu|Σ|−
5
2 , (8)

for ρ ∈ (−1, 1), and zero otherwise.

The parameter that distinguishes H0 from H1 is β. One approach would be to write down

a prior distribution for β unconditional on the remaining parameters. However, it is difficult

to think about priors on β in isolation from beliefs about other parameters. For example, a

high variance of xt might lower one’s prior on β, while a large residual variance of rt might

raise it. Rather than placing a prior on β directly, we follow Wachter and Warusawitharana

(2009) and place a prior on the population R2. To implement this prior on the R2, we place

a prior on “normalized” β, that is β adjusted for the variance of x and the variance of u.

Let

η = σ−1u σxβ.

denote normalized β. We assume that prior beliefs on η are given by

η|H1 ∼ N(0, σ2
η) (9)

The population R2 is closely related to η:

Population R2 =
β2σ2

x

β2σ2
x + σ2

u

=
η2

η2 + 1
. (10)

Equation (10) provides a mapping between a prior distribution on η and a prior distribution

on the population R2. Given an η draw, an R2 draw can be computed using (10).

A prior on η implies a hierarchical prior on β. The prior for η, (9), implies

β|α, θ, ρ,Σ ∼ N(0, σ2
β), (11)

where

σβ = σησ
−1
x σu.
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Because σx is a function of ρ and σv, the prior on β is also implicitly a function of these

parameters. The parameter ση indexes the degree to which the prior is informative. As

ση → ∞, the prior over β becomes uninformative; all values of β are viewed as equally

likely. As ση → 0, the prior converges to p(b0,Σ) multiplied by a point mass at 0, implying

a dogmatic view in no predictability. Combining (11) with (8) implies the joint prior under

H1:

p(b1,Σ|H1) = p(β|b0,Σ, H1)p(b0|H1)

∝ 1√
2πσ2

η

σ2
x|Σ|−

5
2 exp

{
−1

2
β2
(
σ2
ησ
−2
x σ2

u

)−1}
. (12)

Jeffreys invariance theory provides an independent justification for modeling priors on β

as (11). Stambaugh (1999) shows that the limiting Jeffreys prior for b1 and Σ equals

p(b1,Σ|H1) ∝ σ2
x |Σ|

− 5
2 . (13)

This prior corresponds to the limit of (12) as ση approaches infinity. Modeling the prior for

β as depending on σx not only has a convenient interpretation in terms of the distribution

of the R2, but also implies that an infinite prior variance represents ignorance as defined

by Jeffreys (1961). Note that a prior on β that is independent of σx would not have this

property.

Figure 1 shows the resulting distribution for the population R2 for various values of ση.

Panel A shows the distribution conditional on H1 while Panel B shows the unconditional

distribution. More precisely, for any value k, Panel A shows the prior probability that the

R2 exceeds k, conditional on the existence of predictability. For large values of ση, e.g. 100,

the prior probability that the R2 exceeds k across the relevant range of values for the R2 is

close to one. The lower the value of ση, the less variability in β around its mean of zero,

and the lower the probability that the R2 exceeds k for any value of k. Panel B shows the

unconditional probability that the R2 exceeds k for any value of k, assuming that the prior

probability of predictability, q, is equal to 0.5. By the definition of conditional probability:

p(R2 > k) = p(R2 > k|H1)q.
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Therefore Panel B takes the values in Panel A and scales them down by 0.5.

2.3 Likelihood

2.3.1 Likelihood under H1

Under H1, returns and the predictor variable follow the joint process given in (1) and (3).

It is convenient to group observations on returns and contemporaneous observations on the

state variable into a matrix Y and lagged observations on the state variable and the constant

into a matrix X. Let

Y =


r1 x1
...

...

rT xT

 X =


1 x0
...

...

1 xT−1

 ,
and let

z = vec(Y )

Z1 = I2 ⊗X.

In the above, the vec operator stacks the elements of the matrix columnwise. It follows that

the likelihood conditional on H1 and on the first observation x0 takes the form of

p(D|b1,Σ, x0, H1) = |2πΣ|−
T
2 exp

{
−1

2
(z − Z1b1)

> (Σ−1 ⊗ IT ) (z − Z1b1)

}
(14)

(see Zellner (1996)).

The likelihood function (14) conditions on the first observation of the predictor variable,

x0. Stambaugh (1999) argues for treating x0 and x1, . . . , xT symmetrically: as random

draws from the data generating process. If the process for xt is stationary and has run for a

substantial period of time, then results in Hamilton (1994, p. 265) imply that x0 is a draw

from a multivariate normal distribution with mean µx and standard deviation σx. Combining

the likelihood of the first observation with the likelihood of the remaining T observations
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produces

p(D|b1,Σ, H1) = |2πσ2
x|−

1
2 |2πΣ|−

T
2 exp

{
−1

2
(x0 − µx)2 σ−2x

− 1

2
(z − Z1b1)

> (Σ−1 ⊗ IT ) (z − Z1b1)

}
. (15)

Following Box and Tiao (1973), we refer to (14) as the conditional likelihood and (15) as the

exact likelihood.

2.3.2 Likelihood under H0

Under H0, returns and the predictor variable follow the processes given in (2) and (3). Let

Z0 =

 ιT 0T×2

0T×1 X

 ,
where ιT is the T × 1 vector of ones. Then the conditional likelihood can be written as

p(D|b0,Σ, x0, H0) = |2πΣ|−
T
2 exp

{
−1

2
(z − Z0b0)

> (Σ−1 ⊗ IT ) (z − Z0b0)

}
. (16)

The conditional likelihood takes the same form as in the seemingly unrelated regression

model (see Ando and Zellner (2010)). Using similar reasoning as in the H1 case, the exact

likelihood is given by

p(D|b0,Σ, H0) = |2πσ2
x|−

1
2 |2πΣ|−

T
2 exp

{
−1

2
(x0 − µx)2 σ−2x

− 1

2
(z − Z0b0)

> (Σ−1 ⊗ IT ) (z − Z0b0)

}
. (17)

As above, we refer to (16) as the conditional likelihood and (17) as the exact likelihood.

2.4 Posterior distribution

The investor updates his prior beliefs to form the posterior distribution upon seeing the

data. As we discuss below, this posterior requires the computation of two quantities: the

posterior of the parameters conditional on the absence or presence of return predictability,
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and the posterior probability that returns are predictable. Given these two quantities, we

can simulate from the posterior distribution.

To compute the posteriors, we apply Bayes’ rule conditional on the model:

p(bi,Σ|Hi, D) ∝ p(D|bi,Σ, Hi)p(bi,Σ|Hi), i = 0, 1. (18)

Because σx is a nonlinear function of the underlying parameters, the posterior distributions

conditional on H0 and H1 are nonstandard and must by computed numerically. We can sam-

ple from these distributions quickly and accurately using the Metropolis-Hastings algorithm

(see Chib and Greenberg (1995), Johannes and Polson (2006)). See Appendix B for details.

Let q̄ denote the posterior probability that excess returns are predictable. By definition,

q̄ = p(H1|D).

It follows from Bayes’ rule, that

q̄ =
B10q

B10q + (1− q)
, (19)

where

B10 =
p(D|H1)

p(D|H0)
(20)

is the Bayes factor for the alternative hypothesis of predictability against the null of no

predictability. The Bayes factor is a likelihood ratio in that it is the likelihood of return

predictability divided by the likelihood of no predictability. However, it differs from the

standard likelihood ratio in that the likelihoods p(D|Hi) are not conditional on the values

of the parameters. These likelihoods are given by

p(D|Hi) =

∫
p(D|bi,Σ, Hi)p(bi,Σ|Hi) dbi dΣ, i = 0, 1. (21)

To form these likelihoods, the likelihoods conditional on parameters (the likelihood functions

generally used in classical statistics) are integrated over the prior distribution of the param-

eters. Under our distributions, these integrals cannot be computed analytically. However,

the Bayes factor (20) can be computed directly using the generalized Savage-Dickey ratio

(Dickey (1971), Verdinelli and Wasserman (1995)). Details can be found in Appendix C.
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Putting these two pieces together, we draw from the posterior parameter distribution

by drawing from p(b1,Σ|D,H1) with probability q̄ and from p(b0,Σ|D,H0) with probability

1− q̄.

2.5 An alternative: Non-stochastic regressors

An alternative approach to inference is to adopt the standard assumptions of ordinary least

squares regression, namely that the regressors xt are fixed, or that us and vt are uncorrelated

for all s and t. For example, consider the priors and likelihood proposed by Fernandez, Ley,

and Steel (2001). Let σ̂x denote the sample variance of x:

σ̂x =
1

T

T∑
t=1

(
xt −

1

T

T∑
s=1

xs

)2

.

Fernandez et al. propose the following priors on α, β and σu:

p(β |σ2
u, H1) = N(0, κσ2

uσ̂
−1
x ), (22)

where κ is a constant that determines the informativeness of the prior, and

p(σu) ∝ σ−1u . (23)

The specification is completed by setting p(α) ∝ 1. These assumptions on the prior are

combined with the likelihood

p(D |α, β, σu, H1) =
(
2πσ2

u

)−T
2 exp

{
−1

2

T−1∑
t=0

(rt+1 − α− βxt)2σ−2u

}
(24)

and

p(D |α, β, σu, H0) =
(
2πσ2

u

)−T
2 exp

{
−1

2

T−1∑
t=0

(rt+1 − α)2σ−2u

}
. (25)

The expressions for the prior and likelihood under H0 are analogous. Similar specifications

are employed by Chipman, George, and McCulloch (2001), Cremers (2002), Stock and Wat-

son (2011) and Wright (2008). This formulation is closely related to the conjugate prior

described in Zellner (1996). Like Zellner’s prior, it leads to analytical expressions for the

posterior distribution and Bayes factor.
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The above specification differs from ours in two ways. First, the prior beliefs condition

on observations on xt. Second, and more fundamentally, the likelihood function conditions

on xt, namely, it treats it as known. The two are related, in that both assumptions are most

reasonable in cases where xt is known at time zero, or where all correlations between ut and

vt are zero, but not otherwise. To see this, note that (24) takes the form

T−1∏
t=0

p(rt+1|xt, α, β, σu) (26)

where the terms in the product are given by the normal density. However, the true conditional

likelihood is the product of multivariate normal terms:3

T−1∏
t=0

p(rt+1, xt+1|xt, b1,Σ).

One could separate out the terms in the product as follows

T−1∏
t=0

p(rt+1|xt, α, β, σu)p(xt+1|rt+1, xt, b1,Σ). (27)

Under the assumption that ut and vt are uncorrelated in the prior, the second term will

not depend on α, β and σu, and thus it “drops out” when multiplied by the prior to form

the posterior in Bayes rule (18).4 However, requiring these shocks to be uncorrelated is not

realistic. For this reason, is it not generally valid to drop the second term in (27).

Perhaps there is some other way to justify the use of (24) rather than the full likelihood.

Consider, for example, the following tempting (but wrong) argument. For convenience,

define the notation Dr = {r1, . . . , rT} and Dx = {x0, x1, . . . , xT}. The marginal likelihood

for returns (24) is valid regardless of the assumption on the correlation between ut and vt.

Could one form a marginal posterior, p(α, β, σu|Dr)? One way to do this might be to consider

p(α, β, σu|Dr) ∝ p(Dr|α, β, σu)p(α, β, σu).

However, p(α, β, σu|Dr) is not the same as (24), which uses information on x as well as r.

3Note that this expression still omits the likelihood for the initial observation x0.
4More precisely, it becomes part of the constant term.
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Another tempting but incorrect argument is to form the posterior

p(α, β, σu|Dr, Dx) ∝ p(Dr|α, β, σu, Dx)p(α, β, σu),

which represents valid inference under the assumption p(α, β, σu) = p(α, β, σu|Dx). Again,

however, p(Dr|α, β, σu, Dx) does not actually represent the likelihood (24). In this case, the

reason is

p(Dr|α, β, σu, Dx) =
T−1∏
t=0

p(rt+1|xt, α, β, σu, Dx).

Instead of just computing rt+1 knowing xt, p(rt+1|xt, α, β, σu, Dx) requires one to computes

the likelihood of each observation rt+1 knowing the full time series of x. Because of the

correlation between u and v, future shocks to x convey additional information about returns.

While technically speaking this approach is valid, it makes very little economic sense (why

would x be observed before r?) and in any case is not implemented in any of the studies

cited above.

Because xt appears in the likelihood function, it cannot be simply ignored. Nor can it

be treated as known. The only alternative is to assume that it is stochastic, as we have

done. At the root of the problem is the fact that the similarity between the likelihood in

the linear regression model in the time series setting and under OLS is only apparent. In a

time series setting, it is not valid to condition on the entire time path of the “independent”

variable. The differences ultimately come down to the interpretation of the shock ut. In a

standard OLS setting, ut is an error, and is thus correlated with the independent variable

at all leads and lags. In a time series setting, it is not an error, but rather a shock, and this

independence does not hold.

3 Results

3.1 Data

We use data from the Center for Research on Security Prices (CRSP). We compute excess

stock returns by subtracting the continuously compounded 3-month Treasury bill return
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from the return on the value-weighted CRSP index at a quarterly frequency. Following a

large empirical literature on return predictability, we focus on the dividend-price ratio as

the regressor because the present-value relation between prices and returns suggests that it

should capture variables that predict stock returns. The dividend-price ratio is computed by

dividing the dividend payout over the previous 12 months with the current price of the stock

index. The use of 12 months of data accounts for seasonalities in dividend payments. We

use the logarithm of the dividend-price ratio as the predictor variable. Data are quarterly

from 1952 to 2009.

3.2 Bayes factors and posterior means

Table 1 reports Bayes factors for various choices on the prior distribution. Four values of ση

are considered: 0.051, 0.087, 0.148 and 100. These translate into values of P (R2 > .01|H1)

(the prior probability that the R2 exceeds 0.01) equal to 0.05, 0.25, 0.50 and 0.99 respectively.

These R2s should be interpreted in terms of regressions performed at a quarterly frequency.

Bayes factors are reported for the exact likelihood, and, to evaluate the importance of in-

cluding the initial term, the conditional likelihood as well.

Table 1 shows that the Bayes factor is hump-shaped in P (R2 > 0.01|H1). For small

values, the Bayes factor is close to one. For large values, the Bayes factor is close to zero.

Both results can be understood using the formula for the Bayes factor in (20) and for the

likelihoods p(D |Hi) in (21). For low values of this probability, the investor imposes a very

tight prior on the R2. Therefore the hypotheses that returns are predictable and that returns

are unpredictable are nearly the same. It follows from (21) that the likelihoods of the data

under these two scenarios are nearly the same and that the Bayes factor is nearly one. This

is intuitive: when two hypotheses are close, a great deal of data are required to distinguish

one from the other.

The fact that the Bayes factor approaches zero as P (R2 >, 01|H1) increases is less in-

tuitive. The reduction in Bayes factors implies that, as the investor allows a greater range
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of values for the R2, the posterior probability that returns are predictable approaches zero.

This effect is known as Bartlett’s paradox, and was first noted by Bartlett (1957) in the

context of distinguishing between uniform distributions. As Kass and Raftery (1995) dis-

cuss, Bartlett’s paradox makes it crucial to formulate an informative prior on the parameters

that differ between H0 and H1. The mathematics leading to Bartlett’s paradox are most

easily seen in a case where Bayes factors can be computed in closed form. However, we can

obtain an understanding of the paradox based on the form of the likelihoods p(D |H1) and

P (D |H0). These likelihoods involve integrating out the parameters using the prior distribu-

tion. If the prior distribution on β is highly uninformative, the prior places a large amount

of mass in extreme regions of the parameter space. In these regions, the likelihood of the

data conditional on the parameters will be quite small. At the same time, the prior places a

relatively small amount of mass in the regions of the parameter space where the likelihood

of the data is large. Therefore P (D |H1) (the integral of the likelihood under H1) is small

relative to P (D |H0) (the integral of the likelihood under H0).

Table 1 also shows that there are substantial differences between the Bayes factors result-

ing from the exact versus the conditional likelihood.5 The Bayes factors resulting from the

exact likelihood are larger than those resulting from the conditional likelihood, thus implying

a greater posterior probability of return predictability. This difference reflects the fact that

the posterior mean of β, conditional on H1, is higher for the exact likelihood than for the

conditional likelihood, and the posterior mean is ρ is lower.6

We can use the connection between the posterior means and the Bayes factor to under-

5We are not the first to note the importance of the first observation. See, for example, Poirier (1978).
6The source of this negative relation is the negative correlation between shocks to returns and shocks to

the predictor variable. Suppose that a draw of β is below its value predicted by ordinary least squares (OLS).

This implies that the OLS value for β is “too high”, i.e. in the sample shocks to the predictor variable are

followed by shocks to returns of the same sign. Therefore shocks to the predictor variable tend to be followed

by shocks to the predictor variable that are of different signs. Thus the OLS value for ρ is “too low”. This

explains why values of the posterior mean of ρ are higher for low values of P (R2 > 0.01|H1) (and hence low

values of the posterior mean of β) than for high values, and higher than the ordinary least squares estimate.
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stand why the Bayes factor changes with the specification. Using the exact likelihood leads

to lower posterior values of ρ. This is because the exact likelihood leads to more precise

estimates of µx, and therefore lower estimates of σx. Because the posterior mean of ρ is

lower, the posterior mean of β is higher, and the Bayes factor is higher.

3.3 The long-run equity premium

For the predictability model, the expected excess return on stocks (the equity premium)

varies over time. In the long run, however, the current value of xt becomes irrelevant. Under

our assumptions xt is stationary with mean µx, and therefore rt is also stationary with mean

µr = E[α + βxt + ut+1|b1,Σ] = α + βµx.

As is the case with µx, this is a population value that conditions on the value of the pa-

rameters. For the no-predictability model, µr is simply equal to α. We can think of µr as

the average equity premium; the fact that it is “too high” constitutes the equity premium

puzzle (Mehra and Prescott (1985)), and it is often computed by simply taking the sample

average of excess returns.

The posterior expectation of µr under various specifications is shown in the fifth column

of Table 1. Because differences in the expected return arise from differences in the posterior

mean of the predictor variable x, the table also reports the posterior mean of µx. The differ-

ences in the long-run equity premium are striking. The sample average of the (continuously

compounded) excess return on stocks over this period is 4.49%. However, assuming the

exact likelihood implies produces a range for this excess return between 3.45% and 3.90%

depending on the strength of the prior. Why is the equity premium in these cases as much

as a full percentage point lower?

To answer this question, it is helpful to look at the posterior means of the predictor

variable, reported in the next column of Table 1. For the exact likelihood specification, the

posterior mean of the log dividend yield ranges from -3.25 to -3.40. The sample mean is -3.54.

It follows that the shocks vt over the sample period must be negative on average. Because of
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the negative correlation between shocks to the dividend price ratio and to expected returns,

the shocks ut must be positive on average. Therefore the posterior mean lies below the

sample mean.

Continuing with the exact likelihood case, the posterior mean of µx is highest (and

hence furthest from the sample mean) in the no-predictability model, and becomes lower

as the prior becomes less dogmatic. Excess returns follow this pattern in reverse, namely

they are lowest (and furthest from the sample mean) for the no-predictability model and

highest for the predictability model with the least dogmatic prior. This effect may arise

from the persistence ρ. The more dogmatic the prior, the closer the posterior mean of the

persistence is to one. The more persistent the process, the more likely the positive shocks

are to accumulate, and the more the sample mean is likely to deviate from the true posterior

mean.

The results are very different when the conditional likelihood is used, as shown in Panel B.

For the no-predictability model, µr = α is equal to the sample mean. However, as long as

there is some predictability, estimation of µr depends on µx, which is unstable due to the

presence of 1−ρ in the denominator. It is striking that, in contrast to our main specification,

the conditional likelihood specification has great difficultly in pinning down the mean of

expected excess stock returns.

3.4 The posterior distribution

We now examine the posterior probability that excess returns are predictable. For conve-

nience, we present results for our main specification that uses the exact likelihood. As a first

step, we examine the posterior distribution for the R2.

The posterior distribution of the R2

Figure 2 shows two plots on the prior and posterior distribution of the R2 with priors

P (R2 > 1% |H1) = 0.50 and q = 0.5. Panel A plots P (R2 > k) as a function of k for both
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the prior and the posterior; this corresponds to 1 minus the cumulative density function of

the R2.7 The plot for the P (R2 > k) demonstrates a rightward shift for the posterior for

values of k below (roughly) 2%.

The strength of the predictability can be seen in that while the prior implies P (R2 >

1%) = 0.25, the posterior implies P (R2 > 1%) close to 0.50. Thus, after observing the data,

an investor revises his beliefs on the strength of predictability substantially upward. Panel

B plots the probability density function of the R2. The prior places the highest density on

low values of the R2. The posterior however places high density in the region around 2%

and has lower density than the prior for R2 values close to zero. The evidence in favor of

predictability, with a moderate R2, is sufficient to overcome the investor’s initial skepticism.

The posterior probability of return predictability

Figure 2 shows the posterior R2 for a given set of prior beliefs. Table 2 shows how various

statistics on the posterior distribution vary as the prior distribution changes. Table 2 presents

the posterior probabilities of predictability as a function of the investor’s prior about the

existence of predictability, q, and the prior belief on the strength of predictability. The

posterior probability is increasing in q and hump-shaped in the strength of the prior, reflecting

the fact that the Bayes factors are hump-shaped in the strength of the prior. The results

demonstrate that investors with moderate beliefs on both the existence and strength of

predictability revise their beliefs on the existence on predictability sharply upward. For

example, an investor with q = 0.5 and P (R2 > .01|H1) = 0.50 conclude that the posterior

likelihood of predictability equals 0.86. This result is robust to a wide range of choices for

P (R2 > .01|H1). As the table shows, P (R2 > .01|H1) = 0.25 implies a posterior probability

of 0.87. The posterior probability falls off dramatically as P (R2 > .01|H1) approaches

one; for these very diffuse priors (which imply what might be considered an economically

unreasonable amount of predictability), the Bayes factors are close to zero. Table 2 also

7This figures shows the unconditional posterior probability that the R2 exceeds k; that is, it does not

condition on the existence of predictability.
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shows reasonably high means of the β and the R2, except for the diffuse prior.

The above analysis evaluates the statistical evidence on predictability. The Bayesian

approach also enables us to study the economic gains from market timing. In particular,

we can evaluate the certainty equivalent loss from failing to time the market under different

priors on the existence and strength of predictability.

Certainty equivalent returns

We now measure the economic significance of the predictability evidence using certainty

equivalent returns. We assume an investor who maximizes

E

[
W 1−γ
T+1

1− γ

∣∣∣∣∣ D
]

for γ = 5, where WT+1 = WT (w exp{rT+1 + rf,T} + (1− w) exp{rf,T}), and w is the weight

on the risky asset. The expectation is taken with respect to the predictive distribution

p(rT+1 |D) = q̄p(rT+1 |D,H1) + (1− q̄)p(rT+1 |D,H0),

where

p(rT+1 |D,Hi) =

∫
p(rT+1 |xT , bi,Σ, Hi)p(bi,Σ |D,Hi) dbi dΣ

for i = 0, 1.

A draw rT+1 from the distribution p(rT+1 |xT , b1,Σ) is given by (1) with probability q̄

and (2) with probability 1− q̄. The posterior distribution of the parameters is described in

Section 2.4.

For any portfolio weight w, we can compute the certainty equivalent return as solving

exp {(1− γ)CER}
1− γ

= E

[
(w exp{rT+1 + rf,T}+ (1− w) exp{rf,T})1−γ

1− γ

∣∣∣∣ D] . (28)

Following Kandel and Stambaugh (1996), we measure utility loss as the difference between

certainty equivalent returns from following the optimal strategy and from following a sub-

optimal strategy. We define the sub-optimal strategy as the strategy that the investor would

20



follow if he believes that there is no predictability. Note, however, that the expectation in

(28) is computed with respect to the same distribution for both the optimal and sub-optimal

strategy.

Panel D of Table 2 shows the difference in certainty equivalent returns as described above.

These differences are averaged over the posterior distribution for x to create a difference that

is not conditional on any specific value. The data indicate economically meaningful economic

losses from failing to time the market. Panel D shows that, for example, an investor with a

prior on β such that P (R2 > .01|H1) = 0.50 and a 50% prior belief in the existence of return

predictability would suffer a certainty equivalent loss of 1.72% (in annual terms) from failing

to time the market. Higher values of q imply greater certainty equivalent losses.

3.5 Evolution of the posterior distribution over time

We next describe the evolution of the posterior distribution over time. This distribution

exhibits surprising behavior over the 2000-2005 period. This behavior is a direct result of

the stochastic properties of the predictor variable xt.

Starting in 1972, we compute the posterior distribution conditional on having observed

data up to and including that year. We start in 1972 because this allows for twenty years

of data for the first observation. The posterior is computed by simulating 500,000 draws

and dropping the first 100,000. To save on computation time, we update the posterior every

year. For reference, Figure 3 shows the time-series of the log dividend-price ratio. As we

will see, much of the behavior of the posterior distribution can be understood based on the

time series of this ratio.

Figure 4 shows the posterior probability of predictability (q̄) in Panel A (assuming a

prior probability of 0.5). The solid line corresponds to our benchmark specification. This

line is above 90% for most of the sample (it is actually at its lowest value at the end of the

sample). In the 2000-2005 period, the probability is not distinguishable from one. This is

surprising: intuition would suggest that the period in which the dividend-price ratio was
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rising far above its long-run mean (and during which returns kept being high despite these

high levels) would correspond to an exceptionally low posterior probability of predictability,

not a high one. Indeed, it is surprising that data could ever lead the investor to a nearly

100% certainty about the predictability model.

Panel B, which shows the Bayes factors, gives another perspective on this result. Between

2000 and 2005, the Bayes factor in favor of predictability rises to values that dwarf any others

during the sample. The posterior probability takes these Bayes factors and maps them to

the [0, 1] interval, so values as high as those shown in the figure are translated to posterior

probabilities extremely close to 1. Why is it that the Bayes factors rise so high?

An answer is suggested by the time series behavior of β and ρ, shown in Figure 5. The

solid lines show the posterior distributions of β and ρ.8 The dashed line shows OLS estimates.

The posterior for β lies below the OLS estimate for most of the period, while the posterior

for ρ lies above the OLS estimator for most of the period. An exception occurs in 2001, when

the positions reverse. The posterior for β lies above the OLS estimate and the posterior for

ρ lies below it. Note that the OLS estimate of β is biased upwards and the OLS estimate of

ρ is biased downwards, so this switch is especially surprising.

The fact that the posterior ρ rises to meet the OLS ρ, and even exceeds it, indicates that

the model interprets the rise of the dividend-price ratio as occurring because of an unusual

sequence of positive shocks vt. Namely, positive shocks are more likely to occur after positive

shocks during this period. This implies that negative shocks to ut are also more likely to

follow positive shocks vt than they should, so OLS will in fact underestimate the true β (or

it will overestimate the true β by less than usual).

This result is similar in spirit to that found in the frequentist analysis of Lewellen (2004)

and Campbell and Yogo (2006) (see also the discussion in the survey article Campbell (2008)).

8For the argument below, it makes the most sense, strictly speaking, to examine the posterior distribution

of β conditional on the predictability model. However, because the posterior probability of this model is so

close to one, this conditional posterior β is nearly indistinguishable from the unconditional posterior β. The

same is true for posterior ρ. Therefore, for simplicity, we focus on the unconditional posterior.
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It is also an example of how information about shocks that are correlated with errors from a

forecasting model can help improve forecasts, as in Faust and Wright (2011). Figure 4 shows

that the consequences of this result for model selection are quite large. This is because the

no-predictability model implies, of course, that β is zero. However, given that OLS finds

a positive β, the no-predictability model implies that positive shocks to the dividend-price

ratio were follows by positive shocks to returns. This is extremely unlikely, given the time

series. Thus the evidence comes to strongly favor the predictability model.9

This chain of inference requires knowledge of the behavior of shocks to the predictor

variable. The fixed-regressor approach described above eliminates such knowledge and leads

to completely different inference over this time period. To illustrate this result, we compute

the posterior probability of return predictability (by the dividend-price ratio), and the Bayes

factor, using the prior-likelihood combination of Cremers (2002).10 Very similar results are

obtained for the methods in Avramov (2002). The probability of predictability computed us-

ing the fixed-regressor approach indeed shows a decline over the 2000-2005 period, stemming

from the decline in the OLS estimate of β.

Finally, to demonstrate the impact of these prior beliefs on portfolio choice, we compute

the optimal weight in the risky asset for the power utility investor described in Section 3.4.

We consider four specifications of the prior. Panel A assumes that P (R2 > 0.01|H1) = 0.05,

so that predictability, if it exists, is weak. Posteriors are computed for q = 0.01 and q = 0.99.

Panel B repeats this exercise for P (R2 > 0.01|H1) = 0.50. Both panels show that the

investor with a strong prior that returns are not predictable (q = .01) engages in notably less

market timing that an investor who is convinced that there is some predictability (q = .99).

Comparing Panel A with Panel B shows that the investor who believes that predictability is

very weak (assuming it exists) times the market much less than an investor with a somewhat

9We also performed this analysis using the conditional rather than the exact likelihood. Because the

results are qualitatively the same, we do not present them here.
10We use the priors corresponding to Cremers “confident” view. Varying the choice of prior parameters

does not impact the qualitative result that we present.
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flatter (though still highly informative) prior. Consider the investor with q = 0.01 and

P (R2 > 0.01|H1) = 0.05 (the solid line in Panel A). This investor has a prior believe that

there is only a 1% chance that returns are predictable. Even if returns are predictable, he

believes the predictability must be very weak: there is only a 5% chance that the R2 from

a quarterly regression exceeds 1%. However, even this investor finds overwhelming evidence

for stock return predictability in the 2002–2005 period.

4 Conclusion

This study has taken a Bayesian approach to the question of whether the equity premium

varies over time. We considered investors who face uncertainty both over whether pre-

dictability exists, and over the strength of predictability if it does exist. We found substantial

evidence in favor of predictability when the dividend-price ratio is used to predict returns.

Moreover, we found large certainty equivalent losses from failing to time the market, even

for investors who have strong prior beliefs in a constant equity premium.

When we examined the time series of the investor’s beliefs, we found that the belief in

return predictability goes to one in the 2000-2005 period, even for investors who place a

very low prior on return predictability. This surprising result is a consequence of correctly

modeling the regressor as stochastic rather than fixed. We also found that our posterior

mean return is notably different from the sample average, a result that again stems from

taking the stochastic nature of the regressor into account. These results demonstrate that

the way that the regressor is modeled is very important. We hope to examine this issue

further in future work.
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Appendix

A Jeffreys prior under H0

Our derivation for the limiting Jeffreys prior on b0,Σ generalizes that of Stambaugh (1999).

Zellner (1996, pp. 216-220) derives a limiting Jeffreys prior by applying (A.1) to the likelihood

(17) and retaining terms of the highest order in T . Stambaugh shows that Zellner’s approach

is equivalent to applying (A.1) to the conditional likelihood (16), and taking the expectation

in (A.1) assuming that x0 is multivariate normal with mean (6) and variance (7). We adopt

this approach.

Given a set of parameters µ, data D, and a log-likelihood l(µ;D), the limiting Jeffreys

prior satisfies

p(µ) ∝
∣∣∣∣−E ( ∂2l

∂µ∂µ>

)∣∣∣∣1/2 . (A.1)

We derive the prior density for p(b0,Σ
−1) and then transform this into the density for p(b0,Σ)

using the Jacobian. Let

l0(b0,Σ;D) = log p(D|b0,Σ, H0, x0). (A.2)

denote the natural log of the conditional likelihood. Let ζ = [σ(11) σ(12) σ(22)]>, where σ(ij)

denotes element (i, j) of Σ−1. Applying (A.1) implies

p(b0,Σ
−1|H0) ∝

∣∣∣∣∣∣−E
 ∂2l0

∂b0∂b>0

∂2l0
∂b0∂ζ>

∂2l0
∂ζ∂b>0

∂2l0
∂ζ∂ζ>

∣∣∣∣∣∣
1/2

. (A.3)

The form of the conditional likelihood implies that

l0(b0,Σ;D) = −T
2

log |2πΣ| − 1

2
(z − Z0b0)

> (Σ−1 ⊗ IT ) (z − Z0b0) . (A.4)

It follows from (A.4) that

∂l0
∂b0

=
1

2
Z>0
(
Σ−1 ⊗ IT

)
(z − Z0b0) ,
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and

∂2l0
∂b0∂b>0

= −1

2
Z>0
(
Σ−1 ⊗ IT

)
Z0

= −1

2

 ι>T 0

0 X>

(Σ−1 ⊗ IT )
 ιT 0

0 X


= −1

2

 σ(11)T σ(12)ι>X

σ(12)X>ι σ(22)X>X

 . (A.5)

Taking the expectation conditional on b0 and Σ implies

E

[
∂2l0

∂b0∂b>0

]
= −T

2


σ(11) σ(12)[1 µx]

σ(12)

 1

µx

 σ(22)

 1 µx

µx σ2
x + µ2

x


 (A.6)

Using arguments in Stambaugh (1999), it can be shown that

E

[
∂2l0

∂b0∂ζ>

]
= 0.

Moreover,

−
∣∣∣∣E ( ∂2l0

∂ζ∂ζ>

)∣∣∣∣ =

∣∣∣∣∂2 log |Σ|
∂ζ∂ζ>

∣∣∣∣ = |Σ|3

(see Box and Tiao (1973, pp. 474-475)). Therefore

p(b0,Σ
−1|H0) ∝ |Φ|

1
2 |Σ|

3
2 (A.7)

where

Φ =

 Σ−1 µx

 σ(12)

σ(22)


µx
[
σ(12) σ(22)

]
(σ2

x + µ2
x)σ

(22)

 .
This matrix Φ has the same determinant as −E

[
∂2l0

∂b0∂b>0

]
because 2 columns and 2 rows have

been reversed.

From the formula for the determinant of a partitioned matrix, it follows that

|Φ| =
∣∣Σ−1∣∣

∣∣∣∣∣∣(σ2
x + µ2

x

)
σ(22) − µ2

x

[
σ(12) σ(22)

]
Σ

 σ(12)

σ(22)

∣∣∣∣∣∣ .
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Because

Σ

 σ(12)

σ(22)

 =

 0

1

 ,
it follows that

|Φ| =
∣∣Σ−1∣∣ ∣∣(σ2

x + µ2
x

)
σ(22) − µ2

xσ
(22)
∣∣

= |Σ|−1σ2
xσ

(22).

The determinant of Σ equals

|Σ| = σ2
u

(
σ2
v − σ2

uvσ
−2
u

)
,

while σ(22) = (σ2
v − σ2

uvσ
−2
u )
−1

. Therefore,

|Φ| = |Σ|−2σ2
uσ

2
x.

Substituting into (A.7),

p(b0,Σ
−1|H0) ∝ |Σ|

1
2σuσx.

The Jacobian of the transformation from Σ−1 to Σ is |Σ|−3. Therefore,

p(b0,Σ|H0) = |Σ|−
5
2σuσx.

B Sampling from Posterior Distributions

This section describes how to sample from the posterior distributions. In all cases, the

sampling procedure for the posteriors under H1 and H0 involve the Metropolis-Hastings

algorithm. Below we describe the case of the exact likelihood in detail. The procedure for

the conditional likelihood is similar.

B.1 Posterior distribution under H0

Substituting (8) and (17) into (18) implies that

p(b0,Σ|H0, D) ∝ σu|Σ|−
T+5
2 exp

{
−1

2
σ−2x (x0 − µx)2 −

1

2
(z − Z0b0)

> (Σ−1 ⊗ IT ) (z − Z0b0)

}
.
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This posterior does not take the form of a standard density function because of the term in

the likelihood involving x0 (note that σ2
x is a nonlinear function of ρ and σv). However, we

can sample from the posterior using the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm is implemented “block-at-a-time”, by repeatedly sam-

pling from p(Σ|b0, H0, D) and from p(b0|Σ, H0D) and repeating. To calculate a proposal

density for Σ, note that

(z − Z0b0)
> (Σ−1 ⊗ IT ) (z − Z0b0) = tr

[
(Y −XB0)

>(Y −XB0)Σ
−1] ,

where

B0 =

 α θ

0 ρ

 .
The proposal density for the conditional probability of Σ is the inverted Wishart with T + 2

degrees of freedom and scale factor of (Y −XB0)
>(Y −XB0). The target is therefore

p(Σ|b0, H0, D) ∝ σu exp

{
−1

2
(x0 − µx)2σ−2x

}
× proposal.

Let

V0 =
(
Z>0
(
Σ−1 ⊗ IT

)
Z0

)−1
Let

b̂0 = V0Z
>
0

(
Σ−1 ⊗ IT

)
z

It follows from completing the square that

(z − Z0b0)
> (Σ−1 ⊗ IT ) (z − Z0b0) = (b0 − b̂0)>V −10 (b0 − b̂0) + terms independent of b0.

The proposal density for b0 is therefore multivariate normal with mean b̂0 and variance-

covariance matrix V0. The accept-reject algorithm of Chib and Greenberg (1995, Section 5)

is used to sample from the target density, which is equal to

p(b0|Σ, H0, D) ∝ exp

{
−1

2
(x0 − µx)2 σ−2x

}
× proposal.

Note that σu and Σ are in the constant of proportionality. Drawing successively from the

conditional posteriors for Σ and b0 produces a density that converges to the full posterior

conditional on H0.
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B.2 Posterior distribution under H1

Substituting (12) and (15) into (18) implies that

p(b1,Σ|H1, D) ∝ σx|Σ|−
T+5
2 exp

{
−1

2
β2
(
σ2
ησ
−2
x σ2

u

)−2 − 1

2
σ−2x (x0 − µx)2

}
exp

{
−1

2
(z − Z1b1)

> (Σ−1 ⊗ IT ) (z − Z1b1)

}
.

The sampling procedure is similar to that described in Appendix B.1. Details can be found

in Wachter and Warusawitharana (2009). To summarize, we first draw from the posterior

p(Σ | b1, H1, D). The proposal density is an inverted Wishart with T + 2 degrees of freedom

and scale factor (Y −XB1)
>(Y −XB1), where

B1 =

 α θ

β ρ

 .
We then draw from p(θ, ρ |α, β,Σ, H1, D). The proposal density is multivariate normal with

mean and variance determined by the conditional normal distribution. Finally, we draw from

p(α, β | θ, ρ,Σ, H1, D). In this case, the target and the proposal are the same, and are also

multivariate normal.

C Computing the Bayes factor

Verdinelli and Wasserman (1995) provide an implementable formula for the inverse of the

Bayes factor. In our notation, this formula can be written as

B−110 = p(β = 0|H1, D)E

[
p(b0,Σ|H0)

p(β = 0, b0,Σ|H1)

∣∣∣∣ β = 0, H1, D

]
. (C.1)

To compute p(β = 0 |H1, D), note that

p(β = 0 |H1, D) =

∫
p(β = 0 | b0,Σ, H1, D)p(b0,Σ |H1, D) db0 dΣ. (C.2)

As discussed in Appendix B.2, the posterior distribution of α and β conditional on the

remaining parameters is normal. We can therefore compute p(β = 0 | b0,Σ, H1, D) (including
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integration constants) in closed form, by using the properties of the conditional normal

distribution. Consider N draws from the full posterior: ((b
(1)
1 ,Σ(1)), . . . , (b

(N)
1 ,Σ(N))), where

we can write (b
(i)
1 ,Σ

(i)) as (β(i), b
(i)
0 ,Σ

(i)). We use these draws to integrate out over b0 and

Σ. It follows from (C.2) that

p(β = 0|H1, D) ≈ 1

N

N∑
i=1

p(β = 0|b(i)0 ,Σ
(i), H1, D).

where the approximation is accurate for large N .

To compute the second term in (C.1), we observe that

p(b0,Σ |H0)

p(β = 0, b0,Σ |H1)
=

p(b0,Σ |H0)

p(β = 0|b0,Σ, H1)p(b0,Σ |H1)
=
√

2πσβ,

because p(b0,Σ |H0) = p(b0,Σ |H1). Note that σβ = σησ
−1
x σu. We require the expectation

taken with respect to the posterior distribution conditional on the existence of predictability

and the realization β = 0. To calculate this expectation, we draw ((b
(1)
0 ,Σ(1)), . . . , (b

(N)
0 ,Σ(N)))

from p(b0,Σ | β = 0, H1, D). This involves modifying the procedure for drawing from the pos-

terior for b1,Σ given H1 (see Appendix B.2). We sample from p(Σ |α, β = 0, θ, ρ,H1, D),

then from p(ρ, θ |α, β = 0,Σ, H1, D) and finally from p(α | β = 0,Σ, θ, ρ,H1, D), and re-

peat until the desired number of draws are obtained. All steps except the last are identical

to those described in Appendix B.2 (the value of β is identically zero rather than the value

from the previous draw). For the last step we derive p(α | β = 0,Σ, θ, ρ,H1, D) from the joint

distribution p(α, β |Σ, θ, ρ,H1, D), making use of the properties of the conditional normal

distribution.

Given these draws from the posterior distribution, the second term equals

E

[
p(b0,Σ|H0)

p(β = 0, b0,Σ|H1)

∣∣∣∣ β = 0, H1, D

]
≈ 1

N

N∑
i=1

√
2πση(σ

(i)
x )−1σ(i)

u , (C.3)

where this approximation is accurate for N large.
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Table 1: Bayes factors and conditional posterior means

Posterior Means

P (R2 > 0.01|H1) Bayes factor β ρ µr µx

Panel A: Exact likelihood

0 Undefined 0 0.997 3.45 -3.25

0.05 4.13 1.07 0.989 3.77 -3.35

0.25 6.48 1.65 0.985 3.85 -3.38

0.50 6.13 1.91 0.983 3.88 -3.39

0.99 0.01 2.06 0.982 3.90 -3.40

Panel B: Conditional likelihood

0 Undefined 0 0.998 4.48 -6.83

0.05 2.00 0.74 0.993 3.70 -5.28

0.25 2.71 1.36 0.988 3.39 -4.79

0.50 2.56 1.66 0.985 3.11 -4.78

0.99 0.01 1.80 0.984 2.15 -5.03

Panel C: Ordinary least squares

2.97 0.973 4.49 -3.54

Notes: The Bayes factor equals the probability of the data D given the predictability

model H1 divided by the probability of the data given the no-predictability model H0:

p(D|H1)/p(D|H0). Bayes factors are reported for various priors of the strength of pre-

dictability under H1, indexed by P (R2 > 0.01|H1) (namely, the prior probability that the

population R2 exceeds 0.01, assuming H1). Posterior means are conditional on H1 and are

computed for the predictability coefficient β, the persistence of the dividend-price ratio ρ,

the mean of the continuously compounded excess return µr, and the mean of the predic-

tor variable µx. In Panel C, µr and µx equal the sample means. Data are quarterly from

7/1/1952 to 3/31/2009.
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Table 2: Posterior probability of predictability, unconditional posterior means of β and R2,

and certainty equivalent returns.

P (R2 > 0.01|H1) Prior probability of return predictability q

0.20 0.50 0.80 0.99

Panel A: Posterior probability of predictability q̄

0.05 0.51 0.80 0.94 1.00

0.25 0.62 0.87 0.96 1.00

0.50 0.61 0.86 0.96 1.00

0.99 0.00 0.01 0.05 0.54

Panel B: Posterior mean of predictive coefficient β

0.05 0.55 0.86 1.01 1.07

0.25 1.02 1.43 1.59 1.65

0.50 1.16 1.64 1.84 1.91

0.99 0.01 0.02 0.09 1.12

Panel C: Posterior mean of R2 (in percentages)

0.05 0.30 0.48 0.56 0.59

0.25 0.59 0.83 0.92 0.95

0.50 0.68 0.97 1.08 1.12

0.99 0.00 0.01 0.06 0.68

Panel D: Difference in CER between optimal and no-predictability strategies

0.05 0.38 0.84 1.10 1.20

0.25 0.85 1.45 1.71 1.81

0.50 1.00 1.72 2.03 2.15

0.99 0.00 0.00 0.02 1.67

Notes: The table reports statistics of the posterior distribution, averaging over the models

H1 and H0. The parameter q denotes the prior probability of H1. Statistics are reported

for various priors of the strength of predictability under H1, indexed by P (R2 > 0.01|H1)

(namely, the prior probability that the population R2 exceeds 0.01, assuming H1). CER

stands for certainty equivalent return and is annualized by multiplying by four. Data are

quarterly from 7/1/1952 to 3/31/2009.
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Figure 1: Prior Distribution of the R2

Panel A: Probability of predictability q = 1.
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Panel B: Probability of predictability q = 0.5.
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Notes: The figures plot the prior probability that the R2 will be greater than some value

k for different values of k. This equals 1 minus the cumulative density function for the

distribution on the R2. Panel A reports the values conditional on predictability (q = 1) and

panel B plots the values for a prior value of q = 0.5. ση parameterizes the prior variance of

β with σβ = σησ
−1
x σu.
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Figure 2: Posterior Distribution of the R2
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Notes: Panel A plots the probability that the R2 from a predictive regression of excess stock

returns on the payout yield will be greater than some value k for different values of k. This

equals 1 minus the cumulative density function for the distribution on the R2. Panel B plots

the probability density function of the R2 for the same regression. The dashed line signifies

the prior and the solid line signifies the posterior distribution for the R2. The likelihood

function for these plots is the full Bayes exact likelihood with P (R2 > 0.01|H1) = 0.50 and

q = 0.5. Data are quarterly from 7/1/1952 to 3/31/2009.
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Figure 3: The log dividend-price ratio
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Notes: The quarterly observations on the log of the dividend-price ratio, computed by di-

viding the dividend payout over the previous 12 months by the current price. Prices and

dividends are for the CRSP value-weighted index.
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Figure 4: The Bayes factor and posterior probability of return predictability

Panel A: Posterior probability of predictability, q̄
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Notes: Panel A shows the posterior probability of H1 (the predictability model), assuming

a prior probability of 0.5. Panel B shows the Bayes factor, equal to the probability of the

data given the predictability model H1 divided by the probability of the data given the no-

predictability model H0. Both panels assume P (R2 > 0.01|H1) (namely, the prior probability

that the population R2 exceeds 0.01, given H1) is equal to 0.5. The Bayes factor and the

posterior probability are computed using quarterly data beginning in 7/1/1952 and ending

at the time shown on the x-axis. The solid line shows results for the main specification; the

dotted line shows results for a model assuming a non-stochastic regressor.40



Figure 5: Posterior means of β and ρ over time.

Panel A: Posterior mean of predictive coefficient β
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Panel B: Posterior mean of autoregressive coefficient ρ
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Notes: Panels show means of posterior distributions and ordinary least squares estimates.

The posterior distributions are computed assuming q (the priori probability that returns are

predictable) equal to 0.50, and assuming P (R2 > 0.01|H1) (the prior probability that the

population R2 exceeds 0.01, given H1) also equal to 0.5. The posterior distributions and OLS

estimates are computing using data beginning in 7/1/1952 and ending at the time shown on

the x-axis.
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Panel A: Portfolio weights with P (R2 > 0.01|H1) = 0.05

1970 1975 1980 1985 1990 1995 2000 2005 2010

0

0.25

0.5

0.75

1

Time

 

 

q = 0.01

q = 0.99

Panel B: Portfolio weights with P (R2 > 0.01|H1) = 0.50
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Notes: Panels show the time series of weights in the risky asset assuming prior distribution

such that P (R2 > 0.01|H1) = 0.05 (Panel A) and such that P (R2 > 0.01|H1) = 0.50 (Panel

B). The solid lines assume the prior probability of predictability q equals 0.01; the dashed

lines assume q = 0.99. The investor has power utility with risk aversion equal to 5. The

posterior distributions are computing using data beginning in 7/1/1952 and ending at the

time shown on the x-axis.
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