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Abstract

In many situations, timing is crucial—individuals face a trade-off between
gains from waiting versus the risk of being preempted. To examine this, we
offer a model of clock games, which we then test experimentally. Each player’s
clock starts upon receiving a signal about a payoff-relevant state variable. Since
the timing of the signals is random, clocks are de-synchronized. A player must
decide how long, if at all, to delay his move after receiving the signal. We show
that (i) delay decreases as clocks become more synchronized and (ii) when moves
are observable, players “herd” immediately after any player makes a move. Our
experimental results are broadly consistent with these two key predictions of the
theory.
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1 Introduction

It is often said that to succeed in business and in life, timing is crucial. Certainly this
is true in terms of new product launches, stock picking, and real estate development.
It is also true in choosing a mate or even starting a revolution. These situations all
exhibit a trade-off between gains from waiting versus the risk of being preempted. In
this paper, we offer a theoretical model of “clock games” that tries to capture this
trade-off. We then test the key implications of the model in the lab.

In a clock game, each player’s clock starts at a random point in time: when he
receives a signal of a payoff-relevant state variable (e.g., an opportune time for a product
launch). Owing to this randomness, players’ clocks are de-synchronized. Thus, a
player’s strategy crucially hinges on predicting the timing of the other players’ moves—
i.e., predicting other players’ clock time. The exact prediction depends crucially on
the observability of moves, the speed of information diffusion, and the number and size
of players. There are n players making moves in our model; thus, our setting is the
oligopoly analog to the “competitive” model of Abreu and Brunnermeier (2003), where
there are continuum of small players.

While clock games are potentially quite complex to analyze, we transform the prob-
lem to one that can be readily analyzed using auction theory. In particular, the equilib-
rium waiting time in a clock game is isomorphic to the equilibrium bid in a multi-unit
reverse first price auction with a stochastic outside option.

When moves are unobservable, the unique symmetric equilibrium in a clock game
is remarkably simple—each player waits a fixed amount of time after receiving a signal
before making a move. Slower information diffusion leads to longer equilibrium waiting
time. When moves are observable, equilibrium waiting still has the same properties
up to the time the first player moves. However, following this, herding occurs—all
remaining players make their move immediately.

To test the theory, we run a series of experiments designed to examine the behavioral
validity of two key synchronization factors: the speed of information diffusion and the
observability of moves. To the best of our knowledge, we are the first to study these
questions using controlled experiments.

The main results of the experiments are:

1. Equilibrium delay is robust—we observe delay in all treatments.

2. When moves are observable, there is initial delay followed by herding.

3. The slower the information diffusion, the longer the observed delay.

The remainder of the paper proceeds as follows: The rest of this section places clock
games in the context of the broader literature on timing games. Section 2 presents the
model, characterizes equilibrium play, and identifies key testable implications. Section
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3 outlines the experimental design, while Section 4 presents the results. Finally, Section
5 concludes. Proofs of propositions as well as the instructions given to subjects in the
experiment are contained in the appendices.

Related Literature At a broad level, clock games are a type of timing game (as
defined in Osborne (2003)). As pointed out by Fudenberg and Tirole (1991), one can
essentially think about the two main branches of timing games—preemption games
and wars of attrition—as the same game but with opposite payoff structures. In a
preemption game, the first to move claims the highest level of reward, whereas in a
war of attrition, the last to move claims the highest level of reward.

Preemption games have been prominently used to analyze R&D races (see, e.g.
Reinganum (1981), Fudenberg and Tirole (1985), Harris and Vickers (1985) and Rior-
dan (1992)). In addition, a much-studied class of preemption games is the centipede
game, introduced by Rosenthal (1981). This game has long been of interest experi-
mentally, as it illustrates the behavioral failure of 1s induction (see e.g. McKelvey and
Palfrey (1992)). In clock games (with unobservable moves), private information (which
leads to the de-synchronization of the clocks) plays a key role, whereas centipede games
typically assume complete information.1 Indeed, this informational difference is cru-
cial in the role that backwards induction plays in the two games. Since there is no
commonly known point from which one could start the backwards induction argument,
this rationale does not appear in clock games.

Clock games are also related to wars of attrition, where private information features
more prominently. Surprisingly, there has been little experimental work on wars of
attrition; thus, one contribution of our paper is to study the behavioral relevance of
private information in a related class of games. Perhaps the most general treatment of
this class of games is due to Bulow and Klemperer (1999), who generalize the simple
war of attrition game by viewing it as an all-pay auction. Viewed in this light, our
paper is also somewhat related to costly lobbying games, see e.g. Baye, Kovenock, and
de Vries (1993), and the famous “grab the dollar” game, see e.g. Shubik (1971), O’Neill
(1986), and Leininger (1989). Finally, the herding behavior, which is present in the
clock games model with observable moves, is a feature also shared by Zhang (1997),
whose model can be viewed as a war of attrition.

A recent paper by Park and Smith (2003) bridges the gap between these two polar
cases by considering intermediate cases where the Kth to move claims the highest level
of reward.2 The payoff structure of our clock game is as in Park and Smith: rewards
are increasing up to the Kth person to move and decreasing (discontinuously in our
case) thereafter. In contrast to Park and Smith, who primarily focus on complete

1An important exception is Hopenhayn and Squintani (2006), who study preemption games in an
R&D context where each firm’s technological progress is stochastic and privately known.

2See also Park and Smith (2004) for leading economic applications of this model.
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information, our concerns center on the role of private information and, in particular,
on how private information results in de-synchronized clocks.

The key strategic tension in clock games—the timing of other players’ moves—
figures strongly in the growing and important literature modeling currency attacks.
Unlike clock games, which are inherently dynamic, the recent currency attack litera-
ture has focused on static games. Second generation models of self-fulfilling currency
attacks were introduced by Obstfeld (1996). An important line of this literature begins
with Morris and Shin (1998), who use Carlsson and van Damme’s (1993) global games
technique to derive a unique threshold equilibrium. The nearest paper in this line to
clock games is Morris (1995), who translates the global games approach to study coor-
dination in a dynamic setting. The approach of Morris and Shin (1998) has spawned a
host of successors using similar techniques as well as a number of experimental treat-
ments (see, for instance, Heinemann, Nagel, and Ockenfels (2004) and Cabrales, Nagel,
and Armenter (2002)).

As was described above, the clock games model is the oligopoly analog to the models
in Abreu and Brunnermeier (AB 2002, 2003), who study persistence of mispricing in
financial markets with a continuum of informationally small, anonymous traders.

2 Theory

2.1 Model

There are I players in the game. At any moment in (continuous) time, a player can
decide when to exit. The game ends once K < I players have exited.3 If a player exits
at time t, he receives an “exit” payoff, egt. If, on the other hand, a player does not
exit and the game ends, then he receives an “end of game” payoff, egt0 . The end of
game payoff is stochastic as t0 is exponentially distributed with parameter λ. Once a
player exits, he cannot subsequently return; thus, each player’s strategy amounts to a
simple stopping time problem. Tension in the model occurs for exit decisions at time
t > t0. By waiting, a player’s exit payoff increases at rate g, but risks the possibility
of a payoff drop (from egt to egt0) should the game end suddenly.4

In making his exit decision, each player receives a conditionally independent pri-
vate signal about the realization of t0. Specifically, at time ti, drawn uniformly from
[t0, t0 + η], player i learns that t0 has already occurred. The parameter η, which is
common knowledge, captures the speed of information diffusion that the t0 event has

3If several players exit at the same instant in time, such that the number of those exiting exceeds
K, we use a pro-rata tie-breaking rule to randomly determine which of the players exited successfully.

4To eliminate a “nuisance” equilibrium where all players wait forever before exiting, we assume
that the game also ends at latest at time t0 + τ̄ , where τ̄ is a commonly known (large) constant. We
assume that τ̄ is sufficiently large that the game always ends endogenously.
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occurred. The interval [t0, t0 + η] can be thought of as the “window of awareness” since
all players receive signals during this timeframe.

Notice that player i can infer that t0 lies between ti − η and ti. Moreover, while
player i does not know (the timing of ) other players’ signals precisely, he can infer
that by time ti + η all other players must have received their signals as well. Figure
1 illustrates the relationship between t0, signals, and payoffs. In this figure, t0 has
occurred at t = 130. The payoff growth rate, g, is 2%. Notice for t < t0, the end
of game payoff (stochastic dotted line) exceeds the exit payoff (solid curve) while for
t > t0 the reverse is true. Since η = 50 in the figure, the window of awareness is
illustrated by the gray rectangle—all players receive private signals at t ∈ [130, 180].
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Figure 1: ‘Exit payoff’ versus ‘end of game payoff’

For the model to be interesting, the following assumptions are sufficient: (i) 0 <
λ < g, and (ii) η not too large. Assumption (i) guarantees that there is sufficient
upside to waiting, and so strategic delay becomes a possibility. Assumption (ii) is
needed to prevent the possible lag in the time a player receives a signal from becoming
too large. Were this assumption violated, then the risk of a drop in payoff prior to
receiving a signal would be sufficiently large that players would always choose to exit
prior to receiving the signal. This assumption may be stated more precisely as follows:
Let η̄ solve Φ (K, I, ηλ) = Ig

Ig−(I−K+1)λ
, where the function Φ (a, b, z) is a Kummer
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hypergeometric function (see e.g. Slater (1974)).5 From the monotonicity properties
of Φ (·), such a solution always exists and is unique. Assumption (ii) requires that
0 < η < η̄.

Next, we characterize symmetric perfect Bayesian equilibria for two cases of the
model. In the unobservable actions case, the only information a player has is her
signal. In the observable actions case, in addition to her signal, each player learns of
the exit of any other player. Formally, if player i exits at time t, then all other players
observe this event at time limδ→0 (t + δ).

2.2 Unobservable Actions

While one can solve for equilibria in clock games directly, a more elegant treatment
recognizes that the game with unobservable actions can be recast as a static auction
where players submit bid schedules as a function of their types ex-ante. This is similar
to the approach often used in analyzing wars of attrition (see e.g. Fudenberg and Tirole
(1991)).

Consider the following auction: Each player has a type ti which is informative
about the outside option egt0 with the same signal generating process as described
above. Players simultaneously submit bids subject to the restriction that player i’s
bid must weakly exceed egti . The K lowest bidders receive their bid amounts while
the remainder receive the value of the outside option. Hence, this auction is a reverse
first-price auction with multiple goods and a common value outside option.

Suppose that all other players use a bidding strategy egβ(ti). Letting FK be the cdf
of the Kth order statistic from I − 1 draws and fK its associated density, then the
expected payoff to bidder i when he bids egbi is his bid when the Kth player receives
his signal after β−1 (bi) and the expected outside option otherwise:

Eπi =

∫ ∞

β−1(bi)

egbifK (tK |ti) dtK +

∫ β−1(bi)

−∞
E

[
egt0|ti, tK

]
fK (tK |ti) dtK .

Differentiating with respect to bi, we have

[
1− FK

(
β−1 (bi) |ti

)]
β′

(
β−1 (bi)

)
gegbi = fK

(
β−1 (b) |ti

) {
egbi − E

[
egt0|ti, tK = β−1 (bi)

]}
.

(1)
Equation (1) reflects the following trade-off. An incremental increase in player i’s bid
(in terms of waiting time) produces a marginal benefit of β′

(
β−1 (bi)

)
gegbti provided

5Many of the solutions to the model involve integral terms of the form

Φ (a, b, x) =
(b− 1)!

(b− a− 1)! (a− 1)!

∫ 1

0

exzza−1 (1− z)b−a−1
dz.

In the appendix, we describe some useful properties of Kummer functions.
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that he is among the K lowest bids. However, the risk associated with such an increase
in waiting time is that player i could be tied for the Kth lowest bid. In that case,
player i’s payoff drops from the inside option egbi to the expected value of the common
outside option, E

[
egt0|ti, tK = β−1 (bi)

]
.

Imposing symmetry, bi = β (ti), we obtain the following ordinary differential equa-
tion

[1− FK (ti|ti)] β′ (ti) gegβ(ti) = fK (ti|ti)
{
egβ(ti) − E

[
egt0|ti, tK = ti

]}
.

Now recall that hK (·) := fK(ti|ti)
1−FK(ti|ti) is the hazard rate for the Kth lowest of I−1 draws.

In the Appendix A.1 we establish that under our uniform-exponential information
structure hK (·) and E

[
e−g(ti−t0)|ti, tK = ti

]
are independent of type ti. Hence,

gβ′ (ti) egβ(ti) − hKegβ(ti) = −hK

(
E

[
e−g(ti−t0)|ti, tK = ti

]
egti

)
.

Solving this differential equation yields

β (ti) = ti +
1

g
log

hKE
[
e−g(ti−t0)|ti, tK = ti

]− exp [(hK − g) (ti − C1)]

hK − g
,

where C1 is a constant to be determined. Since β (ti) ≥ ti for all ti, it then follows
that the unique symmetric bidding equilibrium is where all bidders wait a fixed time,
τ , after receiving their signals.6 That is

β (ti) = ti + τ ,

with

τ =
1

g

(
log

hK

hK − g
+ log E

[
e−g(ti−t0)|ti, tK = ti

])
. (2)

As we show in the appendix, the expression log hK

hK−g
+ log E

[
e−g(ti−t0)|ti, tK = ti

]
may

be expressed as a ratio of Kummer functions. This formulation proves particularly
useful for comparative statics analysis. Thus, we have shown:

Proposition 1 In the unique symmetric equilibrium each player waits for time τ to
elapse after receiving the signal and then exits, where

τ =
1

g
log

(
λΦ (K, I, η (λ− g))

g − (g − λ) Φ (K, I, ηλ)

)
. (3)

6In principle, the game could admit another equilibrium which is symmetric but not strictly in-
creasing. In this equilibrium, all players wait infinitely long before exiting. The assumption that
the game ends latest at t0 + τ̄ , which is equivalent to the imposition of the secret reserve price that
excludes bids in excess of eg(t0+τ̄), rules this out.
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While the derivation above shows that τ is locally incentive compatible, we rule out
global deviations in a (tedious) proof contained in Brunnermeier and Morgan (2006).
The main point of Proposition 1 is to show that equilibrium behavior entails each
player delaying some fixed amount of time after receiving the signal before exiting.

How does equilibrium behavior change as the clocks become less synchronized? To
answer this question, it is useful to examine the relationship between the equilibrium
delay, τ , and the size of the window of awareness, η. Figure 2 depicts this relationship
for the parameters we use in the experiment, I = 6, K = 3, g = 2%, and λ = 1%.

20
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60 80 100 120

Figure 2: Equilibrium delay, τ , for different η

As the figure shows, equilibrium delay is increasing in the length of the window
of awareness. The main intuition is that, by making it more difficult for a player to
predict the time at which others received the signal, a longer window of awareness
blunts the preemption motive. Specifically, if a player knows exactly the time at which
others received signals, then that player’s best response is to “undercut” the would-be
pivotal player by exiting an instant before that player. Mutual undercutting reduces
equilibrium delay. However, as η increases, this exercise becomes increasingly difficult.
Since the marginal benefit of waiting, g, does not vary with the window of awareness,
the reduction in the value of preemption (or equivalently in the marginal cost of waiting)
leads to greater equilibrium delay. While Figure 2 illustrates this effect for particular
parameters of our model, the result holds more generally.

Proposition 2 Equilibrium delay is increasing in the length of the window of aware-
ness.
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The relationship highlighted in Proposition 2 is one of the two main hypotheses we
test experimentally.

Indeed, as a consequence of the monotonicity properties of the Kummer function in
Equation (3), it is straightforward to show the following additional comparative static
properties:

1. Equilibrium delay is increasing in K, the number of “exit slots.”

2. Equilibrium delay is decreasing in I, the number of players.

The intuition for the above comparative statics is straightforward. When exit slots
are relatively abundant, players “bid” less aggressively and equilibrium delay increases.
The reverse is true when exit slots are relatively scarce.

A more subtle comparison occurs when we fix the relative scarcity of slots at κ :=
K/I and scale the game proportionately. In the limit, as I → ∞, equilibrium delay
has a strikingly simple form:

lim
I→∞

τ =
1

g
log

(
λeκη(λ−g)

g − (g − λ) eκηλ

)
(4)

Equation (4) has two key features. First, it is identical to that obtained in the AB
model.7 Second, equilibrium delay is shorter in any finite sized version of the game
than it is in the limit.

Why is delay shorter in the limit game? While the marginal benefit of a fixed delay
is unchanged when the game is scaled, the marginal cost of delay increases owing to
an increase in the chance of the game ending at the next instant. This chance depends
(negatively) on the gap between the K−1 and Kth order statistics of the other players’
types. As the number of other players gets larger, this gap shrinks.

2.3 Observable Actions

We saw above that in clock games where moves are unobservable, equilibrium behavior
entails delaying a fixed amount of time after receiving the signal before exiting. How-
ever, in many situations of economic interest, players are able to observe each other’s
actions. We now explore how observability affects strategic delay.

Analogous to the case where actions are unobservable, we study equilibria where,
prior to the first exit, all players wait a constant number of periods, τ 1. After observ-
ing the first exit, it becomes commonly known that the highest possible value of the
outside option lies strictly below the current price. Thereafter the game is strategically

7The equivalence between the two models is not immediate since the limit clock game consists of
a countable infinity of players while in AB there is a continuum of players.
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equivalent to (multi-good) Bertrand competition—the lowest K − 1 “bidders” enjoy
the payoff from the inside option while the remainder enjoy the inferior outside option
payoff. As a result, the unique equilibrium is the equivalent of marginal cost pricing—
all of the remaining players optimally exit immediately after observing the first exit.
Lemma 1 formalizes this intuition.8

Lemma 1 In any perfect Bayesian equilibrium where the first player exits τ 1 periods
after receiving the signal, all other players exit immediately upon observing this event.

The herding result offered in Lemma 1 is analogous to that which occurs in the
“dirty faces” game (Littlewood (1953)). When the current price exceeds the type of
the last informed player, each individual knows that the inside option is worth strictly
more than the outside option. However, since no player has yet exited, a player is unsure
whether other players know this as well. Once a player has exited, the fact becomes
commonly known and the game is transformed into pure Bertrand competition. A key
testable implication of Lemma 1 is that equilibrium behavior will necessarily give rise
to herding following the decision of the first player to exit.

Of course, the model where exit is totally unobservable and the present situation,
where exit is perfectly observable, represent the two extreme cases. Realistic situations
will tend to lie somewhere between these two. Together, Proposition 1 and Lemma 1
suggest that the greater the observability of the exit decision, the more bunched are
the exit times.

Next, we turn to the timing of the exit decision prior to the first exit. Prior to the
first exit, the game is strategically equivalent to a low-bid auction for reasons identical
to the unobservable case. Using Lemma 1, we can identify the expected payoff in the
continuation game where player i is not the first to exit. Player i’s expected payoffs
are then

Eπi =

∫ ∞

β−1(bi)

egbif1 (t1|ti) dt1

+
I −K

I − 1

∫ β−1(bi)

−∞
E

[
egt0|ti, t1

]
f1 (t1|ti) dt1

+
K − 1

I − 1

∫ β−1(bi)

−∞
egβ(t1)f1 (t1|ti) dt1.

where t1 is the lowest of I − 1 types and β (·) is a strictly increasing bidding strategy.
Notice that the expected payoff reflects the fact that, following the first exit, each
remaining player has an equal chance K−1

I−1
of receiving the inside option.

8Herding, in this instance, arises from the fact that the private information of the first player to
exit is (partially) revealed by his decision to exit. This is analogous to the signaling role of the timing
of moves which is prominent in Chamley and Gale (1994) as well as Gul and Lundholm (1995).
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Differentiating with respect to bi, we have

[
1− F1

(
β−1 (bi) |ti

)]
β′

(
β−1 (bi)

)
gegbi = f1

(
β−1 (b) |ti

) I −K

I − 1

{
egbi − E

[
egt0|ti, t1 = β−1 (bi)

]}
.

Following steps identical to those when actions are unobservable, we obtain a unique
symmetric equilibrium stopping time. In equilibrium, each player waits for time τ 1

after receiving their signal before exiting, where

τ 1 =
1

g

[
log

h1

h1 − g I−1
I−K

+ log E
[
e−g(ti−t0)|ti, t1 = ti

]
]

. (5)

Comparing Equation (5) with Equation (2), the analogous expression when actions
are unobservable, one notices two key differences: First, g is replaced by I−1

I−K
g in the

first log-term in Equation (5). This reflects the fact that, even after the first player
exits, all remaining players have a (K − 1) to (I − 1) chance of getting out at the high
payoff in the next instant. Second, the hazard rate of a drop in payoff is equal to
the conditional probability that the first player will exit in the next instant. In other
words, the hazard rate is identical to above hK if one sets K = 1. Finally, note that
the term E

[
e−g(ti−t0)|ti, t1 = ti

]
is the same for both settings. Using steps analogous

to those leading to Proposition 1 allows us to derive τ 1 in closed form and thereby
characterize a unique symmetric equilibrium to the game.

Proposition 3 In the unique symmetric equilibrium, if no players have exited, each
player waits for time τ 1 > 0 to elapse after receiving the signal and then exits, where

τ 1 =
1

g
log

(
λΦ(1,I,η(−g+λ))

Ig
I−K+1

−( Ig
I−K+1

−λ)Φ(1,I,ηλ)

)
.

Once any player has exited, all other players exit immediately.

Proposition 3 has in common with Proposition 1 the feature that it is optimal for
a player to delay exiting for a period of time after receiving the signal. Indeed, some
properties associated with equilibrium comparative statics for the unobservable case
continue to hold in the observable case. For instance, following the same steps as in the
proof of Proposition 2, one can readily show that equilibrium delay, τ 1, is increasing
in the length of the window of awareness for the observable case as well.

It is also interesting to consider how delay changes with the scale of the game when
moves are observable. Again fixing the relative scarcity of exit “slots” and taking
limits, we obtain

lim
I→∞

τ 1 = 0 (6)

As Equation (6) shows, there is no equilibrium delay in the limit game. The reason is
that the hazard of the game ending becomes unbounded in the limit. For a fixed delay,
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the marginal benefit is unchanged as the game scales; however, the marginal cost of
waiting becomes unbounded in the limit.

Equilibrium delay for the observable case is always shorter than the unobservable
case in the limit game. For finite clock games, however, the comparison is ambiguous.
To see this, fix the parameter values of the model at I = 6, K = 3, g = 2%, and λ = 1%.
Numerical calculations show that τ 1 > τ for η < 59.8360 and τ 1 < τ for η > 59.8361.
Thus, while strategic delay is common to both cases, there is no systematic ordering
between τ 1 and τ .

3 Experimental Design and Procedures

The experiment sought to closely replicate the theoretical environment of clock games.
The experiment consisted of 16 sessions conducted at the University of California,
Berkeley during spring and ball 2003. Subjects were recruited from a distribution
list comprised of undergraduate students from across the entire university, who had
indicated a willingness to be paid volunteers in decision-making experiments. For this
experiment subjects were sent an e-mail invitation promising to participate in a session
lasting 60-90 minutes, for which they would earn an average of $15/hour.

Twelve subjects participated in each session, and no subject appeared in more
than one session. Throughout the session, no communication between subjects was
permitted, and all choices and information were transmitted via computer terminals.
At the beginning of a session, the subjects were seated at computer terminals and given
a set of instructions, which were then read aloud by the experimenter. A copy of the
instructions appears in Appendix B.

Owing to the complexity of the clock game environment, we framed the experiment
as a situation in which subjects played the role of “traders” deciding on the timing
of selling an asset and receiving a signal that the price of the asset has surpassed
its fundamental value. Thus, the end-of-game payoff, in this setting, corresponds to
the fundamental value of the asset. The exit payoff is simply the current price of
the asset at the time a trader sold it. Of course, this design decision comes with
both costs and benefits. The main benefit is to speed learning by subjects by making
the game more immediately understandable. Since our main interest is in testing
equilibrium comparative statics arising from the theory, convergence to some sort of
stable behavior is essential. A secondary benefit is that understanding trading decisions
in environments characterized by stock price “bubbles” is of inherent interest. The cost,
of course, is that the particular frame we chose for the clock game may drive the results.

Each session consisted of 45 “rounds” or iterations of the game, all under the same
treatment.9 Subjects were informed of this fact. At the beginning of each round,
subjects were randomly assigned to one of two “markets” consisting of six traders

9Owing to networking problems, session 3 lasted only 35 rounds.
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each, (i.e. I = 6). The job of a trader was to decide at what price to sell the asset.
Subjects saw the current price of the asset. While we cannot directly replicate the
continuous time assumption of the model in the laboratory setting, we tried to closely
approximate it.10 The price of the asset began at 1 experimental currency unit (ECU)
and increased by 2% for each “period”, (i.e. g = 2%), where periods lasted about
a half second each.11 The computer determined when the “true value” of the asset
stopped growing. In each period, there was a 1% chance of this event (i.e. λ = 1%).
At a random period after the true value of the asset had stopped growing (described in
detail below), a subject also received a message that “the price of the asset is above its
true value.” Finally, in Observable treatments (described in more detail below), traders
were also informed each time some other seller sold his unit of the asset.

Once three or more traders in a market sold the asset, the round ended, (i.e. K =
3).12 Following this, subjects learned their current and cumulative earnings as well as
the prices at which all of the assets were sold. A subject’s earnings in a round were
determined as follows: If the subject successfully sold the asset (i.e., was among the
first three traders to sell), he received the price of the asset at the time he sold it.
Otherwise, the subject earned an amount equal to the “true value” of the asset (end-
of-game payoff). The parameter values used in the experiment are: I = 6, K = 3,
g = 2%, λ = 1%, and τ̄ = 200. Subjects received $1 for each 50 ECUs earned, with
fractions rounded up to the nearest quarter. Earnings averaged $15.16, and each session
lasted from 50 to 80 minutes.

Treatments
We examined how changes in both observability and the window of awareness impact

the timing of exit. In the Baseline treatment, each subject learned that the true value
of the asset had stopped growing with a lag that was uniformly (and independently)
distributed from 1 to 90 periods (i.e. η = 90). In the Compressed treatment, we
reduced the window of awareness, η, from 90 to 50 periods. This provides a direct
test of Proposition 2. In the Observable treatment the window of awareness was the
same as in Baseline; however, subjects were informed whenever a trader sold the asset.
Comparing Baseline to Observable enables a direct comparison of Propositions 1 and
3. We ran six sessions each under the Baseline and Compressed treatments and four

10While the experimental design is, of necessity, run in discrete time, we computed numerically
equilibrium waiting times for the discrete version of the model and verified that they converged to
those for the continuous time case in the limit.

11One may worry that, since periods lasted about a half second each, a subject may have had
insufficient time to react to the event of a sell by another subject with only a one period delay.
However, most studies of reaction time to light stimuli for college age individuals indicate a mean
reaction time of approximately 0.19 seconds. See, for instance Welford (1980).

12In principle, a round could also end if fewer than three traders sold the asset and 200 price “ticks”
had elapsed after the price of the asset exceeded its “true value.” This never occurred in any round
of any session.
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sessions under the Observable treatment, giving 16 sessions overall. A total of 192
subjects participated in these experiments.

Experimental Design Rationale
A key consideration in the experimental design was to minimize information “leak-

age” about trading behavior in the experiment. In pilot experiments, we found that
subjects used auditory cues (i.e. mouse clicks) to infer trading behavior in unobserv-
able treatments. To remedy this problem, our experimental design had subjects sell
by hovering (instead of clicking) their mouse over the sell button.13

While this minimized information leakage, it occasionally led to selling “mistakes”
when a subject’s mouse pointer inadvertently strayed into the sell box. Many of these
mistakes are fairly obvious: sales would sometimes occur within the first few periods
of a round. In the case of the Baseline and Observable treatments, we “cleaned” the
data by eliminating observations where sales occurred within the first 10 periods after
the start of the round. In the case of the Observable treatment, we dropped a round
entirely when the first sale occurred within the first 10 periods.

While the decision a subject faced in each round of the game—when to sell the
asset—is relatively simple, the price and information generating process are compli-
cated. We expected that subjects would require several rounds of “learning by doing,”
so we ran 45 repetitions of the game in a stationary environment. The extensive
feedback given to subjects after each round was also designed to speed learning. In
addition, whenever a subject sold the asset below its true value, he received a message
indicating this fact. To get a sense of how well subjects understood the game at the end
of a session, we asked each subject to fill out a post-experiment questionnaire where
they were asked to describe their strategy. In the vast majority of instances, subjects
described their strategies as waiting for the price of the asset to rise a certain amount
after receiving the message that the asset was above its true value and then selling.14

We worried that, by running 45 iterations of the game, it would, in effect, become a
repeated game. To reduce this risk, we randomly and anonymously rematched subjects
after each round of the game and prohibited communication among subjects. While
it is theoretically possible for subjects to coordinate on dynamic trading strategies,
achieving the required coordination struck us as difficult. In examining the data, we
looked for evidence of “collusive” strategies on the part of subjects. Such strategies
might consist of delaying an excessively long time to sell after receiving the signal or
coordinating on a particular price of the asset at which to sell regardless of signals

13We considered forcing subjects to click to advance to the next period in the game or playing
loud music to minimize the perception of clicks. The first approach has the disadvantage of slowing
down the game and removing the continuous time element to decisions. The second approach has the
disadvantage of distracting the subjects and “priming” them to play a certain way depending on the
tempo of the music.

14The formal empirical analysis makes no use of the answers given in the questionnaire.
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received. We found no evidence of either type of behavior. Further, no subject men-
tioned coordinating or dynamic strategies in their responses to the post-experiment
questionnaire.

There was considerable variability in subject choices in the early rounds of each
session; however behavior was more stable in the last 25 rounds. Since we are primarily
interested in the equilibrium performance of the model rather than in learning, we
confine attention in the results section below to these rounds.15

4 Results

In this section we present the results of the laboratory experiment. We are mainly
interested in the following measures of subject choices:

1. Duration: We measure the length, in periods from t0 until the end of the game—
that is, the period in which the third seller sold the asset. In the event that the
game ended in a period prior to t0, we code Duration as zero.

2. Delay: We measure the length, in periods, of strategic delay by sellers. The
variable Delay for seller i is the number of periods between the time he received
the signal until the time he sold the asset. If i never sold the asset, then Delay
is coded as missing. If i sold at or before the time he received the signal, Delay
equals zero.16

3. Gap: We measure the gap, in periods, between the sale times of the ith and
i + 1th subjects selling the asset.

The first two measures, Duration and Delay, enable us to study the main implication
of Propositions 1 and 3—namely that equilibrium behavior will lead traders to engage
in strategic delay. Indeed, the Delay measure is the empirical counterpart to the τ
and τ 1 predictions derived in the theory. Further, the main implication of Proposition
2 is that a reduction in the window of awareness reduces both Duration and Delay.
Finally, the measure Gap seeks to capture the key behavioral prediction of Lemma 1—
that observable trading information leads to “herding” on the part of sellers following
the first sale.

Our delay variable suffers from a problem identical to that encountered in study-
ing bidding in ascending auctions—we only observes a censored measure of delay for

15This is not to say that the nature of learning behavior in clock games is uninteresting per se.
However, given our concerns with equilibrium comparative static predictions of the theory model, we
feel that a careful study of subject learning in clock games is beyond the scope of the present paper.

16We also investigated an alternative coding scheme whereby a missing value was assigned for the
Delay of sellers who sold but never received the signal. The results are qualitatively unaffected by
this alternative. Details are available from the authors upon request.
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subjects who did not sell prior to the game ending. We deal with this in two ways.
Conservatively, we code the delay variable as missing when it is censored. We also
use a Tobit specification, reported in Table 3 below, to try to recover censored delay
values. The results are qualitatively similar under either approach.

Table 1 presents the predictions of the theory model for each of these performance
measures. The Delay measure is simply a numerical evaluation of the strategies offered
in Propositions 1 and 3. The Gap measure equals the distance between adjacent order
statistics, η/7, for the unobservable case. The Gap measure is 1 for the observable case
owing to discrete time. To obtain the duration measure, recall that the ith lowest of
6 draws from a uniform distribution of length η is (i/7) η. Thus, the duration measure
is simply (3/7) η + τ in the unobservable case and (1/7) η + τ 1 + 1 in the observable
case, where again the additional “+1” stems from discrete time. As Table 1 shows, the
expected Duration is predicted to be longest in the Baseline treatment and shortest
in the Compressed and Observable treatments. Delay is predicted to be much shorter
under the Compressed or Observable treatments compared to Baseline. The Gap mea-
sure illustrates a distinct difference between the Baseline and Compressed treatments
and the Observable treatment.

Table 1: Theory Predictions

Treatment
Baseline Compressed Observable

Duration 62 26 28
Delay* 23 5 14
Gap 13 7 1

* For the Observable treatment, Delay is only meaningful for the first seller.
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4.1 Overview

Table 2 presents descriptive statistics treating each session as an independent observa-
tion.

Table 2: Descriptive Statistics (Periods 21-45)

Treatment
Baseline Compressed Observable

Number of Sessions 6 6 4

Duration 43.31 26.48 32.30
(8.42) (1.56) (4.52)

Delay
Seller 1 6.97 3.99 6.59

(2.30) (1.08) (1.30)
Seller 2 10.14 5.26

(3.44) (1.49)
Seller 3 12.31 6.72

(4.51) (1.29)

Gap
Between 1st & 2nd seller 23.47 18.57 4.20

(3.67) (5.58) (0.97)
Between 2nd & 3rd seller 15.45 8.68 1.86

(2.46) (0.76) (0.08)

Standard deviations in parentheses

Consistent with the theory, Duration is longest in the Baseline treatment and short-
est in the Compressed treatment. Delay also mirrors the comparative static predictions
of the theory: it is longest in Baseline and shortest in Compressed. The Gap measure
reflects the main effect of the Observable treatment—sellers after the first are strongly
clustered in their sell time. Compared to the Baseline and Compressed treatments,
gaps in the Observable treatment are much shorter. Indeed, the gap between the
second and third seller is extremely close to the theoretical prediction.
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Figure 3: Duration by Treatment

To see the variation in the data within each session, we present histograms of
Duration. In Figure 3, the bar associated with zero indicates the fraction of cases
in which no “bubble” formed—that is, three subjects exited before t0. This event,
which in theory should never occur, happens over 10% of the time in the Baseline and
Observable treatments, but less than 5% of the time in Compressed.

Taken together, there is considerable evidence for a number of treatment effects
predicted by the theory; however, there is considerable variability in outcomes and
some notable discrepancies between the theory predictions and observed behavior. In
the rest of this section, we perform a variety of statistical tests to understand choice
behavior and treatment effects in more detail.

4.2 Session-Level Analysis

In this section, we study treatment effects treating the session as the unit of observa-
tion. Obviously, this is a conservative approach to the data as it reduces the dataset to
16 observations. Throughout, we rely on two types of statistical tests to formally in-
vestigate treatment effects. The first test is a Wilcoxon Rank-Sum (or Mann-Whitney)
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test of equality of unmatched pairs of observations. This is a non-parametric test which
gives back a z-statistic which may be used in hypothesis testing. Our second test is a
standard t-test under the assumption of unequal variances. This test has the advantage
of familiarity, but the disadvantage of requiring additional distributional assumptions
on the data to be valid. As we will show below, the conclusions drawn from the two
tests rarely differ for our data.

Prediction 1. Duration is longer in the Baseline than in either the Compressed
or the Observable treatments.

Support for Prediction 1.
We test the null hypothesis of no treatment effect against the one-sided alternative

predicted by the theory. Comparing Compressed to Baseline, we obtain a z-statistic of
2.88 and a t-statistic of 4.81. Both reject the null hypothesis in favor of the alternative
hypothesis at the 1% significance level. Comparing Observable to Baseline, we obtain
a z-statistic of 1.92 and a t-statistic of 2.68. Both reject the null hypothesis in favor of
the alternative hypothesis at the 5% significance level.

Prediction 2a Delay is longer in the Baseline than in the Compressed treatment.
Support for Prediction 2a.
Since Table 2 suggested that the first, second, and third sellers behave somewhat

differently, we test the null hypothesis of no treatment effect against the one-sided
alternative implied by the theory separately for each seller.

Seller 1.
Comparing Compressed to Baseline, we obtain a z-statistic of 2.08 and a t-statistic

of 2.87. Both reject the null hypothesis in favor of the alternative hypothesis at the
5% significance level.

Seller 2.
Comparing Compressed to Baseline, we obtain a z-statistic of 2.08 and a t-statistic

of 3.19. Both reject the null hypothesis in favor of the alternative hypothesis at the
5% significance level.

Seller 3.
Comparing Compressed to Baseline, we obtain a z-statistic of 2.08 and a t-statistic

of 2.92. Both reject the null hypothesis in favor of the alternative hypothesis at the
5% significance level.

Taken together, these results provide strong support at the session level for Propo-
sition 2.

Prediction 2b. Delay is longer in the Baseline than in the Observable treatment.
Lack of Support for Prediction 2b.
For the comparison to be meaningful, we restrict attention to the first seller (since

the theoretically relevant comparison is between τ and τ 1). Comparing Observable to
Baseline, we obtain a z-statistic of 0.43 and a t-statistic of 0.33. Neither test rejects
the null hypothesis of no treatment effect (p-values of 0.67 and 0.75, respectively).
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Prediction 3. Gap is longer in the Baseline than in either the Observable or the
Compressed treatments.

Support for Prediction 3.
Again, based on Table 2, we distinguish the gap between the first and second sellers

from the gap between the second and third sellers.
Sellers 1 and 2
Comparing Compressed to Baseline, we obtain a z-statistic of 1.76 and a t-statistic

of 1.80. Both reject the null hypothesis of equal Gaps in favor of the alternative
hypothesis predicted by the theory at the 10% significance level. Comparing Observable
to Baseline, we obtain a z-statistic of 2.56 and a t-statistic of 12.24. Both reject the
null hypothesis of no treatment effect in favor of the alternative hypothesis predicted
by the theory at the 1% significance level.

Sellers 2 and 3
Comparing Compressed to Baseline, we obtain a z-statistic of 2.88 and a t-statistic

of 6.44. Both reject the null hypothesis in favor of the alternative hypothesis at the 1%
significance level. Comparing Observable to Baseline, we obtain a z-statistic of 2.56
and a t-statistic of 13.51. Both reject the null hypothesis in favor of the alternative
hypothesis at the 1% significance level.

To summarize, many of the key comparative static predictions of the theory are
supported by the data—even treating the session as the unit of observation.

4.3 Individual-Level Analysis

Censoring
When the game ends before a player exits, our Delay measure is censored. In the

session level analysis, we dealt with this by omitting such observations entirely. This
potentially biases our measure of delay downward. By treating each subject/round
as the unit of observation, we may employ techniques that account for this censoring
problem to derive unbiased estimates of delay.

Suppose that a subject was planning to exit (sell) in period T ∗
i . If the game ends

in period T end-of-game ≤ T ∗
i , our observation of delay for this subject is right-censored.

However, if we use the equilibrium structure of the game, we can recover a measure of
delay for that subject. Recall that the theory predicts that a subject will wait a fixed
number of periods, τ , after receiving the signal before selling. Allowing for a Normally
distributed error term, εir ∼ N (0, σ2

treatment), then a subject i’s exit time in round r of
the game is T ∗

ir = tir + τ + εir where tir is the time the signal was received.17 Rewriting
this expression, we have

DELAY ∗
ir = T ∗

ir − tir = τ + εir,

17Of course, strictly speaking the error term cannot be normally distributed since the observed T ∗i
is always non-negative. However, this should not be problematic since τ is sufficiently large.
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where, conditional on tir, the variable DELAY ∗ is Normally distributed with mean
τ and variance σ2

treatment. With this specification, we can use the Tobit procedure to
obtain estimates of τ despite the right-censoring.18 Since Tobit estimates are known
to be quite sensitive to assumptions on the error structure, we allow for the possibility
that the error term is different across treatments and run separate estimations for
each treatment. For the Baseline treatment, delay is estimated to be 17.277 periods
(standard error = 5.31)—considerably longer than the session level statistics offered
in Table 2. For the Compressed treatment, Tobit produces a delay estimate of 11.011
periods (standard error = 7.46), which is again larger than the session level statistics.
These corrected estimates for our Delay measure do not alter our conclusions with
respect to Prediction 2a. We can reject the hypothesis that the two coefficients are
equal at the 1% significance level in favor of the one-sided alternative predicted by the
theory.

Early Exit
A central prediction of the theory is that players only exit after receiving their signal

or, in the case of the Observable treatment, after observing the time of the first exit.
Yet, as Figure 3 highlights, in some cases, subjects sell the asset prior to receiving the
signal.

To understand the factors predicting the decision to exit prior to receiving a signal,
we performed a probit analysis where the dependent variable, EARLY-EXIT, is a
dummy which equals 1 if a subject sold (weakly) prior to receiving the signal. Our
regressors are dummies for each treatment, a linear term for the time the asset first
exceeded its true value (t0) and the interaction between these variables. It is difficult
to interpret Probit coefficients directly; thus, Table 3 reports the results expressed in
terms of the changes in the probability of early exit. Column 1 excludes the results of
the Observable treatment since, in that treatment, the equilibrium calls for all traders
to sell immediately after the first sale—regardless of whether they received the signal.
Column 2 includes all treatments but restricts the sample to the first seller.

18Owing to differences in the information structure, the Observable treatment is not amenable to
this analysis.

21



Table 3: Probit Model of Probability of EARLY-EXIT

Baseline and
Compressed Only

Seller 1 Only

Compressed 0.029∗ 0.145
(0.0394) (0.1065)

Observable 0.230∗

(0.1115)

t0 0.003∗∗ 0.007∗∗

(0.0003) (0.0008)

t0 × Compressed −0.001∗∗ −0.002∗

(0.0003) (0.0009)

t0 × Observable −0.003∗∗

(0.0010)

Baseline Probability 0.09 0.29

Round Fixed Effects Yes Yes

Observations 2259 738

Robust z-statistics in parentheses
* significant at 5%; ** significant at 1%

To obtain estimates of the marginal effect of each treatment on the probability of
early exit, one needs to add the coefficient estimate for the treatment with the estimate
for the interaction term multiplied by the average value of t0, which is about 75. The
column 1 estimates imply that the marginal effect (i.e., the interaction of time with
session type) of the Compressed treatment is to reduce the probability of early exit.
The column 2 estimates imply that, for first sellers, the Compressed and Observable
treatments modestly reduce the probability of early exit compared to Baseline.

More surprising is the role that t0 has on the probability of early exit. Regardless
of the sample, the coefficients imply that the larger the value of t0, the greater the
probability that a subject exited before receiving the signal. This is not predicted by
the theory but does correspond with a heuristic “satisficing” strategy where subjects
lock-in gains once the value of the asset has reached some aspiration level.

Delay
In Table 3, we saw that the timing of t0 was a key driver leading players to sell before

receiving the signal. Here, we investigate whether it plays a similar role for observations
where we have an uncensored measure of delay. Specifically, for this subsample, we
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regress delay on dummies for each treatment, a linear t0 term interacted with treatment.
We also add round fixed effects to control for learning. Finally, to deal with possible
heteroskedasticity and autocorrelation, we report standard errors clustered by subject.
The results of this analysis are shown in Table 4.

Table 4: Delay Estimates

Seller 1 Seller 2 Seller 3

Constant 12.841∗∗ 17.931∗∗ 22.803∗∗

(10.78) (10.30) (10.28)

Compressed −6.861∗∗ −10.281∗∗ −13.023∗∗

(5.16) (5.22) (5.17)

Observable −2.169
(1.07)

t0 −0.071∗∗ −0.097∗∗ −0.127∗∗

(9.59) (8.17) (8.81)

t0 × Compressed 0.045∗∗ 0.064∗∗ 0.086∗∗

(5.03) (4.59) (4.82)

t0 × Observable 0.012
(0.93)

Round Fixed Effects Yes Yes Yes

Observations 738 584 583
R-squared 0.23 0.26 0.28

OLS: Robust t-statistics in parentheses.
* significant at 5%; ** significant at 1%

As the table shows, our findings regarding Predictions 2a and 2b continue to be
borne out even after controlling for t0 and learning effects. Delay is shorter under
the Compressed treatment than Baseline as the theory predicts; however there is no
statistical difference between Baseline and Observable.

The variable t0, which is theoretically irrelevant, does appear to influence subject
choices. In particular, the coefficient estimates indicate that larger values of t0 are
associated with significantly less Delay in all treatments.19 Indeed, we can reject the
null hypothesis of a zero t0 effect against the one sided alternative at the 5% significance
level for all specifications. The t0 effect is, however, systematically less pronounced in
the Compressed treatment compared to Baseline or Observable.

19To compute the economic magnitude of the an incremental change in t0, one needs to add the t0
coeffcient to the coefficient of the interaction term for the relevant treatment.
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5 Conclusions

We introduced and analyzed a class of games we refer to as clock games. Players in these
games must decide the timing of some strategic action. Tension in the model arises
from a trade-off between reaping higher profits from moving later versus the possibility
of preemption should other players move more quickly. Effectively, clock games are the
oligopolistic analog of the competitive model of Abreu and Brunnermeier (2003). We
showed that the unique symmetric equilibrium of the game has a remarkably simple
structure—upon receiving a signal, each player optimally waits a fixed amount of time
before moving. When moves of other players are observable, delay is still optimal so
long as no player has moved. Once the first move is observed, however, all other players
optimally move immediately.

We then tested the model using controlled laboratory experiments. We varied
the observability of moves and the degree of information diffusion. We found broad
support for the main implications of the Clock Games model and, more broadly, for
the equilibrium effects of the trade-off between the waiting and preemption motives.
Specifically, we observed considerable delay in the timing of moves by players after
having observed the signal that the time to move was “ripe.” Indeed, this was the
case even when moves were perfectly observable. We found that slower information
diffusion led to longer delay while observable moves led to herding following the first
move.

While many of the qualitative predictions of the model were borne out in the lab,
several key discrepancies emerged between theory and observed behavior. First, unlike
the theory model, we found that a longer calendar time before players received the
signal that the time was “ripe” led to shorter delay and, in some cases, no delay at
all. We found the force of the “calendar” effect differed depending on the speed of
information diffusion. Finally, we found that the possibility of mistakes, especially
when moves were observable, led to less herding behavior than was predicted by the
theory. Taken together, these discrepancies suggest the need to modify the models
to allow for the possibility of mistakes on the part of players, perhaps by analyzing
the clock games framework using quantal response equilibrium as the solution concept.
Given the complexity of the equilibrium characterization under full rationality, we felt
it appropriate to leave this generalization for future research.
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A Appendix

A.1 Properties of the Kummer Function

In this section, we detail some useful properties of the Kummer function, which we rely upon
in what follows. One useful feature of this function is that it may be expressed as the infinite
series

Φ (a, b, x) ≡
∞∑

j=0

(a)j

(b)j

xj

j!
= 1 +

a

b
x +

a (a + 1)

b (b + 1)

x2

2!
+ . . . ,

where

(a)k ≡
{

1 if k = 0∏k−1
n=0 (a + n) if k > 0

.

From this representation, it may be readily seen that Φ is strictly increasing in its first and
third arguments and strictly decreasing in its second argument. We will make extensive use
of these monotonicity properties. In addition, the Kummer function has a number of other
nice properties (see Kummer (1836)) which greatly simplify the analysis.

A.2 Proof of Proposition 1

A.2.1 Deriving hazard rate hK

We will establish that the hazard rate of the Kth lowest of I − 1 draws is independent of ti.
Formally Pr[tK=ti|ti]

Pr[tK≥ti|ti] is a constant.
First, fix t0. In that case, each player’s type is uniformly distributed conditional on t0

and hence the density of the Kth order statistic is simply

fK (tK = t|ti, t0) =
(I − 1)!

(K − 1)! (I −K − 1)!

(
1
η

)I−1

(t− t0)
K−1 (η − (t− t0))

I−1−K

for t ∈ [t0, t0 + η]. Of particular interest is the case where t = ti, in that case, we have

fK (tK = ti|ti, t0) =
(I − 1)!

(K − 1)! (I −K − 1)!

(
1
η

)I−1

(zi)
K−1 (η − zi)

I−1−K , (7)

where zi := ti − t0. Of course, t0 is not known to player i, but he knows ti and hence that
t0 ∈ [ti − η, ti]. Given that t0 is exponentially distributed, φ (t0) = λe−λt0 ,

φ (t0|ti) =
λe−λt0

1− e−λti − (1− e−λ(ti−η))
,

which we may also write purely in terms of zi to obtain

φ (t0|ti) =
λeλzi

eλη − 1
. (8)
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Consequently, we have that

fK (tK = ti|ti) =
λ

eλη − 1

(I − 1)!

(K − 1)! (I −K − 1)!

(
1
η

)I−1
η∫

0

eλzi (zi)
K−1 (η − zi)

I−1−K dzi.

(9)
We also have to derive the denominator of the hazard rate, Pr [tK ≥ ti|ti]. This is simply

the probability that K − 1 or fewer players received signals prior to ti. Conditional on t0,
these signals are uniformly distributed. Hence

fK (tK ≥ ti|ti, t0) =
K−1∑
n=0

(
I − 1

n

)(
1

η

)I−1

(ti − t0)
n (η − (ti − t0))

I−1−n .

Again, it is convenient to express this in terms of differences zi. Thus, we have

fK (tK ≥ ti|ti, t0) =
K−1∑
n=0

(
I − 1

n

)(
1

η

)I−1

(zi)
n (η − zi)

I−1−n .

Integrating out t0, we obtain

fK (tK ≥ ti|ti) =
λ

eλη − 1

K−1∑
n=0

(
I − 1

n

)(
1

η

)I−1 ∫ η

0

eλzi (zi)
n (η − zi)

I−1−n dzi. (10)

Notice that both Equations 9 and 10 are independent of ti. As a consequence, the hazard
rate hK := Pr[tK=ti|ti]

Pr[tK≥ti|ti] is also independent of ti.

A.2.2 Deriving E
[
e−g(ti−t0)|ti, tK = ti

]

From Bayes’ rule, we know that

φ (t0|ti, tK = ti) =
fK (ti|t0) φ (t0|ti)

fK (ti|ti)
From Equations (7) and (8), we know that φ (t0|ti, tK = ti) may be rewritten entirely in
terms of zi. Now, notice that

E
[
e−g(ti−t0)|ti, tK = ti

]
=

∫ ti

t0=ti−η

e−g(ti−t0)φ (t0|ti, tK = ti) dt0.

may also be rewritten in terms of zi as well. Hence,

E
[
e−g(ti−t0)|ti, tK = ti

]
=

η∫
0

e−(g−λ)zi (zi)
K−1 (η − zi)

I−1−K dzi

η∫
0

eλz (zi)
K−1 (η − zi)

I−1−K dzi

,

which is a constant and hence, independent of ti.
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A.2.3 Simplifying τ

Rewriting Equation (2)

τ =
1

g
log

(
E

[
e−g(zi)|ti, tK = ti

]

1− g
h

)
.

and after cancellation, we can rewrite the above expression as:

E
[
e−g(zi)|ti, tK = ti

]

1− g
h

=

ηR
0

e−(g−λ)z(z)K−1(η−z)I−1−Kdz

ηR
0

eλz(z)K−1(η−z)I−1−Kdz−g
ηR
0

eλz
PK−1

n=0
(K−1)!(I−1−K)!

n!(I−1−n)!
(z)n(η−z)I−1−ndz

.

(11)
Now, let Num and Den denote, respectively, the numerator and denominator of the right-
hand side of Equation (11). By series expansion of the exponential function it follows that

Num =
ηI−1Γ (I −K) Γ (K)

Γ (I)
Φ (K, I, η (λ− g))

Den =
ηI−1Γ (I −K) Γ (K)

Γ (I)

[
Φ (K, I, ηλ)− ηg

I

K−1∑
n=0

Φ (1 + n, 1 + I, ηλ)

]
,

where Γ (·) is the Gamma function satisfying Γ (a) = (a− 1)! for a positive integer a and
Φ (·) is the Kummer function defined above.

In the expression for Den,

K−1∑
n=0

Φ (1 + n, 1 + I, ηλ) =
K−1∑
n=0

∞∑
j=0

(1 + n)j

(1 + I)j

(ηλ)j

j!

=
∞∑

j=0

1

(1 + I)j

(ηλ)j

j!

K−1∑
n=0

(1 + n)j

=
∞∑

j=0

1

(1 + I)j

(ηλ)j

j!

(K)j+1

j + 1
.

The last equality follows from
∑K−1

n=0 (1 + n)j =
(K)j+1

j+1
. Therefore,

ηg

I

K−1∑
n=0

Φ (1 + n, 1 + I, ηλ) =
g

λ

∞∑
j=0

(K)j+1

(I)j+1

(ηλ)j+1

(j + 1)!

=
g

λ

∞∑
j=1

(K)j

(I)j

(ηλ)j

j!

=
g

λ
[Φ (K, I, ηλ)− 1] .
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Hence,

Den =
ηI−1Γ (I −K) Γ (K)

Γ (I)

[(
1− g

λ

)
Φ (K, I, ηλ) +

g

λ

]
.

Therefore,

τ =
1

g
log

λΦ (K, I, η (λ− g))

g − (g − λ) Φ (K, I, ηλ)
.

Next, we show that for η ∈ [0, η̄] , τ > 0. Since E
[
e−g(z)|ti, tK = ti

]
> 0, the following

lemma is sufficient.

Lemma 2 hK > g.

Proof. Since η < η̄, λ < g, and Φ is increasing in its third argument, it then follows that

E
[
e−g(z)|ti, tK = ti

]

1− g
hK

=
λΦ (K, I, η (λ− g))

g − (g − λ) Φ (K, I, ηλ)

>
λΦ (K, I, η (λ− g))

g − (g − λ) Φ (K, I, η̄λ)

=
λΦ (K, I, η (λ− g))

g − (g − λ)
(

Ig
Ig−(I−K+1)λ

)

> Φ (K, I, η (λ− g)) > 0. ¥

A.3 Proof of Proposition 2

Recall that τ = 1
g
log λΦ(K,I,η(λ−g))

g−(g−λ)Φ(K,I,ηλ)
. We first show that when η = 0, τ = 0. From the

series expansion of Φ (·) it can easily be seen that Φ (K, I, 0) = 1, hence when η = 0, τ = 0.
For η ∈ (0, η),

λΦ (K, I, η (λ− g))

g − (g − λ) Φ (K, I, ηλ)
=

1 +
η∫
0

∂
∂w

Φ (K, I, w (λ− g))
∣∣
w=z

dz

1− g−λ
λ

η∫
0

∂
∂w

Φ (K, I, wλ)
∣∣
w=z

dz

.

Using the fact that ∂
∂x

Φ (a, b, x) = a
b
Φ (a + 1, b + 1, x) , it follows that the right-hand side

may be rewritten as

=

1− (g−λ)K
I

∫ η

0

Φ (K + 1, I + 1, z (λ− g)) dz

1− (g−λ)K
I

∫ η

0

Φ (K + 1, I + 1, zλ) dz

= 1 +

(g−λ)K
I

∫ η

0

Φ (K + 1, I + 1, zλ)− Φ (K + 1, I + 1, z (λ− g)) dz

1− (g−λ)K
I

∫ η

0

Φ (K + 1, I + 1, zλ) dz

.
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That this expression is increasing in η follows from the fact that Φ (·) is increasing in its
third argument.¥

A.4 Proof of Lemma 1

Let t′ > t0 be the time at which the first exit occurred. Since the time of the first exit is
publicly observed, it becomes common knowledge that egt′ > egt0 . The continuation game is
strategically equivalent to pure Bertrand competition with a stochastic outside option whose
highest possible realization lies strictly below the minimum possible bid. A straightforward
extension of Harrington (1989) shows that, the unique equilibrium in this game is for all
players to bid the minimum amount, egt′ , i.e. all types exit immediately.

A.5 Proof of Proposition 3

It is straightforward to obtain expressions for h1 and E
[
e−g(zi)|ti, t1 = ti

]
. Simply use the

analogous expressions given in the proof of Proposition 1 and substitute K = 1. This yields

τ 1 =
1

g
log

( R η
0 e−(g−λ)z(η−z)I−2dzR η

0 eλz(η−z)I−2dz− Ig
I−K+1

R η
0 eλz (I−2)!

(I−1)!
(η−z)I−1dz

)
.

Using steps analogous to the simplification of τ , we have

τ 1 =
1

g
log

(
λΦ(1,I,η(−g+λ))

Ig
I−K+1

−( Ig
I−K+1

−λ)Φ(1,I,ηλ)

)
.

It remains only to show that τ 1 > 0. Since E
[
e−g(z)|ti, t1 = ti

]
> 0, the required

inequality follows from the following Lemma.

Lemma 3 h1 > Ig
I−K+1

.

Proof. Following the identical steps in the proof of Lemma 2, we obtain

E
[
e−g(z)|ti, t1 = ti

]

1− g1

h1

= λΦ(1,I,η(−g+λ))

(λ− Ig
I−K+1)Φ(1,I,ηλ)+ Ig

I−K+1

≥ 0, (12)

which is satisfied since η ≤ η̄.¥
Thus, we have shown that τ 1 strategies comprise a symmetric equilibrium. The fact that

τ 1 is the unique symmetric equilibrium follows using steps identical to those in Proposition
1.¥
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B     Appendix 
 
 
Note: Terms in {.} are included only in the COMPRESSED treatments while terms in [.] 
are included only in OBSERVABLE treatments. 
 

Instructions 
 
Thank you for participating in this experiment on the economics of investment decision 

making.  If you follow the instructions carefully and make good decisions you can earn a 

considerable amount of money.  At the end of the experiment you will be paid in cash 

and in private.  The experiment will take about an hour and a half.   

 

There are 12 people participating in this session.  They have all been recruited in the 

same way that you have and are reading the same instructions that you are for the first 

time.  Please refrain from talking to the other participants during the experiment. 

 

You are about the play the same selling game 45 times in succession.  Each round 

represents one trading period and each person in the room is a seller in the game.  There 

are two games running simultaneously, so you will not know which game you are in and 

which players in the room you are playing with.  The sellers are randomly matched at the 

beginning of each period and thus the composition of sellers for each game changes from 

trading period to trading period.   

 

How to play the game: 

Initially, everyone needs to login from the login page.  The game begins after five other 

players log in (see Figure 1).  At the start of each trading period, the price of everyone’s 

asset begins at 1 ECU (experimental currency units) and increases exponentially.  The 

true value of the asset is predetermined when the game starts.  At one point, you will be 

notified that the current price of the asset exceeds its true value.  At that time, the price of 

the asset will change from red to green.  In addition, you will be given the minimum and 

maximum values of the asset.  The true value of the asset lies between those two values 

(see Figure 2).  



[In addition, whenever any other seller in your game chooses to sell, you will be notified 

of this fact by a message at the bottom of your screen indicating the price at which the 

sale occurred.] 

Please note that the speed to which the price rises will vary slightly. This is due to 

random network traffic.  

 

How to Sell: In each period, you make your decision of selling your asset by moving 

the mouse pointer into blue “Sell” box on your screen.  DO NOT CLICK THE 

MOUSE BUTTON.  Once you have decided to sell, you have no more decisions to 

make in the trading period.  Your decision is final. 

 

There are two ways a trading period can end:  

(1) Once the third seller moves his/her mouse into the blue window, the period ends;  

(2) If fewer than three sellers sell, then the trading period ends once a pre-determined 

number of seconds has elapsed after the asset reaches its true value.   

 

If you sell, you earn an amount in ECUs equals to the price you sell at.  If you don’t sell, 

you will earn the true value of the asset.  Please keep in mind that your goal is to 

maximize your earnings.  

 

At the end of each trading period, the true value of the asset, your earnings for this 

period, your cumulative earnings, and the earnings of other players will all be displayed 

on your screen (see Figure 3). 

 

Click the “Play Again” link on the screen to play the next round.  The new round will 

begin when every player has clicked the link. 

 

At the conclusion of the experiment, your total earnings in ECUs will be converted to 

cash at the rate of 50 ECU = $1. 

 



At some point during the trading period, you will receive a message indicating that the 

current price of the asset has exceeded its “true value”.  When you receive this message, 

the computer will also inform you of the minimum and maximum “true values” for the 

asset.  

 

Are there any questions? 

 

Details – This section contains technical details about the game 

 
At the start of each selling game, the price of the asset begins at 1 ECU (experimental 

currency units). The price of the asset increases by 2% in each trading period (which lasts 

about 1 second). You will see the price increasing on your computer screen---the current 

price is the same for all sellers. 

In addition, the computer secretly determines the true value of the asset. The shadow 

value increases with the price of the asset until the computer determines that it has 

stopped growing. In each trading period, there is a 1% chance that the true value will stop 

growing. The true value of the asset is the same for you and the other five sellers with 

whom you are participating.   

Delayed Information 
Once the computer determines that the true value has stopped growing, you will be 

alerted of this fact, but with a random delay. The computer will choose a random delay 

from zero, one, two, up to ninety {fifty} trading periods (equally likely) for each seller. 

So on average, the delay will be about 45 {25} seconds from the time the shadow value 

stopped growing until the time you become informed of this fact. After this delay, you 

will see a message on your computer screen indicating that the true value has stopped 

growing as well as displaying the highest and lowest amounts the shadow value could be. 

The same is true for the other five players, but the computer determines their delay 

separately your delay. That is, most likely they hear the news at different points in time. 

End of the Game 

Each selling game ends after three people have sold the asset or 200 periods after the true 

value of the asset has stopped growing, whichever comes first. 



 

 

 

 

 

 

 

 
Figure 1 

 



 
Figure 2 

 

 
Figure 3 


