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Introduction

Since both the trend of insured losses and the trend of numbers of catas-

trophes are positive, (re-)insurance companies have to consider new ways of

coping with the risk.1 One possibility is to transfer the risk from reinsurance

markets to financial markets. Important financial instruments which are used

for the transfer are (CAT-)astrophe bonds.2 The volume of CAT bond princi-

pal outstanding rose to USD 13.8 billion in 2007.3 After a collapsing market

has been observed in 2008, the market regained strength in 2009. The main

idea of catastrophe securitization by a CAT bond transaction is that a spon-

sor – usually a (re-)insurer – enters into an alternative reinsurance contract

with a Special Purpose Vehicle (SPV). Thus, the sponsor is protected against

high losses due to a specified catastrophe up to a certain limit. In order to

guarantee insurance coverage up to the limit, the SPV issues CAT bonds to

investors. Investors buy the bonds to diversify their portfolios and to receive

high yields resulting from the covered peril.4 A challenging question for the

trading of CAT bonds is how CAT bond transactions can be priced best.

The objective of this paper is the identification of the most accurate pricing

model. Therefore, we compare different selected premium calculation models

and include pricing determining factors.

In order to describe these models, figure 1 presents the basic structure of

1See (Munich Re, 2010).
2Generally, bonds whose payment structure is linked to insurance risk are called

Insurance-Linked Securities (ILS). If catastrophe risk is securitized, one refers to CAT
bonds.

3See (Carpenter, 2008, p. 13).
4For a more precise description of the functionality of CAT bonds see, for instance,

(Carpenter, 2006).
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a CAT bond transaction.

Sponsor SPV Investor
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 1h( f )
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Figure 1: CAT Bond Transaction

Within the framework of the basic structure, the sponsor pays premiums

ρ to the SPV to receive insurance coverage up to the limit h. The premium

ρ consists of the expected value of loss EL plus a load for risk margin and

expenses Λ. In order to guarantee insurance coverage for the sponsor, the

SPV in turn issues CAT bonds to an investor5 who pays the par amount h

at issue date. If no triggering event occurs, the investor receives at maturity

the par amount h and a coupon c consisting of the risk-free interest rate r

and the premium ρ. In case of a triggering event, the coupon to the investor

is reduced by d, 0 ≤ d ≤ 1. Furthermore, the par amount at maturity h

might be reduced by f , 0 ≤ f ≤ 1. However, the sponsor receives insurance

coverage according to the reinsurance contract between the sponsor and the

SPV up to the limit h.

Obviously, the key parameter of a CAT bond transaction and thus of the

CAT bond price is the premium ρ. The premiums are usually determined on

the basis of premium calculation models which use the relationship between

ρ and EL. For instance, (Lane, 2000) takes the relationship of figure 1 as

5Typically, there are more than one investors. For simplicity, we assume only one
investor within the basic transaction scheme.
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a basis and models Λ by applying a Cobb-Douglas production function on

the probability of first loss PFL and the conditional expected loss CEL.

Instead, (Lane and Beckwith, 2008) and (Lane and Mahul, 2008) suggest

a multiple linear relationship between ρ, EL, and an additional factor that

covers cycle effects. Other multiple linear approaches have been established

by (Berge, 2005) and (Dieckmann, 2008). Both analyses identify further pre-

mium determining factors to characterize the risk load Λ. In contrast, (Major

and Kreps, 2003) use a loglinear relationship between ρ and EL in order to

describe catastrophe risk premiums. However, they do not consider catas-

trophe risk premiums of CAT bonds, but of traditional treaties.6 Finally,

(Wang, 2000) develops a distortion operator, which transforms a probability

of loss into an empirical one. It can be used for deriving the CAT bond

premiums and fulfills the requirements of a coherent risk measure as defined

by (Artzner et al., 1999).

To our knowledge, the literature lacks a comparison of different premium

calculation models. Since the determination of the premium is of high rel-

evance for the price of the CAT bond, it is an important question which

model is most accurate in order to describe and forecast CAT bond premi-

ums. Thus, the main focus of this paper lies in the comparison of selected

premium calculation models from the literature. Therefore, fundamentals

of premium calculation models are provided, before the selected models are

described in more detail within the presentation of the empirical methodol-

ogy. All models are based on the parameter EL. We also include pricing

determining factors in the linear and the loglinear models. We examine the

6In comparison, we will apply the loglinear approach to CAT bonds.
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influence on pricing of both macroeconomic factors like cyclic, seasonal and

business cyclic effects and CAT bond specific factors as the type of trigger

mechanism or the peril. The empirical analysis is established on the basis of

CAT bond premiums within the period from 1999 to 2006. The predictive

power of the analysis is examined by two out-of-sample analyses for CAT

bonds issued between 2006 and 2008 as well as 2006 and 2009. In the first

out-of-sample analysis, we do not consider bonds that are issued during the

financial crisis, whereas the second analysis also takes the financial crisis into

account.

Premium Calculation Models

Premium calculation models determine the premiums ρ, which need to be

paid by the sponsor in order to receive protection against predefined losses.

As mentioned above, the coupon payments to investors then result in c =

r + ρ. In order to introduce some relevant variables and to understand the

models under consideration, we start with a short introduction to insurance

pricing. In this context, we assume risk to be characterized by a non-negative

random loss variable X. Although the range of X is [0, ∞), the insured risk

is limited and refers to an interval (0, X̄] with X̄ defining the maximum

insured loss. In addition, the insured risk is usually divided into so-called

layers (ai, ai + hi] (i = 1, ..., n), i.e.
⋃n
i=1(ai, ai + hi] = (0, X̄].7 A layer,

in turn, characterizes a risk range which a specific insurance product refers

to. For instance, CAT bonds typically refer to the “last” layer (an, an + hn].

With these assumptions, we are able to characterize the loss that is connected

7See, for an example, (Froot, 2001, pp. 542).
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with a layer with attachment point (point of first loss) a and exhaustion point

(point of last loss) a+ h. This so-called layer loss is defined as8

X(a,a+h] =


0, if X ≤ a,

X − a, if a < X ≤ a+ h,

h, if X > a+ h.

(1)

This means that if the loss is less than or equal to the attachment point,

then there occurs no loss to the layer (a, a + h]. If the loss X lies between

the attachment point and the exhaustion point, then the layer loss is given

by X − a . If the loss exceeds the exhaustion point, then the loss charged to

the layer is the exhaustion point minus a. In order to calculate the expected

layer loss, we first introduce the cumulative distribution function FX(x) =

P (X ≤ x) of the loss variable X and the decumulative distribution function

SX(x) = 1 − FX(x) = P (X > x).9 In addition, we assume the existence of

the density function fX(x) and, thus, of sX(x) = S
′
X(x) = −fX(x).

In order to determine the decumulative distribution function and the

consequent exposure of their assets, reinsurance companies usually use geo-

physical commercial models.10 However, under the assumption of an existing

decumulative distribution function of X, it is easy to present the decumula-

8See (Wang, 2004, pp. 19).
9P (A) denotes the probability that event A will occur.

10The main geophysical commercial models are provided by Applied Insurance Research
Worldwide (AIR), Risk Management Solutions (RMS), and Equecat (EQE). A detailed de-
scription of these models can be found in (Nguyen, 2007, pp. 287) and (Strassburger, 2006,
pp. 31). For a description and discussion of different types of decumulative distribution
functions see (Strassburger, 2006, pp. 75).
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tive distribution function of the layer loss X(a,a+h] as follows:11

SX(a,a+h](y) =


SX(a+ y) = P (X > a+ y), if 0 ≤ y < h,

0, if y ≥ h.

(2)

By the use of SX(a,a+h], it is possible to determine the premium ρ which

consists of the expected layer loss (rate) EL12 of an insurance product and

the additional absolute risk load Λ. The consideration of a risk load is nec-

essary since risk neutral valuation is not possible because of market incom-

pleteness.13 Consequently, risk neutral probabilities are not uniquely defined

and real probabilities are needed for the determination of the expected loss.

Furthermore, empirical studies indicate that the risk load Λ is significantly

positive in connection with CAT derivatives premiums.14

The determination of the expected loss of an insurance product corre-

sponds to the calculation of expected loss of the associated layer. Since the

expected absolute loss for an arbitrary loss variable X (with minimum value

0) is given by15

E(X) =

∞∫
0

SX(x)dx, (3)

11See (Wang, 2004, pp. 20).
12In the following EL always denotes an expected loss rate. However, we use the ab-

breviation “expected loss”.
13See (Froot, 2001, pp. 537) for a discussion of problems while using the expected loss

as a pricing approach.
14See (Wang, 2004) and (Lane, 2000, p. 269).
15See, for instance, (Furman and Zitikis, 2008, p. 459).
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the expected value of the absolute layer loss X(a,a+h] immediately results from

E(X(a,a+h]) =

∞∫
0

SX(a,a+h](y)dy =

h∫
0

SX(a+ y)dy =

a+h∫
a

SX(x)dx. (4)

In addition, it is possible to characterize the expected layer loss EL by

the probability of first loss PFL = SX(a) = P (X > a) and the conditional

expected loss (rate) CEL = E(X(a,a+h]|X > a)/h, since16

EL =
E(X(a,a+h])

h
= P (X > a) ·

E(X(a,a+h]|X > a)

h
= PFL ·CEL. (5)

Finally, we introduce the so-called probability of last loss PLL = SX(a+h) =

P (X ≥ a+ h).

Consequently, the premium ρ(X) for layer (a, a+ h] becomes

ρ(X) = EL+ Λ = PFL · CEL+ Λ. (6)

Besides the linear relationship as described in equation (6), there exist several

alternative approaches in the literature which model the dependency between

ρ(X) and EL. In fact, such a relationship can generally be described as

follows:

ρ(X) = f(EL, y1, ..., yN), (7)

with f a real function and y1, ..., yN additional risk load determining param-

eters. Since this relationship is quite unspecific, we give a short overview of

16See, for instance, (Lane and Beckwith, 2009b).
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the different approaches.

(Berge, 2005) accomplishes a multivariate linear regression analysis in or-

der to determine factors explaining the risk loads of CAT bonds in addition

to the EL. He finds that factors as the peril and the applied trigger mecha-

nism determine the premium. The relationship between the premium ρ(X)

and the EL is the following:

ρ(X) = α + β · EL+ γ1 · yperil +
N∑
i=2

γi · yi, (8)

where α, β, γ1, ..., γN are coefficients, yperil refers to the peril and y2, ..., yN

refer to further determining factors. (Dieckmann, 2008) establishes a sim-

ilar multiple linear regression in order to analyze the impact of hurricane

Katrina. However, the database is quite small since he considers 61 CAT

bond premiums only between 3/31/2005 and 3/31/2006. Like (Berge, 2005),

(Dieckmann, 2008) identifies CAT bond specific factors as the peril and the

applied trigger mechanism as pricing determining factors. Furthermore, he

finds that premiums were significantly higher after hurricane Katrina than

before.

(Lane, 2000) only focuses on the risk load Λ. He states that the risk

load Λ can be represented by a Cobb-Douglas production function of the

probability of first loss PFL and the conditional expected loss CEL. The

model yields

ρ(X) = EL+ γ · (PFL)α · (CEL)β, (9)

9



where α, β, and γ are constants set by fitting the equation to empirical

data.17

After observing the market for some years, (Lane and Beckwith, 2008)

found that there is insufficient variety in CEL. Thus, they could not establish

good statistical estimates and abandoned the approach. Instead, they sug-

gest allowing for cyclic adjustments in the linear model in order to explain

the risk load. Therefore, they propose to use a cyclic index, which is de-

veloped in (Lane et al., 2007). The corresponding linear dependency under

consideration of cyclic effects has been tested by (Lane and Mahul, 2008)

using a multiple linear regression. The relationship between the premium

ρ(X) and the EL results in

ρ(X) = α + β · EL+ γ · yCycle, (10)

where yCycle refers to the cyclic index.18

(Major and Kreps, 2003) establish an empirical analysis in order to iden-

tify influencing factors on the catastrophe risk premium of traditional treaties.

They choose a loglinear relationship between the premium ρ and the EL.

Apart from that, they consider further determining factors as the geographic

location or the lead reinsurer. As already mentioned, we apply this approach

to CAT bonds, since in both cases – traditional treaties and CAT bonds –

17See (Lane, 2000, p. 271).
18(Lane and Mahul, 2008) also divide the expected loss into different peril-related EL-

factors ELp, i.e. EL =
∑

p βp · ELp. Since our database does not allow for such detailed
analysis, we only refer to expected total losss EL. Furthermore, we should mention that
(Lane and Mahul, 2008) also analyze a linear relationship between ρ/yCycle and EL. How-
ever, according to (Lane and Mahul, 2008), this alternative version has a lower explanatory
power.
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the catastrophe risk premium has the same meaning. On the basis of the

loglinear model, the relationship between the premium ρ(X) and the EL is

given by

ln(ρ(X)) = α + β · ln(EL) + γ1 · ygeocode +
N∑
i=2

γi · yi, (11)

where ygeocode refers to the geographic location.

A problem of the presented approaches is the violation of the so-called

translation invariance, a requirement of a coherent risk measure which has

been introduced by (Artzner et al., 1999). Against this background, (Wang,

1996), (Wang, 2000), and (Wang, 2004) propose a class of distortion func-

tions which fulfill the requirements of coherency and can be regarded as

appropriate risk measures. Within this framework, it is not possible to pro-

vide a direct relationship between the EL and the premium ρ. Instead, the

relationship between a transformed version of EL and the risk premium ρ is

analyzed.19 Wang proposed a premium calculation model expressed by

ρ(X) · h =

a+h∫
a

g(SX(x))dx, 20 (12)

where SX(x) denotes the decumulative distribution function of the loss vari-

able X as defined above. Furthermore, the function g : [0, 1] → [0, 1] needs

to fulfill four necessary criteria in order to allow for a coherent risk measure.

The first one is that g must be increasing (g′(u) ≥ 0) to ensure that the

19The procedure is described in the next section in more detail.
20In contrast to Wang who applies an absolute risk premium, ρ(X) refers to a relative

risk premium.
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transformation retains the properties of a decumulative distribution func-

tion. Second, g must be concave (g′′(u) ≤ 0) in order to generate a non-

negative risk load and to guarantee that the relative risk loading increases

as the attachment point increases for a fixed limit. Third, in order to define

valid probabilities after applying the distortion operator, it is necessary that

g(0) = 0, g(1) = 1, and 0 < g(u) < 1 for all 0 < u < 1. Finally, g′(u)→ +∞

as u → 0+ is demanded in order to ensure unbounded relative loading at

extremely high layers.21

Assuming this theoretical background, Wang proposed the distortion op-

erator gλ(u) = Φ(Φ−1(u)+λ), with Φ being the standard normal distribution

function and λ > 0. Posing u = SX(x) and gλ(u) = S+
X(x), one gets the prob-

ability transformation

S+
X(x) = Φ(Φ−1(SX(x)) + λ), (13)

which transforms the determined probability of attaching the layer into an

empirical probability including a risk load. We call this transformation the

Wang1 Transformation.

Because of parameter uncertainties in the modeling of catastrophe losses

(Wang, 2004) suggests to replace the normal distribution by a Student’s t-

distribution and to use the distortion operator gk, λ(u) = Qk(Φ
−1(u) + λ),

where Qk denotes the Student’s t-distribution with k degrees of freedom. In

21See (Wang, 2000, p. 18).
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our paper, the corresponding probability transformation

S+
X(x) = Qk(Φ

−1(SX(x)) + λ) (14)

is called the Wang2 Transformation.

Considering either version of the Wang transformation, the premium ρ,

resulting from the premium calculation model (12), is

ρ(X) · h =

a+h∫
a

S+
X(x)dx = EL+, (15)

where EL+ can be interpreted as a transformed expected loss.

Empirical Methodology

In the literature, the premium calculation models as described above have

only been analyzed in isolation. Thus, the literature lacks a comparison

of different models. The empirical analysis has the goal of describing and

predicting CAT bond premiums of the linear model, the loglinear model,

as well as the Wang transformation model. The most accurate model for

forecasting CAT bond premiums shall be identified.

Hence, we will analyze three types of models. First, we consider a linear

model as proposed, for instance, by (Berge, 2005) and (Lane and Mahul,

2008). We analyze both a linear1 model (ρL1M), where only the EL is in-

cluded as a premium determining factor, and a linear2 model (ρL2M), where

additional premium determining factors are included. Second, we follow the

suggestion by (Major and Kreps, 2003) of describing the relationship between

13



EL and ρLogLM as a loglinear one. Analogous to the linear models, we im-

plement the loglinear1 model (ρLogL1M) and the loglinear2 model (ρLogL2M).

Third, we consider the two models that are based on the Wang1 and Wang2

transformations (ρW1T and ρW2T ) as proposed by (Wang, 2000) and (Wang,

2004). In order to assess the predictive power of the models, we apply an

out-of-sample analysis. More precisely, we estimate the model parameters

on the basis of the CAT bond contracts that started between April 1999

and May 2006 (in-sample period 1). Afterwards, we apply the parameterized

models on the CAT bond contracts that started between June 2006 and June

2008 (out-of-sample period 1)22 in order to evaluate the deviations between

the model-predicted and the real CAT bond premiums ρL1M , ρL2M , ρLogL1M ,

ρLogL2M , ρW1T , and ρW2T .23 The above time periods are examined since, in

a first step, we only want to analyze the models within a functioning market

environment. In a second step, the model parameters are estimated on the

basis of CAT bond contracts issued between April 1999 and June 2006 (in-

sample period 2) and the out-of-sample analysis is based on contracts that

started between June 2006 and March 2009 (out-of-sample period 2), this

way considering contracts issued during the financial crisis as well. In both

studies the prediction accuracy of the respective (in-sample) model is eval-

uated by comparing the coefficients of determination in the out-of-sample

analysis on the basis of the premiums. We compute the out-of-sample R2

22We use June 2008 as the cut-off point because, according to the literature, the market
for CAT bonds stopped in mid-2008. See (Priebe, 2009).

23In this connection, it should be emphasized that also within the framework of the
loglinear models the out-of-sample analysis is always applied to CAT bond premium ρ
and not to the logarithm ln(ρ) of the premium to obtain comparability of the coefficients
of determination.
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according to the following equation24

R2
OS = 1−

∑T
t=1(ρt − ρ̂t)2∑T
t=1(ρt − ρ̄t)2

, (16)

where ρt refers to the observation in the out-of-sample period, ρ̂t is the fitted

value using results from a predictive regression estimated through the in-

sample period, and ρ̄t is the historical average premium estimated through

the in-sample period.

Predicting the CAT Bond Premium – the Test Environment

In this section, we present the regression equations that are applied in the

subsequent study. In a first step, we implement the linear and the loglin-

ear model without considering additional premium determining factors apart

from the EL. Consequently, the linear1 and loglinear1 models yield

ρL1M = α + β · EL+ ε (17)

and

ln(ρLogL1M) = α + β · ln(EL) + ε, (18)

respectively.

In a second step, we include further premium determining factors as pro-

posed in the literature. Since the linear models and the loglinear model use

different additional premium determining factors, we standardize the factor

24See (Campbell and Thompson, 2008).
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set and denote the factors by yi (i = 1, ..., N). The precise descriptions of all

factors are presented in the next section. Thus, the linear2 and the loglinear2

models result in

ρL2M = α + β · EL+
N∑
i=1

γi · yi + ε (19)

and

ln(ρLogL2M) = α + β · ln(EL) +
N∑
i=1

γi · yi + ε, (20)

respectively.25

Consequently, the linear model assumes the risk premium to consist of a

fixed basic premium α and variable premium components. In this context, β

can be interpreted as the “price” per unit (additional) expected loss and γi

as the “price” per unit factor risk yi. An analogous interpretation emerges

in the case of the loglinear model, which refers to the logarithm of ρ and the

logarithm of EL, respectively.

In contrast to the linear and the loglinear model, the two versions of the

Wang transformation establish a relationship between ρ(X) and the above

described transformation EL+ of the expected loss. Since the data set char-

acterizing CAT bonds does not contain the transformed expected loss, we

have to approximate the EL+. Using the trapezian rule, the integral in (15)

25The representations of the loglinear models (18) and (20) are used in the context of
in-sample analyses. Since the out-of-sample analyses are based on ρ and not on ln(ρ), we
apply the exponential function on both sides of (18) and (20), respectively.
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can be approximated as

ρ(X) =
1

h
·
a+h∫
a

g(SX(x))dx ≈ 1

h
· 1

2
· h · [g(SX(a)) + g(SX(a+ h))]

⇔ ρ(X) ≈ 1

2
· [g(PFL) + g(PLL)]. (21)

Against this background, we test the Wang1 transformation model on the

basis of the nonlinear regression

ρW1T (X) =
1

2
· [Φ(Φ−1(PFL) + λ) + Φ(Φ−1(PLL) + λ)] + ελ, (22)

with regression parameter λ. Analogously, the Wang2 transformation model

is evaluated by using the nonlinear regression

ρW2T (X) =
1

2
· [Qk(Φ

−1(PFL) + λ) +Qk(Φ
−1(PLL) + λ)] + εk,λ, (23)

with regression parameters k(∈ IN) and λ.

According to (Wang, 2000) and (Wang, 2004) the regression parameter

λ can be interpreted as the market price of risk, i.e. the “price” per unit

(additional) total risk. In this connection, (Wang, 2000) shows that λ corre-

sponds to the Sharpe ratio if the underlying random variable X is normally

distributed and consequently risk is measured by standard deviation. In the

case of alternative distributions, λ is a direct extension of the Sharpe ratio

(Wang, 2004, p. 21). By this means, λ has a similar interpretation as β in

the linear and loglinear models. However, λ refers to total risk and β refers

to EL.
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Description of the Data

The empirical analysis uses original26 data sets provided by Lane Finan-

cial LLC and Standard & Poor’s (S&P), where 176 CAT bond transactions

between the years 1999 and mid 2009 are specified. The data include, in

particular, values of the above mentioned PFL, PLL, CEL, and EL. Fur-

thermore, CAT bond specific information is available for all CAT bonds re-

garding maturity, rating, trigger mechanism, peril, and issue date. We only

take into account CAT bonds rated by S&P27 since only for these CAT bonds

we received information on the peril and the applied trigger mechanism. The

CAT bond specific information is described in the following.

Trigger Mechanisms

The payout of a CAT bond connected to a specified catastrophe is defined

by trigger mechanisms. Basically, there are five different trigger mechanisms.

The indemnity trigger uses the height of actual losses of the sponsor, the

parametric trigger uses a physical measure like the Richter scale, the index

trigger uses a specified index, the modeled loss trigger uses catastrophe mod-

eling software, and the hybrid trigger uses combinations of different triggers

in order to define the payout in case of catastrophe.28 Our data from 1999

to 2009 shows that the issued CAT bonds (rated by S&P) split up into 47%

26Most existing analyses are established by using original data sets, for example, the
analyses by (Major and Kreps, 2003), (Lane, 2000), (Lane and Beckwith, 2008), (Berge,
2005), and (Wang, 2004). However, (Lane and Mahul, 2008) as well as (Dieckmann, 2008)
establish different analyses using both original and secondary market data.

27The rating of CAT bonds is mainly done by S&P, Moody’s Investors Service (Moody’s)
and Fitch Ratings (Fitch).

28See (Carpenter, 2007, pp. 27) and (Dubinsky and Laster, 2003) for a detailed descrip-
tion of trigger mechanisms for CAT bonds.

18



parametric triggered bonds, 20% indemnity triggered bonds, 23% industry

index triggered bonds, 7% modeled triggered bonds, and 3% hybrid triggered

bonds.29

All of the trigger mechanisms are susceptible to basis risk and moral

hazard to a certain extent. (Cummins and Weiss, 2009) and (Dubinsky

and Laster, 2003) suppose that prices for CAT bonds with an indemnity

trigger might be higher compared to CAT bond prices with different trigger

mechanisms due to basis risk. They also state that transaction costs for

indemnity triggered CAT bonds are very high, since more documentation

is needed compared to nonindemnity trigger mechanisms. We will verify

these statements in our empirical analysis. For this purpose, we include four

dummy variables, where the industry index trigger is given by

yIndustryIndex =

 1, if an Industry Index is used,

0, else.
(24)

yParametric, yModeled, yHybrid are designed in an equivalent way for the case of

parametric triggers, modeled triggers, and hybrid triggers, respectively. The

base variable is represented by yIndemnity, which belongs to the indemnity

trigger.

Rating of the bond

The purpose of a CAT bond rating is to provide independent and professional

29(Cummins and Weiss, 2009) find that the CAT bond volume for 1997-2007 was dis-
tributed as follows: 25.9% for parametric triggered bonds, 30% for indemnity triggered
bonds, 21.5% for industry index triggered bonds, 8.5% for modeled triggered bonds, and
14% for hybrid triggered bonds.

19



information for investors. Therefore, rating agencies evaluate the catastrophe

risk analysis as established by specialized firms (e.g. AIR, RMS, EQE). (An-

ders, 2005) objects that rating agencies only have little knowledge in the field

of catastrophe risk assessment. Thus, it is questionable if the main driver

of a CAT bond rating is evaluated appropriately. Against this background,

we want to examine whether the CAT bond rating has an impact on the

premiums. Since the data set only contains CAT bonds with rating classes

A, BBB, BB, and B, the included dummy variables are

yBB =

 1, if the bond is rated BB,

0, else,
(25)

for BB rated CAT bonds and yA,BBB for the aggregated class of A or BBB

rated CAT bonds. The base variable is yB, which characterizes B rated CAT

bonds.

Perils

Most of the perils are hurricane and earthquake perils in the US. (Cummins

and Weiss, 2009) find that 61.4% of the CAT bonds issued between 1997

and 2007 covered perils in the US.30 Apart from that, European windstorms

and earthquakes and typhoons in Japan are securitized quite often. Our

data show that 25% of the CAT bonds issued between 1999 and 2006 (and

rated by S&P) covered earthquake perils, 23% covered hurricane perils, 13%

covered the combination hurricane/earthquake, 25% covered combinations

of any perils, 12% covered European windstorms, and 2% covered industrial

30Thereby, 29.6% covered US earthquakes and about 31.8% covered hurricanes.

20



casualties. We include dummy variables

yH =

 1, if hurricane is the peril,

0, else,
(26)

for hurricane perils, yH,EQ for hurricane and earthquake perils, yEurwind for

European windstorms, yComb for combinations of any perils, and yInd.Casualty

for industrial casualties. The base variable is yEQ for earthquake perils.

Maturity

There are different maturities of CAT bonds in the markets. In our data set,

42% of the CAT bonds issued between 1999 and 2009 (and rated by S&P)

have a maturity of 25 to 36 months, 30% have maturities between 12 and

24 months, and 28% have maturities between 37 and 60 months. It could

occur that sponsors prefer CAT bonds with longer maturities in order to

avoid price changes on the reinsurance market. This assumption is analyzed

by including dummy variables as follows.

y12m, 24m =

 1, if the maturity is between 12 and 24 months,

0, else,
(27)

is included to characterize CAT bonds with maturities between 12 and 24

months, y25m, 36m is included to denote CAT bonds with maturities between

25 and 36 months, and the base variable y37m, 60m refers to CAT bonds with

maturities between 37 and 60 months.

Apart from CAT bond specific information, macroeconomic factors, which
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will be described in the following, are included in the empirical analysis as

well.

Cyclic Index

It is generally accepted in the field of (re-)insurance research that the tra-

ditional (re-)insurance market is affected by insurance cycles.31 Generally,

it can be stated that, following a soft market, which can be identified by

relatively low prices and new market participants, the market turns into a

hard market with relatively high prices. In the special case of catastrophe

reinsurance, (Froot, 2001) argues that cyclic effects triggered by catastrophe

events can be observed. In the literature, on the one hand it is stated that the

CAT bond market is less affected by insurance cyclic effects than the rein-

surance market. On the other hand, (Lane and Beckwith, 2007) and (Lane

and Beckwith, 2008) assume that cyclic effects have a strong impact on the

pricing mechanisms of CAT bonds. As already mentioned, they suggested a

cyclic index in order to analyze the impact on pricing. The cyclic index is

based on observations of secondary market prices of Insurance-Linked Secu-

rities, a pseudo constant expected loss series of original issues from Swiss Re

and observations of prices for Industry Loss Warranties. The main problem

regarding this index is the fact that the index has not been developed by

using statistical methods. Instead, price changes from one year to another

have been used. A problem in finding an appropriate index is the unavail-

ability of appropriate data sets. For instance, the insurance cycle lasts about

31See (Lamm-Tennant and Weiss, 1997) and (Cummins and Outreville, 1987) for com-
prehensive analyses of insurance cycles.
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7 years for the United States according to an analysis by (Lamm-Tennant

and Weiss, 1997).32 Assuming that a CAT bond cycle would also last 7 years

approximately, we do not have enough CAT bond data to establish a time

series analysis. Thus, we will use the cyclic index as proposed by (Lane and

Beckwith, 2007) in order to verify whether the adjustment for cyclic effects

is improving the model results. We include the cyclic index in our regression

analysis (ycycle).

Seasonal Index

Apart from cyclic effects, seasonal effects can be observed when examining

CAT bonds as well. (Lane and Beckwith, 2007) and (Mocklow et al., 2002)

state that before and after hurricane season prices rise and fall due to the ex-

pectation of higher losses in this season. We verify whether seasonal effects

have any impact on the proposed pricing models. Therefore, the seasonal

index proposed by (Lane and Beckwith, 2009a) is used in order to adjust

our data for seasonal effects. In fact, they averaged the monthly price shifts

over several years. For the analysis, we use the index (yseason) as another

predictor for the regression analysis.

Capital Markets

We use S&P 500 as another predictor in the regression analysis (ySP ). The

purpose is to verify the statement from the literature that developments on

capital markets are independent of developments on CAT bond markets. For

the assumption of independence, we refer to (Litzenberger et al., 1996) and

32For the analysis, (Lamm-Tennant and Weiss, 1997) used the average loss ratio.
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a paper by (Lane and Beckwith, 2009b).

Empirical Findings

The following empirical study is based on two different situations. On the one

hand, we consider a reduced data set which does not comprise data after June

2008 since the smooth functioning of markets cannot be taken for granted

during the financial crisis. On the other hand, we consider the complete

data set including the financial crisis in order to test the predictive power of

the models in an arbitrary situation. Within the framework of the linear2

and the loglinear2 model we apply the stepwise linear regression method (by

using the PASW Statistics 18 procedure) to obtain the factors that should

be included in the model.33

Reduced Data Set – Stable Market Environment

As already mentioned, we separate the data set into in-sample data (from

April 1999 to May 2006, approximately 2/3 of the data) and out-of-sample

data (from June 2006 to June 2008, approximately 1/3 of the data) in or-

der to analyze the predictive power of the linear1,2 models, the loglinear1,2

models, and the Wang1,2 transformation models in a stable market environ-

ment without considering the effects of the financial crisis. The results of

the regression analyses according to equations (17), (18), (19), (20),34 (22),

33See (Draper and Smith, 1981) for notes on the stepwise regression procedure.
34It should be mentioned again that within the framework of the out-of-sample analysis

we apply the exponential function on both sides of (18) and (20), respectively, to make
results comparable.
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and (23) are shown in table 1. The models are evaluated on the basis of

the (adjusted) coefficients of determination referring to the out-of sample

analyses.

Model Linear1 Loglinear1 Linear2 Loglinear2 Wang1 Wang2
equation (17) (18) (19) (20) (22) (23)
In-sample Analysis

Dependent Variable
ρL1M ln(ρLogL1M ) ρL2M ln(ρLogL2M ) ρW1T ρW2T

constant 0.027 −0.764 0.037 −0.910
(0.002)∗∗ (0.123)∗∗ (0.002)∗∗ (0.155)∗∗

EL 2.418 2.174
(0.102)∗∗ (0.112)∗∗

ln(EL) 0.465 0.410
(0.026)∗∗ (0.032)∗∗

yParametric −0.010 −0.261
(0.003)∗∗ (0.047)∗∗

yComb 0.011 0.355
(0.003)∗∗ (0.050)∗∗

yA,BBB −0.017 −0.263
(0.004)∗∗ (0.092)∗

λ 0.673
{λ, k} {0.471, 7}
(adj.) R2 84.2% 75.6 % 88.1% 85.1% 72.0% 79.7%
F-Test 563.448∗∗ 328.565∗∗ 198.430∗∗ 154.130∗∗ 272.535 ∗∗ 417.576 ∗∗

N 108 108 108 108 108 108
Out-of-sample Analysis

Dependent Variable
ρL1M ρLogL1M ρL2M ρLogL2M ρW1T ρW2T

(adj.) R2
OS 86.3% 83.1% 86.3% 81.5% 81.5% 86.0%

F-Test 358.081∗∗ 281.400∗∗ 92.860∗∗ 64.099∗∗ 251.321∗∗ 351.561∗∗

N 58 58 58 58 58 58
Notes: The results for the linear2 and loglinear2 models have been received by
establishing a stepwise regression method. Standard errors are in parentheses.

∗: Significant at the 95 percent confidence level or better.
∗∗: Significant at the 99 percent confidence level or better.

Table 1: Empirical Results – Reduced Data Set

The in-sample results show very high (adjusted) coefficients of determi-

nation varying between 72.0% and 88.1%, which indicates that the models
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are able to explain the CAT bond premiums very well referring to the in-

sample data. The application of the models with respect to the out-of-sample

data also leads to quite good results since the (adjusted) coefficients of de-

termination of the models vary between 81.5% and 86.3%. However, the

Wang2 model as well as the linear1,2 models seem to dominate the other

models. A surprising result is that the loglinear1 model which does not

consider additional premium determining factors dominates the loglinear2

model regarding the out-of-sample results. As far as the linear1 model and

the linear2 model are concerned, the premium determining factors do not

have a particular relevance since the (adjusted) coefficients of determination

are nearly identical.

However, the premium influencing factors in the linear2 and loglinear2

models can be explained economically and are discussed briefly.35 Combina-

tions of any perils show an increasing effect on premiums in both models.

Thus, we can assume that multi-peril CAT bonds are imposed by the market

with an additional risk load compared to earthquake perils. Possibly, this

can be explained by the fact that the most severe losses to CAT bonds were

caused by hurricanes which are mostly included in multi-peril bonds. For

instance, 15 Property & Casualty (P & C) Insurers have been left insolvent

as a consequence of losses due to hurricanes Hugo (1989), Andrew (1992),

35Since the logarithm function is strictly increasing, the signs of the premium influencing
factors in the linear and loglinear models may be compared. However, the factor β in the
linear model describes the absolute increase of the risk premium in the case of a one unit
(ceteris paribus) increase of EL, whereas the factor β in the loglinear model characterizes
the relative increase of the risk premium in the case of a marginal (ceteris paribus) relative
increase of EL. By this means, the factor β in the loglinear model corresponds to the
elasticity of ρ with respect to EL. For further information see (Wooldridge, 2009, p. 211).
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Amber and Iniki (1992).36

Considering trigger mechanisms, the parametric trigger has a decreasing

effect on pricing compared to the indemnity trigger in both the linear2 model

and the loglinear2 model. Different trigger mechanisms refer to a different

impact of basis risk and moral hazard on pricing. In the literature it is stated

that a parametric trigger significantly reduces moral hazard for investors

compared to indemnity triggers.37 Apart from that, the trigger can quickly

be verified by investors. Thus, investors are particularly interested in CAT

bonds using a parametric trigger and demand a risk load lower than when

an indemnity trigger is applied. Our results support this thesis.

In both models, a negative impact of CAT bonds rated A or BBB by

S&P is observed compared to CAT bonds rated B. This results from the

intuitive fact that the risk premium is lower for CAT bonds with a better

rating.

As mentioned above, we also want to analyze the complete data set taking

into consideration the financial crisis in order to find out whether the models

are also able to explain CAT bond premiums in situations when the proper

functioning of the markets is rather doubtful. The analysis of the complete

data set is topic of the next section.

Complete Data Set – Consideration of the Financial Crisis

Analogous to the preceding section, we proceed by separating the whole data

set into an in-sample and an out-of-sample data set. The in-sample data set

36See, for instance, (Carpenter, 2006) and (Banks, 2004, pp. 124).
37See (Carpenter, 2007).
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comprises CAT bond contracts starting between April 1999 and June 2006

(approximately 2/3 of the data). The out-of-sample data set is extended

compared to the first analysis and covers the period from June 2006 to March

2009 (approximately 1/3 of the data). However, the differences between the

six considered models are less pronounced than in the case of a complete

stable market environment. This issue and the influence of the model factors

on the CAT bond premiums are presented in table 2.

Similar to the preceding analysis, the in-sample results again show very

high (adjusted) coefficients of determination, varying between 75.2% and

89.1%, which indicates that the models are able to explain the CAT bond

premiums very well referring to the in-sample data. The application of the

models with respect to the out-of-sample data also leads to quite good but

similar results except for the Wang1 transformation model and the Loglin-

ear1 model since the (adjusted) coefficients of determination of the four other

models vary between 67.5% and 68.7%. In contrast to the first analysis, a

slight improvement of out-of-sample results has been achieved when addi-

tional premium determining factors have been included in the linear2 model

and the loglinear2 model.

The results referring to the premium influencing factors in the linear2 and

the loglinear2 model are also slightly different from the corresponding results

of the first study. However, the results for the variables yComb and yA,BBB

remain in the same direction as observed in the first analysis. The para-

metric trigger does not show any significant influence in the linear2 model.

Instead, the index trigger has a decreasing effect on prices in the linear2

model compared to the indemnity trigger. Advantages for the sponsor when
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Model Linear1 Loglinear1 Linear2 Loglinear2 Wang1 Wang2
equation (17) (18) (19) (20) (22) (23)
In-sample Analysis

Dependent Variable
ρL1M ln(ρLogL1M ) ρL2M ln(ρLogL2M ) ρW1T ρW2T

constant 0.027 −0.703 0.028 −0.826
(0.002)∗∗ (0.117)∗∗ (0.002)∗∗ (0.138)∗∗

EL 2.464 2.345
(0.102)∗∗ (0.105)∗∗

ln(EL) 0.475 0.435
(0.025)∗∗ (0.030)∗∗

yParametric −0.257
(0.044)∗∗

yComb 0.008 0.363
(0.003)∗ (0.050)∗∗

yA,BBB −0.016 −0.192
(0.004)∗∗ (0.090)∗

yH 0.008 0.126
(0.003)∗ (0.054)∗

yEurwind −0.010
(0.004)∗

yIndex −0.010
(0.003)∗∗

y12m24m −0.007
(0.003)∗

λ 0.648
{λ, k} {0.499, 8}
(adj.) R2 83.5% 76.5% 89.1% 85.5% 75.2% 79.8%
F-Test 583.472∗∗ 373.698∗∗ 136.034∗∗ 138.115∗∗ 356.913∗∗ 467.590∗∗

N 117 117 117 117 117 117
Out-of-sample Analysis

Dependent Variable
ρL1M ρLogL1M ρL2M ρLogL2M ρW1T ρW2T

(adj.) R2
OS 67.5% 66.0% 68.7% 67.7% 63.1% 68.5%

F-Test 118.177∗∗ 110.334∗∗ 19.161∗∗ 25.328∗∗ 97.275∗∗ 124.125∗∗

N 59 59 59 59 59 59
Notes: The results for the linear2 and loglinear2 models have been received by
establishing a stepwise regression method. Standard errors are in parentheses.

∗: Significant at the 95 percent confidence level or better.
∗∗: Significant at the 99 percent confidence level or better.

Table 2: Empirical Results – Complete Data Set
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using industry index triggers are that the transaction is simple to execute

and that the sponsor does not need to provide confidential information. The

resulting disadvantage is the high basis risk to the sponsor, since the actual

losses of the sponsor might differ significantly from the industry index. The

main advantage for the investor is that the industry index does prevent him

from moral hazard, although the transparency for the investor is not as high

as when applying the parametric trigger, for instance.38

In addition to multi-perils, hurricane perils show an increasing effect on

premiums in both models as well. The explanation is the same as for the

variable combinations of any perils yComb in the first analysis. European

windstorms show a decreasing effect on premiums in the linear2 model. This

implicates that investors demand a smaller risk load for CAT bonds which

insure European windstorms compared to CAT bonds with earthquake perils.

Finally, in the linear2 model CAT bonds with a short maturity have a

decreasing effect on premiums compared to CAT bonds with a long maturity.

This could result from the fact that investors might fear the long risk period

in the latter and thus CAT bonds with a short maturity of 12 to 24 months

are imposed by the market with lower risk loads.

It has to be stated that, besides the low impact of CAT bond specific

information in both the linear2 and the loglinear2 model, we could not iden-

tify any significant influence on the premiums of macroeconomic factors in

neither analysis. Cyclic effects have recently been discussed in the literature

as a factor which influences premiums for CAT bonds. Both analyses – the

one with the reduced data set and the one with the complete data set – do

38See (Dubinsky and Laster, 2003) and (Carpenter, 2007).
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not verify this statement, which could implicate either that the implemented

index is not appropriate or that CAT bond premiums are not affected by

cyclic effects. A further development of such indices with more data avail-

able could validate our findings. However, the absence of an influence of

business cycle effects on premiums supports the thesis of the independence

of CAT bond and capital markets, which is widely assumed in the literature.

Conclusion

Due to an incomplete market for catastrophe risks and the lack of trans-

parency on the CAT bond market, it is difficult to determine an accurate

pricing model for CAT bonds. For the same reason, the comparison of differ-

ent CAT bond premium calculation models remains a challenging question.

This paper presented an overview of existing premium calculation models

for CAT bonds. The models suggest a relationship between the CAT bond

premium ρ and the expected loss EL. We distinguish between models postu-

lating either a linear connection or a loglinear relationship between ρ and EL.

Furthermore, we consider two versions of the so-called Wang transformation

model that lead to a relationship between the premium and a transformed

version of expected loss EL. In compliance with the literature, we integrate

pricing determining factors (e.g., macroeconomic factors like cyclic, seasonal

and business cyclic effects, and CAT bond specific factors, such as the type

of trigger mechanism or the peril) into the linear and loglinear models.

The models are compared on the basis of an out-of-sample analysis which

has been carried out as follows. First, the model parameters have been
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determined on the basis of CAT bond contracts that were issued during the

in-sample periods between April 1999 and May 2006 and April 1999 and

June 2006, respectively. Second, the calibrated models have been applied

to the contracts issued in the out-of-sample periods. Since we essentially

want to assess the quality of the models in times of functioning markets, we

initially have considered the time period between June 2006 and June 2008

as the out-of-sample period in order to exclude effects of the financial crisis.

Subsequently, we have included the financial crisis data and have analyzed

an out-of-sample period between June 2006 and March 2009. Finally, the

quality of the models has been determined on the basis of the coefficients of

determination of the out-of-sample analysis.

Our results show that the consideration of additional premium deter-

mining factors in the linear and loglinear models, as recommended in the

literature, improve in-sample results compared to the models without these

additional factors. However, the (adjusted) coefficients of determination of

the out-of-sample analyses of the extended models linear2 and loglinear2 are

not significantly better than the results of the linear1 and loglinear1 models.

In the case of the first analysis, where effects of the financial crisis have been

excluded, the results of the out-of-sample analysis are even worse for the

extended models. Apart from the low impact of CAT bond specific infor-

mation on premiums, we could not identify any significant influence on the

premiums of macroeconomic factors, such as a cyclic, seasonal, and business

cyclic index.

Moreover, we have found that the Wang2 transformation model always

leads to better in-sample and out-of-sample results than the Wang1 trans-
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formation. This results from the fact that the Student’s t-distribution is

able to fit the data better than the normal distribution. Furthermore, the

Wang2 transformation as well as the linear1 model and the linear2 model

have been most accurate to predict CAT bond premiums in the first analysis

with coefficients of determination varying between 86.0% and 86.3%. In the

second analysis, where, in addition, CAT bonds issued after mid 2008 have

been taken into consideration, we could not identify any model which was

significantly better than the others. Summarizing, we would recommend to

either implement the Wang2 transformation model or the linear1 model in

order to predict CAT bond premiums. Although the linear2 model has a

similar adjusted coefficient of determination as the linear1 and the Wang2

transformation model, it is more costly to be implemented, since it requires

data concerning peril, rating and the applied trigger mechanism.
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