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I. Introduction 

The main task of performance measures for investment funds is to help investors in identify-

ing the most suitable fund for given preference structures. In general, there are two possible 

ways to tackle this problem. On the one hand, one can choose a partial-analytical framework, 

thereby focussing on the decision problem of a given investor for given expectations and ne-

glecting any kind of general capital market considerations. On the other hand, one can analyze 

capital market price formation processes in order to derive conclusions with respect to the 

attractiveness of certain funds. For example, the well-known capital asset pricing model 

(CAPM) as introduced by Sharpe (1964) may define such a setting. One may conclude from 

this equilibrium description that the same performance measure of zero should be assigned to 

all investment funds, just expressing that the holding of shares of any fund is irrelevant for 

any capital market participant. Another prominent example of a market-based approach has 

been developed by Leland (1999) on the basis of power utility functions and lognormal return 

distributions. 

 

Although such analyses on capital market levels certainly are apt to create interesting general 

insights, for practical application we prefer the partial-analytical framework focussing on the 

view of a single investor with given preference structures and expectations who typically acts 

as a price-taker. If for such an investor the CAPM in its original version or in the modified 

setting applied by Leland (1999) in fact held, we would learn this from his or her specific ex-

pectations. But if this is not true, the CAPM (as any other capital market model) is not of im-

mediate relevance for the investor under consideration. 

 

In what follows, we thus examine an investor with a one-period horizon who faces at time t = 

0 the problem of selecting just one out of F different funds f in order to combine this invest-

ment with the direct holding of a given (reference) portfolio P of equity shares and riskless 

lending or borrowing until time t = 1. As a consequence, for any fund f under consideration 

we are searching for optimal fractions x0, xf, and xP of the investor’s initial wealth optimally 

invested in the riskless asset, the fund f and the equity portfolio P. After this, resulting prefer-

ence values for any fund f are used to generate a fund ranking which can be utilized as a rec-

ommendation for fund selection. 

 

Certainly, the examination of a situation where only one out of F different funds can be cho-

sen is somewhat restrictive. Nevertheless such a scenario can be interpreted as a classical as-

set allocation problem with three classes of assets (a fund, direct stock holding and riskless 
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lending or borrowing). As an illustration, this decision problem corresponds to the important 

case of institutional investors relying only on a single fund manager, a not uncommon prac-

tice in many countries. In addition, it is necessary to define different funds as alternative in-

vestments if performance measures for single funds shall be derived. Moreover, the analysis 

of situations with the selection of only one fund at a time may be used as a starting point for 

the examination of more complex portfolio selection problems in future work. In fact, our 

derivations remain valid if we reinterpret f = 1, …, F not as single funds but as F different 

given portfolios of funds. Only the analysis of the determination of the optimal combination 

of a certain set of funds must then be the object of further research. One recent numerical ap-

proach that is devoted to this latter task has been introduced by Davies/Kat/Lu (2006). How-

ever, because of the complexity of their decision-problem they not even attempt to derive 

general results that could be interpreted as performance measures. Moreover, owed to compu-

tational problems they have to rely on “non-standard ways” of describing investors’ prefer-

ences. As a consequence, for their approach it does not seem to be possible to derive any con-

nection to expected utility maximizing behavior, as is done for our approach in one of the 

following sections. 

 

Recently, for simple µ-σ-preferences the decision-problem sketched above has been analyzed 

for two different settings (see also Figure 1). In the first one which may be called the endoge-

nous case, all three fractions x0, xf, and xP are indeed variable. In Breuer/Gürtler (1999, 2000) 

it has been demonstrated that in such a situation funds can be ranked according to an opti-

mized Sharpe measure which coincides with the conventional Sharpe ratio1 of the optimal 

risky portfolio of fund f and equity portfolio P. Additionally, based on previous findings by 

Jobson/Korkie (1984) it could be shown that for inner solutions the optimized Sharpe meas-

ure is identical to the Treynor/Black appraisal ratio2 while in the case of short sales restric-

tions the optimized Sharpe measure may lead to border solutions that coincide with the origi-

nal Sharpe ratio, the Treynor ratio3, or Jensen’s alpha4. As mean-variance preferences are in 

particular the result of quadratic utility, in what follows we simply speak of the quadratic 

Sharpe measure, Treynor measure, Jensen measure, and Treynor/Black measure. The opti-

mized Sharpe measure in situations with short sales restrictions will be named the optimized 

restricted Sharpe measure. 

 
                                                 
1 See Sharpe (1966). 
2 See for the Treynor/Black appraisal ratio in particular Treynor/Black (1973). 
3 See Treynor (1965). 
4 See Jensen (1968). 
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>>> Insert Figure 1 about here <<< 

 

In the second setting, one may reasonably argue that the fraction xP of an investor’s direct 

stock holding is exogenously fixed and only x0 and xf can be optimized any more, for exam-

ple, because of former transactions and corresponding transaction costs considerations. This 

“exogenous case” has intensively been examined by Scholz/Wilkens (2003), and in 

Breuer/Gürtler (2005) both approaches have been analyzed with respect to their theoretical 

and empirical relationships. Quite remarkably, it could be proven that, in general, a fund g is 

unambiguously preferred to a fund h in the endogenous case as well as in the exogenous case 

if it exhibits both a higher quadratic Sharpe measure and a higher quadratic Treynor measure. 

Nevertheless, besides this finding, theoretical relationships between fund rankings in the en-

dogenous case and the exogenous one seem to be quite loose, while empirical evidence sug-

gests that at least for simple µ-σ-preferences the distinction between both scenarios is negli-

gible. 

 

>>> Insert Table 1 about here <<< 

 

In this paper, we want to extend the analysis by the explicit consideration of skewness prefer-

ences of investors, i.e. preferences regarding the third central moment of uncertain wealth or 

return, as recent approaches like the ones by Harvey/Siddique (2000), Dittmar (2002) or 

Fletcher/Kihanda (2005) are in particular stressing the relevance of preferences for higher-

order return moments in asset pricing models. As sketched in Table 1, this extension can be 

done for the endogenous case (cell (3) in Table 1) as well as for the exogenous one (cell (4) in 

Table 1). Moreover, while Breuer/Gürtler (2005) focus on the relationship between cases (1) 

and (2) of Table 1, we will examine in more depth the relationship between fund rankings for 

the cases (2) and (4), thus contrasting fund rankings in the exogenous case for mean-variance 

preferences and mean-variance-skewness preferences. For the endogenous case and with a 

restriction to the case of cubic utility functions with hyperbolic absolute risk aversion 

(HARA), such a comparison is presented by Breuer/Gürtler (2006). It is shown that funds can 

be unambiguously ranked according to an optimized “cubic” performance measure which 

only depends on two arguments: the optimized quadratic Sharpe measure of the fund under 

consideration and a newly introduced performance measure which may be called an opti-

mized cubic Sharpe measure. The latter is defined as the quotient of the (third root of the) 

skewness of the return of the optimal (“preference-independent”, i.e. being valid for the whole 

class of cubic HARA utility functions) combination of a fund f with the reference portfolio P 
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and the corresponding variance of this portfolio return. Thereby, the possibility of preference-

independent fund ranking is a consequence of the two-fund separation theorem introduced by 

Tobin (1958) and later on extended by Hakansson (1969) and Cass/Sitglitz (1970). However, 

the two-fund separation theorem holds only in the endogenous case with HARA utility with 

the latter certainly being a relevant restriction of skewness preferences in itself. 

 

Against this background, we start our theoretical exposition in the following Section II with a 

general discussion of mean-variance-skewness preferences. Certainly, preference parameters 

are least restricted when we only exclude inefficient solutions from the analysis, i.e. solutions 

with mean-variance-skewness characteristics that are dominated by other admissible portfo-

lios. However, as is known from simple mean-variance analysis, not every efficient solution 

may be the outcome of expected utility maximizing behavior. This additional requirement 

narrows the set of admissible mean-variance-skewness preferences. Moreover, for expected 

utility maximizing behavior, we are able to show that an investor’s optimal portfolio selection 

is mainly determined by Kimball’s prudence, i.e. the negative relation between the third and 

the second derivative of his or her utility function, as this value governs the relationship be-

tween the subjective evaluation of portfolio return skewness (being mainly determined by the 

third derivative of an investor’s utility function) and of portfolio return variance (being 

mainly determined by the second derivative of an investor’s utility function). The range of 

admissible mean-variance-skewness-preferences under consideration becomes even smaller, 

when only cubic utility functions of the HARA type are examined.  

 

Based on such a general discussion of mean-variance-skewness preferences, the main theo-

retical contribution of our paper in Section III aims at the derivation of performance measures 

for the exogenous case with skewness preferences. In this context, we refrain from restricting 

ourselves to the analysis of only cubic HARA utility, as the advantage of the HARA property 

(validity of the two-fund separation theorem) does not hold for the exogenous case. More-

over, in Section IV, we will be able to extend the analysis of the endogenous case to non-

HARA skewness preferences as well. We do not know of any other approach attempting to 

derive general performance measures for arbitrary skewness preferences in the endogenous 

case or in the exogenous one defined above. We are able to identify several simple submeas-

ures of performance which serve as arguments for our general performance measures and can 

be interpreted as variants of a fund’s (cubic and quadratic) Sharpe or Treynor measures and 

thus as a straightforward extension of Scholz/Wilkens (2003) and Breuer/Gürtler (2005) for 

the simple mean-variance case. Thereby, for our analysis including skewness preferences, a 
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preference parameter becomes relevant that is directly related to Kimball’s prudence in order 

to define the relative importance of portfolio return skewness and portfolio return variance in 

performance measurement. 

 

Based on our theoretical derivations, our empirical analysis in Section V addresses the follow-

ing two issues: 

 

1) Does the empirical finding by Breuer/Gürtler (2005) of the irrelevancy of the distinction 

between the endogenous case and the exogenous one in a mean-variance context carry over to 

a situation with mean-variance-skewness considerations? 

 

2) Which role does a possible restriction to only cubic HARA utility play for the relevance of 

performance measures recognizing skewness preferences? 

 

We find that the distinction between the exogenous case and the endogenous one indeed re-

mains to be of only minor importance even if we allow for mean-variance-skewness prefer-

ences, while the empirical relevance of skewness preferences seems to be depending on the 

validity of the two-fund separation. As is well-known, a simple mean-variance approach 

ceases to be of good approximative quality even in cases with non-quadratic utility when an 

investor’s risk aversion is sufficiently high. Nevertheless, this circumstance can only lead to 

variations in fund performance in cases without two-fund separation, because otherwise opti-

mal fund rankings are not influenced by variations of an investor’s risk aversion. Therefore, it 

does not seem to be too surprising that skewness preferences affect fund rankings in our em-

pirical example most when mean-variance preferences are not restricted to such parameter 

constellations that are in line with cubic HARA utility, as derived in Section II of our paper. 

In any case, this finding sheds additional light on the empirical relevance of preferences for 

higher-order return moments in performance evaluation for mutual funds. 

 

Section VI tackles the problem of possible ways to practical application of the performance 

measures developed in this paper. In particular, empirical findings regarding typical values of 

Kimball’s prudence may be an adequate starting point to specify the preference parameter in 

our performance measures. Section VII concludes. Because of space constraints, all mathe-

matical derivations have been deferred to separate appendices. For the same reasons, several 

tables (numbered from “Ad 1” to “Ad 7”) have been omitted that are not absolutely necessary 



 6

for the understanding of our exposition. Moreover, Table 2 offers a synopsis of the most rele-

vant symbols utilized in this paper. 

 

>>> Insert Table 2 about here <<< 

 

II. Decision-theoretical background 

1. Mean-variance-skewness preferences 

The skewness of a wealth distribution can be characterized as its third central moment  

(1) 3 3
W : E[(W E(W)) ],γ = −  

with W  as the investor’s uncertain terminal wealth. As a generalization of the basic mean-

variance case, we consider investors who are aiming at the maximization of a µ-σ-γ-

preference function ΦW with 

(2) 2 3 2 3
W W w w W W w W w(µ , , ) µ .Φ σ γ = − κ ⋅ σ + λ ⋅ γ  

κW and λW are positive preference-depending parameters, as risk-averse investors are charac-

terized by negative variance preferences and (typically5) by positive skewness preferences. 

For initial wealth W0 we can define 0r : (W / W ) 1= −  as the investor’s uncertain portfolio re-

turn and introduce µ, σ2, and γ3 as the relevant moments of the investor’s return distribution. 

Then with given initial wealth W0, the maximization of the preference function ΦW is equiva-

lent to the maximization of Φ := ΦW/W0−1: 

(3) 2 3 2 3(µ, , ) µ ,Φ σ γ = − κ ⋅ σ + λ ⋅ γ  

with 0 W: Wκ = ⋅ κ  and 2
0 W: W .λ = ⋅λ  For W0 = 1, κ and κW as well as λ and λW are identical. 

Without loss of generality we therefore will from now on assume W0 = 1. Moreover, (3) can 

be expressed equivalently as a function of the relevant moments of the investor’s excess re-

turn 0u : r r= −  for given riskless interest rate r0 and with expectation value u , as we have 

0u rµ = + , while the second and the third central moment for r  and u  are identical. 

 

Analogously to µ-σ-dominance and µ-σ-efficiency it is possible to introduce the concept of µ-

σ-γ-dominance and µ-σ-γ-efficiency: An alternative 1 is (strictly) dominated by an alternative 

2, if we have µ1 ≤ µ2, σ1 ≥ σ2 as well as γ1 ≤ γ2 with at least one inequality being strict. An 

alternative is µ-σ-γ-efficient, unless it is (strictly) µ-σ-γ-dominated by at least one alternative. 

                                                 
5 Among other things, it is well-known that for an expected utility maximizing individual positive skewness 
preferences are a necessary condition for decreasing absolute risk aversion which in turn seems to be typical for 
individuals’ attitudes towards risk. See, for example, Arrow (1971). 
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Certainly, for preferences according to (3) only µ-σ-γ-efficient alternatives have to be re-

garded as potential optimal solutions of an investor’s decision problem. 

 

In order to solve a portfolio selection problem for given preference function (2) or (3) one has 

to fix parameters κ and λ. Unfortunately, this straightforward approach does not lead to mean-

ingful general results. We therefore follow another way of derivation, whereby we assume the 

investor to define a desired (positive) expected overall excess return u+  of his or her portfolio 

which he or she wants to achieve. Since all portfolios under consideration are just character-

ized by the same desired overall expected rate of return, preference function (3) reduces to 

(4) 2 3 2 3
u ( , ) : ,+Φ σ γ = −ω⋅σ + γ  

with ω = κ/λ >0. 

 

As a consequence of this modified approach the determination of preference parameters κ and 

λ is thus replaced by the specification of u+  and ω. Instead of some “absolute” preference 

levels regarding σ2 and γ3, only the relative relevance of “variance aversion” in comparison to 

“skewness loving” (as expressed by ω) remains relevant. Such an approach seems to be first 

suggested by Breuer/Gürtler (1998). Later on Berényi (2002) coined the term “variance equi-

valent risk measure”6 for the functional form 2 3 2 3
u ( , ) / / .+−Φ σ γ ω = σ − γ ω  However, neither 

Breuer/Gürtler (1998) nor Berényi (2002) have examined the exogenous case or the endoge-

nous case as defined in this study. Moreover, Breuer/Gürtler (1998) present no utiliy-

theoretical analysis, while Berényi (2002) fails to explicitly consider any portfolio selection 

problem at all and thus is not able to derive performance measures endogenously. 

 

Apparently, one might wonder about the relationship between optimizing (4) for given portfo-

lio excess return u+  and preference parameter ω and the optimization of (3) (or (2)) for given 

values of κ and λ. This is not a trivial issue. In particular, it should be emphasized that u+  is 

endogenously determined by the investor in question and as such the trade-off between ex-

pected (excess) returns and risk properties of return distributions is not neglected at all when 

applying (4) for means of portfolio optimization. Nevertheless, it remains to be analyzed 

whether any possible pair ( u+ , ω) is “admissible” in that sense that there is another (“reason-

able”) pair of preference parameters (κ, λ) that leads to the same optimal portfolio selection. 

                                                 
6 See also Berényi (2003) and Onorato (2004). 
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In order to answer this question we first have to clarify the utility-theoretical background of 

preference function (2) (or (3)) to some larger extent. 

 

2. Relationships between u+  and preference parameters 

In the same way, as mean-variance preferences can be derived from the assumption of quad-

ratic utility, it is possible to justify the preference function described by (2) via a cubic von 

Neumann-Morgenstern utility function U(W)  for uncertain terminal wealth W  with 

(5) 3 2
3 2 1 0ˆ ˆ ˆ ˆU(W) a W a W a W a .= ⋅ + ⋅ + ⋅ +  

Using a Taylor expansion around Wµ ,  expected utility in the case of (5) can be computed as 

(6) 
2 3

W W W W W W W W

2 3
W W W W W

1 1E[U(W)] U( ) U '( ) ( ) U ''( ) U '''(µ )
2 6

1 1U( ) U ''( ) U '''(µ ) .
2 6

= µ + µ ⋅ µ − µ + ⋅ µ ⋅σ + ⋅ ⋅ γ

= µ + ⋅ µ ⋅σ + ⋅ ⋅ γ
 

As in the case of preference function (2) we restrict ourselves to situations with positive 

skewness preferences which obviously requires W 3 3ˆ ˆU '''(µ ) 6 a 0 a 0.= ⋅ > ⇔ >  Consequently, 

the fraction W WP : U '''(µ ) / U ''(µ )= −  becomes positive, too. Actually, Kimball (1990) intro-

duced the term “absolute prudence” for this fraction. A positive prudence implies that an in-

vestor will increase ceteris paribus his or her riskless lending, when uncertain returns become 

riskier: The greater the prudence, the more sensitive an investor’s reaction by increasing his 

or her “precautionary saving”. Positive skewness preferences thus coincide with a positive 

prudence and mere mean-variance preferences imply a prudence of zero. Moreover, and 

rather interestingly, for given value u+  of u  (and thus given µW) and with given value W0 = 

1, (6) yields W W W W/ 3 U ''(µ ) / U '''(µ ) 3/ Pω = κ λ = − ⋅ =  and hence the preference parameter ω 

of section II.1 can be interpreted as (three times) the reciprocal value of an investor’s pru-

dence P for an excess return realization u with u u .+=  Moreover, we have κ/λ = 3/(W0⋅P) 

which also simplifies to 3/P because of our assumption W0 = 1. According to Kimball (1990), 

the product µW⋅P is called the “relative prudence” for an expected excess return realization 

u u .+=  In what follows we simply speak of “prudence” when we mean the absolute one, but 

will return to the concept of relative prudence in Section VI below. 

 

Because of the cardinality of von Neumann-Morgenstern utility functions we can reduce (5) 

by 0â  and then divide it by 3â .  Defining 2 2 3ˆ ˆa : a / a=  and 1 1 3ˆ ˆa : a / a ,=  (5) can thus be rewrit-

ten as 3 2
2 1U(W) W a W a W= + ⋅ + ⋅  so that (6) becomes 
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(7) 3 2 2 3
W 2 W 1 W W 2 W WE[U(W)] a a (3 a ) .= µ + ⋅µ + ⋅µ + ⋅µ + ⋅σ + γ  

As long as we restrict ourselves to situations with positive, but diminishing marginal utility 

(and positive prudence), it is easy to show that the maximization of (7) results in the selection 

of a µ-σ-γ-efficient alternative.7 However, not every µ-σ-γ-efficient alternative can be the 

outcome of the maximization of (7) if we hold on to the requirement of positive, but decreas-

ing marginal utility.8 In fact, this result is already well-known for simple mean-variance pref-

erences, i.e. the case λ = 0.9 

 

It thus seems reasonable to explicitly allow for the requirement of a positive first and a nega-

tive second derivative of the utility function. As a necessary condition for the fulfilment of 

these properties which is independent10 of the specific return distribution these signs of the 

derivatives must be given at least for expected return µW, i.e. 

(8) W

12
W W 2 W 1 2 W

0
W

W 2 W

aU '(µ ) 0 3 µ 2 a µ a 0 a 1.5 µ ,
2 µ

U ''(µ ) 0 a 3 µ .

µ >
> ⇔ ⋅ + ⋅ ⋅ + > ⇔ > − − ⋅

⋅
< ⇔ < − ⋅

 

Apparently, (for µW > 0) both conditions of (8) can only be simultaneously valid for 
2

1 Wa 3 µ .> ⋅  

 

With respect to 3 2
2 1U(W) W a W a W= + ⋅ + ⋅ , the special case of 

2
2

1
aa
3

=  deserves particular 

attention, as this leads to a cubic utility function that can be written as 

(9) 3 3 3 2 2U(W) (W a) a W 3 a W 3 a W,= − + = − ⋅ ⋅ + ⋅ ⋅  

with a > 0 and 

(10) 2 12
2 1

a aa 3 a a ,a 3 a a .
3 3

= − ⋅ ⇔ = − = ⋅ ⇔ =  

Such a cubic utility function exhibits the property of hyperbolic absolute risk aversion men-

tioned previously, i.e. we have 

(11) U ''(W) 1 ,
ˆU '(W) a b W

− =
+ ⋅

 

with risk aversion parameters â 0.5 a= ⋅  and b = −0.5. 

                                                 
7 See Appendix 1. 
8 See Appendix 2. 
9 See, for example, Breuer/Gürtler/Schuhmacher (2004), p. 171. 
10 It is not difficult to derive stricter restrictions for given domains of uncertain excess returns. However, (8) 
must be valid in any case and even if we only know the relevant moments of excess returns and not their do-
mains. 
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As already stated, in order to apply preference function (4), an investor has to determine a pair 

(u , )+ ω  of desired expected overall excess return u+  and preference parameter ω = κ/λ. We 

are now able to return to the issue of which pairs (u , )+ ω  are actually consistent with prefer-

ence or utility functions (2), (5), and (9). To be more specific, a consistent specification of 

(u , )+ ω  by an investor requires for the case of preference function (2) that there exists at least 

one corresponding pair of preference parameters κ and λ so that the resulting optimal overall 

portfolio of the best fund f, reference portfolio P, and the riskless asset leads to an overall ex-

pected excess return of u .+  If such a pair (κ, λ) does not exist, then the resulting ranking for 

(u , )+ ω  lacks any relevance and the pair (u , )+ ω  can be called “not admissible”. Certainly, (2) 

imposes the fewest restrictions on admissible pairs (u , ),+ ω  but even for (2), not all, but only 

sufficiently great values of expected excess returns u+  can be the result of portfolio optimiza-

tion. Things get even “worse”, if we require a cubic von Neumann-Morgenstern utility func-

tion according to (5), as this implies additional lower or upper bounds for admissible values of 

ω for given expected excess return. As a consequence of the further restriction of HARA util-

ity, there will be at most two admissible values for ω for any given expected excess return u .+  

These findings are made more precise in 

 

Result 1: 

1) In the case of general mean-variance-skewness preferences according to (2) or (3), for any 

given exogenous value of xP and given preference parameter ω, it will be possible to justify 

any desired overall expected excess return u+  as preference maximizing when choosing the 

best fund f, as long as u+  is not smaller than the expected excess return of the portfolio that 

maximizes γ3 − ω ⋅ σ2. 

2) Define 2+σ  and 3+γ  as the variance and the skewness of the return of the investor’s overall 

portfolio for f P P fˆx : (u x u ) / u+ += − ⋅ , i.e. the necessary share of fund f as part of the investor’s 

overall portfolio in order to attain an overall expected excess return u .+  Then, in the case of 

expected utility maximizing behavior with a general cubic utility function according to (5) 

only preference parameters ω satisfying  

(12) 

2 2 3 2
2f f f f P ffP P fPP

f f P fP2
f f P fP

2 2 3 2
2f f f f P ffP P fPP

f f P fP2
f f P fP

ˆ ˆ1.5 [ u (x 2 x x x )] ˆ(a) , if x x 0,
ˆx x

ˆ ˆ1.5 [ u (x 2 x x x )] ˆ(b) , if x x 0,
ˆx x

+ + +
+

+

+ + +
+

+

⋅ σ ⋅ + ⋅ γ + ⋅ ⋅ ⋅ γ + ⋅ γ
ω > ⋅ σ + ⋅ σ >

⋅ σ + ⋅ σ

⋅ σ ⋅ + ⋅ γ + ⋅ ⋅ ⋅ γ + ⋅ γ
ω < ⋅ σ + ⋅ σ <

⋅ σ + ⋅ σ
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are in line with decreasing positive marginal utility at least with respect to an investor’s ex-

pected terminal wealth and are consistent with an expected utility maximizing choice of u+  

regarding the best fund under consideration. Additionally, we need ω > 0 because of our re-

quirement of positive skewness preferences. 

3) For cubic HARA utility as described by (9) conditions (12a) and (12b) simplify to  

(13) 
22 2 3

21.5 1.5 9 3
u u u

+ + +
+

+ + +

⎛ ⎞∂σ ∂σ ∂γω = ⋅ ± ⋅ − ⋅σ − ⋅⎜ ⎟∂ ∂ ∂⎝ ⎠
 

with the additional requirement of ω being positive.  

 

Proof: See Appendix 3. 

 

The considerations of this subsection highlight the relationships between the different ap-

proaches to justify skewness preferences. We favor the application of the preference function 

(2) (or (3)), for this objective function encompasses the maximization of expected cubic 

(HARA) utility as a special case. As in a situation with mean-variance preferences, a utility-

theoretic foundation of mean-variance-skewness preferences does not seem to be a sine qua 

non for the application of (2).11 

 

As a last point it should be noted that there is just one drawback of the approach applied in 

this paper. In what follows we will utilize the preference function (4) with given parameter 

combination (u , )+ ω  to solve F different portfolio selection problems for the exogenous case 

and for the endogenous case. In each of them, one fund f is optimally combined with the (pos-

sibly exogenously given holding of) reference portfolio P and riskless lending or borrowing. 

Subsequently, funds are ranked according to the corresponding maximum preference values 

they offer and these preference values – after some algebraic manipulations – are interpreted 

as performance values. In contrast to the analysis sketched above, we are thus examining not 

just one, but F different portfolio selection problems with fixed values for u+  and ω. Unfortu-

nately, for a given preference function (2) or (3) it is not sufficient to be the best fund based 

on (4) and a given expected return u+  for being the best fund at all, because another fund may 

be better than that fund for another value of u+  and it might be that different values for u+  

describe optimal portfolio selection behavior for different funds. This is a problem typically 

not discussed in the literature, although there are other approaches that rely on similar stan-

                                                 
11 For such an argument in the case of pure mean-variance preferences see Löffler (1996). 
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dardization techniques like the ones by Graham/Harvey (1997) and Modigliani/Modigliani 

(1997). In fact, only in the endogenous case with mean-variance preferences it is apparent that 

there is not any problem, because the fund ranking here is identical for any given desired ex-

pected excess return u ,+  a feature which is not generally shared by more complex decision 

problems. 

 

However, being the best fund for at least one value u+  is a necessary condition for being the 

best overall fund for given preferences. Therefore, the investor only has to choose among 

those funds which are best for at least one achievable expected excess return u+ . Typically, 

we will expect only a few funds to emerge as candidates and among them an investor should 

be able to choose without further formal assistance. We will return to this issue in Section VI. 

 

III. The exogenous case 

1. Some basic variables 

At first glance, the replacement of equation (2) by formula (4) does not seem to be too great 

an alleviation of the original decision problem. Nevertheless, this approach enables us to de-

rive a measure of performance evaluation that consists of several easily understandable basic 

elements. In order to do so, we additionally have to introduce the notion of subportfolio Q(f) 

which consists of the riskless asset as well as of the investor’s holding of a fund f and thus 

describes the variable part of his or her overall portfolio in the exogenous case (see also Fig-

ure 1). Correspondingly, R(f) stands for an investor’s risky subportfolio consisting of a rela-

tive investment yf := xf/(xf+xP) in a fund f and of yP := xP/(xf+xP) for direct stock holdings. 

Furthermore, we define Q(f ) P Pu : u x u+ += − ⋅  as the contribution of portfolio Q(f) to overall 

expected excess return u .+  It should be noted that – in the exogenous case – we have 

Q(f ) Q P Qu u (x ) : u const.+ + += = =  for all funds f = 1, ..., F, since u ,+  P Pˆx x=  as well as Pu  are 

exogenously given for any fund f. 

 

From now on, we assume all expected excess returns to be nonnegative, as investments with 

negative expected excess returns are generally not preferable. Moreover, we introduce 

γQ(f)Q(f)P and γQ(f)PP as symbols for the two co-skewnesses 2
Q(f ) Q(f ) P PE[(u u ) (u u )]− ⋅ −  and 

2
Q(f ) Q(f ) P PE[(u u ) (u u ) ]− ⋅ − . In addition, we need symbols bQ(f)Q(f)P and bQ(f)PP for fractions 

3
Q(f )Q(f )P p/γ γ  and 3

Q(f )PP p/ ,γ γ  respectively. Finally, we define Q(f )Pσ  as the covariance be-

tween excess returns Q(f )u  and Pu  and 2
Q(f )P Q(f )P P: /β = σ σ  as the corresponding regression 
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coefficient. All relevant (co-) moments regarding excess returns fu  and Pu  are named analo-

gously and indexed by an “f” or a “P”. 

 

2. The investor-specific cubic performance measure 

As already mentioned in Section I, Scholz/Wilkens (2003) analyzed the exogenous case for 

mean-variance preferences. This means that their approach can be interpreted as if examining 

F portfolio selection problems according to the setting of Figure 1 based on (4) with prefer-

ence parameter λ = 0 (i.e. ω → ∞). From the resulting optimal preference values for each fund 

f under consideration, they derived a so-called (quadratic) investor-specific performance 

measure (“qIM”, henceforth), because fund rankings turn out to be depending on investors’ 

specific preferences, since the two-fund separation theorem does not apply. From the analysis 

in Scholz/Wilkens (2003) and Breuer/Gürtler (2005) we know that qIM only depends on the 

quadratic Sharpe measure qSM and the quadratic Treynor measure qTM as defined in Table 

2. This finding is intuitive appealing, as the first measure applies for the special case 
(exg)
Py 0,=  i.e no direct stock holdings at all, and the latter for the special situation (exg)

Py 1,→  

i.e. only marginal fund investments. Up to now, for performance evaluation with mean-

variance-skewness preferences, we can only refer to Breuer/Gürtler (2006). As has already 

been mentioned in Section I, they showed that for the endogenous case with cubic HARA 

utility functions each fund is evaluated on the basis of two basic performance measures. The 

first one is the optimized quadratic Sharpe measure, that is, the value of qSM for the best 

combination of a fund f and the reference portfolio P. The second one can be interpreted as an 

optimized cubic Sharpe measure. We may define a cubic Sharpe measure by replacing the 

original numerator or denominator of the quadratic Sharpe measure u / σ  by γ, i.e. the third 

root of the respective return skewness. Since this leads to two different versions of a cubic 

Sharpe measure (see also Table 2), we call the one with γ in the numerator the cubic Sharpe 

measure of type 1, and the one with γ in the denominator the cubic Sharpe measure of type 2. 

For the endogenous case with cubic HARA utility Breuer/Gürtler (2006) showed the rele-

vance of the cubic Sharpe measure of type 1. However, we will shortly see that in the exoge-

nous case the cubic Sharpe measure of type 2 becomes relevant. In a similar way, one may 

distinguish more than just one cubic Treynor measure. In the quadratic case there is just one 

covariance fPσ between fu  and Pu .  Nevertheless, there are at least two co-skewnesses ffPγ  

and fPPγ  as defined in Table 2 and consequently there are two Treynor measures: type 1, de-

fined as 2
ffPu / b  and type 2, defined as fPPu / b . 
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In fact, as is revealed by formula (T1) and Result T1 i) of Table 3, a repetition of the analysis 

of Scholz/Wilkens (2003) for λ > 0, i.e. for an investor with positive skewness preferences, 

leads to a cubic investor-specific performance measure (exg)
f PˆcIM (x )  for the exogenous case 

that is a function not only of the quadratic Sharpe and Treynor measure, but also of the cubic 

Sharpe measure of type 2 and of both cubic Treynor measures.12 Other fund specific parame-

ters are not relevant for performance evaluation in the exogenous case. The performance 

measure (T1), although lengthy, can thus be traced back to only a few fund-dependent deter-

minants. To be more precise, for the typical case of a positive value of Q(f ) Pˆu (x ),+  the per-

formance of a fund f is the better, the greater its quadratic Sharpe measure qSMf. Moreover, 

in our empirical example of Section V all funds f under consideration as well as the reference 

portfolio P exhibit negative return skewnesses and co-skewnesses and positive return covari-

ances. For such a situation fund performance is ceteris paribus improving with a higher quad-

ratic Treynor measure as well as a lower cubic Sharpe performance measure (2)
fcSM  of type 2 

and becoming better with greater cubic Treynor measures. The negative impact of the cubic 

Sharpe measure “2” may appear somewhat surprising, but it is simply caused by the fact that 

higher values of fγ , i.e. of the denominator of the cubic Sharpe measure 2, lead to higher 

preference values, while this coincides with a lower cubic Sharpe measure 2. In any case, it 

should be clear that for certain relationships between their respective Sharpe measures on the 

one side and their Treynor measures on the other, two funds can be unambiguously ranked 

regardless of which pair f(u , )ω  is in effect. Result T1 ii) of Table 3 thus tells us under which 

conditions an investor does not need to bother much about the precise specification of his or 

her preference parameters. In addition, according to Result T1 ii) it then even plays no role at 

all, if the exogenous or the endogenous case is considered. Furthermore, the relevance of the 

fund-dependent submeasures in (exg)
f PˆcIM (x )  may become clearer, if we examine some spe-

cial cases, as is done in the following subsection. 

 

>>> Insert Table 3 about here <<< 

 

                                                 
12 See Appendix 4 for a proof of Result T1. 
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3. Some special cases 

Special cases arise for extreme values of ω and Px̂ .  Some of them are described in Table 3.13 

Case 2 a) (ω → ∞) describes a situation with mere mean-variance preferences, while ω = 0 

implies a situation with mere mean-skewness preferences. In this context, it should be noted 

that ω = 0 does not necessarily imply that the investor is not “variance averse” at all. It simply 

means that the relevance of his or her skewness loving exceeds the relevance of variance con-

siderations by an infinite amount. 

 

Rather interestingly, taking together cases 2 a) and 2 b) gives Result T2 of Table 3 which 

leads to a second possibility to assess potential fund rankings without the precise specification 

of ω: For given desired expected excess return u+  a fund g is better than a fund h for any 

preference parameter ω, if its performance measure (exg)
g PˆcIM (x )  is greater than that of fund 

h, (exg)
h PˆcIM (x ) , for both extreme scenarios ω → ∞ and for ω = 0. To put it another way: For 

given overall expected excess return, only funds with greater performance measures 
(exg)
g PˆcIM (x )  for one of these extreme scenarios can be better than a certain fund h even for 

any other preference parameter ω with 0 < ω < ∞. The reason for these findings is that the 

resulting performance measure for values of ω with 0 < ω < ∞ is a linear combination of the 

performance measures for the two extreme cases ω → ∞ and ω = 0. 

 

We will use Result T2 of Table 3 in our empirical analysis presented later on, but now turn to 

special cases described by extreme values of Px̂ .  In fact, we are more interested in fractions yf 

and yP of fund f and reference portfolio P as parts of the risky subportfolio R(f) than in the 

fraction Px̂  in itself. Allowing for short sales restrictions we just have to consider situations 

with (exg)
fy 1=  and (exg)

fy = ε  with ε > 0, but small. The first case coincides with yP = 0 and 

thus requires Px̂ 0.=  Case 2 c) in Table 3 refers to this situation. According to the last sen-

tence of Result T3, it is even possible to conclude that (for all return skewnesses being of the 

same sign) a fund g is better than a fund h in the endogenous case in situations with border 

solutions * *
g hy y 1,= =  if fund’s g cubic Sharpe measure “2” is smaller and its quadratic 

Sharpe measure is greater than the corresponding measure of fund h. This is quite remarkable, 

as according to Breuer/Gürtler (2006), in the endogenous case with cubic HARA utility, bor-

der solutions with no investment in the reference portfolio P of direct stock holdings at all 
                                                 
13 The cases 2 a) and 2 b) immediately follow from (T1). See Appendix 5 for the derivation of the special per-
formance measures of situations 2 c) and 2 d). 



 16

imply that fund rankings are only (positively) depending on the quadratic Sharpe measure 

qSMf  and the cubic Sharpe measure (1)
fcSM  of type 1. Only in situations with  γg > 0 and γh > 

0 it is possible to always derive a greater cubic Sharpe measure “1” for a fund g in compari-

son with a fund h exhibiting both a greater quadratic Sharpe measure as well as a smaller cu-

bic Sharpe measure “2”).14 Obviously, the performance submeasures according to (T6) thus 

offer new opportunities for straightforward performance assessments not at hand before. 

 

Now consider the second limiting case described by (exg)*
fy = ε  with ε > 0, but small. For such 

a situation, portfolio Q(f) just converges to the sole holding of the riskless asset and we thus 

arrive at a situation with Q Pˆu (x ) 0+ →  (i.e. P Px̂ u / u+→ ). For this, we get the special per-

formance measure according to case 2 d) of Table 3. In fact, the limiting case P Px̂ u / u+→  

has also been analyzed in Breuer/Gürtler (2006) as a possible border solution for the endoge-

nous case with HARA utility and has also led to the derivation of some kind of cubic Treynor 

measure, because for the special case of mean-variance preferences this cubic measure col-

lapses to the (negative inverse of the) quadratic Treynor measure. Actually, this cubic Treynor 

measure of Breuer/Gürtler (2006) is a special case of the performance measure (T8) of this 

paper.15 We thus once again have been able to generalize our findings. 

 

IV. The endogenous case 

In the endogenous case, for any given fund f the investor optimizes all three relative portions 

x0, xf, and xP, simultaneously. Let therefore )*f(
Px  stand for the optimal investment in reference 

portfolio P when combining this portfolio with the riskless asset and fund f, and define opti-

mal fractions (f )*
0x  and (f )*

fx ,  analogously. Then, in the endogenous case, each fund f will be 

evaluated according to the performance measure (end)
fcIM  of Table 3. This follows immedi-

ately from (T1) of Table 3 if one replaces Px̂  with (f )*
Px .  

 

Moreover, in the case of pure mean-variance preferences (ω → ∞), the best fund according to 

the optimized quadratic Sharpe measure as discussed, for example, in Breuer/Gürtler (1999) 

is always also the best one as well according to (T10) of Table 3 for arbitrary desired overall 

expected excess return u+ .16 It should be noted that such a relationship between (T10) and the 

                                                 
14 See Appendix 6 for a proof of this statement. 
15 See Appendix 7 for a proof of this statement. 
16 See Appendix 8 for a proof of this statement. 
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optimized cubic performance measure of Breuer/Gürtler (2006) does not generally exist, as 

the latter performance measure is only based on cubic HARA utility. 

 

With the findings of Sections III and IV, we now turn to the empirical investigation of the 

relevance of skewness preferences for fund rankings and the importance of the distinction 

between the endogenous case and the exogenous one. 

 

V. Empirical example 

In order to ensure comparability with the results of Breuer/Gürtler (2005) we follow their 

steps of analysis by considering (post tax) return data for 45 mutual funds investing in Ger-

man equity shares17 over a period from July 1996 to August 1999 which are calculated on the 

basis of the development of the respective monthly repurchase prices per share. We assume 

that all earnings paid out to the investors by a fund f are reinvested in this fund. The riskless 

interest rate r0 can be approximated by the expected return of German time deposit running 

for one month and covering the respective period of time to be observed. We use the DAX 

100 as a broadly diversified reference portfolio P. Based on this historical return data, for all 

45 funds f and the DAX 100 unbiased estimators for the relevant moments of one-monthly 

returns are calculated and listed in Table 4.18  

 

>>> Insert Table 4 about here <<< 

 

1. Differences in rankings in the exogenous case and the endogenous one 

From the analysis in Section III we know that, in the case of short sales restrictions with all 

skewnesses and co-skewnesses of fund returns being negative, a fund g with a higher quad-

ratic Sharpe measure and a higher quadratic Treynor measure as well as a lower cubic Sharpe 

measure of type 2 and higher cubic Treynor measures than a fund h simultaneously exhibits a 

greater restricted optimized cubic performance measure and a greater cubic investor specific 

performance measure (exg)
fIM  (Result T1 of Table 3). While for the case of simple mean-

variance preferences, i.e. with the neglection of all cubic submeasures, in Breuer/Gürtler 

(2005) it has been possible to identify 28 of our 45 funds for which the ranking according to 

their quadratic Sharpe measure and their quadratic Treynor measure, respectively, was identi-

cal, a similarly strong result for mean-variance-skewness preferences cannot be obtained. 
                                                 
17 In what follows we briefly speak of German funds, though we do not mean their country of origin, but the 
geographical focus of their investments. 
18 See Rohatgi (1976) for the unbiased estimators of the expectation value and the second central moment. Un-
biased estimators of other moments can be worked out in just the same manner. 
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These 28 funds are listed first in Table 4, but only funds # 1 to # 17 can be unambiguously 

ranked in a situation with skewness preferences as well. The number of each of these first 17 

funds in the first column coincides with their ranking position when compared to each other, 

while the last column of Table 4 is relevant for the first 28 funds and gives their – unambigu-

ous – corresponding ranking place for mean-variance preferences. When taking into account 

simultaneously all 45 funds, there is no unambiguous fund ranking, i.e. a comparison of the 

last 17 funds (# 29 to # 45) with funds # 1 to # 28 depends on the specific parameter constel-

lation (ω, u+ , Px̂ ) under consideration. According to this result, the recognition of skewness 

preferences may lead to a greater variety in fund ranking depending on the given fraction Px̂  

of the reference portfolio P and the desired overall expected excess return u .+  

 

In order to better assess resulting differences in rankings we follow Breuer/Gürtler (2005) by 

calculating Spearman ranking correlation coefficients ρSP between rankings according to the 

exogenous cubic investor-specific performance measure (in what follows: “exogenous cubic 

IM-rankings”) for given identical desired overall expected excess returns (1) (2)u u u+ + += =  

with u+  ∈ U+ := {1.7719 %, 1.9 %, 2.0 %, …, 2.7 %, 10 %19} and different values (1)
Px  and 

(2)
Px  with (1)

Px , (2)
Px  ∈ XP = {0, 5 %, …, 95 %, 99.99 %}. To assure comparability of our re-

sults with those of Breuer/Gürtler (2005), we thereby restrict ourselves in the same way as 

Breuer/Gürtler (2005) to the analysis of the funds # 29 to # 45 of Table 4. Moreover, we must 

allow for different intensities of skewness preferences. Thereby, because of space constraints 

we only consider the two extreme cases ω = 0 (mere mean-skewness preferences, i.e. an infi-

nite prudence) and ω = 100,000 (mere mean-variance preferences, i.e. a zero prudence). 

 

For any given expected excess return u+  ∈ U+ we compute 21 different fund rankings, as this 

is the number of exogenous values (1)
Px  and (2)

Px  taken into account. This leads to an overall 

sum of 2⋅210 = 420 different fund rankings for all ten desired expected overall excess returns 

u+  under consideration with 210 of them (for ω = 100,000; i.e., a situation with mere mean-

variance preferences) already calculated by Breuer/Gürtler (2005). 

 

                                                 
19 We add u 10 %+ =  as an extreme value in order to better assess the stability of our results. Since we refrain 
from considering situations with short sales of stocks or funds, the minimum accessible value for u+  amounts to 
1.7719 % because PQu (x )+ =  P Pu x u 0+ − ⋅ >  (and thus xf > 0) is only fulfilled for all P0 x 1≤ ≤  if Pu u+ >  

1.77189 %.≈  
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As has already been pointed out by Breuer/Gürtler (2005) for the case of mean-variance pref-

erences and given desired expected overall excess return u+ , resulting correlation coefficients 

between two fund rankings do not change much, if differing pairs (1) (2)
P P(x , x )  of exogenous 

direct stock holdings are considered, as long as we have a constant value for 
(1) (2)

P P Px : x x∆ = − . In fact, this finding carries over to situations with (even extreme) skewness 

preferences. For example, for the special case of a desired expected excess return u+  = 2.3 % 

with ω = 0, varying values (1)
Px  and (2)

Px  with (1) (2)
P Px x 10 %− =  imply ranking correlation 

coefficients from 99.01961 % (for the respective two cubic IM-rankings in the case of (1)
Px  = 

50 % and (2)
Px  = 40 % as well as in the case of (1)

Px  = 55 % and (2)
Px  = 45 %) to 100 % (e.g., 

for the respective two cubic IM-rankings in the case of (1)
Px  = 20 % and (2)

Px  = 10 % as well as 

in the case of (1)
Px  ≈ 100 % and (2)

Px  = 90 %) thus leading to a variation of ρSP of only 0.98039 

percentage points.20 Variations of ρSP for other expected excess returns u+  and given differ-

ences Px∆  are of similar scale. Hence, as in Breuer/Gürtler (2005), it suffices to take a closer 

look at average correlation coefficients between exogenous quadratic or cubic IM-rankings, 

respectively, for different identical values of desired expected returns u+  ∈ U+ and varying 

differences Px∆  ∈ XP between exogenously given holdings of the reference portfolio P. 

 

Once again, the results of Breuer/Gürtler (2005) for the case of mean-variance preferences 

also hold true for situations with skewness preferences: We find out that average correlations 

between two fund rankings with given difference Px∆  and given identical desired expected 

return u+  are rather high, even if we restrict ourselves to funds which cannot be unambigu-

ously ranked according to the quadratic and cubic submeasures regardless of the intensity of 

skewness preferences. In fact, for u+  ∈ U+ and Px∆  ∈ XP, smallest average values of ρSP 

amount to 91.17647 % for ω = 100,000 ( u+  = 1.7719 % and Px∆  ≈ 100 %) and 96.07843 % 

for ω = 0 ( u+  = 1.7719 % and Px∆  = 95 % or Px∆  ≈ 100 %).21 Moreover, average ranking 

correlation coefficients are slightly decreasing with falling value for u+ . Finally, average 

ranking correlation coefficients are smallest for high differences Px∆  which is intuitively ap-

pealing. Since Px 1 ( )∆ = −ε  implies either (1) (2)
P P(x 1 , x 0)= − ε =  or (1) (2)

P P(x 0, x 1 )= = − ε   as 

                                                 
20 See also Table Ad 1. 
21 See also Tables Ad 2a and Ad 2b. 
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well as Pu u+ = + δ   (see case 2 d) of Table 3) with ε and δ being positive and small, for Px∆  

near to 100 % the corresponding (average) ranking correlation coefficient is identical to the 

correlation coefficient between the rankings according to the special performance measures 

(T6) and (T8) for Pu u+ = + δ  1.7719 %.≈  While (T6) only depends on the quadratic Sharpe 

measure and the cubic type 2 Sharpe measure, (T8) is solely determined by the quadratic and 

the cubic type 2 Treynor measure of a fund f. For high enough ω (e.g. ω = 100,000) the rele-

vance of the cubic submeasures vanishes and (T6) and (T8) keep depending only on the quad-

ratic Sharpe measure or the quadratic Treynor measure as is already well-known from 

Breuer/Gürtler (2005). In contrast, for ω = 0, only the cubic submeasures remain relevant.  

 

In our empirical setting, average correlations are thus increasing in u+  and decreasing in 

Px∆ . For such a situation, a high correlation between both quadratic measures and between 

both cubic measures mentioned before implies a high correlation between two fund rankings 

for Px∆  near to 1 and u+  near to Pu  and necessarily even higher correlations for other pa-

rameter values. In our empirical example, all pairs ( u+ , Px∆ ) under consideration thus lead to 

values for average ranking correlation coefficients not smaller than 91.1764 % (for ω = 

100,000) or 96.07843 % (for ω = 0). 

 

The limited independent relevance of the exogenous case even with explicit recognition of 

positive skewness preferences is also underpinned by ranking correlation coefficients between 

fund rankings according to the exogenous (quadratic or cubic) IM and the corresponding en-

dogenous ones for different values u+  and xP (and either ω = 100,000 or ω = 0). Moreover, 

two exogenous quadratic or cubic IM-rankings with identical equity holdings as described by 

xP, but different values (1)u+  and (2)u+  for desired overall expected excess return will gener-

ally be very similar, since ranking correlation coefficients between exogenous IM-rankings 

and the corresponding endogenous ones do not change much for varying expected excess re-

turns u+ . For example, even in the extreme case of u+  = 1.7719 %, ranking correlation coef-

ficients between the exogenous quadratic (cubic) and the endogenous quadratic (cubic) per-

formance measure only vary between 93.13725 % for xP = 0 % and 99.50980 % for xP = 95 % 

(between 97.54902 % for xP = 10 %, 15 %, 20 %, 30 %, 35 % and 98.77451 % for xP = 60 %) 
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with 93.13725 % (97.54902 %) being the lowest correlation coefficient between the endoge-

nous fund ranking and the exogenous ones for u+  ∈ U+ and xP ∈ XP.22 Summarizing, we get 

 

Result 2: 

At least for our empirical example even in situations with mere mean-skewness preferences 

there seems to be no need to explicitly distinguish between the exogenous case and the en-

dogenous one. The corresponding result of Breuer/Gürtler (2005) for a situation with simple 

mean-variance preferences is thus confirmed even if skewness preferences are allowed for.  

 

Certainly, Result 2 is of immediate practical relevance, as – for purposes of fund rankings – 

investors need not take care whether their amount of direct stock holdings is endogenous or 

exogenous. They even need not bother about the scale of their direct stock investments at all. 

 

2. Differences in rankings with and without skewness preferences 

However, the explicit recognition of the exogenous case may lead to new insights into the 

relevance of skewness preferences in performance evaluation. Based on ten German funds, 

Breuer/Gürtler (2006) arrived at a correlation of 95.87 % between the fund ranking according 

to the restricted optimized quadratic Sharpe measure and the restricted optimized cubic per-

formance measure for the endogenous HARA case just suggesting only a limited importance 

of skewness preferences for fund rankings. However, Breuer/Gürtler (2006) showed addi-

tionally that welfare losses could be significant when applying a mean-variance approach to 

approximate cubic HARA utility in order to determine the optimal allocation of initial wealth 

to riskless lending/borrowing and the holding of risky assets. 

 

The performance measures developed in this paper allow us to go beyond the examination of 

cubic HARA utility functions. To this end, we compute the rankings of funds for the two 

cases ω = 0 and ω = 100,000 with xP = 50 % and u+  ∈ {1.7719 %, 2.0 %, 2.2 %, 2.4 %, 2.6 

%, 10 %}. Ranking correlation coefficients ρSP between these two rankings for ω = 0 and ω = 

100,000 are highest for u+  = 2.4 % with 69.8529 % and lowest for u+  = 10 % with 64.2157 

%.23 Consequently, the average correlation between these two rankings is as low as 67.6062 

%. The same holds true for other values of xP ∈ {0 %, 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 

70 %, 80 %, 90 %, 99.99 %}, as average correlation coefficients only vary from 62.5 % for xP 

                                                 
22 See also Tables Ad 3a and Ad 3b. 
23 See also Table Ad 4. 
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= 0 % to 67.8105 % for xP = 60 %.24 Obviously, suitable choices of ω may lead to a relevance 

of skewness considerations for fund rankings that exceeds by far that for the case of cubic 

HARA utility. 

 

Furthermore, as pointed out in Result T2 of Table 3, from the two extreme rankings ω = 

100,000 and ω = 0 with given values xP and u+  possible variations in fund rankings for other 

values ω can be derived. In Table 5 these ranges have been computed for xP = 50 % and u+  = 

1.7719 %. Table 5 shows once again that skewness considerations might lead to a significant 

variability in fund rankings. Similar results are obtained for other values of u+  ∈ {1.7719 %, 

2.0 %, 2.2 %, 2.4 %, 2.6 %, 10 %}.25 

 

>>> Insert Table 5 about here <<< 

 

Based on our findings until now, it should not be too surprising that rankings according to the 

optimized quadratic Sharpe measure approximate only poorly exogenous (and endogenous) 

cubic IM-rankings in the general case of arbitrary admissible values for ω. To verify this as-

sertion, we calculated correlation coefficients between fund rankings for the exogenous cubic 

IM (with ω = 0) and the optimized restricted quadratic Sharpe measure with different values 

of u+  and of xP ∈ {0 %, 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %, 99.99 %}. 

Resulting correlation coefficients only vary between 66.1764 % (e.g., for xP = 40 % and u+  = 

2.2 %, 2.3 %, 2.4 %, or xP = 45 % and u+  = 2.3 %, 2.4 %, 2.5 %) and 70.83333 % for, e.g., xP 

= 55 % and u+  = 2.7 %.26 The reason for this and the previous findings is that – with non-

HARA preferences – we are no longer in a situation where the two-fund separation theorem 

holds so that variations of risk preferences may influence fund rankings. 

 

With two-fund separation being in effect, variations of an investor’s risk aversion are not able 

to influence the structure of optimal risky portfolios and thus the ranking of funds neither. In 

fact, for the endogenous case with cubic HARA utility we arrive at a fund ranking according 

to the restricted optimized cubic performance measure that exhibits a correlation coefficient 

of 98.2843 % with the performance evaluation for ω = 100,000 (i.e. pure mean-variance pref-

erences), xP = 50 %, and u+  = 2.4 %. For cubic HARA utility in the exogenous case with xP = 

                                                 
24 See also Table Ad 5. 
25 See also Table Ad 6. 
26 See also Table Ad 7. 
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50 % and u+  = 2.4 % we should get a similarly high correlation. Actually, for the exogenous 

case to be consistent with cubic HARA utility the choice u+  = 2.4 % has to be optimal at least 

for the best fund in question. From (13) we get only one positive solution ω ≈ 1.468479 which 

supports the choice u+  = 2.4 % for the best fund # 30 and guarantees positive marginal utility 

for u u .+=  For ω ≈ 1.468479 and with u+  = 2.4 % and xP = 50 % the resulting fund ranking 

exhibits a ranking correlation coefficient of 98.7745 % with respect to the fund ranking ac-

cording to the exogenous quadratic IM. This supports our conjecture of only rather a limited 

relevance of skewness preferences in the case of cubic HARA utility. 

 

Things change if we turn to arbitrary cubic utility functions, as they do not support the two-

fund separation. For the general case of cubic utility we have to take care of conditions (12a) 

and (12b) with respect to the best fund in question in order to give our fund selection a utility-

theoretic foundation. Rather remarkably, (12a) and (12b) lead to a negative lower bound for ω 

so that we are indeed free to choose ω near to zero without violating the assumption of opti-

mal determination of u+  with respect to the best fund under consideration as well as positive 

marginal utility for u u+= . Moreover, the decrease of preference parameter ω towards 0 ac-

tually leads to a ceteris paribus higher prudence (converging towards infinity). This may offer 

an additional explanation for the emerging significant differences in fund rankings in com-

parison to mere mean-variance preferences for ω → 0, as quadratic utility implies a zero pru-

dence. This finding is in line with Breuer/Gürtler (2001) who, among others, show that in the 

case of exponential and power utility functions – without two-fund separation – quadratic 

utility approximations work quite well in particular for the individual’s risk aversion (and thus 

an individual’s prudence) not being too great. 

 

The analysis of the consequences of skewness preferences in this paper hence is of general 

importance and extends the examination of Breuer/Gürtler (2006) of situations with cubic 

HARA utility (in the endogenous case). Additionally, it becomes clear that cubic HARA util-

ity instead of quadratic utility may become relevant, if one does not look at fund rankings, but 

at the optimal allocation of initial wealth on the riskless asset and risky assets, since for this 

decision the two-fund separation theorem does not hold. 

 

Result 3: 

As long as the two-fund separation theorem holds, the relevance of skewness preferences for 

fund rankings compared to rankings based on mere mean-variance preferences will be limited. 
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The two-fund separation theorem holds exactly for fund rankings in the endogenous case with 

cubic HARA utility. It also seems to hold approximately sufficiently well for fund rankings in 

the exogenous case with cubic HARA utility. Skewness preferences thus become most rele-

vant in situations with cubic non-HARA utility or even preference functions recognizing 

skewness with no utility-theoretic foundation at all. Even for cubic HARA utility skewness 

preferences must not be neglected when determining the optimal combination of riskless lend-

ing/borrowing with the risky subportfolio Q(f), as for this decision the two-fund separation 

theorem does not hold true, either.  

 

VI. Issues of practical application 

Certainly, the theoretical and empirical findings of the preceding sections have merits of their 

own. Nevertheless, after having thus thoroughly investigated the relevance of exogenous 

stock holdings and skewness preferences in performance evaluation, one might wonder how 

the conclusions of this paper may be put into practical operation. As indicated, it seems to be 

admissible to give up the distinction between the exogenous case and the endogenous one. It 

thus remains to analyze the influence of different combinations of u+  and ω on performance 

evaluation. Apparently, it is of only little use to present dozens of fund rankings for different 

pairs (u , ).+ ω  Nevertheless, it would be of no great difficulty to create an interactive online-

supply so that investors may input their desired expected excess return and their “prudence” 

via internet. Obviously, only the specification of the latter parameter might cause some trou-

ble. However, under the simplifying assumption of (relative) prudence being constant, its 

value might be indirectly derived from the choice of an individual among different return dis-

tributions with identical expected returns, but different return variances and skewnesses. As 

interactive online portfolio management tools are already in effect, it would not be too diffi-

cult to enlarge them by going beyond the simple mean-variance analysis. As an alternative, 

one might restrict oneself to the consideration of only typical values of (relative) prudence. 

According to Merrigan/Normandin (1996) and Eisenhauer (2000) such values lie in the range 

of 1 to 5, corresponding with typical values of our parameter ω between 0.6⋅µW ≈ 0.6 and 

3⋅µW ≈ 3 for desired expected excess returns u+  amounting to only some percentage points 

(and thus µW being not very different from 1 for W0 = 1), because we have µW ⋅P = 3⋅µW/ω as 

the relevant relative prudence. Under this prerequisite, an investor would only have to name 

his or her desired expected excess return u+. Besides this, it is worth mentioning that the em-

pirical finding of parameter values for ω between 0.6 and 3 may be interpreted as a further 
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evidence of the relevance of explicitly taking skewness considerations into account, as the 

case with mere mean-variance preferences is characterized by a value of infinity for ω. 

 

Moreover, since investors are mainly interested in the best fund out of a given “universe” of 

funds, in traditional print media, it should be sufficient to only compute which fund ranks on 

top of the list depending on the parameter specification (u , ).+ ω  For our empirical example, 

there are in fact only two funds out of the funds from # 29 to # 45 of Table 4 which can be the 

best one for different parameter constellations, as Figure 2 reveals, namely # 30 and # 38. 

This finding is particularly a consequence of the application of Result T2 of Table 3 which 

enables us  – to some extent – to unambiguously rank funds even if the preference parameter 

ω is not precisely specified.  

 

It has already been pointed out that being the best fund for at least one parameter constellation 

is only a necessary condition for being selected by a mean-variance-skewness investor. 

Therefore, in our empirical example, such investors have only to choose between fund # 30 

and # 38 of our list. Moreover, if we restrict ourselves to empirically typical values of ω be-

tween 0.6 and 3 (and “reasonable” values for u )+ , fund # 38 will always be ranked before 

fund # 30. Under these conditions, fund # 38 can unambiguously be identified as the best fund 

under consideration. Summarizing, the approach presented in this paper may indeed be appli-

cable in real-life fund selection problems. 

 

>>> Insert Figure 2 about here <<< 

 

VII. Conclusion 

The main goal of this paper was to develop general performance measures for investors with 

mean-variance-skewness preferences who aim at selecting one out of F different funds in or-

der to combine this fund optimally with direct stock holdings and the riskless asset. We con-

tributed to the literature by developing such performance measures without the restriction to 

HARA utility and for situations with (the “exogenous case”) and without (the “endogenous 

case”) exogenously given direct stock investments. Resulting performance measures are func-

tions of several fundamental submeasures which can be interpreted as various kinds of quad-

ratic and cubic Sharpe and Treynor measures. Moreover, performance measures are con-

trolled by two subjective parameters, one of them (u )+  being an investor’s desired overall 

expected excess return and the other (ω) describing his or her intensity of skewness prefer-
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ences. For the case of von Neumann-Morgenstern utility functions the latter parameter can be 

characterized as (three times) the reciprocal of Kimball’s (1990) prudence. 

 

Our empirical example extends the result of Breuer/Gürtler (2005) for situations with mean-

variance preferences that the distinction between the endogenous case and the exogenous case 

is hardly of practical relevance. Certainly, this result is of practical importance, as it implies 

that investors need not bother about this issue at all, thus simplifying performance evaluation 

tremendously. Moreover, with two-fund separation being in effect, mean-variance approaches 

approximate fund rankings for the case of mean-variance-skewness preferences rather well, as 

then different degrees of risk aversion (and prudence) cannot influence fund ranking. Since 

such situations require cubic HARA utility, skewness preferences are most important for fund 

rankings in situations with an investor’s cubic utility function being not of the HARA type or 

even lacking any utility-theoretical foundation at all. It seems to be interesting to support this 

result by additional analytical and empirical examinations. For example, additional empirical 

analyses in particular of hedge funds should be of interest because of their special distribu-

tional return properties. This would enable us to analyze whether the recent findings of El-

ing/Schuhmacher (2006, 2007) for hedge funds that the simple quadratic Sharpe measure is 

sufficient for performance evaluation purposes in comparison to the utilization of several 

other approaches would even hold when applying the performance measures developed in this 

paper. Prima facie, we would expect fund rankings for mean-variance-skewness preferences 

not based on cubic HARA utility to possibly deviate considerably from the result of an appli-

cation of the simple quadratic Sharpe measure. However, such considerations have to be re-

served for future research. 

 

Although fund rankings in the exogenous case are preference-dependent, the number of pos-

sible candidates for being the best fund out of F different ones is typically rather small. As a 

practical application of the performance measures developed in this paper one may identify 

the best fund as a function of preference parameter ω and desired expected overall excess 

return u+  and visualize the findings in a (u , )+ ω − diagram. 
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Figures and Tables 

 
 

Figure 1 

Structure of the Investor’s Optimal Overall Portfolio 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the endogenous case, for any fund f under consideration the investor simultaneously optimizes relative shares 
x0 (of the riskless asset), xP (of the equity portfolio P), and xf (of the fund f). In the exogenous case, only xf and 
x0 (subportfolio Q(f)) can be optimized, since P Px x const.+= =  (i.e. the “shaded” component in Figure 1 is gi-
ven). 
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Figure 2 

Pairs (ω, +
fu ) Leading to an Identical Performance of Funds # 30 and # 38 
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Table 1 

Different Scenarios for Performance Evaluation 
 Mean-variance pref-

erences 
Mean-variance-

skewness preferences
Endogenous case (1) (3) 
Exogenous case (2) (4) 
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Table 2 
Synopsis of Relevant Symbols 

Assets: 
f,g,h: investment funds, F: total number of funds, 
P: portfolio of direct stock holdings (serving as the “reference portfolio”), f*: “best” fund out of all funds f = 1, …, F. 
 
Investor’s subportfolios (being part of the investor’s total asset holdings): 
R(f): risky subportfolio, i.e. (only) investment in fund f and in reference portfolio P, 
Q(f): subportfolio which − in the exogenous case − is not already fixed, i.e. (only) investment in fund f and 
         riskless lending or borrowing. 
 
Return characteristics: 

0r : riskless interest rate, 

fr :  return of fund f, 

Pr :  return of reference portfolio P, 

fu :  excess return f 0r r−  of f with expectation value fu  and standard deviation f ,σ  

Pu :  excess return P 0r r−  of P with expectation value Pu  and standard deviation P ,σ  

Q(f )u :  excess return Q(f ) 0r r−  of Q(f) with expectation value Q(f )u  and standard deviation Q(f ) ,σ  

R(f )u :  excess return R(f ) 0r r−  of R(f) with expectation value R(f )u  and standard deviation R(f ) ,σ  

fP :σ  covariance between fu  and Pu ,  
2

fP fP P: /β = σ σ  (regression coefficient of a linear regression of fu  with respect to Pu ),  
2
fσ , 2

Pσ : variance of fu  or Pu , respectively, 
3
fγ , 3

Pγ : skewness (i.e. the third central moment) of fu  or Pu , respectively , 

ffP :γ  co-skewness of type 1 between fu  and Pu , i.e. 2
f f P PE[(u u ) (u u )]− ⋅ − , 

fPP :γ  co-skewness of type 2 between fu  and Pu , i.e. 2
f f P PE[(u u ) (u u ) ]− ⋅ − , 

3
ffP ffP fb : / ,= γ γ , 3

fPP fPP fb : / .= γ γ  
 
Decision variables: 
x0: fraction of monetary wealth risklessly invested (x0 < 0: borrowing of money), 
xP: fraction of monetary wealth invested in reference portfolio P, 
xf: fraction of monetary wealth invested in shares of fund f. 
 
Preference parameters: 
Φ: cubic preference function 
κ: preference weight on return variance 
λ: preference weight on return skewness 
ω:= κ/λ. 
 
Specific parameters for the exogenous case: 
u :+  overall expected excess return desired by the investor,  

Px̂ :  percentage of initial wealth already fixed by an investment in the reference portfolio P, 

Q Pu (x ) :+  contribution of subportfolio Q(f) to an investor’s overall achievable expected excess return 
 
Performance measures: 
qSM :  quadratic Sharpe measure of f, i.e. f fu / σ , 

(1)
fcSM :  cubic Sharpe measure of f (type 1), i.e. f f/γ σ , 
(2)
fcSM :  cubic Sharpe measure of f (type 2), i.e. f fu / γ , 

fqTM :  quadratic Treynor measure of f, i.e. f fPu / β , 
(1)
fcTM :  cubic Treynor measure of f (type 1), i.e. 2

f ffPu / b , 
(2)
fcTM : cubic Treynor measure of f (type 2), i.e. f fPPu / b , 

(exg)
Pf ˆqIM (x ) : quadratic investor specific performance measure in the exogenous case, 

(exg)
Pf ˆcIM (x ) :cubic investor specific performance measure in the exogenous case, 

(end) (f )*
PfcIM (x ) : cubic investor specific performance measure in the endogenous case, 

 
Optimal values are generally characterized by an asterisk (“*”), “exg” as an index stands for “exogenous”, “end” for 
“endogenous”. 
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Table 3 
Performance Measures for Different Decision Situations 

Setting Performance Measure Consequences 
1) Exogenous case 
(general setting) 

(exg) 3 3 2 2 3
f P Q P P P Q P P P Q P(2) (1) (2)3

f f f

2 2
Q P P P Q P2

f f

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ(T1) cIM (x ) : (u (x )) 3 x (u (x )) 3 x u (x )
(cSM ) cTM cTM

1 1ˆ ˆ ˆ(u (x )) 2 x u (x ) .
(qSM ) qTM

+ + +

+ +

= ⋅ + ⋅ ⋅ γ ⋅ ⋅ + ⋅ ⋅ γ ⋅ ⋅

⎡ ⎤− −+ ω⋅ ⋅ + ⋅ ⋅ σ ⋅ ⋅⎢ ⎥
⎣ ⎦

f f
f f

f fP

u u(T2) qSM : , qTM : ,= =
σ β

 
2

f f f(2) (1) (2)
f f f

f ffP fPP

u u u(T3) cSM : , cTM : ,cTM : .
b b

= = =
γ

 

Result T1: i) Fund performance is completely determined by the quadratic 
Sharpe measure fqSM  and the quadratic Treynor measure fqTM  of fund f 
as well as by a cubic Sharpe (2)

fcSM and two cubic Treynor measures: 
(1)
fcTM  and (2)

fcTM  (since there are two possible co-skewnesses between 
returns fr  and Pr ). ii) For Q(f ) Pˆu (x ) 0+ >  and negative skewnesses and co-
skewnesses, a fund g exhibits a better performance measure than a fund h for 
any desired overall expected excess return u+  and any preference parameter 
ω, if the quadratic submeasures as well as the cubic Treynor measures of 
fund g are both greater than the corresponding measures of fund h, while the 
cubic Sharpe measure of fund g is smaller than that of fund h. In such a 
situation, the fund g is better than the fund h even in the endogenous case, 
since (exg) (h)* (h)*(exg)

h P g PcIM (x ) cIM (x )< (g)*(exg)
g PcIM (x )≤  with “*” denoting opti-

mal, i.e. preference maximizing endogenous, parameter values.                    
2) Exogenous case  
(special settings) 

  

a) ω → ∞ 
(situation with mere mean-variance 
preferences) 

(exg) 2 2
f P Q P P P Q P2

f f

1 1ˆ ˆ ˆ ˆ(T4) qIM (x ) : (u (x )) 2 x u (x ) .
(qSM ) qTM

+ +− −= ⋅ + ⋅ ⋅ σ ⋅ ⋅  
For simple mean-variance-preferences the performance measure of Scholz/ 
Wilkens (2003) and Breuer/Gürtler (2005) evolves. 

b) ω → 0 
(situation with mere mean-
skewness preferences) 

(exg, 0) 3
f P Q P (2) 3

f

3 2 2 3
P P Q P P P Q P(1) (2)

f f

1ˆ ˆ(T5) cIM (x ) : (u (x ))
(cSM )

1 1ˆ ˆ ˆ ˆ3 x (u (x )) 3 x u (x ) .
cTM cTM

ω→ +

+ +

= ⋅

+ ⋅ ⋅ γ ⋅ ⋅ + ⋅ ⋅ γ ⋅ ⋅
 

Result T2: For given desired expected excess return u+  it is just necessary 
to determine resulting fund rankings for the special situations 2 a) and 2 b). 
For any other preference value ω at least funds belonging to the intersection 
of all superior funds for these two rankings are better than a certain fund f. 
Additionally, at most the union of all these superior funds is better than fund 
f for any given value ω.                                                                           

c) (exg)*
fy 1=  

(situation with yP = 0 and thus 
Px̂ 0)=  

(exg) (mod1)
f (2) 3 2

f f

1 1(T6) cIM (0)
(cSM ) (qSM )

−= + ω ⋅  

with 
(mod1)(T7) : /( u ).+ω = κ λ ⋅  

Result T3: In situations without direct stock holding, performance evaluation 
simplifies to a weighted sum of a fund’s quadratic Sharpe measure and the 
cubic Sharpe measure “2”. Apparently, for all return skewnesses being 
positive or all of them being negative, a fund g with both a greater quadratic 
Sharpe measure and a smaller cubic Sharpe measure “2” than a fund g will 
be better for arbitrary parameters κ, λ, and u .+  Obviously, in such a situation 
fund g is better than fund h even in the endogenous case with border solu-
tions (g)* (h)*

P P Px̂ : x x 0,= = =  when there are no short sales possibilities for 
risky securities.                                                                                                

d) (exg)*
fy = ε  with ε > 0, but small 

(and Q Pˆu (x ) 0)+ >  
(Q(f) just converges to the sole 
holding of the riskless asset and we 
thus arrive at a situation with 

Q Pˆu (x ) 0+ →  (i.e. P Px̂ u / u ).)+→  
 

u
P uP

ˆ(exg,x ) (mod2)
f (2) (2)3 2

P f P f

1 1(T8) cIM : ,
(cSM ) cTM (qSM ) qTM

+= −= + ω ⋅
⋅ ⋅

 
with 

(mod2)(T9) : (2 ) /(3 ).ω = ⋅ κ ⋅λ  

Result T4: The performance of a fund f which is in optimum only marginally 
added to direct stock holdings can be solely determined by the knowledge of 
just two fund-dependent parameters with one of them being identical to the 
quadratic Treynor measure and the other one being one of the cubic Treynor 
measures.                                                                                                          

3) Endogenous case 
(general setting) 

(end) (f )* (f )* (f )* (f )* (f )*3 3 2 2 3
f Q P P P Q P P P Q P(2) (1)3

f f

(f )* (f )* (f )* (f )* (f )*3 3 2 2 2
P P Q P P P Q P P(2) 2

f f f

1 1(T10) cIM : (u (x )) 3 x (u (x )) 3 (x ) u (x )
(cSM ) cTM

1 1 1(x ) (u (x )) 2 x u (x ) (x )
cTM (qSM ) qTM

+ + +

+ +

= ⋅ + ⋅ ⋅ γ ⋅ ⋅ + ⋅ ⋅ γ ⋅

− −⋅ + ⋅ γ + ω⋅ ⋅ + ⋅ ⋅ σ ⋅ ⋅ − ⋅ 2
P ,

⎡ ⎤
σ⎢ ⎥

⎣ ⎦

with (f )*
Px  being chosen in such a way so as to maximize (end)

fcIM .  
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Table 4 
Unbiased Estimators for the Relevant Moments of German Funds and Reference Port-

folio P and Funds Ranking according to Mean-Variance Preferences 
No. name of fund fu  fσ  fPσ  fγ  ffPγ  fPPγ  µ-σ-Ranking

position 
1 Baring German Growth 2.85000 % 7.05836 % 0.33608 % -3.49081% -0.02054% -0.02394% 1 

2 Metallbank Aktienfonds DWS 2.07324 % 5.14655 % 0.26836 % -3.66506% -0.01298% -0.01899% 2 

3 Plusfonds 2.40324 % 6.83304 % 0.40050 % -6.14769% -0.02503% -0.02475% 4 

4 DVG Fonds SELECT INVEST 2.07243 % 6.61112 % 0.40792 % -6.12317% -0.02345% -0.02369% 6 

5 SMH Special UBS Fonds 1 1.90811 % 6.60503 % 0.40739 % -6.01770% -0.02255% -0.02320% 9 

6 Frankfurter Sparinvest Deka 1.81324 % 6.41583 % 0.39600 % -5.90287% -0.02183% -0.02288% 10 

7 DekaFonds 1.91459 % 6.81638 % 0.42138 % -6.25473% -0.02444% -0.02421% 11 

8 FT Deutschland Dynamik Fonds 1.79459 % 6.59269 % 0.40786 % -6.14591% -0.02328% -0.02348% 13 

9 MK Alfakapital 1.98243 % 7.41669 % 0.45851 % -6.88045% -0.02955% -0.02660% 16 

10 MMWI PROGRESS Fonds 1.76081 % 6.71760 % 0.41379 % -6.26142% -0.02441% -0.02414% 18 

11 Interselex Equity Germany B 1.72514 % 6.60614 % 0.40989 % -6.37581% -0.02520% -0.02447% 19 

12 Parvest Germany C 1.60108 % 6.31697 % 0.39222 % -6.35149% -0.02511% -0.02449% 20 

13 DELBRÜCK Aktien UNION-Fonds 1.42919 % 6.25222 % 0.38175 % -5.98832% -0.02274% -0.02352% 24 

14 Lux Linea 1.71378 % 7.60317 % 0.46976 % -7.54059% -0.03546% -0.02912% 25 

15 Hauck Main I Universal Fonds 1.45865 % 6.58482 % 0.40521 % -6.54482% -0.02676% -0.02532% 26 

16 Portfolio Partner Universal G 1.09946 % 6.08717 % 0.32420 % -4.96447% -0.01931% -0.02145% 27 

17 Aberdeen Global German Eq 0.46351 % 5.77708 % 0.33096 % -4.93570% -0.01549% -0.01933% 28 

18 Incofonds 2.13865 % 6.04074 % 0.34912 % -5.65640% -0.02032% -0.02231% 3 

19 ABN AMRO Germany Equity 2.42189 % 7.09676 % 0.42209 % -6.12601% -0.02469% -0.02452% 5 

20 DIT Wachstumsfonds 1.88919 % 6.28905 % 0.37674 % -4.72854% -0.01478% -0.01916% 7 

21 ADIFONDS 2.16243 % 7.22614 % 0.44304 % -6.05774% -0.02361% -0.02401% 8 

22 Concentra 1.85919 % 6.71783 % 0.41575 % -5.99004% -0.02245% -0.02321% 12 

23 Thesaurus 1.72811 % 6.36330 % 0.39459 % -6.24481% -0.02421% -0.02401% 14 

24 Dexia Eq L Allemagne C 1.67865 % 6.23957 % 0.38700 % -6.51795% -0.02649% -0.02518% 15 

25 CB Lux Portfolio Euro Aktien 1.79676 % 6.77890 % 0.42088 % -6.27426% -0.02432% -0.02402% 17 

26 EMIF Germany Index plus B 1.57108 % 6.45667 % 0.40139 % -6.14970% -0.02346% -0.02363% 21 

27 CS EF (Lux) Germany 1.58297 % 6.66003 % 0.40816 % -6.99188% -0.03063% -0.02721% 22 

28 Flex Fonds 1.39730 % 5.98888 % 0.36524 % -5.49109% -0.01890% -0.02132% 23 

29 AC Deutschland 1.86378 % 7.09276 % 0.41137 % -6.49860% -0.02773% -0.02600% - 

30 Baer Multistock German Stk A 1.77270 % 5.48620 % 0.32287 % -4.94105% -0.01430% -0.01814% - 

31 BBV Invest Union 1.90946 % 6.30927 % 0.38537 % -6.27119% -0.02426% -0.02397% - 

32 Berlinwerte Weberbank OP 1.57595 % 5.68085 % 0.33807 % -5.44012% -0.01901% -0.02133% - 

33 DIT Fonds für Vermögensbildung 1.32405 % 5.79650 % 0.34777 % -5.64758% -0.01978% -0.02169% - 

34 DWS Deutschland 1.60784 % 6.08441 % 0.36909 % -6.17714% -0.02388% -0.02402% - 

35 Fidelity Fds Germany 1.72892 % 6.24931 % 0.37989 % -6.62354% -0.02738% -0.02554% - 

36 Gerling Deutschland Fonds 1.41054 % 5.19347 % 0.31236 % -5.59883% -0.01972% -0.02188% - 

37 HANSAeffekt 1.73973 % 6.49867 % 0.40096 % -6.13358% -0.02351% -0.02371% - 

38 INVESCO GT German Growth C 1.71649 % 5.67770 % 0.24657 % -4.60818% -0.01962% -0.02241% - 

39 Investa 2.11541 % 6.92485 % 0.42699 % -6.39576% -0.02563% -0.02478% - 

40 Köln Aktienfonds DEKA 1.83865 % 6.54772 % 0.40355 % -6.32879% -0.02491% -0.02436% - 

41 Oppenheim Select 1.69757 % 6.47148 % 0.39475 % -5.77740% -0.02145% -0.02286% - 

42 Ring Aktienfonds DWS 1.86784 % 6.15453 % 0.37430 % -6.42200% -0.02570% -0.02483% - 

43 Trinkaus Capital Fonds INKA 1.71541 % 6.49609 % 0.40013 % -5.91511% -0.02193% -0.02293% - 

44 UniFonds 1.74784 % 6.42735 % 0.39665 % -6.31308% -0.02479% -0.02433% - 

45 Universal Effect Fonds 1.74568 % 6.27421 % 0.38306 % -6.43703% -0.02573% -0.02473% - 

P DAX 100 1.77189 % 6.24936 % 0.39055 % -6.19592% -0.02379% -0.02379%  
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Table 5 
Possible Variations in Fund Rankings according to a Variation of ω  

(with Given Values +u  = 1.7719 % and xP = 50 %) 
 

Fund No. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
Best pos-
sible ran-
king pos. 

8 1 4 6 17 13 9 10 8 1 2 5 7 3 7 8 8 

Worst pos-
sible ran-
king pos. 

15 2 5 9 17 16 14 16 15 3 4 7 16 6 16 15 13 
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Appendices:  
 

Appendix 1: Proof that the maximization of (7) results in the selection of a µ-σ-γ-

efficient alternative if only situations with positive, but diminishing mar-

ginal utility (and positive prudence) are considered (footnote 7) 

 

Obviously, it is sufficient to show that 
W W W

E[U(W)] E[U(W)] E[U(W)]0, 0, and 0.∂ ∂ ∂> ≤ ≥
∂µ ∂σ ∂γ

 

Since 2 3
W W W W WE[U(W)] U( ) (1/ 2) U ''( ) (1/ 6) U '''(µ )= µ + ⋅ µ ⋅σ + ⋅ ⋅ γ  as well as WU '( ) 0,µ >  

WU ''( ) 0,µ <  and WU '''( ) 0,µ >  we get: 

2
W W W W W

W W

2
W W

W

E[U(W)] 1 E[U(W)](A1) U '( ) U '''( ) 0, U ''( ) 0, and
2

E[U(W)] 1 U '''( ) 0.
2

∂ ∂= µ + ⋅ µ ⋅σ > = µ ⋅σ ≤
∂µ ∂σ

∂ = ⋅ µ ⋅ γ ≥
∂γ

 

 

Appendix 2: Proof that not every µ-σ-γ-efficient alternative can be the outcome of the 

maximization of cubic expected utility according to (7) if we hold on to the 

requirement of positive, but decreasing marginal utility (footnote 8) 

 

We consider the availability of only one fund g and the riskless asset with both having identi-

cal prices at time t = 0. In addition, there are only two possible states s(1) and s(2) at time t = 1 

with equal probability. Fund g leads to uncertain inflows gW  of 2 monetary units in state s(1) 

and 3 in state s(2) while the riskless asset returns 1 monetary unit regardless of the realized 

state of nature at time t = 1. Further, the variance minimal portfolio (the riskless asset, i.e. x0 = 

100 %) is obviously µ-σ-γ-efficient, but at the same time we have gW  > 1 with certainty and 

thus gE[U(W )] U(1)>  because of the assumption of positive marginal utility. This immedi-

ately implies the postulated statement. 

 

Appendix 3: Proof of Result 1 

To show part 1) of Result 1, we rewrite the equivalent preference function (3) as 

(A2)  2 3 2 3(µ, , ) µ ( ).Φ σ γ = − λ ⋅ ω⋅ σ − γ  

For given fund f and given exogenous value of xP, (A2) can be maximized for varying values 

of κ and λ so that we have ω = const. Certainly, for λ → 0, it will be possible to arrive at op-

timal portfolios for which the overall expected excess return might be arbitrarily great regard-



 2

less of the value of ω. Nevertheless, in general it will not be possible to justify very small val-

ues of u ,+  as for λ → ∞ we will not necessarily arrive at a variance-minimizing behavior. As 

a consequence, very low values of u+  → 0 can only be justified for preference parameters ω 

→ ∞. For given ω, the smallest admissible value of u+  can be identified by the maximization 

of γ3 − ω ⋅ σ2, as with fixed ω, apparently, there can be no other µ-σ-γ-efficient portfolio of 

fund f, direct stock holding P and riskless lending or borrowing with a lower value of u .+  

 

Additional restrictions have to be allowed for, if we assume – according to part 2) of Result 

1 – an underlying cubic utility function as described by (5). From (7) we know that 
2

W W W W W 2 W( , , ) U( ) (3 a )Φ µ σ γ = µ + ⋅µ + ⋅σ 3
W+γ  and thus in such a situation ω is defined as 

−(3⋅µW+a2) = −(3⋅(1+µ)+a2) (recall the assumption W0 = 1 according to the main text). Con-

sequently, for given value of W 23 a+⋅µ +  (because of W
+µ  = 1 ++ µ  = 01 u r )++ +  we have to 

determine the remaining parameter a1 in such a way so as to support µ+ as the expected return 

of the optimal portfolio of the best fund f, the reference portfolio P and riskless lending/bor-

rowing. For varying values of µ and a2 with ω = const. it must be examined under which con-

ditions there are suitable values for a1 and whether they fulfil the requirements of (8). 

 

The second requirement of (8) is immediately satisfied, since this condition is equivalent to ω 

> 0. The first requirement of (8) ( 1 W W 2 2 W 2a ( 3 a a ) ( a )+ + +> µ ⋅ − ⋅µ − − = µ ⋅ ω − ) states a condition 

for a1. This condition depends on the pair (u , ),+ ω  and the parameter constellation of the fund 

under consideration. With f P P fˆx : (u x u ) / u+ += − ⋅  as the necessary share of fund f as part of 

the investor’s overall portfolio in order to attain an overall expected excess return u+  and 

with 2+σ  and 3+γ  as the corresponding variance and skewness of the (excess) return of the 

investor’s overall portfolio we are able to transform the condition 1 W 2a ( a )+> µ ⋅ ω − . To this 

end, we look at the first derivative of the preference function (6) that has to fulfil the follow-

ing necessary condition, since the desired expected excess return u+  shall indeed turn out to 

be optimally chosen for the best fund f under consideration: 
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W

2 3
2

0 W W W

:

2 3
2 2

1 2 W W W 2

2 3
2 2

1 2 W W W

1 1(A3) U '(1 r u ) U '''( ) U ''( ) U '''( ) 0
2 u 6 u

a 2 a 3 3 (3 a ) 0
u u

!
a 2 a 3 3

u u

+

+ +
+ + + + +

+ +

= µ

+ +
+ + + +

+ +

=−ω

+ +
+ + + +

+ +

⎛ ⎞∂σ ∂γ+ + + ⋅ µ ⋅σ + µ ⋅ + ⋅ µ ⋅ =⎜ ⎟∂ ∂⎝ ⎠

∂σ ∂γ⇔ + ⋅ ⋅µ + ⋅µ + ⋅σ + ⋅µ + ⋅ + =
∂ ∂

∂σ ∂γ⇔ = − ⋅ ⋅µ − ⋅µ − ⋅σ + ω⋅ − >µ ⋅
∂ ∂ 2

2 3
2

W 2 W W

2 3
2

2 3
2

( a )

(a 3 ) 3
u u

3 0
u u

3
u u

+ +
+ + + +

+ +

=−ω

+ +
+

+ +

+ +
+

+ +

ω −

∂σ ∂γ⇔ − µ ⋅ + ⋅µ − ⋅σ + ω⋅ − > µ ⋅ω
∂ ∂

∂σ ∂γ⇔ − ⋅σ + ω⋅ − >
∂ ∂

∂σ ∂γ⇔ ω⋅ > ⋅σ +
∂ ∂

 

Further, using 2 2 2 2 2
f f f P fP P Pˆ ˆx 2 x x x+ + +σ = ⋅σ + ⋅ ⋅ ⋅σ + ⋅σ  and 2 3 3 2

f f f P ffPˆx 3 x x+ + +γ = ⋅ γ + ⋅ ⋅ ⋅ γ  

2 3 3
f P fPP P Pˆ ˆ3 x x x ,++ ⋅ ⋅ ⋅ γ + ⋅ γ  we have: 

2 2
2f

f f P fP
f f

3 3
2 3 2f

f f f P ffP P fPP
f f

x 1ˆ(A4) (2 x 2 x ) ;
u x u u

x 1ˆ ˆ(3 x 6 x x 3 x ) .
u x u u

++ +
+

+ + +

++ +
+ +

+ + +

∂∂σ ∂σ= ⋅ = ⋅ ⋅σ + ⋅ ⋅σ ⋅
∂ ∂ ∂

∂∂γ ∂γ= ⋅ = ⋅ ⋅ γ + ⋅ ⋅ ⋅ γ + ⋅ ⋅ γ ⋅
∂ ∂ ∂

 

Summarized from (A3) and (A4), we immediately get the condition for admissible values of 

ω: 
2 2 2 3 2

f f P fP f f f f P ffP P fPPˆ ˆ ˆ(A5) (x x ) 1.5 [ u (x 2 x x x )]+ + + +ω⋅ ⋅σ + ⋅σ > ⋅ σ ⋅ + ⋅ γ + ⋅ ⋅ ⋅ γ + ⋅ γ  

This is equivalent to the following inequalities: 
2 2 3 2

2f f f f P ffP P fPP
f f P fP2

f f P fP
2 2 3 2

2f f f f P ffP P fPP
f f P fP2

f f P fP

ˆ ˆ1.5 [ u (x 2 x x x )] ˆ(A6a) , if x x 0,
ˆx x

ˆ ˆ1.5 [ u (x 2 x x x )] ˆ(A6b) , if x x 0.
ˆx x

+ + +
+

+

+ + +
+

+

⋅ σ ⋅ + ⋅ γ + ⋅ ⋅ ⋅ γ + ⋅ γω > ⋅σ + ⋅σ >
⋅σ + ⋅σ

⋅ σ ⋅ + ⋅ γ + ⋅ ⋅ ⋅ γ + ⋅ γω < ⋅σ + ⋅σ <
⋅σ + ⋅σ

 

(A6a) or (A6b) must be valid for the best fund f = f* under consideration in order to fulfil a 

necessary condition for expected utility maximization by selection of this fund. In addition, 

positive skewness preferences require ω > 0. 

 

Restrictions are even tighter for the case of cubic HARA utility – which is the object of part 

3) of Result 1 – as the unique parameter a directly determines the optimal overall expected 

excess return u+  and thus ω. As a consequence, there are at most only two values of ω which 

support the choice of u+  for a given fund f.  
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In the case of cubic HARA utility, we know from (10) that we have 2a 3 a= − ⋅  (and thus ω = 

−3⋅(µW+a)) and 2
1a 3 a= ⋅ . With this in mind, the left-hand side of the third line of (A3) be-

comes 
2 3

2 2 2
1 W W

2 3
2 2 2

W W W W

2 3
2 2 2 2

W W W W

2 3
2 2

(A7) a 3 a 6 a 3 3
u u

3 ( / 3 ) 6 ( / 3 ) 3 3
u u

6 9 6 9 9 3 3
u u

3 9 3
u

+ +
+ + +

+ +

+ +
+ + + + +

+ +

+ +
+ + + + +

+ +

+ +
+

+

∂σ ∂γ= ⋅ = ⋅ ⋅µ − ⋅µ − ⋅σ + ω⋅ −
∂ ∂

∂σ ∂γ⇔ ⋅ ω + µ = ⋅ ω + µ ⋅µ − ⋅µ − ⋅σ + ω⋅ −
∂ ∂

∂σ ∂γ⇔ ω + ⋅ω⋅µ + ⋅µ = ⋅ω⋅µ + ⋅µ − ⋅σ + ⋅ω⋅ − ⋅
∂ ∂

∂σ ∂γ⇔ ω − ⋅ω⋅ + ⋅σ + ⋅
∂ ∂

22 2 3
2

0
u

1.5 1.5 9 3 .
u u u

+

+ + +
+

+ + +

=

⎛ ⎞∂σ ∂σ ∂γ⇔ ω = ⋅ ± ⋅ − ⋅σ − ⋅⎜ ⎟∂ ∂ ∂⎝ ⎠

  

Moreover, positive skewness preferences require W 00 : 1 r u a+ +ω > ⇔ µ = + + < . In addition, 

the validity of this inequality for the best fund f = f* according to the performance measure 

(T1) guarantees the fulfilment of (8) so that the selection of f* might indeed be in line with the 

maximization of expected cubic HARA utility with positive, but decreasing marginal utility.27 

 

Appendix 4: Proof of Result T1 (footnote 12) 

With the preference structure 2 3 2 3
u ( , ) :+Φ σ γ = −ω⋅σ + γ  according to (4) and 

(A8)  
Q P

P P P Q(f ) P P P Q(f )

ˆu (x )

ˆ ˆ ˆ ˆu x u (1 x ) u 1 x (u x u ) / u
+

+ += ⋅ + − ⋅ ⇔ − = − ⋅  

an investor prefers fund g to fund h if 

                                                 
27 The second condition of (8) is obvious. In addition, under consideration of 2

1a 3 a= ⋅  and 2a 3 a= − ⋅  the first 
inequality of (8) is equivalent to 2

W3 ( a) 0+⋅ µ − >  which is immediately true for W a+µ < . 
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3 2
P P P Q(g) P P P Q(g)

3 2
P P P Q(h) P P P Q(h)

33 2 2 3 3
P Q(g) P P Q(g)Q(g)P P P Q(g)PP P P

P

ˆ ˆ ˆ ˆ(A9) (x u (1 x ) u ) (x u (1 x ) u )
ˆ ˆ ˆ ˆ(x u (1 x ) u ) (x u (1 x ) u )

ˆ ˆ ˆ ˆ ˆ ˆ(1 x ) 3 x (1 x ) 3 x (1 x ) x
ˆ[(1 x )

γ ⋅ + − ⋅ − ω⋅σ ⋅ + − ⋅
> γ ⋅ + − ⋅ − ω⋅σ ⋅ + − ⋅

⇔ − ⋅ γ + ⋅ ⋅ − ⋅ γ + ⋅ ⋅ − ⋅ γ + ⋅ γ
−ω⋅ − 2 2 2 2

Q(g) P P Q(g)P P P

33 2 2 3 3
P Q(h) P P Q(h)Q(h)P P P Q(h)PP P P

2 2 2 2
P Q(h) P P Q(h)P P P

3

Q P 3
Q(g) P

Q(g)

ˆ ˆ ˆ2 x (1 x ) x ]
ˆ ˆ ˆ ˆ ˆ ˆ(1 x ) 3 x (1 x ) 3 x (1 x ) x

ˆ ˆ ˆ ˆ[(1 x ) 2 x (1 x ) x ]

ˆu (x ) ˆ3 x
u

+

⋅σ + ⋅ ⋅ − ⋅σ + ⋅σ
> − ⋅ γ + ⋅ ⋅ − ⋅ γ + ⋅ ⋅ − ⋅ γ + ⋅ γ
−ω⋅ − ⋅σ + ⋅ ⋅ − ⋅σ + ⋅σ

⎛ ⎞
⇔ ⋅ γ + ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

2

Q P Q P2
Q(g)Q(g)P P Q(g)PP

Q(g) Q(g)

2

Q P Q P2
Q(g) P Q(g)P

Q(g) Q(g)

3

Q P Q P3
Q(h) P

Q(h) Q(h)

ˆ ˆu (x ) u (x )ˆ3 x
u u

ˆ ˆu (x ) u (x )ˆ2 x
u u

ˆ ˆu (x ) u (x )ˆ3 x
u u

+ +

+ +

+ +

⎛ ⎞ ⎛ ⎞
⋅ γ + ⋅ ⋅ ⋅ γ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥−ω⋅ ⋅σ + ⋅ ⋅ ⋅σ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
> ⋅ γ + ⋅ ⋅⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝

2

Q P2
Q(h)Q(h)P P Q(h)PP

Q(h)

2

Q P Q P2
Q(h) P Q(h)P

Q(h) Q(h)

ˆu (x )ˆ3 x
u

ˆ ˆu (x ) u (x )ˆ2 x
u u

+

+ +

⎛ ⎞
⋅ γ + ⋅ ⋅ ⋅ γ⎟ ⎜ ⎟⎟ ⎜ ⎟

⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥−ω⋅ ⋅σ + ⋅ ⋅ ⋅σ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 

22

3 3 2 2 3
Q P P P Q P P P Q P3 2

Q(g) Q(g) Q(g)
3
Q(g) Q(g)PQ (g)P

2 2
Q P P P Q P2

Q(g) Q(g)

2
Q(g) Q(g)P

3
Q P 3

Q(h)

1 1 1ˆ ˆ ˆ ˆ ˆ(u (x )) 3 x (u (x )) 3 x u (x )(u ) (u ) u
b b

1 1ˆ ˆ ˆ(u (x )) 2 x u (x )(u ) u

1ˆ(u (x )) (u )

+ + +

+ +

+

⇔ ⋅ + ⋅ ⋅ γ ⋅ ⋅ + ⋅ ⋅ γ ⋅ ⋅

γ

⎡ ⎤
⎢ ⎥− −⎢ ⎥+ω⋅ ⋅ + ⋅ ⋅σ ⋅ ⋅
⎢ ⎥
⎢ ⎥σ β⎣ ⎦

> ⋅

γ 22

3 2 2 3
P P Q P P P Q P2

Q(h) Q(h)
3
Q(h) Q(h)PQ (h)P

2 2
Q P P P Q P2

Q(h) Q(h)

2
Q(h) Q(h)P

3 3 2
Q P P P Q P(2) 3

g

1 1ˆ ˆ ˆ ˆ3 x (u (x )) 3 x u (x )(u ) u
b b

1 1ˆ ˆ ˆ(u (x )) 2 x u (x )(u ) u

1ˆ ˆ ˆ(u (x )) 3 x (u (x ))
(cSM )

+ +

+ +

+ +

+ ⋅ ⋅ γ ⋅ ⋅ + ⋅ ⋅ γ ⋅ ⋅

⎡ ⎤
⎢ ⎥− −⎢ ⎥+ω⋅ ⋅ + ⋅ ⋅σ ⋅ ⋅
⎢ ⎥
⎢ ⎥σ β⎣ ⎦

⇔ ⋅ + ⋅ ⋅ γ ⋅ 2 3
P P Q P(1) (2)

g g

2 2
Q P P P Q P2

g g

3 3 2 2 3
Q P P P Q P P P Q P(2) (1) (2)3

h h h

2
Q P

h

1 1ˆ ˆ3 x u (x )
cTM cTM

1 1ˆ ˆ ˆ(u (x )) 2 x u (x )
(qSM ) qTM

1 1 1ˆ ˆ ˆ ˆ ˆ(u (x )) 3 x (u (x )) 3 x u (x )
(cSM ) cTM cTM

1ˆ(u (x ))
(qSM

+

+ +

+ + +

+

⋅ + ⋅ ⋅ γ ⋅ ⋅

⎡ ⎤− −+ω⋅ ⋅ + ⋅ ⋅σ ⋅ ⋅⎢ ⎥
⎣ ⎦

> ⋅ + ⋅ ⋅ γ ⋅ ⋅ + ⋅ ⋅ γ ⋅ ⋅

−+ω⋅ ⋅ 2
P P Q P2

h

1ˆ ˆ2 x u (x ) .
) qTM

+⎡ ⎤−+ ⋅ ⋅σ ⋅ ⋅⎢ ⎥
⎣ ⎦
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Appendix 5: Proof of (T6) and (T8) according to Table 3 (footnote 13) 

 

The case (exg)*
fy 1=  coincides with yP = 0 and thus requires Px̂ 0.=  For Px̂ 0,=  (T1) reduces 

to28 

(A10) 

(exg) 3 2
f (2) 3 2

f f

(exg) (mod1)
f (2) 3 2

f f

1 1cIM (0) u u
(cSM ) (qSM )

1 1cIM (0) ,
(cSM ) (qSM )

+ + −= ⋅ + ⋅ω⋅

−⇔ = + ω ⋅
 

with (mod1) : /( u ).+ω = κ λ ⋅  

 

Now consider the second limiting case described by (exg)*
fy = ε  with ε > 0, but small. For such 

a situation, portfolio Q(f) just converges to the sole holding of the riskless asset and we thus 

arrive at a situation with PQ ˆu (x ) 0+ →  (i.e. P Px̂ u / u+→ ). For this, we get from (T1) in the 

typical case of PQ ˆu (x ) 0+ >  

P

P

u
P uP

(exg) u 2 3 2
f P P P P Pu (2)

f f

3 2
(exg) u 3 2

P f P P Pu (2)
P f P f

ˆ(exg,x ) (mod 2)
f (2) (2)3 2

P f P

1 1ˆ ˆ ˆ(A11) cIM (x ) 3 x 2 x
cTM qTM

u 1 u 1ˆ ˆx cIM (x ) 3 2
u cTM u qTM

1 1cIM :
(cSM ) cTM (qSM )

+

+

+

+ +

=

−= = ⋅ ⋅ γ ⋅ + ⋅ω⋅ ⋅σ ⋅

⎛ ⎞ ⎛ ⎞ −⇔ ⋅ = = ⋅ ⋅ γ ⋅ + ⋅ω⋅ ⋅σ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−⇔ = + ω ⋅
⋅ ⋅ f

,
qTM

 

with (mod 2) : (2 ) /(3 ).ω = ⋅ κ ⋅ λ   

 

Appendix 6:  Proof that only in situations with γg > 0 and γh > 0 it is possible to always 

derive a greater cubic Sharpe measure “1” (defined in Table 2) for a fund 

g in comparison with a fund h from both a greater quadratic Sharpe 

measure as well as a smaller cubic Sharpe measure “2” (according to (T3)) 

(footnote 14) 

 

For g h
g h

g h

u uqSM qSM 0 0> > ⇔ > >
σ σ

 and g hu u ,=  the case γg > 0 and γh > 0 immediately 

implies g h(2)(2)
g h

g h

cSM cSM 0
u u
γ γ< ⇔ > >  and thus g g g h h h(1)

g
g g g h h h

u ucSM
u u

γ γ γ γ= = ⋅ > ⋅ = =
σ σ σ σ

 

                                                 
28 The following equivalence means that both performance measures lead to the same fund ranking. 
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(1)
hcSM . The case γg < 0 together with γh > 0 always leads to (1)(1)

g hcSM cSM<  as well as 

(2)(2)
g hcSM cSM .<  Since γg > 0 and γh < 0 corresponds with (2)(2)

g hcSM cSM ,>  the last case 

which has to be treated is γg < 0 in connection with γh < 0. Let us look at the situation 

g h g h gu u 10 %, 10 %, 30 %, 5 %,= = σ = σ = γ = −  and h 10 %.γ = −  This parameter constel-

lation leads to 

(A12)  g h
0.1 0.1qSM 1 1/ 3 qSM ,
0.1 0.3

= = > = =  (2)(2)
g h

0.1 0.1cSM 2 1 cSM .
0.05 0.1

= = − < − = =
− −

 

Nevertheless, we have  

(A13)  (1)(1)
g h

0.05 0.1cSM 0.5 1/ 3 cSM .
0.1 0.3

− −= = − < − = =  

 

Appendix 7: Proof that the cubic Treynor measure of Breuer/Gürtler (2006) is a special 

case of the performance measure (T8) of this paper (footnote 15) 

 

With z(0) as a fund-independent constant in the case of cubic HARA utility defined more 

specifically in Breuer/Gürtler (2006), the cubic Treynor measure of formula (20) in Breu-

er/Gürtler (2006) can be transformed as follows: 

 

( ) ( )

( ) ( )

( )

2
fPP P gPz(0) fPP fP2

P z(0)
g g g

3 2
P P2 2

P Pz(0) z(0)3 2(2)
f f P Pf f

3 2
fPP fP P P

3 2
P P2

P z(0)(2) (2) 3 2
f P f P

2 u
(A14) 2 u

u u u

u u1 1 1 12 u 2 uu u u ucTM qTM

u u1 12 u .
cTM (cSM ) qTM (qSM )

γ + ⋅ − ⋅σ γ σ= + ⋅ − ⋅

= + ⋅ − ⋅ = ⋅ + ⋅ − ⋅ ⋅

γ σ γ σ

= ⋅ + ⋅ − ⋅ ⋅

 

This measure leads to the same fund ranking as the measure 

(A15)  ( )P

2
z(0) u(2) 3 (2) 2

P f P f

1 12 1
(cSM ) cTM (qSM ) qTM⋅

−+ ⋅ − ⋅
⋅ ⋅ ⋅

, 

which corresponds with (T8) if we identify (mod 2) (2 ) /(3 )ω = ⋅ κ ⋅λ  with ( )P

2
z(0) u2 1⋅⋅ − . 
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Appendix 8: Proof that in the case of pure mean-variance preferences, the best fund 

according to the optimized quadratic Sharpe measure as discussed, for ex-

ample, in Breuer/Gürtler (1999) is always also the best one as well accord-

ing to (T10) of Table 3 for arbitrary desired overall expected excess return 

u+  (footnote 16) 

 

According to the optimized quadratic Sharpe measure presented in Breuer/Gürtler (1999) a 

fund g will be preferred to a fund h for arbitrary desired overall expected excess return u+  if 

and only if 

(g)* (g)* (h)* (h)** 2 2 * 2 2 * 2 2 * 2 2
g g g P gP P P h h h P hP P P

(g)* (g)* (h)* (h)** 2 2 * 2 2 * 2 2 * 2 2
g g g P gP P P h h h P hP P P

2(g)*
Q P

g

u u(A16)
(x ) 2 x x (x ) (x ) 2 x x (x )

(x ) 2 x x (x ) (x ) 2 x x (x )

u (x )
u

+ +

+

>
⋅σ + ⋅ ⋅ ⋅σ + ⋅σ ⋅σ + ⋅ ⋅ ⋅σ + ⋅σ

⇔ ⋅σ + ⋅ ⋅ ⋅σ + ⋅σ < ⋅σ + ⋅ ⋅ ⋅σ + ⋅σ

⎛ ⎞
⇔ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

(g)*
Q P (g)* (g)*2 2 2

g P gP P P
g

2(h)* (h)*
Q P Q P (h)* (h)*2 2 2

h P hP P P
h h

(g)* (g)* (g)* (g)*2 2 2 2
Q P P P Q P P P2

g g

(h)* 2
Q P

u (x )
2 x (x )

u

u (x ) u (x )
2 x (x )

u u
1 1(u (x )) 2 x u (x ) (x )

(qSM ) qTM
1(u (x ))

(

+

+ +

+ +

+

σ + ⋅ ⋅ ⋅σ + ⋅σ

⎛ ⎞
< ⋅σ + ⋅ ⋅ ⋅σ + ⋅σ⎜ ⎟
⎝ ⎠

− −⇔ ⋅ + ⋅ ⋅σ ⋅ ⋅ − ⋅σ

−> ⋅ (h)* (h)* (h)*2 2 2
P P Q P P P2

h h

12 x u (x ) (x ) .
qSM ) qTM

+ −+ ⋅ ⋅σ ⋅ ⋅ − ⋅σ

 

Thus, the implied fund ranking corresponds to the ranking according to (T10) of Table 3 in 

the quadratic case ω → ∞. 
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(1)
Px

(2)
Px

Addendum:  
 
Example for the validity of the following statement: “Resulting correlation coefficients between two fund rankings do not change much, if differing 
pairs (1) (2)

P P(x , x )  of exogenous direct stock holdings are considered, as long as we have a constant value for (1) (2)
P P Px : x x∆ = − ”: All shaded cells pre-

sent apparently almost identical ranking correlation coefficients between two different respective fund rankings with constant value of ∆xP (fn. 20)  
 

 
0 % 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 % 50 % 55 % 60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 % 99.99 % 

0 % 100.0000 100.0000 99.75490 99.75490 99.75490 99.75490 99.75490 99.50980 99.01961 99.01961 98.03922 98.03922 98.03922 98.03922 98.03922 98.03922 97.30392 96.56863 96.56863 96.56863 96.56863 
5 % 100.0000 100.0000 99.75490 99.75490 99.75490 99.75490 99.75490 99.50980 99.01961 99.01961 98.03922 98.03922 98.03922 98.03922 98.03922 98.03922 97.30392 96.56863 96.56863 96.56863 96.56863 
10 % 99.75490 99.75490 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 98.52941 98.52941 98.52941 98.52941 98.52941 98.52941 97.79412 97.30392 97.30392 97.30392 97.30392 
15 % 99.75490 99.75490 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 98.52941 98.52941 98.52941 98.52941 98.52941 98.52941 97.79412 97.30392 97.30392 97.30392 97.30392 
20 % 99.75490 99.75490 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 98.52941 98.52941 98.52941 98.52941 98.52941 98.52941 97.79412 97.30392 97.30392 97.30392 97.30392 
25 % 99.75490 99.75490 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 98.52941 98.52941 98.52941 98.52941 98.52941 98.52941 97.79412 97.30392 97.30392 97.30392 97.30392 
30 % 99.75490 99.75490 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 98.52941 98.52941 98.52941 98.52941 98.52941 98.52941 97.79412 97.30392 97.30392 97.30392 97.30392 
35 % 99.50980 99.50980 99.75490 99.75490 99.75490 99.75490 99.75490 100.0000 99.75490 99.75490 98.77451 98.77451 98.77451 98.77451 98.77451 98.77451 98.03922 97.54902 97.54902 97.54902 97.54902 
40 % 99.01961 99.01961 99.50980 99.50980 99.50980 99.50980 99.50980 99.75490 100.0000 100.0000 99.01961 99.01961 99.01961 99.01961 99.01961 99.01961 98.28431 98.03922 98.03922 98.03922 98.03922 
45 % 99.01961 99.01961 99.50980 99.50980 99.50980 99.50980 99.50980 99.75490 100.0000 100.0000 99.01961 99.01961 99.01961 99.01961 99.01961 99.01961 98.28431 98.03922 98.03922 98.03922 98.03922 
50 % 98.03922 98.03922 98.52941 98.52941 98.52941 98.52941 98.52941 98.77451 99.01961 99.01961 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 99.50980 99.50980 
55 % 98.03922 98.03922 98.52941 98.52941 98.52941 98.52941 98.52941 98.77451 99.01961 99.01961 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 99.50980 99.50980 
60 % 98.03922 98.03922 98.52941 98.52941 98.52941 98.52941 98.52941 98.77451 99.01961 99.01961 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 99.50980 99.50980 
65 % 98.03922 98.03922 98.52941 98.52941 98.52941 98.52941 98.52941 98.77451 99.01961 99.01961 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 99.50980 99.50980 
70 % 98.03922 98.03922 98.52941 98.52941 98.52941 98.52941 98.52941 98.77451 99.01961 99.01961 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 99.50980 99.50980 
75 % 98.03922 98.03922 98.52941 98.52941 98.52941 98.52941 98.52941 98.77451 99.01961 99.01961 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 99.75490 99.50980 99.50980 99.50980 99.50980 
80 % 97.30392 97.30392 97.79412 97.79412 97.79412 97.79412 97.79412 98.03922 98.28431 98.28431 99.75490 99.75490 99.75490 99.75490 99.75490 99.75490 100.0000 99.75490 99.75490 99.75490 99.75490 
85 % 96.56863 96.56863 97.30392 97.30392 97.30392 97.30392 97.30392 97.54902 98.03922 98.03922 99.50980 99.50980 99.50980 99.50980 99.50980 99.50980 99.75490 100.0000 100.0000 100.0000 100.0000 
90 % 96.56863 96.56863 97.30392 97.30392 97.30392 97.30392 97.30392 97.54902 98.03922 98.03922 99.50980 99.50980 99.50980 99.50980 99.50980 99.50980 99.75490 100.0000 100.0000 100.0000 100.0000 
95 % 96.56863 96.56863 97.30392 97.30392 97.30392 97.30392 97.30392 97.54902 98.03922 98.03922 99.50980 99.50980 99.50980 99.50980 99.50980 99.50980 99.75490 100.0000 100.0000 100.0000 100.0000 

99.99 % 96.56863 96.56863 97.30392 97.30392 97.30392 97.30392 97.30392 97.54902 98.03922 98.03922 99.50980 99.50980 99.50980 99.50980 99.50980 99.50980 99.75490 100.0000 100.0000 100.0000 100.0000 

Table Ad 1: Correlation Coefficients between Exogenous Cubic IM-Rankings for Desired Expected Excess Return u+  = 2.3 %, ω = 0, and Differ-
ent Values (1)

Px  and (2)
Px  (in %) 
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Px∆
u+

 
 
Cells referred to in the main text of the paper are shaded (footnote 21) 

 
1.7719 % 1.90 % 2.00 % 2.10 % 2.20 % 2.30 % 2.40 % 2.50 % 2.60 % 2.70 % 10.00 % 

0 % 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 
5 % 99.75490% 99.77941% 99.79167% 99.79167% 99.79167% 99.80392% 99.80392% 99.80392% 99.81618% 99.84069% 99.91422% 
10 % 99.57430% 99.61300% 99.62590% 99.62590% 99.63880% 99.65170% 99.66460% 99.66460% 99.69040% 99.67750% 99.81940% 
15 % 99.41449% 99.45534% 99.45534% 99.46895% 99.48257% 99.50980% 99.52342% 99.52342% 99.55065% 99.53704% 99.72767% 
20 % 99.27912% 99.32238% 99.30796% 99.32238% 99.35121% 99.36563% 99.38005% 99.38005% 99.40888% 99.40888% 99.61073% 
25 % 99.06556% 99.17279% 99.15748% 99.18811% 99.23407% 99.24939% 99.26471% 99.28002% 99.28002% 99.28002% 99.52512% 
30 % 98.85621% 98.93791% 98.93791% 98.97059% 99.03595% 99.10131% 99.13399% 99.16667% 99.15033% 99.15033% 99.42810% 
35 % 98.63445% 98.72199% 98.72199% 98.75700% 98.84454% 98.84454% 98.89706% 98.96709% 99.00210% 99.00210% 99.33473% 
40 % 98.41629% 98.51056% 98.49170% 98.52941% 98.62368% 98.62368% 98.68024% 98.77451% 98.73680% 98.75566% 99.24585% 
45 % 98.20261% 98.34559% 98.28431% 98.32516% 98.36601% 98.36601% 98.44771% 98.54984% 98.50899% 98.52941% 99.14216% 
50 % 97.95009% 98.15062% 98.08378% 98.12834% 98.19519% 98.15062% 98.23975% 98.28431% 98.23975% 98.26203% 99.01961% 
55 % 97.59804% 97.89216% 97.81863% 97.89216% 97.99020% 97.94118% 98.03922% 98.06373% 98.01471% 98.03922% 98.92157% 
60 % 97.22222% 97.54902% 97.49455% 97.57625% 97.68519% 97.68519% 97.82135% 97.90305% 97.84858% 97.87582% 98.82898% 
65 % 96.84436% 97.12010% 97.08946% 97.18137% 97.42647% 97.42647% 97.57966% 97.70221% 97.61029% 97.67157% 98.71324% 
70 % 96.42857% 96.74370% 96.63866% 96.77871% 97.05882% 97.05882% 97.26891% 97.40896% 97.33894% 97.37395% 98.56443% 
75 % 96.03758% 96.40523% 96.28268% 96.40523% 96.56863% 96.60948% 96.85458% 97.05882% 96.97712% 97.01797% 98.40686% 
80 % 95.58824% 95.98039% 95.83333% 95.98039% 96.12745% 96.22549% 96.27451% 96.51961% 96.42157% 96.51961% 98.23529% 
85 % 94.97549% 95.46569% 95.28186% 95.34314% 95.52696% 95.58824% 95.71078% 95.71078% 95.77206% 95.89461% 98.10049% 
90 % 94.03595% 94.60784% 94.52614% 94.60784% 94.68954% 94.93464% 95.09804% 95.09804% 95.26144% 95.01634% 97.95752% 
95 % 92.64706% 93.50490% 93.99510% 93.99510% 94.11765% 94.24020% 94.48529% 94.48529% 94.73039% 94.36275% 97.67157% 

99.99 % 91.17647% 91.91176% 92.89216% 92.89216% 92.89216% 93.13725% 93.13725% 93.13725% 93.62745% 93.62745% 97.30392% 

Table Ad 2a: Average Correlation Coefficients between IM-Rankings for Varying Identical Values of Desired Expected Excess Return u+  and Iden-
tical Differences (1) (2)

P P Px | x x |∆ = −  between Exogenous Investments in Reference Portfolio P (ω = 100,000) 
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Px∆
u+

 
Cells referred to in the main text of the paper are shaded (footnote 21) 

 
1.7719 % 1.90 % 2.00 % 2.10 % 2.20 % 2.30 % 2.40 % 2.50 % 2.60 % 2.70 % 10.00 % 

0 % 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 
5 % 99.87745% 99.87745% 99.88971% 99.88971% 99.88971% 99.88971% 99.88971% 99.88971% 99.88971% 99.88971% 99.98775% 
10 % 99.74200% 99.75490% 99.76780% 99.76780% 99.76780% 99.76780% 99.76780% 99.76780% 99.76780% 99.78070% 99.97420% 
15 % 99.60512% 99.63235% 99.64597% 99.64597% 99.64597% 99.64597% 99.64597% 99.65959% 99.65959% 99.67320% 99.95915% 
20 % 99.46655% 99.49539% 99.50980% 99.50980% 99.50980% 99.50980% 99.52422% 99.53864% 99.53864% 99.56747% 99.94233% 
25 % 99.26471% 99.34130% 99.35662% 99.35662% 99.37194% 99.37194% 99.38725% 99.41789% 99.41789% 99.44853% 99.92341% 
30 % 99.05229% 99.11765% 99.13399% 99.15033% 99.21569% 99.23203% 99.24837% 99.28105% 99.28105% 99.31373% 99.90196% 
35 % 98.84454% 98.87955% 98.91457% 98.93207% 99.01961% 99.01961% 99.03711% 99.08964% 99.08964% 99.15966% 99.87745% 
40 % 98.58597% 98.64253% 98.71795% 98.73680% 98.79336% 98.79336% 98.81222% 98.86878% 98.86878% 98.92534% 99.86802% 
45 % 98.38644% 98.46814% 98.46814% 98.50899% 98.57026% 98.57026% 98.59069% 98.61111% 98.61111% 98.67239% 99.85703% 
50 % 98.17291% 98.26203% 98.26203% 98.30660% 98.35116% 98.28431% 98.32888% 98.35116% 98.35116% 98.44029% 99.84403% 
55 % 97.91667% 98.01471% 98.01471% 98.06373% 98.11275% 98.03922% 98.08824% 98.16176% 98.16176% 98.28431% 99.82843% 
60 % 97.57625% 97.71242% 97.71242% 97.76688% 97.84858% 97.90305% 97.95752% 98.03922% 98.03922% 98.14815% 99.80937% 
65 % 97.24265% 97.30392% 97.51838% 97.57966% 97.67157% 97.73284% 97.79412% 97.94730% 97.94730% 98.06985% 99.78554% 
70 % 97.09384% 97.09384% 97.23389% 97.33894% 97.51401% 97.58403% 97.65406% 97.82913% 97.82913% 98.00420% 99.75490% 
75 % 96.89542% 96.97712% 97.05882% 97.18137% 97.30392% 97.42647% 97.50817% 97.71242% 97.71242% 97.91667% 99.75490% 
80 % 96.71569% 96.91176% 97.00980% 97.00980% 97.15686% 97.15686% 97.30392% 97.54902% 97.54902% 97.79412% 99.75490% 
85 % 96.56863% 96.81373% 96.93627% 96.93627% 96.93627% 96.93627% 97.12010% 97.30392% 97.30392% 97.61029% 99.75490% 
90 % 96.32353% 96.65033% 96.81373% 96.81373% 96.81373% 96.81373% 96.81373% 97.05882% 97.05882% 97.30392% 99.75490% 
95 % 96.07843% 96.32353% 96.56863% 96.56863% 96.56863% 96.56863% 96.56863% 96.56863% 96.56863% 96.93627% 99.75490% 

99.99 % 96.07843% 96.07843% 96.56863% 96.56863% 96.56863% 96.56863% 96.56863% 96.56863% 96.56863% 96.56863% 99.75490% 

Table Ad 2b: Average Correlation Coefficients between IM-Rankings for Varying Identical Values of Desired Expected Excess Return u+  and Iden-
tical Differences (1) (2)

P P Px | x x |∆ = −  between Exogenous Investments in Reference Portfolio P (ω = 0) 
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Px
u+

 
Cells referred to in the main text of the paper are shaded (footnote 22) 

 
1.7719 % 1.90 % 2.00 % 2.10 % 2.20 % 2.30 % 2.40 % 2.50 % 2.60 % 2.70 % 10.00 % 

0 % 93.13725% 93.13725% 93.13725% 93.13725% 93.13725% 93.13725% 93.13725% 93.13725% 93.13725% 93.13725% 93.13725% 
5 % 94.60784% 94.60784% 94.60784% 94.60784% 94.60784% 94.60784% 94.60784% 94.60784% 94.60784% 94.36275% 93.87255% 
10 % 96.32353% 96.32353% 94.85294% 94.85294% 94.85294% 94.85294% 94.85294% 94.85294% 94.85294% 94.85294% 94.36275% 
15 % 97.54902% 97.54902% 96.81373% 96.81373% 96.81373% 96.32353% 96.32353% 96.32353% 96.32353% 96.32353% 94.36275% 
20 % 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 96.81373% 96.81373% 94.60784% 
25 % 97.30392% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 94.60784% 
30 % 97.30392% 97.30392% 97.30392% 97.30392% 97.30392% 97.54902% 97.54902% 97.54902% 97.54902% 97.54902% 94.85294% 
35 % 98.28431% 98.28431% 97.30392% 97.30392% 97.30392% 97.30392% 97.30392% 97.30392% 97.54902% 97.54902% 94.85294% 
40 % 98.52941% 98.52941% 98.28431% 98.28431% 97.30392% 97.30392% 97.30392% 97.30392% 97.30392% 97.30392% 94.85294% 
45 % 98.52941% 98.52941% 98.52941% 98.52941% 98.52941% 98.28431% 98.28431% 97.30392% 97.30392% 97.30392% 94.85294% 
50 % 98.28431% 98.28431% 98.52941% 98.52941% 98.52941% 98.52941% 98.52941% 98.28431% 98.28431% 98.28431% 94.85294% 
55 % 98.28431% 98.28431% 98.28431% 98.28431% 98.52941% 98.52941% 98.52941% 98.52941% 98.52941% 98.52941% 96.32353% 
60 % 98.77451% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.52941% 98.52941% 98.52941% 98.52941% 96.32353% 
65 % 98.77451% 98.77451% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.52941% 98.52941% 98.52941% 96.32353% 
70 % 98.77451% 98.77451% 98.77451% 98.77451% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.52941% 96.81373% 
75 % 99.01961% 98.77451% 98.77451% 98.77451% 98.77451% 98.77451% 98.28431% 98.28431% 98.28431% 98.28431% 96.81373% 
80 % 99.26471% 99.01961% 99.01961% 98.77451% 98.77451% 98.77451% 98.77451% 98.28431% 98.28431% 98.28431% 97.54902% 
85 % 99.26471% 99.26471% 99.01961% 99.01961% 98.77451% 98.77451% 98.77451% 98.77451% 98.77451% 98.28431% 97.54902% 
90 % 99.26471% 99.26471% 99.26471% 99.01961% 99.01961% 98.77451% 98.77451% 98.77451% 98.77451% 98.77451% 97.54902% 
95 % 99.50980% 99.26471% 99.26471% 99.26471% 99.01961% 99.01961% 98.77451% 98.77451% 98.77451% 98.77451% 97.54902% 

99.99 % 98.77451% 99.50980% 99.26471% 99.26471% 99.26471% 99.01961% 99.01961% 99.01961% 98.77451% 98.77451% 97.54902% 

Table Ad 3a: Correlation Coefficients between Fund Rankings according to the Exogenous Quadratic IM and the (Restricted) Endogenous Quadratic 

IM for Different Values of Desired Expected Excess Return u+  and of Exogenous Investment xP in Reference Portfolio P (ω = 

100,000) 
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Px
u+

 

 
Cells referred to in the main text of the paper are shaded (footnote 22) 

 
1.7719 % 1.90 % 2.00 % 2.10 % 2.20 % 2.30 % 2.40 % 2.50 % 2.60 % 2.70 % 10.00 % 

0 % 97.79412% 99.26471% 97.79412% 99.75490% 99.75490% 99.75490% 99.75490% 99.75490% 99.75490% 99.75490% 97.79412% 
5 % 97.79412% 99.26471% 97.79412% 99.75490% 99.75490% 99.75490% 99.75490% 99.75490% 99.75490% 99.75490% 97.79412% 
10 % 97.54902% 99.01961% 97.54902% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 97.79412% 
15 % 97.54902% 99.01961% 97.54902% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 97.79412% 
20 % 97.54902% 99.01961% 97.54902% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 97.79412% 
25 % 98.03922% 99.01961% 97.54902% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 97.79412% 
30 % 97.54902% 99.50980% 98.03922% 99.75490% 99.75490% 99.50980% 99.50980% 99.50980% 99.50980% 99.50980% 97.79412% 
35 % 97.54902% 99.01961% 97.54902% 99.26471% 99.75490% 99.75490% 99.75490% 99.75490% 99.75490% 99.50980% 97.54902% 
40 % 98.52941% 98.03922% 97.54902% 99.26471% 99.26471% 99.26471% 99.26471% 99.75490% 99.75490% 99.75490% 97.54902% 
45 % 98.52941% 98.03922% 98.52941% 98.28431% 98.52941% 99.26471% 99.26471% 99.26471% 99.26471% 99.26471% 97.54902% 
50 % 98.52941% 98.03922% 98.52941% 98.28431% 98.28431% 98.28431% 98.52941% 99.26471% 99.26471% 99.26471% 97.54902% 
55 % 98.52941% 98.03922% 98.52941% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.52941% 97.54902% 
60 % 98.77451% 98.03922% 98.52941% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 97.54902% 
65 % 98.03922% 97.30392% 98.52941% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 97.54902% 
70 % 98.03922% 96.56863% 98.77451% 97.54902% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 97.54902% 
75 % 98.03922% 96.56863% 98.03922% 97.54902% 97.54902% 98.28431% 98.28431% 98.28431% 98.28431% 98.28431% 97.54902% 
80 % 98.03922% 96.56863% 98.03922% 96.81373% 97.54902% 97.54902% 97.54902% 98.28431% 98.28431% 98.28431% 97.54902% 
85 % 98.03922% 96.56863% 98.03922% 96.81373% 96.81373% 96.81373% 97.54902% 97.54902% 97.54902% 98.28431% 97.54902% 
90 % 98.28431% 96.56863% 98.03922% 96.81373% 96.81373% 96.81373% 96.81373% 97.54902% 97.54902% 97.54902% 97.54902% 
95 % 98.28431% 96.56863% 98.03922% 96.81373% 96.81373% 96.81373% 96.81373% 96.81373% 96.81373% 97.54902% 97.54902% 

99.99 % 98.28431% 96.81373% 98.03922% 96.81373% 96.81373% 96.81373% 96.81373% 96.81373% 96.81373% 96.81373% 97.54902% 

Table Ad 3b: Correlation Coefficients between Fund Rankings according to the Exogenous Cubic IM and the (Restricted) Endogenous Cubic IM for 

Different Values of Desired Expected Excess Return u+  and of Exogenous Investment xP in Reference Portfolio P (ω = 0) 
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Cells referred to in the main text of the paper are shaded (footnote 23) 

+u  1.7719 % 2.00 % 2.20 % 2.40 % 2.60 % 10.00 % 

 
0 100,000 0 100,000 0 100,000 0 100,000 0 100,000 0 100,000 

29 11 12 11 12 11 12 11 12 11 12 10 15 
30 1 2 1 2 1 2 1 2 1 2 1 1 
31 4 5 4 5 4 5 4 5 4 5 4 5 
32 9 6 9 6 9 6 9 6 9 7 9 8 
33 17 17 17 17 17 17 17 17 17 17 17 17 
34 15 14 15 14 15 14 15 14 15 14 15 13 
35 14 9 14 9 14 9 14 9 14 9 14 9 
36 16 10 16 10 16 10 16 10 16 10 16 10 
37 10 13 10 13 10 13 10 13 10 13 11 12 
38 3 1 3 1 3 1 3 1 3 1 2 2 
39 2 4 2 3 2 3 2 3 2 3 3 3 
40 5 7 5 7 5 7 6 7 7 6 7 6 
41 7 16 7 16 7 16 7 16 5 16 5 16 
42 6 3 6 4 6 4 5 4 6 4 6 4 
43 8 15 8 15 8 15 8 15 8 15 8 14 
44 12 11 12 11 12 11 12 11 12 11 12 11 
45 13 8 13 8 13 8 13 8 13 8 13 7 
ρSP 68.1373% 69.1176% 69.1176% 69.8529% 65.1961% 64.2157% 

Table Ad 4: Ranking of Funds for the Two Cases ω = 0 As Well As ω = 100,000 with xP = 50 % and +u  ∈ {1.7719 %, 2.0 %, 2.2 %, 2.4 %, 2.6 %, 
10 %} and Corresponding Ranking Correlation Coefficients ρSP 

No.
ω
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Cells referred to in the main text of the paper are shaded (footnote 24) 

xP 0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 99.99 % 

Av. Corr. Coeff. 62.5000% 64.1748% 65.5637% 65.5229% 65.8905% 67.6062% 67.8105% 67.5654% 67.4837% 66.9526% 66.3399%

Table Ad 5: Average Correlation Coefficients between the Two Rankings according to ω = 0 and ω = 100,000 for Varying Values of xP 
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Generalization of Table 5 of the main text to situations with varying values for desired expected excess return (footnote 25) 

+u  1.7719 % 2.00 % 2.20 % 2.40 % 2.60 % 10.00 % 

No. Best possible 
ranking pos. 

Worst possible 
ranking pos. 

Best possible 
ranking pos. 

Worst possible 
ranking pos. 

Best possible 
ranking pos. 

Worst possible 
ranking pos. 

Best possible 
ranking pos. 

Worst possible 
ranking pos. 

Best possible 
ranking pos. 

Worst possible 
ranking pos. 

Best possible 
ranking pos. 

Worst possible 
ranking pos. 

29 8 15 8 15 8 15 8 15 8 15 9 16 

30 1 2 1 2 1 2 1 2 1 2 1 1 

31 4 5 4 5 4 5 4 5 4 5 4 5 

32 6 9 6 9 6 9 6 9 7 9 7 10 

33 17 17 17 17 17 17 17 17 17 17 17 17 

34 13 16 13 16 13 16 13 16 13 16 12 16 

35 9 14 9 14 9 14 9 14 9 14 9 14 

36 10 16 10 16 10 16 10 16 10 16 10 16 

37 8 15 8 15 8 15 8 15 8 15 8 15 

38 1 3 1 3 1 3 1 3 1 3 2 2 

39 2 4 2 3 2 3 2 3 2 3 3 3 

40 5 7 5 7 5 7 6 7 6 7 6 7 

41 7 16 7 16 7 16 7 16 5 16 5 16 

42 3 6 4 6 4 6 4 5 4 6 4 6 

43 7 16 7 16 7 16 7 16 7 16 7 15 

44 8 15 8 15 8 15 8 15 8 15 8 15 

45 8 13 8 13 8 13 8 13 8 13 7 13 

Table Ad 6: Possible Variations in Fund Rankings according to a Variation of ω 
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Px
u+

 
Cells referred to in the main text of the paper are shaded (footnote 26) 

 
1.7719 % 1.90 % 2.00 % 2.10 % 2.20 % 2.30 % 2.40 % 2.50 % 2.60 % 2.70 % 10.00 % 

0 % 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 
5 % 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 67.15686% 
10 % 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.15686% 
15 % 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.15686% 
20 % 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.15686% 
25 % 66.42157% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.15686% 
30 % 66.17647% 66.42157% 66.42157% 66.42157% 66.42157% 67.40196% 67.40196% 67.40196% 67.40196% 67.40196% 67.15686% 
35 % 66.17647% 66.17647% 66.17647% 66.17647% 66.42157% 66.42157% 66.42157% 66.42157% 66.42157% 67.40196% 67.40196% 
40 % 70.09804% 70.09804% 66.17647% 66.17647% 66.17647% 66.17647% 66.17647% 66.42157% 66.42157% 66.42157% 67.40196% 
45 % 70.09804% 70.09804% 70.09804% 70.09804% 70.83333% 66.17647% 66.17647% 66.17647% 66.17647% 66.17647% 67.40196% 
50 % 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.83333% 66.17647% 66.17647% 66.17647% 67.40196% 
55 % 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.83333% 67.40196% 
60 % 69.85294% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 67.40196% 
65 % 69.11765% 69.85294% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 67.40196% 
70 % 69.11765% 69.11765% 69.85294% 69.85294% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 67.40196% 
75 % 69.11765% 69.11765% 69.11765% 69.85294% 69.85294% 70.09804% 70.09804% 70.09804% 70.09804% 70.09804% 67.40196% 
80 % 69.11765% 69.11765% 69.11765% 69.11765% 69.85294% 69.85294% 69.85294% 70.09804% 70.09804% 70.09804% 67.40196% 
85 % 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.85294% 69.85294% 69.85294% 70.09804% 67.40196% 
90 % 68.62745% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.85294% 69.85294% 69.85294% 67.40196% 
95 % 68.62745% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.85294% 67.40196% 

99.99 % 68.62745% 68.62745% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 69.11765% 67.40196% 

Table Ad 7: Correlation Coefficients between Fund Rankings According to the Exogenous Cubic IM and the Restricted Optimized Quadratic Sharpe 

Measure for Different Values of Desired Expected Excess Return u+  and of Exogenous Investment xP in Reference Portfolio P (ω = 0) 

 




