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This paper examines a model in which advertisers bid for “sponsored-link” positions on
a search engine. The value advertisers derive from each position is endogenized as coming
from sales to a population of consumers who make rational inferences about firm qualities
and search optimally. Consumer search strategies, equilibrium bidding, and the welfare
benefits of position auctions are analyzed. Implications for reserve prices and a number of
other auction design questions are discussed.

I. Introduction

Google, Yahoo! and Microsoft allocate the small “sponsored links” at the top and on

the right side of their search engine results via similar auction mechanisms. Sponsored-link

auctions have quickly become one of the more practically important topics in the economics

of auctions, as annual revenues now surpass $30 billion. They have also quickly become

an important topic in the economics of advertising: they have driven the recent growth of

online advertising, which is having dramatic effects both on products that are now heavily

sold online and on the competing media that are suffering in the competition for advertising

dollars. In this paper, we address issues of relevance to both fields by developing a model of

sponsored-link advertising that incorporates both standard auction-theoretic and two-sided

market considerations.

There has been a recent burst of academic papers on sponsored-search auctions spurred

both by the importance of the topic and by some very elegant results. This literature has

coined the term “position auctions” to describe the particular multi-good auction in which

per-click bidding is used to auction off n asymmetric objects with unidimensional bids.1 A
1* email:athey@fas.harvard.edu, gellison@mit.edu. We thank Ben Edelman, Leslie Marx, John Mor-

gan, Ilya Segal, Hal Varian, various seminar audiences, and four anonymous referees for their comments
and Eduardo Azevedo, Eric Budish, Stephanie Hurder, Scott Kominers, and Dmitry Taubinsky for excep-
tional research assistance. This work was supported by NSF grants SES-0550897 and SES-0351500 and the
Toulouse Network for Information Technology.

1See Ausubel and Cramton (2004) and Cramton, Shoham, and Steinberg (2007), for broader discussions
of multi-good auctions.
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striking result, derived in Aggarwal, Goel, and Motwani (2006), Edelman, Ostrovsky, and

Schwarz (2007), and Varian (2007), is that the generalized second price (GSP) position

auction in which the kth highest bidder wins the kth slot and pays the k + 1st highest bid

is not equivalent to the VCG mechanism and thus does not induce truthful bidding, but

nonetheless results in the same outcome as the VCG mechanism in an interesting class

of environments. A number of subsequent papers have extended the analyses in various

important dimensions such as allowing for reserve prices, the use of weights to account

for asymmetric click-through rates, and considering more general relationships between

positions and click-through rates.2

Most of the literature, however, is squarely auction-focused and continues to abstract

away from the fact that the “objects” being auctioned are advertisements.3 We feel that

this is an important omission because when the value of a link is due to consumers’ clicking

on the links and making purchases, it is natural to assume that consumer behavior and link

values will be affected by the process by which links are selected for display. In this paper,

we develop this line of analysis. By incorporating consumers into our model, we are able

to answer questions about how the design of the advertising auction marketplace affects

overall welfare, as well as the division of surplus between consumers, search engines, and

advertisers. Our framework allows us to provide new insights about reserve prices policies,

click-through weighting, fostering product diversity, advertisers’ incentives to write accurate

ad text, and effects of different bidding mechanisms.

Section II of the paper presents our base model. The most important assumptions are

that advertisers differ in quality (with high quality firms being more likely to meet each

consumer’s need), that consumers incur costs of clicking on ads, and that consumers act

rationally in deciding how many ads to click on and in what order.

Section III presents some basic results on search, welfare, and the economic role of

sponsored search advertising. We characterize optimal consumer search strategies. We note
2See, among many others, Edelman and Schwarz (2010) on reserve prices, Lehaie (2006), Liu and Chen

(2006), and Liu, Chen and Whinston (2010) on click-weights, and Borgers, Cox, Pesendorfer, and Petricek
(2006) and Aggarwal, Feldman, Muthukrishnan, and Pal (2008) on alternate click-position relationships.

3As discussed below, Chen and He (2006) is a noteworthy early exception – they develop a model with
optimal consumer search and note that the fact that auctions lead to a sorting of advertisers by quality can
rationalize top-down search and be a channel through which sponsored link auctions contribute to social
welfare.
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that a search engine that presents sponsored links should be thought of as an information

intermediary that contributes to welfare by providing information (in the form of an ordered

list) that allows consumers to search more efficiently, and we present some calculations that

quantify the welfare benefits.

Section IV contains our equilibrium analysis of the sponsored-link auction. Because the

value of being in any given position on the search results page depends on the qualities of

all of the other advertisers, the auction is no longer a private-values model and hence does

not fit within the framework of Edelman, Ostrovsky and Schwarz (EOS) (2007). We note,

however, that the common value elements of our model are perhaps surprisingly easy to

deal with – the analysis of EOS can be adapted with only minor modifications. We are

able to provide explicit formulas describing a symmetric perfect Bayesian equilibrium with

monotone bidding functions, and we discuss a number of properties of the equilibrium.

We then turn to auction-design questions. These are obviously of practical interest

to firms conducting sponsored-link auctions and to policy-makers who must interpret the

actions being taken in what is a highly concentrated industry. We find them interesting from

a theoretical perspective as well, because it is here that the fact that Google is auctioning

advertisements rather than generic objects brings up a host of new concerns. Any changes

to the rules for selecting ads will affect what consumers infer about the quality of each

displayed ad, which in turn affects the value of winning each of the prizes being auctioned.

Effects of this variety can substantially change the way one thinks about search engine

policies.

Our first auction design section, Section V, focuses on reserve-price policies. Recall that

in standard auctions with exogenous values, reserve prices raise revenue for the auctioneer,

but this comes at a welfare cost – some potential gains from trade are not realized. In

contrast, in our model, reserve prices can enhance total social surplus, and in some cases

can even be good for advertisers. The reason is that reserve prices can enhance welfare in

two ways: they help consumers avoid some of the inefficient search costs they incur when

clicking on low quality links; and they can increase the number of links that are examined

in equilibrium.4 The section also focuses on conflicts (or the lack thereof) between the
4In this respect, our model is related to that of Kamenica (2008) which develops a rational alternative
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preferences of consumers, advertisers, and the search engine. Indeed, our analysis begins

with an observation that when consumer search costs are uniformly distributed (but other

aspects of the model are left quite general) there is a perfect alignment of consumer-optimal

and socially optimal policies. This observation turns out to be a nice way to bring out several

insights: we derive results on consumer and social welfare; we use it as a computational

tool; and we note that it also implies that there is an inherent conflict between the search

engine and its advertisers – any departure from the socially optimal policy that increases

search engine profits must do so by reducing advertiser surplus. We also present a number

of results concerning what does and does not generalize to the case when consumer search

costs are drawn from general distributions.

Section VI examines click-weighted auctions similar to those used by Google, Yahoo!

and Microsoft. Google’s introduction of click-through weighting in 2002 is regarded as

an important competitive advantage and Yahoo!’s introduction of click-through weights

into its ranking algorithm in early 2007 (“Panama”) was highly publicized as a critical

improvement.5 It is intuitive that weighting bids by click-through rates should improve

efficiency – surplus is only generated when consumers click on links. EOS note briefly

(at the end of section III) that their efficiency result extends to establish the efficiency of

click-weighted auctions when click-through rates are the product of a position effect and

an advertiser effect.6 Our analysis places some caveats on this conventional wisdom about

efficiency. In the presence of search costs, we show that the click-weighted auction does

not necessarily generate the right selection of ads – general ads may be displayed when it

would be more efficient to display an ads that serve a narrower population segment well.

There can also be welfare losses when asymmetries in the click-through weights make the

ordering of the ads less informative about quality. Finally, we note that the introduction

of click-weighting can create incentives for firms to write misleading and overly broad text.

The intuition for the latter result is that even though firms pay per click, in a click-weighted

to “behavioral” explanations for why demand sometimes rises when consumers are presented with a smaller
choice set.

5Eisenmann and Hermann (2006) report that Google’s move was in part motivated by a desire for
improved ad relevance: “according to Google, this method ensured that users saw the most relevant ads
first.”

6Lehaie (2006), Liu and Chen (2006), and Liu, Chen, and Whinston (2010), note that while click-
weighting is efficient, a profit-maximizing search engine will typically want to choose different weights.
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auction, firms that generate more clicks on average must pay less per click to maintain their

position, and so they have no incentive to economize on consumer clicks. The result is also

robust to the use of pay-per-action pricing models, so long as the auction is action-weighted.

A number of results are described only informally in the text with the formal models

and analysis left to the appendices. Appendix I examines a special case in which we can

derive more explicit versions of several results. Appendices II and III develop the models

discussed in Sections V.F and VI, respectively. Appendix IV contains some omitted proofs.

We would direct readers who prefer an integrated discussion to the working paper version

of this paper, Athey and Ellison (2009).

As noted above, our paper contributes to a rapidly growing literature. Edelman, Os-

trovsky, and Schwarz (2007), Aggarwal, Goel, and Motwani (2006), and Varian (2007), all

contain versions of the result that the standard unweighted position auction (which EOS

call the generalized second price or GSP auction) is not equivalent to a VCG mechanism

but can yield the same outcome in equilibrium. Such results can be derived in the context

of a perfect information model under certain equilibrium selection conditions. EOS show

that the equivalence can also be derived in an incomplete information ascending bid auc-

tion, and that in this case the VCG-equivalent equilibrium is the unique perfect Bayesian

equilibrium. The papers also note conditions under which the results would carry over to

click-weighted auctions.

We have already mentioned a number of papers that extend the analysis in various

directions. Edelman and Schwarz (2010) were the first to analyze optimal reserve prices.

They present both theoretical and numerical analyses, including a demonstration that the

GSP auction with a single, optimally chosen reserve price is an optimal mechanism. Our

work departs from theirs in our consideration of the feedbacks between auction rules, con-

sumer expectations, and the value of advertising slots, and our model provides a motivation

for reserve prices that vary with position. Two other papers are noteworthy for consider-

ing more general click-through processes and presenting empirical results. Börgers, Cox,

Pesendorfer and Petricek (BCPP) (2007) extend the standard model to allow click-through

rates and value per click to vary across positions in different ways for different advertisers

and emphasize that there can be a great multiplicity of equilibrium outcomes in a perfect
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information setting.7 Jeziorski and Segal (2009) develop a model in which consumers have

more general preferences across bundles of ads and provide both reduced form empirical

results relevant to our paper, e.g. noting that consumers do not always search in a top-

down manner and that clicks on lower ads are affected by the quality of higher ads, and

structural estimates of consumer utility parameters.

Chen and He (2006) previously developed a model that introduced several of the key

elements of our model. They assumed that consumers have needs, that advertisers have

different valuations because they have different probabilities of meeting consumers’ needs,

and that consumers search optimally until their need is satisfied. They also included some

desirable elements which we do not include: they endogenize the prices advertisers charge

consumers; and allow firms to have different production costs.8 Our primary departure from

their framework is our consideration of incomplete information: we assume that advertisers’

qualities are drawn from a distribution and not known to consumers (and other advertisers).

This assumption plays a central role in many of our analyses. For example, most of our

auction design analyses hinge on how the design affects the information consumers get

about firm qualities and thereby influences consumer search. Our paper also differs from

theirs in that much of our paper is devoted to topics, e.g. consumer welfare, reserve prices,

and click weighting, that that they do not address.

Several more recent papers have also examined issues that reflect that search-engines

are auctioning advertisements. White (2008) and Xu, Chen, and Whinston (2009) develop

models that include both organic and paid search results. Xu, Chen, and Whinston (2008)

develop a model in which advertisers are also competing in prices for the goods they are

advertising and provide a number of interesting observations about how this may interact

with the willingness to bid for a higher position.

7Our model does not fit in the BCPP framework either, however, because they maintain the assumption
that advertiser i’s click-through rate in position j is independent of the characteristics of the other adver-
tisers. BCPP also contains an empirical analysis which includes methodological innovations and estimates
of how value-per-click changes with position in Yahoo! data. Chen, Liu, and Whinston (2009) develop a
model (without consumer search) which treats the fraction of clicks allocated to each advertiser as a design
variable.

8As in Diamond (1971) the equilibrium turns out to be that all firms charge the monopoly price.
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II. A Base Model

A continuum of consumers have a “need.” They receive a benefit of 1 if the need is met.

To identify firms able to meet the need they visit a search site. The search site displays M

sponsored links. Consumer j can click on any of these at cost sj . Consumers click optimally

until their need is met or until the expected benefit from an additional click falls below sj .

We assume the sj have an atomless distribution G with support [0, 1].

N advertisers wish to advertise on a website. Firm i has probability qi of meeting each

consumer’s need, which is private information. We assume that all firms draw their qi

independently from a common distribution, F, which is atomless and has support [0, 1].

Advertisers get a payoff of 1 every time they meet a need.

Informally, we follow EOS in assuming that the search site conducts an ascending bid

auction for the M positions: if the advertisers drop out at per-click bids b1, . . . , bN , the

search engine selects the advertisers with the M highest bids and lists them in order from

top to bottom.9 The kth highest bidder pays the k+ 1st highest bid for each click it gets.10

To avoid some of the complications that arise in continuous time models, however, we

formalize the auction as a simpler M -stage game in which the firms are simply repeatedly

asked to name the price at which they will next drop out if no other firm has yet dropped

out.11 In the first stage, which we call stage M + 1, the firms simultaneously submit bids

bM1, . . . bMN ∈ [0,∞) specifying a per-click price they are willing to pay to be listed on

the screen. The N −M lowest bidders are eliminated.12 Write bM+1 for the highest bid

among the firms that have been eliminated. In remaining stages k, which we’ll index by

the number of firms remaining, k ∈ {M,M − 1, . . . , 2}, the firms which have not yet been
9EOS show that in their model the equilibrium of such an ascending auction is also the lowest-revenue

envy-free Nash equilibrium of a complete-information, simultaneous-move bidding game. Because our model
has endogenous click-through rates, the envy-free concept would require some modification to be applied to
our model.

10Note that this model differs from the real-world auctions by Google, Yahoo!, and MSN in that it does
not weight bids by click-through weights. We discuss such weighted auctions in Section VI. We present
results first for the unweighted auction because the environment is easier to analyze. It should also be an
approximation to real-world auctions in which differences in click-through rates across firms are minor, e.g.
where the bidders are retailers with similar business models.

11Two examples of issues we avoid dealing with in this way are formalizing a clock-process in which firms
can react instantaneously to dropouts and specifying what happens if two or more firms never drop out.
See Demange, Gale and Sotomayor (1986) for more on extensive form specifications of multi-unit auctions.

12If two or more firms are tied for the M th highest bid, we assume that the tie is broken randomly with
each tied firm being equally likely to be eliminated.
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eliminated simultaneously submit bids bkn ∈ [bk+1,∞). The firm with the single lowest bid

is assigned position k and eliminated from future bidding. We define bk to be the bid of

this player. At the end of the auction, the firms in positions 1, 2, . . . , M will make per-click

payments of b2, b3, . . . , bM+1 for the clicks they receive.

Before proceeding, we pause to mention the main simplifications incorporated in the

baseline model. First, advertisers are symmetric except for their probability of meeting

a need: profit-per-action is the same for all firms, and we do not consider the pricing

problem for the advertiser. By focusing on the probability of meeting a need rather than

pricing, we focus attention on the case–which we believe is most common on search engines

(as opposed to price comparison sites)–where search phrases are sufficiently broad that

many different user intentions correspond to the same search phrase, and so the first-order

difference among sites is whether they are even plausible candidates for the consumer’s

needs. If we allowed for firms to set prices but required consumers to search to learn

prices, firms would have an incentive to set monopoly prices, following the logic of Diamond

(1971) and Chen and He (2006); thus, the main consequence of our simplification is the

symmetry assumption. Generalizing the model to allow for heterogeneous values conditional

on meeting the consumer’s need would allow us to distinguish between the externality a

firm creates on others by being higher on the list, which is related to the probability of

meeting the need, and the value the firm gets from being in a position; we leave that for

future work.

Our baseline model assumes that advertisers receive no benefit when consumers see their

ad but do not click on it. Incorporating such impression values (as in BCPP) places a wedge

between the externality created by a firm and its value to being in a given position. In

addition, consumers get no information about whether listed firms are more or less likely to

meet their needs from reading the text of their ads. In Section VI we consider extensions of

our model where the ad text of firms is informative, leading to heteroeneous click-through

rates, and its accuracy is endogenous; we also consider the effect of advertiser value for

impressions in this context.
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III. Consumer search and the economic role of
sponsored-link auctions

In this section we bring out the idea that search engines auctioning sponsored links are

information intermediaries and that one way in which they contribute to social welfare is

by making consumer search more efficient. We do so by characterizing consumer welfare

with sorted and unsorted lists. This section also contains building blocks for all of our

analyses: an analysis of the Bayesian updating that occurs whenever consumers find that

a particular link does not meet their needs; and a derivation of optimal search strategies.

III.A. Consumer Search and Bayesian Updating

Suppose that advertisers’ bids in the position auction are strictly monotone in q.13

Then, in equilibrium the firms will be sorted so that the firm with the highest q is on top.

Consumers know this, so the expected utility from clicking on the top firm is the highest

order statistic, q1:N .14 The expected payoff from any additional click must be determined

by Bayesian updating: the fact that the first website didn’t meet a consumer’s need leads

them to reduce their estimate of its quality and of all lower websites’ qualities.

Let q1:N , . . . , qN :N be the order statistics of the N firms’ qualities and let z1, . . . , zN

be Bernoulli random variables equal to one with these probabilities. Define q̄k to be the

expected quality of website k in a sorted list given that the consumer has failed to fulfill

his need from the first k − 1 advertisers:

q̄k ≡ E(qk:N |z1 = . . . = zk−1 = 0).

Proposition 1 If the firms are sorted by quality in equilibrium, then consumers follow a

top-down strategy: they start at the top and continue clicking until their need is met or

until the expected quality of the next website is below the search cost: q̄k < s. The numbers

q̄k are given by

q̄k = E(qk:N |z1 = . . . = zk−1 = 0)

=

∫ 1
0 xf

k:N (x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx∫ 1
0 f

k:N (x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx
13We will see in section IV that our model does have an equilibrium in which this occurs.
14We write q1:N for the highest value, in contrast to the usual convention in statistics, which is to call the

highest value the N th order statistic.
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A firm in position k will receive (1− q1:N ) · · · (1− qk−1:N )G(q̄k) clicks.

Proof: Consumers search in a top-down manner because the likelihood that a site meets

a consumer’s need is consumer-independent, and hence maximized for each consumer at

the site with the highest q. A consumer searches the kth site if and only if the probability

of success at this site is greater than s. The expected payoff to a consumer from searching

the kth site conditional on having gotten failures from the first k − 1 is E(qk:N |z1 = . . . =

zk−1 = 0). (The fk:N in the formula is the PDF of the kth order statistic of F .)

QED

The special case of the model when the quality distribution F is uniform is surprisingly

tractable: there are simple closed form expressions for the q̄k and this makes it possible

to give more explicit formulas characterizing consumer strategies, welfare, etc. Appendix I

presents these results.

One way to motivate interest in equilibrium consumer search rules would be to assume

that consumers are highly sophisticated and know the number N of bidders, the distri-

bution F of firm qualities, and do all the Bayesian updating. Note, however, that such

sophistication is not really necessary. In practice, consumers just need to have learned the

probabilities q̄1, q̄2, . . . , q̄M , with which they meet their needs when clicking on each link. In

practice, consumers will not get this fully right. For example, they will not know the exact

number of potential advertisers N and have learned different values of the q̄k applicable to

each N . But we think consumers will have some ability to know whether a query is likely

to have a small or large number of potential advertisers and to have roughly learned the

probabilities conditional on some such distinctions. In our later auction design discussions

we are motivated by similar reasoning: we think that real world consumers know very little

about reserve price policies, but will eventually react to policy changes as the equilibrium

theory predicts because they will eventually learn that links have become more or less likely

to meet their needs.

III.B. Welfare Gains From Information Provision

Lists of sponsored links provides consumers with two types of information. They identify

a set of links that may meet the consumer’s need, and they provide information on relative
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quality that helps consumers search through this set more efficiently. To bring out this

latter source of welfare gains it is instructive to consider how consumer search would differ

if advertisements were instead presented to consumers in a random order. Define q̄ = E(qi).

In that case, the consumer expects each website to meet the need with probability q̄.

Proposition 2 If the ads are sorted randomly, then consumers with s > q̄ don’t click on

any ads. Consumers with s < q̄ click on ads until their need is met or they run out of ads.

Expected consumer surplus is

E(CS(s)) =

{
0 if s ∈ [q̄, 1]
(q̄ − s)1−(1−q̄)M

q̄ if s ∈ [0, q̄]

If ads are sorted in order of decreasing quality then

E(CS(s)) =


0 if s ∈ [q̄1, 1]
q̄1 − s if s ∈ [q̄2, q̄1]
. . . . . .

q̄1 + q̄2(1− q̄1) + . . .+ q̄k
∏k−1
j=1(1− q̄j) if s ∈ [q̄k+1, q̄k]

Proof: When links are not sorted equilibrium search is straightforward. Consumers

with s > q̄ never click. Consumers with lower s will click on links until their need is met or

they exhaust the list. They get (q̄ − s) from the first search. If this is unsuccessful (which

happens with probability (1− q̄)) they get (q̄−s) from their second search. The total payoff

is (q̄ − s)(1 + (1− q̄) + (1− q̄)2 + ...+ (1− q̄)M−1).

The payoffs in the sorted list are computed similarly, but reflect that the searches occur

in a top down manner and stop endogenously as described Proposition 1.

QED

Comparing the two expressions brings out the welfare gains. Consumers with s ∈ [q̄, q̄1]

get no utility at all from an unsorted list but positive utility from a sorted list because the

higher quality of the top links makes clicking worthwhile. Consumers with low search costs

also benefit from the sorted list because they find what they want more quickly. One case

in which this is particularly clear is when N is very large. In that case, consumer surplus

is approximately 1 − s in the with a sorted list (provided F has full support so that the

highest order statistic is very close to one) and approximately 1 − s/q̄ with an unsorted

list because approximately 1/q̄ searches are needed to find an advertiser that can meet the
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consumer’s need. Appendix I gives some more explicit expressions and a comparative graph

for the case where the quality distribution, F , is uniform.

IV. Equilibrium of the Sponsored Search Auction

In this section we solve for the equilibrium of our base model taking both consumer

and advertiser behavior into account. We restrict our attention to equilibria in which

advertisers’ bids are monotone increasing in quality, so that consumers expect the list of

firms to be sorted from highest to lowest quality and search in a top-down manner.15

IV.A. Equilibrium in the Bidding Game

Consider our formalization of an “ascending auction” in which the N firms bid for the

M < N positions. When clicked on, firm i will be able to meet a consumer’s need with

probability qi. We have exogenously fixed the per-consumer profit at one, so qi is like the

value of a click in a standard position auction model.

Although one can think of our auction game as being analogous to the EOS model, but

with endogenous click-through rates, the auction part of our model does not fit directly

within the EOS framework. The reason is that the click-through rates are a function of the

bidders’ types as well as of the positions on the list.16 The equilibrium derivation, however,

is similar to that of EOS.

Our first observation is that, as in the EOS model, firms will bid up to their true value to

get on the list, but will then shade their bids in the subsequent bidding for higher positions

on the list.

In the initial stage (stage M + 1) when N > M firms remain, firms will get zero if they

are eliminated. Hence, for a firm with quality q it is a weakly dominant strategy to bid q.

We assume that all bidders behave in this way.
15In a model with endogenous search there will also be other equilibria. For example, if all remaining

bidders drop out immediately once M firms remain and are ordered arbitrarily by an auctioneer that cannot
distinguish among them, then consumers beliefs will be that the ordering of firms is meaningless, so it would
be rational for consumers to ignore the order in which the firms appear and for firms to drop out of the
bidding as soon as possible.

16BCPP have a more general setup, but they still assume that click-through rates do not depend on the
types of the other bidders.
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Once firms are sure to be on the list, however, they will not want to remain in the

bidding until it reaches their value. To see this, suppose that k firms remain and the k+1st

firm dropped out at bk+1. As the bid level b approaches q, a firm knows that it will get

q − bk+1 per click if it drops out now. If it stays in and no one else drops out before b

reaches q, nothing will change. If another firm drops out at q − ε, however, the firm would

do much worse: it will get more clicks, but its payoff per click will just be q − (q − ε) = ε.

Hence, the firm must drop out before the bid reaches its value.

Assume for now that the model has a symmetric strictly monotone equilibrium in which

drop out points b∗(k, bk+1; q) are only a function of (1) the number of firms k that remain;

(2) the current k + 1st highest bid, bk+1; and (3) the firm’s privately known quality q.17

Suppose that the equilibrium is such that a firm will be indifferent between dropping

out at b∗(k, bk+1; q) and remaining in the auction for an extra db and then dropping out

at b∗(k, bk+1; q) + db. This change in the strategy does not affect the firm’s payoff if no

other firm drops out in the db bid interval. Hence, to be locally indifferent the firm must

be indifferent between remaining for the extra db conditional on having another firm drop

out at b∗(k, bk+1; q). In this case the firm’s expected payoff if it is the first to drop out is

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )(1− q)|qk−1:N = q
)
·G(q̄k) · (q − bk+1).

The first term in this expression is the probability that all higher websites will not meet a

consumer’s need. The second is the demand term coming from the expected quality. The

third is the per-click profit. If the firm is the second to drop out in this db interval then its

payoff is

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )|qk−1:N = q
)
·G(q̄k−1) · (q − b∗).

The first two terms in this expression are greater reflecting the two mechanisms by which

higher positions lead to more clicks. The final is smaller reflecting the lower markup.

Indifference gives

G(q̄k)(1− q)(q − bk+1) = G(q̄k−1)(q − b∗)

This can be solved for b∗.
17In principle, drop out points could condition on the history of drop out points in other ways. One can

set bk+1 = 0 in the initial stage when no firm has yet to drop out.
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Proposition 3 The auction game has a symmetric strictly monotone pure strategy equi-

librium. In particular, it is a Perfect Bayesian equilibrium for firms to choose their dropout

points according to

b∗(k, bk+1; q) =

{
q if k > M

bk+1 + (q − bk+1)
(

1− G(q̄k)
G(q̄k−1)(1− q)

)
if k ≤M.

(1)

Sketch of proof: First, it is easy to show by induction on k that the strategies defined

in the proposition are symmetric strictly monotone increasing and always have qi ≥ bk+1

on the equilibrium path. The calculations above establish that the given bidding functions

satisfy a first-order condition.

To show that the solution to the first-order condition is indeed a global best response we

combine a natural single-crossing property of the payoff functions – the marginal benefit of

a higher bid is greater for a higher quality firm – and the indifference on which the bidding

strategies are based. For example, we can show that the change in profits when a type q′

bidder increases his bid from b∗(q′) to b∗(q̂) is negative using

π(b∗(q̂); q′)− π(b∗(q′); q′) =
∫ q̂

q′

∂π

∂b
(b∗(q), q′)

db∗

dq
(q)dq

≤
∫ q̂

q′

∂π

∂b
(b∗(q), q)

db∗

dq
(q)dq

= 0.

This argument is formalized in Appendix IV.

QED

Remarks

1. In this equilibrium firms start out bidding up to their true value until they make it

onto the list. Once they make it onto the list they start shading their bids. If q is

close to one, then the bid shading is very small. When q is small, in contrast, bids

increase slowly with increases in a firm’s quality because there isn’t much gain from

outbidding one more bidder.

2. The strategies have the property that when a firm drops out of the final M, it is

common knowledge that no other firm will drop out for a nonzero period of time.
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3. Bidders shade their bids less when bidding for higher positions, i.e. b∗(k, b′; q) is

decreasing in k with b′ and q fixed, if and only if G(q̄k−1)
G(q̄k) is decreasing in k. This can

be seen most easily by rewriting (1) as

b∗ = q − G(q̄k)
G(q̄k−1)

(1− q)(q − bk+1).

One may get some intuition for whether the condition is likely to hold in practice

by examining the growth in click-through rates as a firm moves from position k to

position k−1. In the model this is G(q̄k−1)

(1−qk−1:N )G(q̄k)
, and industry sources report that it

decreases moderately to rapidly in k, which is consistent with less bid shading at the

top positions. However, since qk:N is also declining in k, the declining click-through

rates could also be due to rapidly decreasing quality lower down the list.

4. EOS show that the similar equilibrium of their model is unique among equilibria in

strategies that are continuous in types and note that there are other equilibria that

are discontinuous in types. The indifference condition we derive should imply that

equilibrium is also unique in our model if one restricts attention to an appropriate class

of strategies with continuous strictly monotone bidding functions. As Chen and He

(2006) also note, however, there are also other equilibria. For example, if consumers

believe that the links are sorted randomly (and therefore search in a random order),

then there will be an equilibrium in which all firms drop out as soon as M firms

remain.

V. Reserve Prices

We now turn to questions of auction design. Such questions are of practical interest for

three reasons: they are of interest to firms designing auctions; auction design also affects

the welfare of consumers and advertisers; and antitrust and regulatory authorities will need

to understand both the incentives and welfare effects in order to interpret actions in what

is a concentrated industry. Auction design questions in our model are also interesting

theoretically because the standard principles of auction design can be substantially altered

by the fact that changes to the auction design affect consumer beliefs about the quality of
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sponsored links and thereby affect the “values” of prizes that are being auctioned. In this

section we discuss a common and important design decision: the setting of reserve prices.

In a standard auction model reserve prices increase the auctioneer’s expected revenues.

At the same time, however, they reduce social welfare.18 Here, we show that the consid-

erations are somewhat different in our model: reserve prices can increase both the profits

of the auctioneer and social welfare. The reason for this difference is that consumers incur

search costs on the basis of their expectation of firm quality. When the quality of a firm’s

product is low relative to this expectation, the search costs consumers incur are inefficient.

By instituting a reserve price, the auctioneer commits not to list products of sufficiently low

quality and can reduce this source of welfare loss. This in turn, can increase the number

of searches that consumers are willing to carry out. Increases in the volume of trade are

another channel through which welfare can increase.

Most of this section examines the special case of consumer search costs being uniformly

distributed on [0, 1] (in fact, our results generalize to the case where the search cost dis-

tribution takes the form G(s) = sd, but we focus on the uniform case for simplicity of

exposition).19 By specializing the search cost distribution, we are able to derive a neat the-

orem on the alignment of interests that is very general on other dimensions. This allows us

to provide some complete characterizations and it is also a nice way to highlight forces that

will remain present in more general specifications. Section V.F contains some results on

general search cost distributions, illustrating some results that are robust and highlighting

forces that can make others change.

V.A. An Alignment Theorem

In this section, we assume that the distribution G of search costs is uniform (without

making assumptions about the advertiser quality distribution). We present a striking result

on the alignment of consumer and advertiser/search engine preferences: the welfare maxi-
18The reduction in the gains from trade could inhibit seller or buyer entry in a model in which these were

endogenous, so reserve prices might not be optimal in such models. See Ellison, Fudenberg and Möbius
(2004) for a model of competing auction sites in which this effect would be important.

19We also restrict our analyses to equilibria like those described in the previous section in which firms use
strictly monotone bidding strategies and bid their true value when they will not be on the sponsored link
list.
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mizing and consumer surplus maximizing policies coincide. Moreover, for any reserve price,

the sum of advertiser profit and search engine profit is twice the consumer surplus. The

intuition for the result can be given as follows. First, producer surplus and gross consumer

surplus (ignoring search costs) are both determined by the probability that consumers have

their needs satisfied. Second, consumers search optimally, so that their search intensity and

thus average search costs increase with their (perceived) probability that their need will be

met. Third, when the search cost distribution takes the form G(s) = sd, average search

costs increase with the probability that their need will be met in a constant proportion.

Finally, the third fact implies that consumer surplus net of search costs is also proportional

to the probability that needs are satisfied.

Proposition 4 Suppose the distribution of search costs is uniform. Consumer surplus

and social welfare are maximized for the same reserve price. Given any bidding behavior

by advertisers and any reserve price policy of the search engine, equilibrium behavior by

consumers implies E(W ) = 3E(CS).

Proof: Write GCS for the gross consumer surplus in the model: GCS = CS + Search

Costs.20 Write GPS for the gross producer surplus: GPS = Advertiser Profit + Search-

engine profit. Because a search produces one unit of GCS and one unit of GPS if a consumer

need is met and zero units of each otherwise we have E(GCS) = E(GPS).

Welfare is given by W = GCS +GPS − Search Costs. Hence, to prove the theorem we

only need to show that E(Search Costs) = 1
2E(GCS). This is an immediate consequence

of the optimality of consumer search and the uniform distribution of search costs: each ad

is clicked on by all consumers with s ∈ [0, E(q|X)] who have not yet had their needs met,

where X is the information available to consumers at the time the ad is presented. Hence,

the average search costs expended are exactly equal to one-half of the expected GCS from

each click.

QED

Remarks
20More precisely, GCS is the population average gross consumer surplus. It is a random variable, with

the realized value being a function of the realized qualities. The other measures of welfare and consumer
and producer surplus we discuss should be understood similarly.
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1. Note that the alignment result does not require any assumption on the distribution

F of firm qualities and is thus fully general in this dimension.

2. The alignment result does not depend on the assumption that consumers and ad-

vertisers both receive exactly one unit of surplus from a met need. If advertisers

receive benefit α from meeting a consumer’s need, then E(W ) = (1
2 + α)E(GCS) =

(1 + 2α)E(CS).

3. The alignment result with uniform search costs is a special case of a slightly more

general result. If the search cost distribution is G(s) = sd, then welfare and consumer

surplus are proportional with E(W ) = (2 + 1
d)E(CS). The argument is similar and

uses the fact that E(s|s ≤ q) remains proportional to q for this family of distributions.

(E(s|s ≤ q) = q/(d+ 1).)

4. The alignment result pertains to producer surplus, but it does not say anything about

the distinct reserve price preferences of advertisers and search engines. As shown in

more detail in the next section, advertisers and the search engine are typically in

conflict with one another and with consumers about the level of reserve prices.

Our next result is a corollary which points out that commitment problems are absent

in one particular (and infrequently studied) case: it shows that a search engine that has

consumer-surplus maximization as its objective function would choose the socially optimal

reserve price even if the search engine lacked the ability to commit to a reserve price. One

may initially wonder why we are bothering to point out this lack of a commitment problem.

We have three motivations: it highlights a contrast between consumer-surplus maximizing

search engines and search engines with other objective functions; the consumer-surplus

maximization objective function may have some practical relevance in the search engine

industry; and the corollary also turns out to be a useful technical tool. We will elaborate

on these after presenting the result.

Corollary 1 Suppose the distribution of search costs is uniform. Suppose that reserve

price rW maximizes social welfare when the search engine has the ability to commit to a

reserve price. Then, rW is an equilibrium choice for a consumer-surplus maximizing search
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engine regardless of whether the search engine has the ability to commit to a reserve price.

Proof: Proposition 4 says directly that rW will be chosen if the search engine has com-

mitment power. The fact that a CS-maximizing search engine won’t have a commitment

problem is less obvious, but nearly as immediate once one sets up the argument.

Write CS(q, q′) for the expected consumer surplus if consumers believe that the search

engine displays a sorted list of all advertisers with quality at least q, but the search engine

actually displays all advertisers with quality at least q′. If consumers expect that the

search engine is using reserve price rW , then the CS-maximizing search engine gets payoff

CS(rW , rW ) if it indeed uses rW and CS(rW , q′) if it deviates and uses reserve price q′

instead. We can see that the deviation is not profitable by a simple two-step argument:

CS(rW , q′) ≤ CS(q′, q′) ≤ CS(rW , rW ). The first inequality is a consequence of consumer

rationality – holding the policy fixed consumers do best if they know the policy and therefore

act in the way that maximizes their payoff. The second is the conclusion of Proposition 4.

QED

We noted above that one motivation for presenting Corollary 1 is that it highlights that

profit-maximizing (or social welfare maximizing) search engines would have a commitment

problem. An intuition for this is that consumers do not internalize the potential profits that

advertisers and the search engine will get when they consider whether to click on a website.

Hence, holding consumer expectations fixed, a deviation to a reserve price slightly lower

than what consumers are expecting would typically increase profits (and social welfare)

by leading consumers to click on more links. In equilibrium, of course, the search engine

cannot benefit from deviating from the policy that consumers believe it to be using, so we

end up with an equilibrium in which the search engine is worse off. The contrast between a

consumer-surplus maximizing and a social-welfare maximizing search engine is interesting:

an incentive to try to increase the broader welfare measure ends up reducing social welfare

relative to what happens if the search engine acts to maximize just consumer surplus.

A second motivation for presenting Corollary 1 is that the behavior of consumer-surplus

maximizing firms could be directly relevant in the search engine application. Search engines
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are engaged in dynamic competition to attract consumers. If current market shares are

sensitive to the consumer surplus a search engine provides, higher current market shares

lead to higher future market shares, and future profits are important relative to foregone

current profits, then designing a search engine to maximize consumer surplus may be a

rough rule-of-thumb approximation to the optimal dynamic policy of a firm competing

aggressively for consumers.

A final motivation for presenting Corollary 1 is that it turns out to be a useful com-

putational tool. Corollary 1 implies that we can find the policy that maximizes the social

welfare function by finding the equilibrium policy in the no-commitment model with a

consumer-surplus maximizing search engine. The latter turns out to provide an easier path

to some results.

V.B. Socially Optimal Reserve Prices with One-Position Lists and Uniformly Distributed

Search Costs

To bring out the economics of setting reserve prices and the tradeoffs for the welfare of

participants, we first consider the simplest version of our model: when the position auction

lists only a single firm (M = 1). In this case, if the auctioneer commits to a reserve price

of r, then consumers’ expectations of the quality of a listed firm is

E(q1:N |q1:N > r) =

∫ 1
r xNF (x)N−1f(x)dx∫ 1
r NF (x)N−1f(x)dx

Because consumers with s ∈ [0, E(q1:N |q1:N > r)) will examine a link if it is presented, the

average search cost of searching consumers is 1
2E(q1:N |q1:N > r). In the no-commitment

model, a consumer-surplus maximizing search engine will only display a link if the net

benefit to consumers is positive. This implies that it will display links with quality at

least 1
2E(q1:N |q1:N > r). Equilibrium in the no-commitment model therefore requires that

r = 1
2E(q1:N |q1:N > r). By Proposition 4 and Corollary 1 we then have:

Proposition 5 Suppose that the list has one position and that the distribution of search

costs is uniform. Then, consumer surplus and social welfare are maximized for the same

reserve price. The optimal r satisfies

r =
1
2
E(q1:N |q1:N ≥ r).(2)
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Remarks

1. Note that the formula (2) applies for any advertiser-quality distribution, not just

when advertiser qualities are uniform. Providing a general result is easier here than

in some other places because with lists of length one it is not necessary to consider

how consumers Bayesian update when links do not meet their needs.

2. For any quality distribution F with full support on [0, 1] we will have E(q1:N |q1:N >

r) ≈ 1 for N large. Hence, for N large the optimal reserve price will be close to 1
2 .

3. The probability that a link is displayed is 1−F (r)N . The mass of consumers who will

click on a link if one is displayed is E(q1:N |q1:N > r). Hence, a formula for expected

consumer surplus given an arbitrary reserve price r is:

E(CS) = (1− F (r)N )G(q̄1(r))
(
E(q1:N |q1:N > r)− E(s|s < E(q1:N |q1:N > r))

)
=

1
2
E(q1:N |q1:N > r)2(1− F (r)N ).

V.C. Welfare and the Distribution of Rents

We noted above that that expected consumer surplus and expected producer surplus are

proportional, and hence maximized at the same reserve price. The “producer surplus” in

that calculation is the sum of search engine revenue and advertiser surplus. In this section

we note that these two components of producer surplus are less aligned: search engines may

prefer a reserve price much greater than the social optimum and advertisers may prefer a

reserve price much smaller than the social optimum.21

The producer surplus in our model, GPS(r), is a sum of two terms: advertiser surplus

AS(r); and search-engine profit SR(r). First, we note that a general result on preference

conflicts is another simple corollary of our alignment theorem.

Proposition 6 Consider the model with uniformly distributed search costs. Suppose that

the reserve price rπ that maximizes the search engine’s expected profit does not coincide with
21Edelman and Schwarz (2010) illustrate this preference divergence in simulations for the case they study,

exogenous click-through rates.
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the socially optimal reserve price rW . Then, both consumers and advertisers are worse off

under the profit-maximizing reserve price, i.e. E(CS(rπ)) < E(CS(rW )) and E(AS(rπ)) <

E(AS(rW )).

Proof: If rπ and rW do not coincide then E(W (rπ)) < E(W (rW )). The fact that

expected consumer surplus is lower at rπ than at rW is an immediate corollary of Proposition

4: E(CS(r)) = 1
3E(W (r)). The advertiser surplus result is nearly as easy. The fact that

E(GPS(r)) = 2
3E(W (r)) for any r gives E(GPS(rπ)) < E(GPS(rW )). Gross producer

surplus is the sum of advertiser surplus and search engine profit. The latter is higher at rπ

than rW , so it must be that advertiser surplus is lower at rπ than at rW .

QED

In the special case where the search engine displays only a single link we can get some

additional insight by writing out an explicit division-of-surplus function:

E(SR(r)) = (1− F (r)N )G(q̄1(r))E(max(q2:N , r)|q1:N ≥ r)

= τ(r)E(GPS(r))

E(AS(r)) = (1− τ(r))E(GPS(r)),

where the division-of-surplus function τ(r) is given by

τ(r) ≡ E(max(q2:N , r)|q1:N ≥ r)
E(q1:N |q1:N ≥ r)

,

The τ(r) function has r ≤ τ(r) ≤ 1 and hence satisfies limr→1 τ(r) = 1 for any quality

distribution, i.e. the search engine gets almost all of the (very small) surplus when the

reserve price is very high. For many distributions, including the uniform, the τ(r) function

is strictly increasing on [0, 1], although this is not true for all distributions.22 When the

division of surplus function τ(r) is increasing in r, the profit-maximizing reserve price for

the search engine is greater than the social optimum.23

22The τ(r) function is also increasing when F (r) = rα for any α > 0. A simple example to show that it
is not always increasing would be a two point distribution with mass 1 − ε on q = 1

2
and mass ε on q = 1.

For this distribution we have τ( 1
2
) ≈ 1 and τ( 1

2
+ ε) ≈ 1

2
.

23More precisely, the profit-maximizing reserve price is always weakly greater than the social optimum
if τ(r) is weakly increasing and strictly greater if one assumes other regularity conditions. For example, if
E(CS(r)) is differentiable at the social optimum and τ(r) has a nonzero derivative at this point.
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In Section V.A we noted that consumer-surplus maximization might be a reasonable

approximation to the objective function of a search engine in a competitive dynamic en-

vironment. If a search engine instead maximizes a weighted average of consumer surplus

and profit and the consumer surplus and profit functions are single-peaked, then a lesser

weight on consumer surplus will result in a reserve price that is worse for social welfare,

consumers, and advertisers, but better for the search engine. This comparison could be

relevant for evaluating changes in industry structure that make search engines less willing

to invest in attracting consumers instead of maximizing short-run profits.24 Appendix II.D

presents a figure illustrating the magnitudes of the welfare changes in a couple examples.

V.D. Optimal Reserve Prices with M Position Lists

Thinking about the socially optimal reserve price as the equilibrium outcome with a

consumer-surplus maximizing search engine is also useful in the full M position model.

Holding consumer expectations about the reserve price fixed, making a small change dr

to the search-engine’s reserve price makes no difference unless it leads to a change in the

number of ads displayed. We can again solve for the socially optimal r by finding the

reserve price for which an increase of dr that removes an ad from the list has no impact on

consumer surplus.

The calculation, however, is more complicated than in the one-position case because

there are two ways in which removing a link from the set of links displayed can affect

consumer surplus. First, as before there is a change in consumer surplus from consumers

who reach the bottom of the list and would have clicked on the final link with q = r if it

had been displayed, but will not click on it if it is not displayed. The benefit from these

clicks would have been r. The cost would have been the search cost, which is one-half of

the average of the consumers’ conditional expectations of q when considering clicking on

the final link on the list. Second, not displaying a link at the bottom of the list will reduce

consumer expectations about the quality of all higher-up links, and thereby deter some

consumers from clicking on these links. Any changes of this second type are beneficial:
24For practical application one would also want to augment the model to include fixed costs that advertisers

must pay to participate. There would then be additional effects that stem from the search engine’s willingness
to invest in attracting advertisers.
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when the list contains m < M links, consumer expectations when considering clicking on

the kth link, k < m are E(qk:N |z1 = . . . = zk−1 = 0, qm:N > r, qm+1:N < r). If the final link

is omitted, consumer beliefs will change to E(qk:N |z1 = . . . = zk−1 = 0, qm−1:N > r, qm:N <

r). This latter belief coincides with E(qk:N |z1 = . . . = zk−1 = 0, qm−1:N > r, qm:N = r).

Hence, by not including the marginal link, consumers will be made to behave exactly as

they would with correct beliefs about the mth firm’s quality.

We write pm(r) for the probability that the mth highest quality is r conditional on one

of the M highest qualities being equal to r. The discussion above shows:

Proposition 7 Suppose the distributions of search costs and firm qualities are uniform.

For any N and M , the welfare-maximizing reserve price r is the solution to the first-order

condition ∂E(CS)
∂r = 0 with consumer behavior held constant. This reserve price has

r >
1
2

(
pM (r)E(qM :N |qM :N > r) +

M−1∑
m=1

pm(r)E(qm:N |qm:N > r, qm+1:N < r)

)
.

V.E. More General Policies

In the analysis above we considered policies that involved a single reserve price that

applies regardless of the number of links that are displayed. A search engine would obviously

be at least weakly better off if it could commit to a policy in which the reserve price was a

function of the position. For example, a search engine could have the policy that no ads will

be displayed unless the highest bid is at least r1, at most one ad will be displayed unless

the second-highest bid is at least r2, and so on. A rough intuition for how such reserve

prices might be set (from largely ignoring effects of the second type noted in the previous

section) is that reserve prices should be set so that the reserve price for the mth position is

approximately (but greater than) one-half of consumers’ expectations of quality when they

are considering clicking on the mth and final link on the list. This suggests that declining

reserve prices may be better than a constant reserve price.25

The idea of using more general reserve prices illustrates a more general idea: as long

as an equilibrium in which advertisers’ qualities are revealed still exists, consumer surplus
25This contrasts with Edelman and Schwarz (2010), who show that a single reserve price is optimal for

all positions when clicks are exogenous.
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(and hence welfare) is always improved if consumers are given more information about the

advertisers’ qualities. In an idealized environment, the search engine could report inferred

qualities along with each ad. In practice, different positionings might be used to convey

this information graphically. One version of this already exists on the major search engines:

sponsored links are displayed both on the top of the search page and on the right side. The

top positions are the most desired by advertisers, but they are not always filled even when

some sponsored links are being displayed on the right side, due in part to different reserve

prices for the top positions and the side positions.

V.F. Reserve Prices under General Distributions

The above analyses of reserve prices assume that consumer search costs are uniformly

distributed. When search costs are not uniformly distributed, the consumer optimal and

socially optimal reserve prices will no longer exactly coincide. Appendix II presents three

results illustrating how results may change with general search costs.

First, we note that the conclusion that the consumer-optimal reserve price positive is

fully robust: it holds for any search cost distribution. Second, we note that the socially-

optimal reserve price is not necessarily positive. An intuition for why this conclusion may

change builds on our earlier comment that consumers do not take into account firm profits

when they choose whether to click on a link. In some situations increasing the reserve price

can (counterintuitively) make consumers less likely to click on links, and this can reduce

welfare. Third, we note that the search-engine optimal reserve price can also be zero. The

effect that makes this possible is that by making consumers more willing to click on lower-

ranked links, the institution of a reserve prices can reduce the incentive that firms have to

bid for higher positions.

The examples we use to show that reserve prices can reduce reduce search engine profits

and social welfare are highly special examples. Our motivation for presenting them is not

to suggest that the outcomes that occur in them are likely to occur in practice, and we

emphasize that consumer and social preferences will be roughly aligned whenever the search

cost distribution is approximately uniform or approximated by any CDF of the form G(z) =

zα. Our motivation for presenting the examples is instead to illustrate the mechanisms
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that drive them so that readers may be aware of them in case they are important in some

situations.

VI. Click-weighted Auctions

Around 2003 Google was the first to implement a modified position auction: it assigned

each advertisement i a quality score wi; ranked bids on the basis of the product biwi

rather than on bi alone; and modified per-click payments to reflect differences in the quality

scores. This modification was tremendously important in practice: the textbook unweighted

position auction let obviously “wrong” bidders winning most auctions. For example, sites

selling ringtones and pornography sites might outbid camera stores for the right to be

listed when consumers search for “digital cameras.” Although most consumers searching for

digital cameras have no interest in buying ringtones or pornography, ringtone merchants and

pornographers may get higher per click profits than camera stores because profit margins are

high in ringtones and pornograpy, and the few people who click on the ads are reasonably

likely to purchase. Such an outcome would be highly inefficient: consumer surplus is very

low; and neither the search engine nor the advertising merchants make much money because

the number of clicks is so low.

The simplest rule-of-thumb for choosing weights that is often mentioned in the literature

is that they can be set equal to the predicted click-through rate of the advertisement.26 The

rough motivation for this is straightforward: weighting bids by their click-through rates is

akin to ranking them on their contributions to search-engine revenues.27 In this section we

develop a extension of our model with observably heterogeneous firms and use it to examine

the implications of click-through weighting. We note that the argument for click-through

weighting is not straightforward in our environment and identify several considerations that

firms will want to take into account in designing a weighting scheme.

VI.A. A Model of Click-Weighting
26See BCPP (2007) and Jeziorski and Segal (2009) for empirical evidence on the magnitude of differences

in click-through rates and many other insights.
27In practice, weights are the output of highly complex algorithms that may incorporate many other

factors in addition to predicted click through rates. Search engines invest a great deal in trying to improve
these algorithms, which are seen as a source of competitive advantage.
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To create a model in which click-weighting in natural we modify our model to allow

each firm to have a two-dimensional type (δ, q). A firm of type (δ, q) is able to meet the

needs of a fraction δq of consumers. Consumers get some information about whether a firm

can meet their need at zero cost by looking at the ad. A fraction 1− δ immediately learn

that the advertiser cannot meet their need. The remaining δ fraction learn that the firm

might meet their need. If they click, the firm will meet their need with probability q. As

before, consumers incur a cost of s if they click on an ad to learn whether it in fact meets

their need. Whether each firm can potentially help a consumer is independent across firms.

We assume that the δ of each ad is known to the search site and to consumers. As before

each site’s q is private information.

One example that readers could keep in mind is a consumers who has searched for

“shoes”. The text in some sponsored links will reveal that the store in question serves only

women or sells only athletic shoes. This immediately tells some consumers that the link

would not meet their need. A store that potentially serves all consumers would have a large

δ. A store that serves a small niche, e.g. ballroomdancingshoes.com, would have a small δ.

In this environment a click-weighted auction could use the δ’s as the weights. Firms

submit per-click bids b1, . . . , bN .28 The winning bidders are the M bidders for which δibi

is largest. They are ranked in order of δibi. If firm i is in the kth position, its per-click

payment is the lowest bid that would have placed it in this position, δk+1bk+1/δi.29

VI.B. Inefficiencies of the Click-Weighted Auction

In some models without explicit consumer search costs it is obvious that a click-weighted

auction is efficient. Things are not so obvious in our model. We note in this section that

the click-weighted auction is efficient in one limiting case, but that otherwise there are at

least two distinct sources of inefficiency.

Our efficiency result is that the outcome approximates the first best in the limit as
28Again, we can think of this informally as an oral ascending bid auction, but our formalization will be

as a multistage game as in our base model.
29Note that as in our earlier discussions of bids we use subscripts as indexes when the index is a firm

identity and superscripts as indexes when the index is the rank of the firm in the bidding, e.g. δ1 is the
click-through weight of firm 1 and δ3 is the click-through weight of the firm that is the third-to-last to drop
out (in the weighted bidding).
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search costs become negligible.

Proposition 8 In the limit as s→ 0, social surplus of the click-weighted auction converges

to the first-best.

The argument for this has two steps, but is straightforward. The first step is to note

that the firms that win places on the sponsored-link list will be the M firms for which δiqi

is largest. To see this, note that firms must bid up to qi if it is necessary to get on the

sponsored-link list because the firms get a zero payoff if they do not make the list. The

second step is note what makes consumers best off in the limiting case is to have the highest

probability of meeting their need. The probability of finding a match is 1−
∏M
k=1(1−δkqk).

This is maximized when the listed firms are those for which δiqi is largest.

The above efficiency result is, however, limited by two other observations:

• The set of firms on the sponsored-link list is not necessarily optimal away from the

s→ 0 limiting case.

• Even in the s → 0 limit the ordering of the sponsored-link list may not provide con-

sumers with as much information about advertiser quality.

In more detail, the first observation is that social welfare will sometimes be improved if

some firms are replaced by other firms with higher q’s. This can be an improvement if

the reduction in the number of needs met is more than outweighed by a saving of search

costs. The inefficiency is most stark when M is large and set of advertisers consists of

both high-quality specialist firms, e.g. (δ, q) = (1
4 , 1), and low-quality generalist firms, e.g.

(δ, q) = (1, 1
3) with a slighly higher probability of meeting any given consumer’s need. The

click-weighted auction will produce list of low-quality generalist firms. But it would have

been more efficient to have given consumers a list of high-quality specialists. Either list lets

most consumers find a firm that meets their need and there are many fewer wasted clicks

when consumers get the list of high-quality specialists. One practical application is that

click-weighted auctions may allow firms like eBay and Nextag to win more sponsored-link

slots than would be socially optimal.

The second observation relates to the fact that the unweighted position auction always

has an equilibrium in which firms end up sorted in order of quality. This ordering conveys
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valuable information to consumers. In the click-weighted auction, such equilibria generally

will not exist. Intuitively, consumers will infer that a low δ firm that has made it into the

top M firms must have a fairly high q; consumers will therefore sometimes click on such a

firm first even if it is not at the top of the list; and this makes it hard to get low δ firms to

bid for position. Appendix III.A presents some formal results. One notes that equilibria in

which no additional quality information is revealed always exist and are more robust in this

model. Another notes that an equilibrium with quality sorting is possible in one special

case.

VI.C. A New Auction Design: Two-Stage Auctions and Efficient Sorting

To eliminate the information loss due to imperfect sorting one could use a two step

procedure. First, have the firms bid as in the standard click-weighted auction until only

M bidders remain. Then, continue with a second-stage auction allowing bidders to raise

bids further, but using a different payment scheme so that the equilibrium will have the

firm with the highest q winning. Appendix III.B presents a formal model illustrating how

this could be done. The mechanism, however, is more complex than a standard position

auction and informational requirements could make it difficult to implement in practice.

VI.D. Obfuscation

A related issue of substantial practical importance is whether the snippet of text that

accompanies each sponsored link conveys useful information about the link. Consumers

benefit when the ad text lets them avoid unproductive clicks. And the search engine and

advertisers benefit when consumers are more willing to click on seemingly relevant ads. In

this section we discuss advertisers’ incentives to make ad text accurate and informative.

We note that click-weighted auctions can create incentives for obfuscation.30

Our formal analysis presented in Appendix section III.C. The model augments our base

model in two ways. First, we assume firms receive some small benefit a from each click

regardless of whether the firm meets the consumer’s need. This could reflect advertising
30See Ellison and Ellison (2004, 2009) for a discussion of obfuscation including a number of examples

involving e-retailers, and Wilson (2008) and Ellison and Wolitzky (2009) for models in which firms inten-
tionally make search more costly.
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revenues, future sales, sales unrelated to the need, or other factors. Second, we model the

endogenous choice of an obfuscation strategy as an ability to choose the fraction δi ∈ [qi, 1]

of consumers who will think after reading the ad text that firm i might meet their need.

We assume that firm i cannot affect the fraction qiof consumers whose needs it will meet,

so choosing a larger δi is implicitly choosing a lower probability of meeting the consumer’s

need conditional on the ad text being consistent with the need. Consumers cannot observe

obfuscation choices: they believe that each firm is using the equlibrium level of obfuscation.

Our analysis of this model brings out two results:

• There would be no obfuscation in a position auction without click-weighting.

• Firms will engage in obfuscation in the click-weighted auction.

The first result should be is intuitive – firms do not want unproductive clicks if they have

to pay for them. The easiest way to see this mathematically is to condition on the firm’s

position k on the list and normalize the mass of consumers who will click on the firm’s link

if it is consistent with their need to one. The firm’s revenue from product sales is always qi.

There is an additional benefit δia from the extra revenue source. And the firm pays δibk+1

for the clicks it gets. Total profits are qi + δi(a − bk+1). This is decreasing in δi whenever

bk+1 > a, which will always be true when the firms who don’t make the list would have

gotten at least a from each consumer.

The second result is more striking. The key observation is that the formula for per-click

payments in the click-weighted auction, bk+1δk+1

δi
, makes firm i’s total payment completely

independent of its clickthrough rate – the total payment is simply equal to bk+1δk+1.31 The

gross benefit firm i receives from from the clicks it receives, qi + δia, is increasing in the

number of clicks received. So the insensitivity of payments makes firms want to obfuscate

and make the clickthrough rate as large as possible. A feature of this argument that may

make it practically relevant is that it applies even if the benefit, a, from unproductive clicks

is very small.
31Immorlica, Jain, Mahdian, and Tulwar (2006) can be seen as showing that this invariance is advantageous

in other dimensions – it makes it possible to generate click-through weights in a way that it resistant to
click fraud.
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Search engines may attempt to combat obfuscation in various ways. One is to try to

enforce rules forbidding misleading ad text by refusing to display ads flagged by a manual

or automated review. Another is to adjust the pricing formula either so that firm i’s per-

click payment decreases less than one-for-one with increases in the clickthrough rate, or

so that the per-click payment is affected by relevance measures (which can be based on

textual analyses or on the number of consumers who immediately return to the search

page). Pay-per-action auctions are not a solution: the appendix shows that they have the

same obfuscation problem.

VI.E. Product Variety

In practice the consumers who type in a given keyword will have heterogeneous needs.

For example, a consumer who types the keyword “shorts” may be interested in upscale

women’s clothing, athletic shorts, or perheps even short films. Intuitively it would be

desirable to serve such a population by presenting a diverse set of ads. The model we have

presented so far cannot capture this intuition – our assumption that the probability that

each website meets a consumers need is independent rules out the possibility that particular

pairs of sites, e.g. two sellers of athletic shorts, are likely to meet the same needs. Appendix

III.D works through a simple extension of the model in which there are different categories

of advertisers. We show that an optimal weighted auction will give a higher weight to sites

that increase product variety. Note that in this context the weight given to site i cannot be

defined just as a function of site i’s characteristics: contributions to product variety depend

on the characteristics of the other advertisers who appear on the sponsored-link list.

VI.F. What Does Click-Weighting Mean?

The question of what is meant by the “standard” click-weight is of broader importance.

In the model of section VI.1, the click-weights were assumed to be the (known) parameters

δ. In practice, click weights will be estimated from data on click-throughs as a function

of rankings. When the relationship between clicks and rankings is not a known function

independent of other website attributes it is not clear what these will mean.

One interesting example is our base model. In this model, suppose that click-through
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rates are estimated via some regression estimated on data obtained when different subsets

of firms randomly choose to compete on different days. Suppose that each website has the

same q across days. In this situation, the clicks that a given site gets when it is in the

kth position is a decreasing function of its quality. Conditional on k, the quality of sites

1, 2, . . . , k − 1 is higher when qk:N is higher. Hence, the likelihood that consumers will get

down to the kth position without satifying their need is lower.

Using click-weights like this will tend to disadvantage higher-quality sites, reducing both

the average quality of the set of sites presented and eliminating the sorting property of our

base model.

VII. Conclusions

In this paper we have integrated a model of consumer search into a model of auctions

for sponsored-link advertising slots. General observations from previous papers about the

form of the auction equilibrium are not much affected by this extension: advertisers bid up

to their true value to be included in the sponsored-link list and then shade their bids when

competing for a higher rank.

The differences in the auction environment does, however, have a number of different

implications for auction design. One of these is that reserve prices can increase both search-

engine revenues and consumer surplus. The rationality of consumer search creates a strong

alignment between consumer surplus and social welfare in our model and a consumer-surplus

maximizing search engine will have a strong incentive to screen out ads so that consumers

don’t lose utility clicking on them. Another set of different implications arise when we con-

sider click-through weighting. Here, the auction that is efficient with no search costs ceases

to be efficient for two reasons: it may select the wrong firms and it may provide consumers

with little information to guide their searches. The informational inefficiency can be avoided

with an alternate auction mechanism. An additional worry about click-weighted auctions is

obfuscation – since advertisers’ steady-state payments do not vary with their click-through

rate (they are determined by the revenue bid of the bidder in the next-lower position),

advertisers have no incentive to design ad text to help consumers avoid unnecessary clicks.

The working paper version of this paper, Athey and Ellison (2009), discusses additional
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auction design questions as well, including policies toward search-diverting sites and the

use of minimum relevance thresholds when consumers are uncertain about the distribution

of advertiser quality.

A more basic theme of our paper is that sponsored link auctions create surplus by

providing consumers with information about the quality of sponsored links. Sorting links

on the basis of weighted bids is an effective mechanism for providing such information. But

once one thinks about search engines as intermediaries whose role is to make consumer

search more efficient, it immediately becomes salient that there could be effective ways

to perform this role with quite different designs. For example, search engines could try

to convey finer information about quality. They could try to convey raw data like bids,

conversion rates, or estimated textual relevance, or aggregates of these. Data could be

conveyed numerically or via visual schemes varying the placement, size, or color of ads.

Landing page previews could be added to help consumers assess the relevance of links, etc.

The scope for creative exploration is enormous and should make this an interesting area

for pure and applied research for many years to come.32

32See Rayo and Segal (2010) for one interesting approach to the more abstract question of how consumers
might be provided with information on advertiser quality.
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Appendix I: Uniformly Distributed Quality

This appendix presents some additional results on our model for the case when the the

distribution F of the advertisers’ qualities is uniform on [0, 1]. This special case is surpris-

ingly tractable. This enables us to derive more explicit versions of several propositions.

A. Consumer Search

The tractability of the model with uniform F stems from the fact that there is a simple

closed form expression for consumers’ expectations of the quality of the kth link conditional

on not having found that the first k − 1 links do not meet their need.

Proposition A1 For uniform F , if consumers search an ordered list from the top down,

then

E(qk:N |z1 = . . . = zk−1 = 0) =
N + 1− k
N + k

Prob{z1 = . . . = zk−1 = 0} =
k−1∏
j=1

2j − 1
N + j

Proof: When F is uniform, fk:N (x) = N !
(N−k)!(k−1)!(1−x)k−1xN−k. The general formula

in Proposition 1 gives

E(qk:N |z1 = . . . = zk−1 = 0) =

∫ 1
0 xf

k:N (x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx∫ 1
0 f

k:N (x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx
.

The conditional probability that shows up in the numerator and denominator is:

Prob{z1 = . . . = zk−1 = 0|qk:N = x} =
(

1− x
2

)k−1

.

Hence, both the numerator and the denominator are some constant times an integral of the

form
∫ 1

0 x
a(1−x)bdx. Integrating by parts one can show that this is equal to a!b!/(a+b+1)!.

Evaluating the integrals gives the first formula in the statement of the proposition.

The second formula in the proposition follows from computing the integral that is the

dominator of the above formula or it can be proved more quickly by noting that

Prob{z1 = . . . = zk−1 = 0} = Prob{z1 = 0}Prob{z2 = 0|z1 = 0} . . .

=
k−1∏
j=1

(
1− E(qj:N |z1 = . . . zj−1 = 0)

)
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QED

Having an explicit expression for the conditional expectations makes it easy to give an

explicit description of consumer behavior.

Proposition A2 If the firms are sorted by quality in equilibrium and the distribution F

of firm qualities is uniform, then a consumer with search cost s stops clicking when she

reaches position kmax(s), where

kmax(s) =
⌈

1− s
1 + s

N +
1

1 + s

⌉
.

The proof of this result is immediate: the consumer will want to search the kth website

if (N + 1− k)/(N + k) > s. This holds for k < kmax(s).

B. Consumer Welfare

Assuming that the quality distribution is uniform also makes it easy to compute ex-

pected consumer surplus. The expected payoff from clicking on the top link is E(q1:N )−s =

N/(N+1)−s. If the first link is unsuccessful, which happens with probability 1/(N+1), then

(using Proposition A1) the consumer gets utility E(q2:N |z1 = 0)− s = (N − 1)/(N + 2)− s

from clicking on the second. Adding up these payoffs over the number of searches that will

be done gives the following result:

Proposition A3 If the distribution of firm quality F is uniform, the expected utility of a

consumer with search cost s is:

E(CS(s)) =



0 if s ∈
[

N
N+1 , 1

]
N
N+1 − s if s ∈

[
N−1
N+2 ,

N
N+1

]
N
N+1 − s+ 1

N+1

(
N−1
N+2 − s

)
if s ∈

[
N−2
N+3 ,

N−1
N+2

]
N
N+1 − s+ 1

N+1

(
N−1
N+2 − s

)
+ 1

N+1
3

N+2

(
N−2
N+3 − s

)
if s ∈

[
N−3
N+4 ,

N−2
N+3

]
. . .
1− 1/2M if s ≈ 0

When N is large, the graph of the function above approaches 1 − s, whereas the un-

ordered payoff is approximately 1 − 2s. N doesn’t need to be very large at all for the

function to be close to its limiting value. For example, just looking at the first term we
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know that for N = 5 we have E(CS(s)) > 5/6−s for all s. Figure A.1 plots the relationship

between E(CS) and s for N = 4.

C. Clickthrough Rates

If we add an assumption that consumer search costs are also uniformly distributed, then

we also obtain simple explicit expressions for clickthrough rates in our model. Proposition

A4 gives two explicit formulas: one for the expected clickthrough rate; and another for the

conditional expected clickthrough rate when the kth link has quality q. The former might

be compared with data on actual clickthrough rates. The is relevant to the firm’s bidding

problem.

Proposition A4 Assume s and q ∼ U [0, 1]. Consider an equilibrium of the bidding game

in which firms are sorted in order of quality. Then, the expected number of clicks D(k) that

will be received by the kth website is

D(k) =
1 · 3 · · · · · (2k − 3)

(N + 1)(N + 2) . . . (N + k − 1)

The expected number of clicks conditional on the kth highest quality website having quality

q is

D(k, q) =
(

1 + q

2

)k−1 N + 1− k
N + k

N + 1− k
N + k

Proof: Expected clickthrough rates can be computed as a product of two terms: the

probability that a consumer’s search costs is such that he/she would be willing to click on

the kth link if the he/she does not meet his or her need at the first k − 1 websites; and the

probability that the first k − 1 clicks will all be unsuccessful. With uniformly distributed

search costs the former is simply the expected quality of the kth link conditional on k − 1

failures. Hence, the unconditional expected clickthrough rate is simply the product of two

expressions from Proposition A1.

The second expression is derived by thinking of the first k − 1 websites as ordered

at random rather than ordered by decreasing quality. With this reordering, whether the
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probability that each of the k − 1 websites meets the consumer’s need is independent.

Hence, the probabiilty that none of the k−1 sites meets the need is (1−E(qj |qj > q)k−1 =

((1 + q)/2)k−1. The probability that a consumer’s search costs is such that she would click

on the website is as in the previous formula.

QED

D. Equilibrium Bidding

Plugging the conditional expectation formula into the formula for equibrium bidding

also yields a formula for equilbrium bidding which simplifies.

Proposition A5 When both qualities and search costs are uniform it is a PBE for firms

to choose dropout points according to

b∗(k, bk+1; q) = bk+1 + (q − bk+1)
(

1− (1− q)
(

1− 2N + 1
(N + 1)2 − (k − 1)2

))
.

Proof: The formula is obtained by substituting the expression for G(q̄k) from Proposi-

tion A1 into the general formula for the equlibrium in Proposition 3 and simplifying:

G(q̄k)
G(q̄k−1)

=
(N + 1− k)/(N + k)

(N + 1− (k − 1))/(N + (k − 1))
= 1− 2N + 1

(N + 1)2 − (k − 1)2
.

QED

E. Optimal Reserve Prices with One-Position Lists

The analysis of the optimal reserve price with a one position list (and uniformly dis-

tributed search costs) also becomes very tractable when the quality distribution is uniform.

Proposition A6 Suppose that the list has one position, the distribution of search costs

is uniform, and the distribution F of firm qualities is also uniform. Then the welfare

maximizing reserve price r is the positive solution to r + r2 + . . .+ rN = N/(N + 2).

Proof: Using the decomposition

E(q1:N ) = Prob{q1:N < r}E(q1:N |q1:N < r) + Prob{q1:N > r}E(q1:N |q1:N > r)

we find that the conditional expectation of the order statistic is:

E(q1:N |q1:N > r) =
N

N + 1
1− rN+1

1− rN
.
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The formula follows from the general formula of Proposition 5 after a bit of algebra.

QED

The formula implies that the welfare maximizing reserve price is one-third when N = 1.

With r = 1
3 , consumer expectations will be that q ∼ U [1/3, 1], and consumers search if and

only if s ∈ [0, 2/3]. Hence, the average average search costs is indeed 1/3 as the general

formula of Proposition 5 requires.

The expected consumer surplus, search engine profits and social welfare are all higher

with a small positive reserve price than with no reserve price when the quality distribution

is uniform. The general expression for consumer surplus with a reserve price of r becomes

E(CS) =
1
2

(
N

N + 1

)2 (1− rN+1)2

1− rN

Writing SR(r) for the search engine’s revenue when it uses a reserve price of r we find

E(SR(r)) =
N

N + 1
1− rN+1

1− rN

∫ 1

r

(
(r/x)N−1r +

∫ x

r
(N − 1)(z/x)N−2zdz

)
NxN−1dx

Each of these expressions is increasing in r for small r.
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Appendix II: Reserve prices with nonuniform search
costs

The analysis of reserve prices in the text focuses on the case when the distribution G

of consumer search costs is uniform on [0, 1]. In this appendix we present some results

involving general search costs distributions and a figure illustrating the welfare tradeoff in

a few examples.

A. Consumer Optimal Reserve Prices

Our first result is that consumer-surplus maximization does require a positive reserve

price for any G. We prove this by showing that consumer surplus is increased when small

positive reserve prices are implemented.

Proposition A7 Consumer surplus is maximized at a strictly positive reserve price.

Proof:

Consider the effect on consumer surplus of a small increase in r starting from r = 0.

We show that consumer surplus is increased via a two step argument. The simple first step

is to note that consumer rationality implies that consumer surplus with optimal consumer

behavior is greater than the surplus that consumers would receive if they behaved as if

r = 0.33 The second step is to show that consumer surplus under this “r = 0” behavior is

greater when the search engine uses a small positive reserve price dr than when the search

engine uses r = 0.

If consumers use the r = 0 behavior, then consumer surplus is only affected by the

institution of a reserve price if the reserve price eliminates links from the list and consumers

would have clicked on these links if they were displayed. The gross consumer surplus from

each such click is bounded above by dr. The average search costs incurred on each such

click are bounded below by E(s|s ≤ q̄M ). The cost is independent of dr whereas the benefit

is proportional to dr, so the costs dominate for small dr.

QED

B. Social Welfare
33Formally, we suppose that consumers behave exactly as they would if the list had M links and r = 0

when deciding whether to click on any link that is displayed and do not click on links that are not displayed.
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Proposition 5 implies that the socially optimal reserve price is always positive when G

is uniform. Here, we note that social welfare need not be maximized at a positive reserve

price for arbitrary G. An intuition for why reserve prices can be harmful is that consumers

do too little searching from a social perspective because they do not take firm profits into

account. If changes to the reserve price policies decrease the number of clicks that occur in

equilibrium, then social welfare can decrease.

Proposition A8 Social welfare can be strictly greater with a zero reserve price than with

any positive reserve price.

Proof:

Consider a model with M = N = 2 and the quality distribution F is uniform on [0, 1].

Suppose that a fraction γ1 of consumers have search costs uniformly distributed on [2
3−ε,

2
3 ],

a fraction γ2 have search costs uniformly distributed on [0, 1] and a fraction γ3 have have

search costs uniformly distributed on [0, ε].

In the first subpopulation (with s ≈ 2
3), small reserve prices reduce welfare. These

consumers click on the first website but not the second when there is no reserve price.

Hence, the gain in welfare derived from the search engine not displaying a site they would

have clicked on is just O(r2). Small reserve prices also have an effect that works through

changes consumer beliefs: given any small positive r, consumers will not click at all if only

one link is displayed. The expected gross surplus from clicking on a single link is 21+r
2 ,

whereas the search cost incurred is less than 2
3 , so losing these clicks is socially inefficient.

The probability that this will occur is 2r(1−r) so the loss in social welfare is O(r). Appendix

IV contains a formal derivation of this and shows that the per consumer loss in welfare from

using any reserve price in [0, 1
3 − 2ε] is at least 2

3r.

An example using just the first subpopulation does not suffice to prove the proposition

for two reasons: (1) the search cost distribution in this example does not have full support;

and (2) although small reserve prices reduce welfare in the first subpopulation it turns out

that a larger reserve price (r > 1
3−2ε) will increase welfare. (The argument above no longer

applies when r is sufficiently large so that consumers will click on the link when a single

link is displayed.)
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The first problem is easily overcome by adding a very small fraction γ2 of consumers

with search costs uniformly distributed on [0, 1]. Welfare gains in this group are first-order

in r when r is small and bounded when r is large, so adding a sufficiently small fraction of

such consumers won’t affect the calculations.

The second problem is also easily overcome by adding a subpopulation of consumers

with search costs in [0, ε]. Welfare is improved in this subpopulation when a small positive

reserve price is implemented, but the effect is so weak that we can add a large mass of these

consumers without overturning the small r result from the first subpopulation.34 There

is a substantial welfare loss in this subpopulation if the search engine uses a large reserve

price. Hence, adding an appropriate mass of these consumers makes the net effect of using

a reserve price of 1
3 − 2ε or greater also negative.

QED

The example used in the proof is obviously quite special. We do not mean to suggest

that the adverse effects of reserve prices are likely to dominate the beneficial effects in

the real world. Rather, the motivation for presenting the proposition was simply to note

that one property of socially optimal reserve prices in the model with uniform search costs

cannot be generalized to apply for all G and and to illustrate a channel through which

reserve prices can have a negative impact on social welfare.

C. Reserve Prices

It is also theoretically possible that using a small positive reserve prices can also reduce

search engine revenue. The example we use to demonstrate this highlights another difference

between our model and standard auction models. The crucial property of these models that

helps drive our examples is that increasing r increases consumer expectations of the quality

of all links, including the bottom one. This makes the M th position more attractive, which

can reduce bids for the M − 1st position. Because bids depend recursively on lower bids,

this can reduce reduce bids on higher positions as well.

Proposition A9 There exist distributions F and G for which search engine revenue is
34The per consumer welfare benefit from a small reserve price is bounded above by total search costs

incurred in clicking on ads with quality less than Min{r, ε}, which is less than 2Min{r, ε}ε/2.
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decreasing in the reserve price in a neighborhood of r = 0.

Again, the proof consists of a very special example. Suppose M = N = 2, and all

consumers have search costs of exactly q̄2. Assume that with no reserve price consumers

click only on the top link. Hence, firms will bid up to their true value to be in the top

position and and search engine revenue is E(q2:N ). Given any positive reserve price r,

consumers will click on both links. The increased attractiveness of the second position

leads to a jump down in bids for the first position. This, of course, leads to a jump down

in revenue. To see this formally, bids for the first position (when two firms have q > r) will

satisfy the indifference condition:

(q − b∗(q)) = (1− q)(q − r).

This gives b∗(q) = r+q(q−r). When r ≈ 0 expected revenues are approximately E((q2:N )2).

This is a disrete jump down from E(q2:N ).

The example above is not a formal proof of the Proposition for two reasons: (1) the

search cost distribution does not have full support; and (2) we’ve assumed the search cost

distribution has a mass point at q̄2. One could easily modify the example to make it fit

within our model. Problem (1) could be overcome by adding a small mass γ2 of consumers

with search costs uniformly distributed on [0, 1]. And problem (2) could be overcome by

spreading out the first population to have search costs uniformly distributed on [q̄2, q̄2 + ε].

We omit the details of these modifications.

D. Numerical Examples of Welfare Tradeoffs

Figure A.2 illustrates the conflicting preferences of advertisers, consumers, and the

search engine in two specifications of the model. In each panel, we have graphed expected

advertiser surplus, expected consumer surplus, and expected search engine profit as a func-

tion of the reserve price and drawn vertical lines at the values of r that maximize each of

these functions.

The right panel is for a model with three firms drawn from a uniform quality distribution.

In this model, consumer surplus turns out to be fairly flat over a wide range of reserve prices.

The advertiser-optimal and search engine profit-maximizing prices are quite far apart, but
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consumer surplus at both of these points is not very far from its optimum. An intuition for

the flatness of the consumer surplus function is that reserve prices in this range are rarely

binding, and hence there is little direct effect on the probability of a link being displayed

and little indirect effect via changes in consumer beliefs. The main effect of a shift from

consumer-optimal to profit-maximizing reserve prices is a redistribution in surplus from

advertisers to the search engine.

The left panel is for a model with three firms with qualities drawn from the CDF

F (q) =
√
q. This distribution is more concentrated on low quality realizations, which

makes consumer surplus and advertiser profits more sensitive to the reserve price in the

relevant range. In each panel we have also graphed an equally weighted average of consumer

surplus and search-engine profit. The curvature of the functions involved is such that the

maximizer of this average is closer to the profit-maxizing level than to the socially optimal

level.
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Appendix III: Click-weighted Auctions

In this appendix we present some additional formal results on click-weighted auctions.

A. Inefficiency in the Ordering of Listed Firms

One result highlighting the potential loss of efficiency about advertiser qualities is very

simple:

Proposition A10 The click-weighted auction always has an equilibrium in which all re-

maining firms drop out immediately as soon as just M firms remain.

The equilibrium strategies are the obvious ones: firms remain in bidding until the

bid reaches q if there are more than M firms remaining and then drop out immediately

once M firms remain. When firms follow these strategies, consumers’ beliefs about the

quality of each remaining firm i conditioning on all available information X is E(qi|X) =

EbM+1E(qi|δiqi > δM+1bM+1). This is higher for firms with a lower δ, so it is an equilibrium

for consumers to ignore the ordering of the firms on the list and search in increasing order

of δ. With this consumer behavior there is no benefit to bidding for a higher position and

immediate drop out is optimal.

Immediate dropout equilibria also existed in the unweighted auction model – all con-

sumers can search in a random order – but we mention them here because they seem more

natural and robust when consumers have reason to believe that some advertisers are better

than others and strictly prefer to search in the way that they do. One robustness criterion

that would distinguish the click-weighted model from the unweighted model is that behav-

ior would not change substantially in the click-weighted model if consumers thought that

there was an ε probability that the ordering was informative and a 1 − ε probability that

the ordering was not.35

A second formal result illlustrates that greater information revelation is also possible:

the click-weighted auction model does have an equilibrium with full sorting in one special

case. To define this, let s be such that all consumers with search costs s < s will search all
35Chen and He (2006) note that the immediate-dropout equilibria in the unweighted mdoel are nonrobust

to assuming that an ε fraction of consumers always search in a top down manner. This remains true in the
click-weighted auction.

44



listed websites as long as their need has not been met.36

Proposition A11 Suppose that N = M = 2 and the support of the search cost distribution

G is a subset of [0, s]. Then, the click weighted auction has an equilibrium in which the two

firms bid according to b∗i (q) = δjq
2
i . In this equilibrium the firm with the highest q is always

in the first position on the list.

Proof: Note that the strategies are monotone and satisfy δ1b
∗
1(q) = δ2b

∗
2(q). Hence,

if firms follow these strategies the winner in a click-weighted auction is the firm with the

highest q. Because all consumers search both firms, firm i’s demand is δi if it is first on the

list and its expected demand from the second position (condition on the other firm being

about to drop out) is δi(1− δjq). Firm i’s indifference condition becomes

δi(q − b∗i (q)) = δi(1− δjq)(q − 0).

This condition is satisfied for the given bidding function.

QED

The full-sorting example uses several special assumptions. These are largely necessary to

get full sorting. For example, one can show that there are no equilibria with full sorting when

δ1 6= δ2 if one assumes instead thatN > 2 and/or thatG has full support on [0, 1].37 A rough

intuition for this is that the solution to the asymmetric first-order condition will not satisfy

the symmetry condition necessary for full sorting, δib∗i (q) = δjb
∗
j (q), except in particular

special cases. Accordingly, we feel that the more important lesson from this section is the

first one: click-weighted auctions do not have the the nice information-revelation feature of

the unweighted position auction.

B. A New Auction Design: Two-Stage Auctions and Efficient Sorting

Suppose M = 2 and N > 2 and firms 1 and 2 are the remaining firms. To design

an auction in which there will be an equilibrium in which the firms are sorted by quality

it will suffice to choose asymmetric payment schedules p1(q) and p2(q) such that it will
36An s > 0 with this property will exist if the δ’s are bounded away from zero. For example, it suffices to

set s = E(qM |δM = 1, δ1 = . . . = δM−1 = δ, z1 = z2 = . . . = zM−1 = 0).
37We thank Dmitry Taubinsky for these results.
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be an equilibrium for firms to to announce their true qualities q1 and q2 if we ask firms

to announce their qualities, put the firm with the highest announced quality in the first

position, and assign a per-click payment of pi(q−i)) to the winning firm i and b3δ3/δj to

the losing firm j.

To see that such payment schedules exist, note that if a firm is the last to drop out, its

expected profit is

µ1iδi(qi − pi(q−i)),

where µ1i = G(E(qi|qi > q−i, X)) with X the event that firms 1 and 2 are the two winning

bidders. If the firm is the second to drop out, its expected profit is

(µ2i(1− δj) + µ3iδj(1− q−i))δi(qi − b3δ3/δi),

where µ2i = G(E(qi|qi < q−i, X)) and µ3i = G(E(qi|qi < q−i, X, z−i = 0)). It is straight-

forward to choose pi(q) so that these two expressions are equal conditional on q−i = qi, in

which case the necessary indifference condition for a truth-telling equilibrium is satisfied.38

Note that to implement such rules the search engine needs to know the δ’s and also needs to

know what click-through rates each firm will receive given each possible ordering. Knowing

the δ’s is necessary for everything we’ve done in this section. The additional informational

requirements will be more of an obstacle to implementing such schemes in practice.

When s < s for all consumers the payment functions take a particularly simple form:

pi(q) = b3δ3/δi + δ−iqmax{(q − b3δ3/δi), 0}.

Using this formula we can see that firm 2 is favored at low quality levels when δ1 < δ2 in the

sense that it makes a lower payment when the firms have equal qualities and these qualities

are near the lowest possible. At high quality levels the bid preference may be reversed.

C. Obfuscation

We augment our base model in two ways. First, we assume that each firm i receives

some benefit a from each click it receives independent of whether it meets the consumer’s
38One can show that the pi(q) function defined in this way is monotone. Indifference need not hold when

the high δ firm drops out at a point when the other firm is known to have higher quality. To complete the
specification without interfering with the selection of the final two firms we set pi(q) = b3δ3/δi if δi < δ−i
and q < b3δ3/δi.
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need. Second, we assume that each firm chooses an obfuscation level λi ∈ Λ ⊂ [0, 1]. If firm

i chooses obfuscation level λi then a fraction 1− λi of the consumers whose needs will not

be met by the website will realize this just by reading the text of the firm’s ad (without

incurring any search costs). We define δi ≡ qi + λi(1− qi) to be fraction of consumers who

cannot tell whether site j will meet their need. Note that our base model can be thought

of as a special case of this model with a = 0 and no option other than full obfuscation,

Λ = {1}.

We assume instead that consumers cannot detect the obfuscation level chosen by any

individual firm. We restrict our analysis to equilibria in which firms are sorted on quality

and consumers search in a top-down manner.

Let γk be the fraction of consumers who will click on link k if the first k − 1 links do

not meet their needs and they are in the group that cannot tell whether the kth link meets

their needs. This will be a function of consumer beliefs about the quality of the kth website

and the equilibrium obfuscation strategies.39 One thing that simplifies our analysis is that

γk does not depend on the actual obfuscation level of the firm in position k.

Consider first the simplest unweighted pay-per-click auction. Conditional on having

dropped out of the auction at a bid that places firm i in the kth position (k ≤M), firm i’s

payoff is

Π(k, λ, bk+1; qi) = Xγkδi(qi/δi + a− bk+1) = Xγk(qi + δia− δibk+1),

where X is the number of consumers who reach position k without having their needs met.

In equilibrium, a small change in λi that does not affect firm i’s position on the list cannot

increase its profits. Note that

∂Π
∂λi

=
∂δi
∂λi

(a− bk+1)Xγk = (1− qi)(a− bk+1)Xγk.

In equilibrium bM+1 will be at least a + qM+1:N , so this is negative and no obfuscation

occurs in equilibrium.

If there was heterogeneity in the benefits ai that firms receive from clicks that do

not meet consumers’ needs, then it is possible that firms with large ai could engage in
39Note that beliefs about the quality of the kth firm will no longer be independent of the realized qualities

because consumers will get some information about the qualities of lower-ranked firms by observing whether
these firms can also potentially meet their needs.
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obfuscation. But note that it would still be necessary for ai to be larger than the bid of

the firm in the next highest position, which suggests that obfuscation is unlikely to occur

except perhaps at very low positions on the list.

Consider now a click-weighted pay-per-click auction in which the search engine uses

click-through weights proportional to the δi.40 Conditional on being in the kth position

(k ≤M), firm i’s payoff is

Π(k, λ, bk+1; qi) = Xγk

(
qi + δia− δi

δk+1bk+1

δi

)
.

This expression is monotone increasing in δi. Hence, in equilibrium we get full obfuscation:

all firms choose λi = 1.

Search engines have been developing the capability to track sales made by their adver-

tiser. This enables pay-per-action auctions: firms submit bids bi which represent payments

to be made to the search engine only if a consumer clicks on their link and has their need

met. Suppose that a search engine records the fraction of clicks which result in needs being

met, yi, and uses this as an additional weighting factor just as click-through-rates are used

in the click-weighted auctions: the search engine ranks the firms on the basis of δiyibi and

firm i will make a payment of of δ
k+1yk+1bk+1

δiyi
every time it meets a need if its ad is displayed

in position k. Conditional on being in the kth position (k ≤M), firm i’s payoff is

Π(k, λ, bk+1; qi) = Xγk

(
qi + δia− δiyi

δk+1yk+1bk+1

δiyi

)
.

This expression is virtually identical to the expression for the standard click-weighted auc-

tion. The result on obfuscation carries over.

D. Product Variety

We consider here the simplest extension of our model with different categories of adver-

tisers. There are three sites: site 1A, site 1B, and site 2. Suppose that a fraction δ1 > 1/2

of consumers are type 1 consumers and can potentially have their needs met by both site

1A and site 1B. The remaining δ2 = 1− δ1 consumers are type 2 consumers and can poten-

tially have their needs met only by site 2. Suppose that the sponsored link list contains two
40Note that we are implicitly assuming here that in equilibrium the search-engine has learned firm i’s

click-through rate and uses it in determining the rankings and the per-click price firm i must pay.
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firms (M = 2). Assume that the qualities are independent draws from a uniform distribu-

tion on [0, 1]. To simplify the analysis we suppose that all consumers have s ≈ 0 so that

clicks decline at lower positions only because needs are being met and not also because of

quality-inferences.

Consider a weighted k + 1st price ascending bid auction in which winning bidders are

chosen by comparing b1A, b1B, and wb2. As before assume that the per-click payment of

firm k is the k+1st highest bid adjusted for the weight difference (if a difference exists). We

focus on the case of w ≥ 1 to discuss when favoring firm 2 is better than equal weighting.

Again, each firm i will bid up to qi to be included on the two-firm list. Once the bidding

is down to two firms, there will again be an equilibrium with full sorting if firms 1A and 1B

are the two remaining firms. When firms 1x and 2 are on the list, however, there cannot be

an equilibrium with full sorting. Because demand is independent of the expected quality of

each site (due to the simplifying assumption that s ≈ 0 for all consumers and the fact that

customers served by the two sites are distinct), both firms will drop out immediately.

Given these bidding strategies, suppose that firm 1A is first on the list and the weight

w is pivotal in determining which other firm appears, i.e. q1B = wq2. Having firm 1B also

on the list provides incremental utility only to type 1 buyers whose needs were not met by

firm 1A. Hence, the expected incremental value of including firm 1B (conditional on q1A) is

δ1(1− q1A)E(q1B|q1B < q1A, q1B = wq2) = δ1(1− q1A)q1A/2.41 Including firm 2 can provide

incremental utility to any type 2 buyer: the incremental benefit is (1 − δ1)E(q2|q1B <

q1A, q1B = wq2) = (1 − δ1)q1A/2w. Using w > 1 will provide greater consumer surplus

than w = 1 if the second term is greater than the first (in expectation) when w = 1. The

distribution of q1A conditional on q1A being the largest of the three and the other two

satisfying q1B = wq2 is just the distribution of the larger of two uniform [0, 1] random

variables. This implies that the conditional expectation of q1A is 2/3 and the conditional

expectation of q2
1A = 1/2. Hence, there is a gain in consumer surplus from choosing w > 1

if δ1(1/3− 1/4) < (1− δ1)1/3. We have

Proposition 9 The consumer-surplus maximizing weighted auction is one that favors di-

versity of the listings (w > 1) if δ1 < 4/5.
41Conditioning on q1B = wq2 is irrelevant because conditional on wq2 < q1A, wq2 is uniform on [0, q1A].
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Proof

To compute expected consumer surplus we compute the probability that each subset of

firms is listed and the expected quality of the listed firms conditional on that subset being

selected. Write L for the set of firms listed. The main probability fact we need is easy:

Prob{L = {1A, 1B}} = 1/3w

To see this, note that L = {1A, 1B} is possible only if q2 ∈ [0, 1/w]. This happens with

probability 1/w conditional on q2 being in this range, L = {1A, 1B} occurs with probability

1/3 (because wq2 is then uniformly distributed on [0, 1]).

The expected qualities are

E(q1x|L = {1A, 1B}, q1x > q1y) =
3
4

E(q1x|L = {1A, 1B}, q1x < q1y) =
1
2

E(q1x|L = {1x, 2}) =
8w − 3
12w − 4

E(q2|L = {1x, 2}) =
6w2 − 1

12w2 − 4w

The first two are again identical to the formulas for the unweighted case because this L

only arises when q2 ∈ [0, 1/w] and in this event wq2 is uniformly distributed on [0, 1]. The

latter two formulas can be derived fairly easily by conditioning separately on values with

q2 ∈ [0, 1/w] and values with q2 ∈ [1/w, 1]. For example,

E(q1x|L = {1x, 2}) =

Pr{q2 ∈ [ 1
w , 1]}Pr{L = {1x, 2}|q2 ∈ [ 1

w , 1]}E(q1x|L = {1x, 2}, q2 ∈ [ 1
w , 1])

+Pr{q2 ∈ [0, 1
w ]}Pr{L = {1x, 2}|q2 ∈ [0, 1

w ]}E(q1x|L = {1x, 2}, q2 ∈ [0, 1
w ])

Pr{q2 ∈ [ 1
w , 1]}Pr{L = {1x, 2}|q2 ∈ [ 1

w , 1]}
+Pr{q2 ∈ [0, 1

w ]}Pr{L = {1x, 2}|q2 ∈ [0, 1
w ]}

=
(1− 1/w)(1/2)(2/3) + (1/w)(1/3)(5/8)

(1− 1/w)(1/2) + (1/w)(1/3)

Expected consumer surplus when weight w is used is then given by

E(CS(w)) = α

((
1− 1

3w

)
8w − 3
12w − 4

+
1

3w

(
3
4

+
1
4
· 1

2

))
+ (1− α)

((
1− 1

3w

)
6w2 − 1

12w2 − 4w
+

1
3w
· 0
)
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The difference between this expression and the expected consumer surplus from an un-

weighted auction can be put in a relatively simple form by grouping terms corresponding

to cases when the list is unaffected by the changes in weights and cases when it is affected.

We find

E(CS(w))− E(CS(1)) =
2
3

(
α

8w − 3
12w − 4

+ (1− α)
6w2 − 1

12w2 − 4w
− 5/8

)
+

1
3w

(
α

(
3
4

+
1
4

1
2

)
− α7

8

)
(

1
3
− 1

3w

)(
α

8w − 3
12w − 4

+ (1− α)
6w2 − 1

12w2 − 4w
− α7

8

)
Writing f1(w), f2(w) and g3(w)h3(w) for the three lines of this expression note that all

three terms are equal to zero at w = 1. f2(w) is identically zero. The derivative of the

third evaluated at w = 1 is just dg3/dw|w=1h3(1). After these simplifications it takes just

a little algebra to show

d(E(CS(w))− E(CS(1))
dw

=
1
24

(4− 5α).

This implies that some w > 1 provides greater consumer surplus than w = 1 provided

that α < 4/5. To complete the proof, we should also work out the equations for consumer

surplus when w < 1 and show that these do not also provide an increase in consumer

surplus.

QED

Remarks

1. The proof contains an explicit formula for consumer surplus that could be maximized

over w to find the optimal weight for particular values of δ1.

2. The sense in which diversity is favored in this proposition is quite strong. The

diversity-providing link is favored in an absolute sense, not just relative to the fraction

of consumers for which it is of interest.

To implement diversity-favoring weights, a search engine would need to infer which

sponsored links contributed to the diversity of a set of offerings. One way to do this

might be to estimate contributions to diversity by looking at whether the likelihood that
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a particular consumer clicks on a particular site is positively or negatively correlated with

whether that consumer clicked on each other site.

What is meant by “standard” click-weighting is not obvious in models like this. One

description of the click-weighted auction one sees in the literature is the weight used is

the estimated CTR conditional on the firm being first on the list. In the example above,

the CTR’s for firms 1A, 1B, and 2 conditional on being first on the list are δ1, δ1, and

δ2, respectively so these standard weights would favor firms 1A and 1B for any δ1 > 1/2.

CTR’s could also be estimated using an average of observed CTR’s from when a firm is in

the first and second positions. This would still favor firm 2 for a smaller range of δ1 than

is optimal, however, because the optimal weights are entirely based on CTR’s when firms

are in the second position.

52



Appendix IV: Proofs

Proof of Proposition 3

First, we show by induction on k that the specified strategies are differentiable and

strictly monotone increasing in q and satisfy b∗(k, bk+1; q) ≤ q on the equilibrium path. For

k = M + 1 this is immediate from b∗(M + 1, 0; q) = q. If it holds for some K > 2 then for

any bK faced by a type q bidder on the equilibrium path we have

b∗(K − 1, bK ; q) = bK + (q − bK)
(

1− G(q̄K−1)
G(q̄K−2)

(1− q)
)

≤ bK + (q − bK) = q.

The inequality here follows from two observations: q− bK > 0; and the term in parentheses

is between 0 and 1. (The first of these follows from the inductive hypothesis via q − bK ≥

qK:N−bK ≥ 0 and the second comes from 1−q < 1, q̄K−1 < q̄K−2, and G strictly monotone.)

To see that the bidding function is differentiable and strictly monotone increasing in q, one

can compute the derivative and see that it is positive. (The inductive hypothesis is again

used here via q − bK ≥ 0.)

We now show that the bidding functions are a perfect Bayesian equilibrium. By the

single-stage deviation principle, it suffices to show that no single-stage deviation can increase

the profit of a player i of type qi. We do this by another inductive argument. We first show

that this is true of deviations in the final stage (k = 2). And we then show that the

nonexistence of profitable deviations at all later stages (all k′ < k) implies that there is also

no profitable single stage deviation at stage k.

Consider the final stage of the game. Suppose firm i has quality qi and that b3 =

b∗(3, b4, q) so that firm i’s belief is that the other active firm has qj ∼ F |q>q. Firm i’s

expected payoff as a function of its dropout point q̂ can be written as 1
1−F (q)π(qi, q̂) where

π(qi, q̂) =

(∫ q̂

q
G(q̄1)(qi − b∗(3, b3; q))f(q)dq +

∫ 1

q̂
G(q̄2)(1− q)(qi − b3)f(q)dq

)
.

To show that this is maximized at q̂ = qi it suffices to show that π(qi, qi)− π(qi, q̂) ≥ 0 for

all q̂.

For q̂ ≤ qi we have

π(qi, qi)− π(qi, q̂) =
∫ qi

q̂

(
G(q̄1)(qi − b∗(3, b3; q))−G(q̄2)(1− q)(qi − b3)

)
f(q)dq.
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To show that this is nonnegative it suffices to show that

G(q̄1)(qi − b∗(3, b3; q)) ≥ G(q̄2)(1− q)(qi − b3)

for all q ∈ [q̂, qi]. Because the bidding functions are differentiable and strictly monotone

increasing in q, the argument in the text before the proposition applies and therefore for

each q in this interval the local indifference condition holds:

G(q̄1)(q − b∗(3, b3, q)) = G(q̄2)(1− q)(q − b3)

Subtracting the two equations we find that it suffices to show

G(q̄1)(qi − q) ≥ G(q̄2)(1− q)(qi − q).

This is indeed satisfied for all q ∈ [q̂, qi] because G(q̄1) > G(q̄2) and (1 − q) < 1. The

argument for q̂ > qi is virtually identical. Together, these two cases establish that there is

no profitable single-stage deviation in the final stage.

Suppose now that there are no profitable deviations from the given strategies in stages

2, 3, . . . , k − 1 and consider a stage k history with bk+1 = b∗(k + 1, bk+2; q). To show

that there is no profitable single stage deviation, we’ll consider separately deviations to

b̂ > b∗(k, bk+1; qi) and deviations to b̂ < b∗(k, bk+1; qi).

The first case is quite similar to the argument for k = 2. Deviating to b̂ > b∗(k, bk+1; qi)

makes no difference unless player i is eliminated in stage k when he bids b∗(k, bk+1; qi) and

is not eliminated when he bids b̂. Hence for all relevant realizations of the k − 1st highest

quality, player i will be the first to drop out in stage k−1 if he then follows the equilibrium

strategy. Hence, the change in payoff is proportional to∫ q̂

qi

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )(1− q)|qk−1:N = q
)
·G(q̄k) · (qi − bk+1)f(q)dq

−
∫ q̂

qi

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )|qk−1:N = q
)
·G(q̄k−1) · (qi − b∗(k, bk+1, q))f(q)dq,

where q̂ is the solution to b∗(k, bk+1; q̂) = b̂. (A solution to this exists because the bidding

functions are differentiable and approach 1 in the limit as q → 1.) As above, this will be

nonnegative if

(1− q)G(q̄k)(qi − bk+1) ≥ G(q̄k−1)(qi − b∗(k, bk+1, q))
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for all q ∈ [qi, q̂]. Subtracting the local indifference condition from the two sides of this

equation we again obtain that a sufficient condition is

(1− q)G(q̄k)(qi − q) ≥ G(q̄k−1)(qi − q) ∀q ∈ [qi, q̂].

This will hold because qi − q < 0 and 0 < (1− q)G(q̄k) < G(q̄k−1).

The argument for deviations to b̂ < b∗(k, bk+1; qi) is just a little more complicated. In

this case, the deviation makes no difference unless player i is eliminated in stage k when

he bids b̂ and is not eliminated at this stage when he bids b∗(k, bk+1; qi). We show that

the change in payoff is not positive by a two-step argument: we show that that the payoff

from dropping out at b̂ is worse than the payoff from bidding b∗(k, bk+1; qi) at stage k and

then dropping out immediately in stage k − 1; and that this in turn is less than the payoff

from bidding b∗(k, bk+1; qi) at stage k and then following the given strategies. The latter

comparison is immediate from the inductive hypothesis. Hence, it only remains to show

that ∫ qi

q̂
E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )|qk−1:N = q
)
·G(q̄k−1) · (qi − b∗(k, bk+1; q))f(q)dq,

−
∫ qi

qh

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )(1− q)|qk−1:N = q
)
·G(q̄k) · (qi − bk+1)f(q)dq

is nonnegative where q̂ < qi is the solution to b∗(k, bk+1, q̂) = b̂. This is just like the

argument for the q̂ ≤ qi case above. The expresion is nonnegative if

G(q̄k−1)(qi − b∗(k, bk+1; q)) ≥ (1− q)G(q̄k)(qi − bk+1)

for all q ∈ [q̂, qi]. Subtracting the local indifference condition from the two sides of this

equation we again obtain that a sufficient condition is

G(q̄k−1)(qi − q) ≥ (1− q)G(q̄k)(qi − q) ∀q ∈ [q̂, qi].

This will hold because qi − q > 0 and 0 < (1− q)G(q̄k) < G(q̄k−1).

This completes the proof that there is no profitable deviation at stage k and the result

follows by induction.

QED
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Additional Details on the Proof of Proposition A8

With no reserve price, consumers with search costs in [2
3 − ε,

2
3 ] will click only on the

first link. Per consumer social welfare is

W = 2E
(
q1:N − 2

3
− ε

2

)
=

2
3

+
ε

2
.

Suppose now that the search engine uses a small positive reserve price r. (More precisely

assume r ∈ (0, 1
3 − 2ε)). These consumers now click on the first link only if two links are

displayed. Per consumer social welfare becomes

W = (2E(q1:N |q2:N ≥ r)− s)(1− r)2

= (2(
2
3

+
1
3
r)− (

2
3
− ε/2))(1− r)2

=
2
3

+
ε

2
− 2

3
r − 2

3
(r2 − r3)− ε

2
(2r − r2)

<
2
3

+
ε

2
− 2

3
r.

For somewhat larger r, specifically r ∈ [1
3 − 2ε, 5

9 −
4
3ε], consumers in the high search

cost group will click on the top link even if only one link is displayed. In the high search

cost population per-consumer welfare is now

W = (2E(q1:N |q2:N ≥ r)− s)(1− r)2 + (2E(q1:N |q1:N > r, q2:N < r)2r(1− r).

Using this, we one can show that the per consumer welfare gain in the high-search cost

subpopulation is at most 2
3r

2(1− 2r). This is negative for r > 1
2 and is uniformly bounded

above by 2
81 . Computing the mass of needs that go unmet because of the reserve price that

would have been met without a reserve price we find that the per consumer loss in welfare

in the low-search cost population is at least 2r(1− r)1−r
2 2 r2 + r2(4 r2 − 2 r

2

4 )− 2ε2. It is easy

to choose γ1 and γ3 so that this outweighs any gains in the high-search costs population

whenever r ≥ 1
3 − 2ε.

For even larger r the high search cost consumers will be willing to search both sites

when two are listed. But again, one can show that the welfare losses in the low search cost

population will outweigh this.

QED
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Figure A.1
Consumer surplus with sorted and unsorted links: N = 4
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Figure A.2
Welfare and distribution of surplus for two specifications
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