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1. Introduction 

Investors use performance measures for choosing among alternative funds engagements. In 

general, there are two possible ways to tackle the problem of the development of new per-

formance measures. On the one hand, one can choose a partial-analytical framework, thereby 

focusing on the decision problem of a given investor for given expectations and neglecting 

any kind of general capital market considerations. On the other hand, one can analyze capital 

market price formation processes in order to derive conclusions with respect to the attractive-

ness of certain funds. For example, the well-known capital asset pricing model (CAPM) as in-

troduced by Sharpe(1964), Lintner(1965), and Mossin(1966) may define such a setting. Re-

cent approaches like the ones by Harvey and Siddique(2000), Dittmar(2002) or Fletcher and 

Kihanda(2005) are in particular stressing the relevance of preferences for higher-order return 

moments like skewness and kurtosis in asset pricing models. However, in general one may 

conclude from such equilibrium descriptions that the same performance measure of zero 

should be assigned to all investment funds, just expressing that – compared to direct stock 

holdings – the holding of shares of any fund is irrelevant for any capital market participant. 

 

Although such analyses on capital market levels certainly are apt to create interesting general 

insights, for practical application we prefer a partial-analytical framework as the one sketched 

in Bodie et al(2005), pp. 870-874, for the case of simple mean-variance preferences. This 

means that we focus on the view of a single investor with given preference structures and ex-

pectations who typically acts as a price-taker. If for such an investor the CAPM in fact should 

hold, we would learn this from the investor’s specific expectations. But if this is not true, the 

CAPM (as any other capital market model) is not of immediate relevance for the investor un-

der consideration. Nevertheless there are attempts to derive performance measures even on 

the basis of a capital market equilibrium approach as the one presented by the CAPM. Appar-
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ently, to keep consistency with capital market requirements only marginal investments in 

funds with out-of-equilibrium returns can be taken into account. Even in this regard a partial-

analytical framework may prove useful as it helps to better understand the relevance of the 

performance measures derived from equilibrium consideration. We therefore will return to 

this aspect later on. 

 

To be more specific with respect to our own approach, we use the framework by Jobson and 

Korkie(1984) as our starting point. Jobson and Korkie(1984) – among other things – consid-

ered an investor at time 0 with mean-variance preferences who chooses among F different (al-

ternative) funds which can each be combined with a fixed reference portfolio P until time 1. 

Moreover, the investor is able to borrow or lend any amount at a riskless interest rate R. This 

last assumption leads to the validity of the well-known two-funds separation theorem first es-

tablished by Tobin(1958). As a consequence of Tobin's separation result, any investor with 

mean-variance preferences should select that fund which offers the highest attainable Sharpe 

ratio of a combination of a fund f with the reference portfolio P. Moreover, Jobson and 

Korkie(1984) verified that the resulting funds ranking according to this optimized Sharpe ra-

tio is equivalent to a ranking according to the square of the so-called appraisal ratio of Trey-

nor and Black(1973). Henceforth, we simply speak of the Treynor/Black measure. In the same 

way the Sharpe ratio will often be called by us the Sharpe measure. 

 

The approach by Jobson and Korkie(1984) therefore presents a portfolio-theoretical founda-

tion of the well-known Treynor/Black measure. Unfortunately there are at least two shortcom-

ings connected with their analysis. First, they did not allow for possible short-sales restric-

tions. As a consequence, the fund f exhibiting the highest square of the Treynor/Black meas-

ure might lead to the highest possible Sharpe measure of accessible portfolios only by being 
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sold short. In general funds cannot be sold short and there is therefore a need for considering 

this additional restriction when developing measures for performance evaluation. This charac-

terizes the first aim of our analysis. 

 

Moreover, as already sketched, there are several studies which underpin the necessity for al-

lowing for more general preferences than the simple mean-variance case. In particular, Levy 

and Markowitz(1979), Kroll et al(1984), Hlawitschka(1994) as well as Breuer and Gürt-

ler(2001) indicate that for high risk aversion and/or the use of options the approximative qual-

ity of mean-variance preferences may be poor. Moreover, the relevance of higher-order return 

moments in portfolio selection models has been emphasized, for example, by Chunhachinda 

et al(1997) and Patton(2004). The analysis by Jobson and Korkie(1984) therefore should be 

broadened to allow for more general preferences. Indeed, Hakansson(1969) and Cass and 

Stiglitz(1970) were able to extend the original two-funds separation theorem to the whole 

class of HARA utility functions, i.e. utility functions with hyperbolic absolute risk aversion. 

This generalization of preferences for the original portfolio selection problem considered by 

Jobson and Korkie(1984) is the second main goal of our paper. 

 

To fulfil these two goals, section 2. formally describes the general portfolio selection problem 

under consideration. As already mentioned, we consider a one-period problem with an inves-

tor just identifying one out of F different funds and optimally combining this one with a direct 

stock investment and riskless lending or borrowing. Certainly, the examination of a situation 

where only one out of F different funds can be chosen is somewhat restrictive. Nevertheless 

such a scenario can be interpreted as a classical asset allocation problem with three classes of 

assets (a fund, direct stock holding and riskless lending or borrowing). As an illustration, this 

decision problem corresponds to the important case of institutional investors relying only on a 
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single fund manager, a not uncommon practice, for example, in the U.K. In addition, it is nec-

essary to define different funds as alternative investments if performance measures for single 

funds shall be derived. Moreover, the analysis of situations with the selection of only one 

fund at a time may be used as a starting point for the examination of more complex portfolio 

selection problems in future work. In fact, our derivations remain valid if we reinterpret f = 1, 

…, F not as single funds but as F different given portfolios of funds. Only the analysis of the 

determination of the optimal combination of a certain set of funds must then be the object of 

further research. 

 

From the basic presentations at the beginning of section 2. we derive generalized versions of 

the classical performance measures suggested by Sharpe(1966), Treynor(1965), and Jen-

sen(1968) for the case of HARA preferences with the last one belonging to the class of period 

weighting measures introduced by Grinblatt and Titman(1989). We show that all these meas-

ures are only border solutions if we exclude short sales of fund shares and equity portfolios. 

For inner optima of the portfolio selection problem we get a performance measure which can 

best be viewed as the generalized Sharpe measure not of a fund itself but of its optimal com-

bination with the reference portfolio P. Moreover, when we refer to the optimized perform-

ance measure we mean one which can be endogenously derived from the investor's portfolio 

selection problem when taking care of border solutions. Section 2. offers a complete descrip-

tion of adequate measures of funds ranking in the case of HARA utility functions for the port-

folio selection problem under consideration. 

 

In section 3. we consider the special case of cubic HARA utility functions and determine the 

special functional form of the Sharpe measure for optimal combinations of an arbitrary fund 

under consideration and the reference portfolio. Prakash and Bear(1986) were one of the first 
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to apply the Three-Moment CAPM by Kraus and Litzenberger(1976) in order to derive a 

modified Treynor ratio recognizing skewness preferences We therefore additionally highlight 

the relationship between their results and the ones of this paper. As stated above, our partial-

analytical framework will help to understand better the relevance of performance measures 

derived from pure capital market equilibrium considerations. 

 

In section 4. we analyze empirically the relevance of funds rankings on the basis of the gener-

alized performance evaluation established in sections 2. and 3. for funds investing in either 

German, British, or French shares. We restrict ourselves to the case of quadratic and cubic 

(HARA) utility. Since there are considerable differences in funds rankings according to the 

several performance measures mentioned above our findings suggest that there is in fact a 

need for an optimized performance measure explicitly recognizing skewness preferences. Sec-

tion 5. concludes. 

 

As is necessarily the case for any theoretical paper our results are based on several proofs that, 

because of space constraints, are in several separate appendices which are available from the 

authors on request. Moreover, it should be mentioned that we assume in our propositions and 

lemmas that the order of differentiation and integration may be exchanged and that all ex-

pected values under consideration exist. 

 

2. Performance measurement in the general case of HARA utility 

We consider an expected utility maximizing investor with an initial endowment W0 at time 0 

who can invest in exactly one of F different funds f = 1, …, F as well as in a portfolio P of 

shares. Moreover, riskless lending or borrowing at a constant interest rate R is possible. For a 

given fund f let x be the fraction of W0 which is invested securely for one period from time 0 
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until time 1 with x < 0 denoting riskless lending The amount 0y (1 x) W⋅ − ⋅  will be given to 

the portfolio manager of fund f. The remaining amount 0(1 y) (1 x) W− ⋅ − ⋅  will be invested in 

the portfolio P of equity shares directly available on the capital market. Let Rf and RP be the 

uncertain rates of return of investment fund f and portfolio P and rf as well as rP stand for the 

corresponding excess returns Rf − R and RP − R, respectively. We assume that E[rP] > 0 and 

E[rf] > 0 for all funds f. 

 

Then the investor's excess return on the risk component of the portfolio is 

 f P qy r (1 y) r r , say,⋅ + − ⋅ =  (1) 

and total wealth at time 1 is 

 1 0 q 0 qW W (x (1 R) (1 x) (1 R r )) W (1 R (1 x) r )= ⋅ ⋅ + + − ⋅ + + = ⋅ + + − ⋅ . (2) 

The investor faces three decision problems. First the investor has to select an investment fund 

f and then has to determine the optimal values of x and y in order to maximize the expectation 

value of the utility function.  

 

Funds rankings should not be preference-dependent; that is they should only depend on objec-

tive market data. Since we want to rank funds for an investor with the decision problem de-

scribed above we only allow for utility functions which all assure the same kind of funds 

evaluation. From Hakansson(1969) and Cass and Stiglitz(1970) it is known that for certain 

classes of utility functions with hyperbolic absolute risk aversion (HARA) the optimal value 

for y as well as the assessment of different investment funds does not depend on the specifica-

tion of the investor's preferences. More precisely, a HARA utility function U(a,b) is described 

by an absolute risk aversion 

 '' '
(a ,b) 1 (a ,b) 1 1U (W ) / U (W ) 1/(a b W )− = + ⋅ . (3) 
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HARA utility functions with an identical parameter b belong to the same class. All members 

of such a class lead to the same optimal value for y independent of the preference parameter a. 

As pointed out, e.g. Dybvig and Ross(2003), pp. 629-631, this property of HARA utility func-

tion is the reason for their central relevance in portfolio theory. 

 

The reciprocal of absolute risk aversion, i.e. 

' ''
(a ,b) 1 (a ,b) 1U (W ) / U (W )− , 

is called an individual’s risk tolerance. In the case of HARA utility we get a linear function 

1a b W+ ⋅ . As shown by Borch(1960), because of this linearity, pareto-efficient risk sharing 

designs among individuals are linear in terminal wealth for a given class of HARA utility 

functions and thus very easy to establish. This circumstance just highlights another important 

feature of HARA preferences. Moreover, linear risk tolerances can be interpreted as a first or-

der Taylor series approximation of arbitrary risk tolerances thus emphasizing the high practi-

cal relevance of HARA utility. Thereby, we must have 1a b W 0+ ⋅ >  for all possible terminal 

wealth levels. According to (3), this condition is necessary for simultaneously guaranteeing 

1U '(W ) 0>  and 1U ''(W ) 0<  for all W1, that is positive and decreasing marginal utility and 

therefore risk-averse behavior. In Breuer and Gürtler(2005) the requirement 1a b W 0+ ⋅ >  is 

analyzed in more detail. As parameters a and b can assume arbitrary values as long as we al-

ways have 1a b W 0+ ⋅ > , HARA utility functions describe situations with falling (b < 0), ris-

ing (b > 0) and constant (b = 0) risk tolerance. Thereby falling (rising) risk tolerance is 

equivalent to rising (falling) absolute risk aversion. 
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As already pointed out by Hakansson(1969) and Stiglitz(1970), classes of HARA utility func-

tions comprise exponential, logarithmic, and power utility functions and can be completely 

described in the following way: 

 (a,b) 1 1
1U (W ) exp W ,
a

⎛ ⎞= − − ⋅⎜ ⎟
⎝ ⎠

     b = 0; 

 (a,b) 1 1U (W ) ln(a W ),= +              b = 1;  (4) 

 
11
b

(a,b) 1 1
1U (W ) (a b W ) ,

b 1
−

= ⋅ + ⋅
−

 otherwise (b ∈ ℜ \ {0, 1}).  

Using (3) and (4) as well as the abbreviation 

 0 0z ((1 x) W ) /(a b W (1 R))= − ⋅ + ⋅ ⋅ +  (5) 

in Appendix A it is shown that 

 0
(a,b) 1 (1,b) f P

W (1 R)
U (W ) exp U (z (y r (1 y) r )),

a
⋅ +⎛ ⎞= − ⋅ ⋅ ⋅ + − ⋅⎜ ⎟

⎝ ⎠
  b = 0;  

 (a,b) 1 0 (1,b) f PU (W ) ln(a W (1 R)) U (z (y r (1 y) r )),= + ⋅ + + ⋅ ⋅ + − ⋅   b = 1; (6) 

11
b

(a,b) 1 0 (1,b) f PU (W ) (a b W (1 R)) U (z (y r (1 y) r )),
−

= + ⋅ ⋅ + ⋅ ⋅ ⋅ + − ⋅  otherwise (b ∈ ℜ \ {0, 1}). 

Since positive marginal utility in the case of an exclusive riskless investment requires a posi-

tive value of 0a b W (1 R)+ ⋅ ⋅ + , the maximization of (a,b) 1E[U (W )]  can be replaced by the 

maximization of  

  (1,b) f PE[U (z (y r (1 y) r ))]⋅ ⋅ + − ⋅ . 

For any given fund f, the above expectation is maximized with respect to y and z and does not 

depend on the investor's initial endowment W0 or preference parameter a any more. It is obvi-

ous that this result immediately implies the well-known two-funds separation theorem men-

tioned earlier. In what follows these optimal values of y and z (as well as other corresponding 

optimal values) are indicated by an asterisk. 
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From all funds under consideration the investor will select that one with the highest attainable 

value of 

 (1,b) f PE[U (z (y r (1 y) r ))]⋅ ⋅ + − ⋅ . 

In the case of quadratic utility this leads us to the realization of the maximum Sharpe ratio by 

the optimal combination of a fund f and the portfolio P of equity shares as has already been 

described by Jobson and Korkie(1984). Brennan and Solanki(1981) derived a similar result 

for situations with lognormally distributed security returns and risk neutral market valuations. 

 

We therefore introduce the following definition. 

 

Definition 1. Consider an investor with HARA utility facing the portfolio selection problem 

described at the beginning of section 2. Also define U as U(1,b). The quantity 

 ⋅ ⋅ + − ⋅ =f PE[U( z ( y r (1 y ) r ))] GSM( y,z ), say, (7) 

is defined as the generalized Sharpe measure for the portfolio structure (y,z). 

 

This definition leads to the following proposition. 

 

Proposition 1. An investor with a HARA utility function facing the portfolio selection problem 

defined above will rank funds according to the maximum values of GSM( y,z ) for each fund. 

 

Proof. See derivation above. 

 

Certainly, y should be restricted to avoid situations where a fund or the reference portfolio P 

of direct stock holding is sold short by the investor. To analyze the characterization of possi-

ble border solutions with respect to y we have to introduce the following new lemma. 
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Lemma. Let f be a fund with ≠f PE[ r ] E[ r ]  and define z( y ) as the optimal value of z for 

given fund f and share y of the fund f in the risky portfolio . The following statements obtain. 

(i) z(y) has a unique root = −P P fŷ E[ r ] /( E[ r ] E[ r ]) .  

(ii) The sign of z(y) equals the sign of ⋅ + − ⋅f Py E[ r ] (1 y ) E[ r ]  for all y. 

(iii) The sign of the derivative =∂ ∂ ˆy yz( y ) / y  equals the sign of −f PE[ r ] E[ r ] . Thus, if 

<
>f PE[ r ] E[ r ] , it follows: 

>
<

1
ŷ 0 , 

>
<z( y ) 0  for all < ˆy y  and 

<
>z( y ) 0  for all > ˆy y .  

(iv) = ⋅ ⋅ + − ⋅f PGSM( y,z( y )) E[U( z( y ) ( y r (1 y ) r ))]  has a unique (unrestricted) maxi-

mum at a value *y  and a unique (unrestricted) minimum at ŷ . 

(v) 
∈

⋅ − < ⇒ =* *

y [ 0 ,1]
z( y ) (1 y ) 0 arg max[ GSM( y,z( y ))] 1 , 

 
∈

⋅ < ⇒ =* *

y [ 0 ,1]
z( y ) y 0 arg max[ GSM( y,z( y ))] 0 . 

 

Proof. See Appendix B. 

 

Let optimal values for y and z (as well as other variables) in the case of x ∈ ℜ and y ∈ ]y,y[  

( ℜ∈y,y ) be characterized by two asterisks ** while a single asterisk denotes optimal solu-

tions for x, y ∈ ℜ. According to part (v) of the Lemma we get a border solution **y 1=  in the 

case of a restriction y ≤ 1 if the investor would – without this restriction – prefer to sell the 

equity portfolio short. To see this it is necessary to recognize that we have 

* *

( ) ( )
z(y ) 0 x(y ) 1

> <
< ⇒ >  and that we get *y 1>  or *1 y 1− >  for *z(y ) 0<  from part (ii) of the 

Lemma. This implies that situations with *z(y ) 0>  and *1 y 0− <  as well as situations with 
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*z(y ) 0<  and *1 y 0− >  are characterized by the optimality of short sales of (only) equity 

portfolio P if possible. Consequently, the introduction of short sales restrictions in such a 

situation then thus leads to a border solution **y 1= . Exactly this relationship is described by 

the first line of part (v) of the Lemma. As shown by Sharpe(1966), for quadratic utility the 

setting y = 1 implies the ranking of funds according their simple Sharpe measure. We there-

fore may speak of the generalized Sharpe measure (for HARA utility) of a fund f in the fol-

lowing sense. 

 

Definition 2. The special case 

 = ⋅ fGSM(1,z(1)) E[U( z(1) r )]  (8) 

is called the generalized Sharpe measure of a fund f. 

 

The second line of part (v) of the Lemma characterizes a situation where it is best for the in-

vestor to invest nothing in fund f. However, there may be situations where the investor wants 

to realize a (marginal) minimum positive engagement in funds so that the domain of y is then 

[ε, 1] with ε > 0. Under such circumstances an unrestricted optimal positive investment in f 

leads to ε=**
fy . In this case it is possible to derive a simpler performance measure than the 

one presented in Proposition 1. To do so, we just have to look at the investor's utility depend-

ing on y for optimal choice z(y):  

 f PU(z(y) (y r (1 y) r )) U(r(y)), say.⋅ ⋅ + − ⋅ =  (9) 

For y 0= ε →  the investor's expected utility converges to the same value PE[z(0) r ]⋅  for any 

fund under consideration. Thereby, z(0) corresponds with that value z in the case y = 0 that 

leads to the maximum expected value of the utility function 

 (1,b) f PE[U (z (y r (1 y) r ))]⋅ ⋅ + − ⋅ . 
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Since no dependency on the elected fund is recognizable, z(0) is equal for all funds. In order 

to compare funds f with y 0= ε→  we thus have to derive E[U(r(y))]  with respect to y at y = 

0. We get  

 P y 0 P f P
y 0

P f

E[U(r(y))] E[U '(z(0) r ) (( z(y) / y) r z(0) (r r ))]
y

E[U '(z(0) r ) r ] z(0),

=
=

∂
= ⋅ ⋅ ∂ ∂ ⋅ + ⋅ −

∂

= ⋅ ⋅ ⋅

 (10) 

since P PE[U '(z(0) r ) r ] 0⋅ ⋅ =  according to the first-order necessary condition for z(0). 

 

As a result of part (ii) of the Lemma the sign of z(0) is positive. According to Appendix C, a 

fund g with y = yg and z(y) = zg(y) is thus better than a fund h for yg = yh = ε → 0 with y = yh 

and z(y) = zh(y) if the following relationship holds:  

 
g P g h P h

g P g h P h
g P h P

g P P h P P

E[U '(z (0) r ) r ] E[U '(z (0) r ) r ]

cov[U '(z (0) r ), r ] cov[U '(z (0) r ), r ]
E[r ] E[r ] E[r ] E[r ].

cov[U '(z (0) r ), r ] cov[U '(z (0) r ), r ]

⋅ ⋅ > ⋅ ⋅

⋅ ⋅
⇔ − ⋅ > − ⋅

⋅ ⋅

 (11) 

In the case of quadratic utility function (11) becomes the original Jensen measure. (11) there-

fore suggests the following definition. 

 

Definition 3. The quantity  

 − ⋅ =f fP PE[ r ] E[ r ] GJM ,β  say, (12) 

with βfP defined as  

⋅

⋅
P f

P P

cov[U '( z(0 ) r ),r ]
cov[U '( z(0 ) r ),r ]

 

is called a generalized Jensen measure for HARA utility. 

 

The generalized Jensen measure is already known in the literature and may be interpreted as 

the marginal expected utility from adding a small fraction of a fund f to a reference portfolio 
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P as has been pointed out by e.g. Grinblatt and Titman(1989), p. 407, for the special case of 

quadratic utility, and in general by Leland(1999), pp. 28, 33. It is interesting to note that this 

measure should only be used to rank funds f which are inferior in such a sense that the inves-

tor would prefer to sell them short. All other funds are better than those inferior ones and will 

be ranked separately according to the performance measure of Proposition 1 (possibly allow-

ing for border solutions **y 1=  in the case of unrestricted optimal values *y 1> ). Such funds 

are called superior ones.  

 

Since inferior funds are optimally sold short, they are characterized by a negative Jensen 

measure, while GJM > 0 holds for all funds f in which the investor prefers a positive holding. 

Furthermore, a negative sign of the reversed Jensen measure P Pf fE[r ] E[r ]−β ⋅  shows us that 

we have a border solution **y 1=  for the investors would like to sell portfolio P short. Sum-

ming up, the generalized Jensen measure and its reversed formulation make it possible to eas-

ily check for any fund f whether there will be a border solution with **y = ε  > 0 or **y 1=  or 

not. 

 

Finally, the performance measure according to Definition 3 belongs to the class of period 

weighting measures introduced by Grinblatt and Titman(1989) if we interpret period weights 

as marginal utilities. This follows immediately from the analysis in Grinblatt and Tit-

man(1989), p. 407. The performance measure according to Proposition 1 does not belong to 

the class of period weighting measures as shown in Appendix D. As a by-product we get the 

following general assessment of the usefulness of period weighting measures for fund per-

formance issues in our model. As in Grinblatt and Titman(1989), period weighting measures 

can be effectively used to identify superior funds since these funds are unambiguously charac-

terized by a positive sign of their Jensen measures. In contrast to Grinblatt and Titman(1989) 
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this does not rely on multivariate normal return distributions. Moreover, in order to determine 

a complete funds ranking, period weighting measures can only be applied to rank inferior 

funds, but not the superior ones. For our context, period weighting measures thus lack general 

applicability. Summarizing, we have the following proposition. 

 

Proposition 2. Consider an investor with HARA utility and facing a portfolio selection prob-

lem as described at the beginning of section 2. with short sales restrictions y ∈ [ε, 1], ε > 0, 

but small. Funds which should optimally be sold short are inferior compared to all other 

funds and can be identified by their negative generalized Jensen measure. They should be 

ranked separately behind the other funds according to the generalized Jensen measure. Any 

other fund has to be characterized by the generalized Sharpe measure of the optimal combi-

nation of this fund f and equity portfolio P. Funds which lead to optimal short sales of the eq-

uity portfolio P are characterized by a negative reversed generalized Jensen measure. For 

them performance evaluation reduces to the generalized Sharpe measure according to Defini-

tion 2. In the case of quadratic utility functions all generalized performance measures can be 

simplified to their counterparts based on a quadratic utility function. 

 

Proof. See derivation above. 

 

In an identical manner to its equivalent based on a quadratic utility function the generalized 

Jensen measure can easily be manipulated by the variation of a fund's engagement in riskless 

lending or borrowing. There are several possibilities in order to neutralize the influence of 

such manipulations. The most straightforward way seems to introduce normalized funds 

which are characterized by the same expected excess return µ° > 0. To this end, any fund f 

must be combined with riskless borrowing/lending by the investor in a certain way just ren-
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dering fund managers' endeavors to influence their Jensen measure by riskless borrow-

ing/lending useless. To be precise, funds f are substituted by portfolios f °  which consist of a 

fraction f fx (E[r ] ) / E[r ]° = −µ°  that is invested in riskless lending and a fraction 1 x− °  which 

is invested in the original fund f so that for f fr (1 x ) r° = − ° ⋅  we get fE[r ]° = µ° . The resulting 

normalized funds f °  may then be ranked according to the generalized Jensen measure of 

Definition 3. Since their expected return is identical for all funds the following transformation 

of their generalized Jensen measure is possible according to Appendix E: A fund g is better 

than a fund h if  

 

g h

hPgP

g g P P h h P P

E[r ] E[r ]

E[r ] E[r ] E[r ] E[r ]

1 1 .

° ° ° °

ββ

−β ⋅ > −β ⋅

⇔ − > −  (13) 

For quadratic utility the denominators of the fractions in the last line of (13) become the well-

known Treynor ratio. The derivation of (13) thus suggests the following definition. 

 

Definition 4. The quantity 

 =f fPE[ r ] / GTM ,β  say, (14) 

with βfP defined as in Definition 3 is called a generalized Treynor measure for fund f in the 

case of HARA utility. 

 

Proposition 3. The generalized Jensen measure of Definition 3 for normalized funds leads to 

a ranking of funds according to the negative inverse of the generalized Treynor measure of 

the original funds. If we assume beta coefficients to be greater than zero then a direct ranking 

according to the generalized Treynor measure evolves. 
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Proof. See (13). The last line can easily be transformed to g gP h hPE[ u ] / E[ u ] /β β> , if both 

beta coefficients (and expected excess returns) are positive. 

 

Proposition 3 in connection with Proposition 2 gives us a remarkable justification for the ap-

plication of the original as well as the generalized Treynor measure. It turns out to be an ade-

quate performance measure in the case of (exogenously given) marginal funds engagements 

when assuring invariance of ranking with respect to funds' riskless lending or borrowing. To 

be precise, (original) funds f should be ranked according to the negative inverse of the gener-

alized Treynor measure if we postulate y = ε  for all (normalized) funds f ° . In particular, this 

implies that all funds with negative performance measure GTM are better than all those with 

positive signs for GTM and each of these subsets of funds can be separately ranked according 

to GTM. The reason for the superiority of negative Treynor measures is that for positive ex-

pected excess returns they coincide with negative beta values so that their contribution to total 

portfolio risk is negative and therefore advantageous. 

 

Once again, the (negative inverse of the) generalized Treynor measure of Definition 4 belongs 

to the class of period weighting measures according to Grinblatt and Titman(1989), but only 

with respect to our newly defined normalized funds f °  as is shown in Appendix D. 

 

3. Performance evaluation in the special case of cubic HARA utility 

Though quite general, the performance measures developed in section 2. lack some transpar-

ency. This is in particular true for the generalized Sharpe measure of a combination of a fund 

f with the reference portfolio P. Jobson and Korkie(1984) showed that in the case of quadratic 

utility and absence of short sales restrictions the performance measure according to Proposi-

tion 1 can be reduced to a ranking by the square of the Treynor/Black measure. Unfortunately, 
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there seems to be no straightforward way to extend their results to the general case of HARA 

utility. For more transparent results, the set of admissible preferences must therefore be nar-

rowed.  

 

The most natural way to generalize traditional mean variance analysis is by additionally al-

lowing for skewness preferences. In connection with HARA utility this implies considering 

cubic utility functions. The assumption of cubic utility enables us to give a more specific de-

scription of the Sharpe measure of the optimal combination of a fund f and equity portfolio P 

as described in Proposition 1. Moreover, we are able to relate the generalized Treynor meas-

ure for cubic HARA utility to the performance measure developed by Prakash and Bear(1986) 

on the basis of the Three-Moment CAPM by Kraus and Litzenberger(1976). Thereby, we give 

an example for the analysis of possible connections between a partial-analytical framework 

for the development of performance measures and a capital-market oriented equilibrium ap-

proach to performance measurement. 

 

3.1. The Sharpe measure for optimal fund engagements 

For cubic HARA utility the corresponding transformed1 utility function U is 

 3
f PU(r(y, z)) (z (y r (1 y) r ) 1) .= ⋅ ⋅ + − ⋅ −  (15) 

In this situation we get the following formula for E[U(r(y, z))]  which is proven in Appendix 

F. 

 
3 2 2 3 3

q q q q

2 3
q q q

E[U(r(y, z))] (z 1) 3 (z 1) z z

( , , ), say.

= ⋅µ − + ⋅ ⋅µ − ⋅ ⋅σ + ⋅ γ

= Φ µ σ γ
 (16) 

qµ , 2
qσ , and 3

qγ  denote the corresponding first three moments of qr . The third central moment 

3γ  characterizes the skewness of a random variable and its relevance is a direct implication of 

the assumption of a cubic rather than of a quadratic utility function. It is easy to show that 
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formula (16) is decreasing in 2
qσ . Moreover, as long as we have x < 1, i.e. no riskless lending 

financed by short sales of risky assets, (16) is increasing in qµ  and 3
qγ . A proof of these asser-

tions and an explanation of the relevance of skewness considerations as a consequence of the 

assumption of a cubic rather than a quadratic utility function are given in Appendix G. With 

equation (16) we can prove the following proposition. 

 

Proposition 4. For cubic HARA utility the Sharpe measure of optimal fund engagements ac-

cording to Definition 1 in a situation without short sales restrictions can be simplified to the 

following special cubic performance measure 

⋅ − − ⋅ − ⋅ − + ⋅ − ⋅ ⋅ +
=

+ + ⋅

2 3 1.5 3 3 3 2
* 1 1 2 2 2 1 1 1

1 2 3 3 2
1 2 1

2 (1 ) ( 3 ) 2 ( 3 1)
CSM ( , )

( 3 )
α α α α α α α α

α α
α α α

 (17) 

with α1 defined as q* q*/µ σ  and α2 as q* q*/γ σ . In this context q* identifies the optimal struc-

ture of the overall portfolio’s risk component with excess return = ⋅ + − ⋅* *
q* f Pr y r (1 y ) r . The 

same holds true if we take short sales restrictions explicitly into account. For such a situation, 

once again all optimal variables are denoted by two asterisks (**) so that in that case we es-

pecially write CSM**(α1, α2). 

 

Proof. See Appendix H. 

 

The performance measure according to Proposition 4 is lengthy, but its calculation is not dif-

ficult, because it only depends on two arguments. The first, 1 q* q*/α = µ σ , is just the simple 

quadratic Sharpe measure of the optimal portfolio *q . The performance measure of Proposi-

tion 4 may be viewed as a generalization of this quadratic measure to the cubic case and is 

thus called the cubic Sharpe measure CSM* of the optimal portfolio. 
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Since we already know that preference values ceteris paribus are increasing with higher val-

ues for q*µ  and smaller values for q*σ , we can immediately conclude that the generalized per-

formance measure of Proposition 4 is increasing in 1α  as well. This implies that in the case of 

constant values for q*γ  which corresponds with decision making on the basis of pure mean-

variance preferences the performance measure of Proposition 4 is equivalent to a funds rank-

ing on the basis of 1 q* q*/α = µ σ . As mentioned earlier, the relevance of this measure for per-

formance evaluation in the case of simple mean-variance preferences was demonstrated in 

Jobson and Korkie(1984). 

 

As an extension to the results in Jobson and Korkie(1984) the second argument 2α  deter-

mines the assessment of any fund f and relates the skewness of the optimal portfolio's return 

to its standard deviation. Once again, we know that the performance measure must be increas-

ing in this argument because it is increasing in q*γ  (if we abstract from the somewhat patho-

logical case x* > 1 mentioned above in which an investor sells risky assets to finance riskless 

lending). A fund g with 1 g,1α = α  and 2 g,2α = α  is unambiguously better than a fund h with 

1 h,1α = α  and 2 h,2α = α  if we have 1,h1,g α>α  and 2,h2,g α>α . No unambiguous relationship 

can be derived for cases where we have 1,h1,g α>α  and 2,h2,g α<α  or 1,h1,g α<α  and 

2,h2,g α>α . In fact, as presented in Appendix I we may easily find examples where such sce-

narios lead to higher or to lower performance evaluations when switching from fund g to fund 

h. All these relationships hold still true if we refer explicitly to situations with short sales re-

strictions. 
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3.2. Cubic Treynor measure and Prakash and Bear(1986) 

If all investors are risk averse and possess cubic utility functions of the HARA type, for any 

risky asset f according to Kraus and Litzenberger(1976) the following relationship must hold 

in capital market equilibrium: 

 2
f 1 f M 2 f f M ME[r ] cov[r , r ] E[(r E[r ]) (r E[r ]) ]= λ ⋅ + λ ⋅ − ⋅ −  (18) 

λ1 and λ2 are market constants which depend on the aggregated risk preferences of all inves-

tors in the capital market. Since risk averse investors with cubic HARA utility functions are 

variance averters but skewness lovers, λ1 is positive and λ2 negative as has been shown e.g. 

by Kraus and Litzenberger(1976), p. 1088. Equation (18) can be considered a generalized cu-

bic security market line because when coskewness 2
f f M ME[(r E[r ]) (r E[r ]) ]− ⋅ −  or λ2 is zero, 

the security market line given by the standard CAPM evolves. Following, Prakash and 

Bear(1986) we define η (< 0) as the quotient λ1/λ2 and rewrite (18) as 

  

2
f 2 f M f f M M

f
22

f M f f M M

E[r ] ( cov[r , r ] E[(r E[r ]) (r E[r ]) ] )
E[r ] ,

( cov[r , r ] E[(r E[r ]) (r E[r ]) ] )

= λ ⋅ η⋅ + − ⋅ −

⇔ = λ
η⋅ + − ⋅ −

 (19) 

Let us now allow for possible deviations of funds f from the cubic security market line (19). 

On this basis Prakash and Bear(1986) suggested to rank funds according to the fraction on the 

left-hand side of the last equation in (19). 

 

Definition 6. The left-hand side of the last equation of (19) is called the Prakash/Bear per-

formance measure PBM. 

 

In Appendix J it is shown that in the special case of a cubic (HARA-) utility function the 

funds ranking according to Proposition 3 can be transformed in the following way 
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( )

( )

2 2
g g P P P P gz(0)

g

2 2
h h P P P P hz(0)

h

E[(r E[r ]) (r E[r ]) ] 2 E[r ] cov[r , r ]

E[u ]

E[(r E[r ]) (r E[r ]) ] 2 E[r ] cov[r , r ]
,

E[r ]

− ⋅ − + ⋅ − ⋅

− ⋅ − + ⋅ − ⋅
>

 (20) 

which corresponds to the inverse of the Prakash/Bear performance measure of Definition 6 if 

we use the market portfolio M as the portfolio P of equity shares and apply the definition 

 M2 (E[r ] 2 / z(0)) ,⋅ − = η  say. (21) 

Thereby, it is worth mentioning that the consideration of cubic utility of the HARA type in 

connection with only marginal fund engagements is consistent with the validity of the gener-

alized security market line (18) for all equity shares. Capital market equilibrium will not be 

disturbed by funds deviating from the generalized security market line as long as their impor-

tance is negligible. Because of the two-funds separation by Hakansson(1969) and Cass and 

Stiglitz(1970), the consideration of investors with marginal fund engagements, cubic HARA 

utility, and homogeneous expectations (regarding equity shares) immediately leads to the 

Three-Moment CAPM by Kraus and Litzenberger(1976) as characterized by (18) and (19) 

with respect to equity shares. In such a scenario η as defined by (21) must indeed be identical 

to the fraction 21 /λλ  as implied by the generalized security market line (19). In this sense, 

capital-market oriented equilibrium approaches to performance measurement turn out to be 

special cases of the partial-analytical approach favored in this paper. Moreover, it seems to us 

that the partial-analytical framework is much more transparent than the equilibrium approach. 

 

The parameter z(0) has to be determined by the implicit definition / y 0∂Φ ∂ =  for the special 

case y = 0. From Appendix K we get 

 
2 2 2 3
M M M M

3
M

E[r ] E [r ] E[r ] E[r ]
z(0) 2

E[r ]
− − ⋅

= ⋅  (22)  
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with  

 2 2
M M ME[r ] var[r ] E [r ]= +  (23) 

and 

 3 3 3
M M M M M ME[r ] E[(r E[r ]) ] 3 E[r ] var[r ] E [r ]= − + ⋅ ⋅ + . (24) 

Thus, by (22) and (21) it is easy to determine η empirically. 

 

We summarize our findings of this subsection in the following proposition. 

 

Proposition 5. In the case of cubic HARA utility the negative inverse of the generalized Trey-

nor measure leads to the same funds ranking as the inverse of the Prakash/Bear performance 

measure. 

 

Proof. See derivation above. 

 

Among other things, Proposition 5 implies that a ranking according to the original 

Prakash/Bear performance measure typically totally reverses funds ranking according to the 

negative inverse of the generalized Treynor measure and thus selects that fund which (after 

normalization) leads to the lowest increase in utility when marginally added to the market 

portfolio M (or, more generally, to P). We consider such a ranking not very reasonable and 

therefore favor the performance measures derived in this paper.  

 

4. Empirical Example 

To exemplify our results, we consider a German investor who is planning to select one fund 

investing in German (British, French) equity shares and to combine this fund optimally with a 

given naive diversified direct investment on the German (British, French) capital market. We 
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focus on the comparison of funds rankings based on quadratic and cubic (HARA) utility and 

generally speak of quadratic and cubic performance measures, respectively. Specifically, we 

consider quadratic as well as cubic Sharpe, Jensen, Treynor and optimized performance 

measures with exclusion of short sales and the quadratic Treynor/Black performance measure. 

Thereby, when applying optimized performance measures, inferior funds are separately 

ranked via (the negative inverse of) their Treynor measures. We refrain from computing op-

timized performance measures without short sales restrictions because of the obvious high 

practical importance of this limitation and because otherwise inferior funds would become 

very attractive only because of the possibility of being sold short. 

 

The starting point of our analysis is monthly (post tax) return data for 45 German, 36 British, 

and 24 French funds over a period from June 1994 to July 1999 which are calculated on using 

the respective monthly repurchase prices (in Deutschmarks) per share. This means that possi-

ble selling markups are not taken into account. In this respect, the performance of funds gen-

erally tends to be overestimated when compared to the performance of any reference index. 

However, the determination here (in accordance with many other approaches) of gross per-

formance measures allows at least some conclusions to be made with regard to the sensitivity 

of ranking when different types of performance measures are applied. Exactly this aspect 

forms the central issue of this paper. 

 

We assume that all earnings paid out to the investors by a fund f are reinvested in this fund. 

As proxies of diversified direct capital markets investments we use the DAX 100 for Ger-

many, the FTSE 100 for the UK, and the France CAC 40 for France. The DAX 100 (listed un-

til 03/21/2003) consisted of 100 continuously traded shares of German companies including 

the 30 blue chips of the DAX 30 and the 70 midcap-stocks of the MDAX. Based on special 
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criteria (e.g. that at least 25 % of the stock in issue must be publicly available for investment 

and must not be in the hands of a single party or parties acting in concert) the FTSE 100 com-

prises the largest 100 UK companies ranked by market value. A sample of 40 French stocks 

listed on the so-called Monthly Settlement Market (also known as the RM or the Règlement 

Mensuel) constitutes the CAC 40 index. Moreover, it is noteworthy that for the time period 

under consideration there existed index certificates with respect to all three indices thus mak-

ing a monetary engagement in them indeed rather easy.2 

 

The riskless interest rate R is approximated by the expected return of German time deposit 

running for one month and covering the respective period of time to be observed. Funds of 

each country are analyzed separately. 

 

At the end of each month from July 1997 to July 1999 we estimate expectation values, vari-

ances, covariances, skewnesses and co-skewnesses on the basis of historical return data for 

the preceding 36 months and use these estimators in order to determine a ranking of funds for 

the following month as investment period and given performance measure. This gives 25 dif-

ferent funds rankings for the funds and for any performance measure under consideration. We 

thus allow for the problem of time-varying moments of return distributions. 

 

We refrain from considering a more recent time interval as in the aftermath of the global stock 

market crash in 2000 there have been too few funds being able to earn positive average excess 

returns. Historical return data would not be suitable for the estimation of return moments in 

such a situation. As our aim is to give an example of the consequences of different measures 

for fund performance and not to develop new methods of return estimation we focus on pre-

crash stock market data. 
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We determine the average ranking position of every fund f (and the respective reference port-

folio P of direct capital market engagements) for all quadratic or cubic performance measures 

under consideration. As an example, for German funds these average ranking positions are 

presented in Table 1. Corresponding tables for British and French funds are available from the 

authors on request. 

 

Table 1 

Average ranking positions of German funds according to several performance measures 

 

Since investors are mainly interested in superior funds as defined above and the optimized 

performance measures with border solutions of inferior funds reduce to simple rankings ac-

cording to the (negative inverse of the) Treynor measure, further analysis focuses on the best 

ten German (British, French) funds (possibly including the corresponding reference portfolio 

P) according to the optimized cubic performance measure with short sales restrictions. In Ta-

ble 1, German top ten funds are shaded. 

 

Based on the average ranking positions of these top ten funds we are able to calculate ranking 

correlation coefficients between any pair of the performance measures under consideration as 

Table 2 displays. Moreover, as in practical applications funds are very often ranked according 

to their average past relative wealth increase (net of fund inflows and outflows) we allowed 

for funds rankings according to their simple average excess return. Henceforth, we call this 

the risk neutral performance measure and Table 2 presents average ranking correlation coeffi-

cients for the risk neutral performance measure as well. 
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Table 2 

Ranking correlation coefficients between various performance measures for German, 

British, and French funds (top ten funds)  

 

As Table 2 shows there may be considerable differences in funds ranking according to the op-

timized quadratic performance measure and the simple quadratic Sharpe, Treynor, or Jensen 

measure. The same holds true with respect to cubic measures. These findings are indicated by 

the shaded numbers at the intersection of the lines belonging to SM** (quadratic utility) and 

SM** (cubic utility) and the columns for the Sharpe, Jensen, and Treynor measure. 

 

Moreover, we can identify similarly significant differences in funds rankings according to the 

(quadratic or cubic) optimized performance measure and the Treynor/Black measure as is in-

dicated by the shaded numbers in the column belonging to the Treynor/Black measure. This is 

not too surprising since the latter one has been derived from portfolio optimization without 

short sales restrictions and thus can lead to considerable deviations from funds rankings 

which explicitly allow for such kind of restrictions. Summarizing, the consideration of opti-

mized performance measures can be recommended for this example, because this requires 

similar return information than the corresponding Sharpe, Treynor, and Jensen measure, but 

additionally leads to a portfolio-theoretically based funds ranking. 

 

In addition, Table 2 can be used for a comparison between rankings according to the quadratic 

performance measures and their respective cubic counterparts. In fact, as can be seen by ex-

amining the relationship between quadratic and cubic Treynor as well as Jensen measure for 

British funds, it is obvious that deviations in ranking can be of a similar size as the differences 

between rankings according to (quadratic, cubic) optimized and (quadratic, cubic) Sharpe, 



  

  27

Treynor, and Jensen measures. Furthermore, optimized funds rankings for quadratic and cubic 

optimized performance measure differ to some degree, too, as can be seen by the three shaded 

numbers at the intersections of the row belonging to SM** (quadratic utility) and the column 

belonging to SM** (cubic utility). Because of these findings, it seems to be indeed reasonable 

to explicitly recognize skewness preferences in funds rankings as well. This conclusion is in 

line with several other analyses regarding portfolio optimization which were mentioned in the 

introduction. 

 

Finally, risk neutral funds rankings differ considerably from funds rankings according to the 

optimized cubic utility. This is verified by the shaded cells at the intersection of the rows be-

longing to linear utiliy and the columns belonging to SM** (cubic utility) and may indicate 

significant welfare losses resulting from fund selection according to their historical average 

excess return instead of a selection on the basis of the optimized cubic performance measure 

when utility is in fact cubic and of the HARA type. 

 

Nevertheless, a simple comparison of funds rankings according to different performance 

measures does not reveal the precise amount of possible welfare losses from the application of 

an unsuitable performance measure. To do so, an analysis of attainable certainty equivalents 

is required. Thereby, for the case of German funds we want to compute relative losses in cer-

tainty equivalents for an investor with cubic HARA utility who acts according to an inade-

quate portfolio selection rule. In order to calculate expected utility levels and certainty equiva-

lents it is not sufficient to determine which fund is chosen according to different performance 

measures. Additionally, it must also be fixed how this fund is combined with the reference 

portfolio P and riskless lending or borrowing. To this end, we identify the application of the 

quadratic Sharpe measure with a situation in which the investor assumes a setting y = 1 and 
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combines a fund f with riskless lending or borrowing based on a quadratic utility function. 

The quadratic Jensen measure as well as the quadratic Treynor measure can be interpreted as 

situations with a restriction y = ε > 0, but small, and – once again – quadratic utility. Cubic 

Sharpe, Jensen and Treynor measure describe decision situations with corresponding settings 

for y but cubic utility. For all 25 portfolio selection problems from July 1997 to July 1999 we 

determine optimal portfolios based on the rules just described and compute resulting certainty 

equivalents for an investor whose utility function is actually cubic (and of the HARA type). 

Certainly, there are greater certainty equivalents achievable by portfolio selection according 

to the optimized cubic performance measure and with a restriction y ∈ [0, 1] instead of y = 1 

or y = ε so that we express all resulting certainty equivalents as percentages of this attainable 

maximum value. Besides quadratic and cubic Sharpe, Jensen, and Treynor measure we also 

consider the optimized quadratic measure for which we assume portfolio selection with a re-

striction y ∈ [0, 1] based on quadratic utility. Furthermore, we consider portfolio selection 

based on expected excess returns. Since risk neutrality would not lead to an inner solution for 

an investor’s riskless lending or borrowing we assume risk neutral fund selection and the 

choice y = 1 but a quadratic utility for the determination of the amount of the riskless invest-

ment. 

 

Unfortunately, in the case of linear and quadratic utility approximation resulting relative cer-

tainty equivalents depend on the fraction a/W0 and thus are not independent of preference pa-

rameter a and initial wealth W0 any longer. Therefore, average relative certainty equivalents 

over 25 periods each are presented in Table 3 for three cases of small, medium-level and high 

values of a/W0. Thereby, increasing values of a/W0 imply ceteris paribus greater risk toler-

ance. Details are presented in Appendix L. Because of the two-funds separation relative risk 
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discounts resulting from cubic performance measures are independent of the investor’s risk 

tolerance. 

 

The procedure just described relies on the ex ante determination of certainty equivalents. For 

each of 25 portfolio selection problems over the whole time period return distributions for the 

computation of certainty equivalents are assumed as given ex ante based on the results of the 

corresponding past 36 months.  

 

Nevertheless, it is also possible to estimate relative certainty equivalents based on ex post per-

formance of different portfolio selection rules. For illustrative purposes we also compute the 

relative certainty equivalent of the optimized quadratic performance measure based on ex post 

performance. This means we use the 25 ex post return realizations resulting from 25 applica-

tions of the optimized quadratic performance measure as an estimator for the investor’s port-

folio return distribution in the case of such a portfolio selection behavior. The same is done 

for the application of the optimized cubic performance measure leading to a relative certainty 

equivalent for the optimized quadratic performance measure based on ex post performance re-

sults of only about 1/7 ≈ 14.29 % for low investor’s risk tolerance expressing a welfare loss of 

about 1−0.1429 = 85.71 %. Apparently, this result based on ex post performance complies 

very well with the corresponding number in Table 3 based on ex ante distributions. 

 

Table 3 

Average relative certainty equivalents attainable by the application of different perfor-

mance measures when utility is actually cubic and of the HARA type  
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In fact, as can be learnt from Table 3 both the risk neutral performance measure and all quad-

ratic ones may lead to considerable welfare losses for an investor with actual cubic HARA 

utility. The same holds true for the application of the cubic Jensen and Treynor measure. Wel-

fare losses from linear or quadratic utility approximation are increasing with ceteris paribus 

smaller risk tolerance. In fact, this specific result corresponds perfectly to the findings by 

other authors like Levy and Markowitz(1979) who have been cited in the introduction. 

 

Nevertheless, (in contrast to the cubic Treynor and Jensen measure) the simple cubic Sharpe 

measure together with the ad hoc restriction of y = 1 does a good job since in the case of 

(only) short sales restrictions the setting y = 1 is indeed typically the optimal solution for the 

top ten funds under consideration. After all, this examination of certainty equivalents seems to 

verify the relevance of cubic performance measures instead of the approximative use of deci-

sion rules based on risk neutral or quadratic preferences. If an investor is only interested in the 

determination of the best fund out of a set of F funds, the application of the cubic Sharpe 

measure might be used as an approximation of the optimized cubic performance measure. 

Nevertheless, the utilization of both performance measures requires the same information if 

the investor wants to optimize the overall portfolio consisting of a fund f, the reference portfo-

lio P and riskless lending or borrowing. From this point of view we recommend once again 

the direct application of the optimized cubic performance measure. 

 

5. Conclusion 

This paper was motivated by the question how the portfolio-theoretic approach by Jobson and 

Korkie(1984) for performance evaluation could be extended to allow for short sales restric-

tions and be broadened in order to allow for preferences beyond mean-variance. By doing so, 

we were able to generalize the performance measures of Treynor(1965), Sharpe(1966), and 
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Jensen(1968) to the case of HARA utility and give a portfolio-theoretic foundation for all of 

these measures. Moreover, we related our work to the approaches by Prakash and Bear(1986) 

and Grinblatt and Titman(1989). We extended the notion by Grinblatt and Titman(1989) of a 

period weighting measure to identify superior funds to all classes of HARA utility functions 

and arbitrary return distributions. We also showed that for the special purpose of funds rank-

ing period weighting measures are only apt to rank inferior funds. The ranking of the more in-

teresting other funds cannot be based on a period weighting measure. Finally, we presented a 

brief empirical application of the performance measures under consideration which indicates 

the relevance of portfolio-theoretically founded performance measures recognizing skewness 

preferences. 

 

Certainly, we have to admit that the performance measures developed in this paper are based 

on purely theoretical considerations and that there is a gap between the methods that are 

newly derived in academic journals and those that are often used in practice. For this reason 

we took into account the risk neutral performance measure which is based on historical aver-

age fund returns and which seems to be the most relevant criterion for fund selection in prac-

tical application. Obviously, for an investor with cubic HARA utility and a one-period time 

horizon the utilization of this simple risk-neutral performance measure may lead to consider-

able welfare losses. As a consequence, we believe there are indeed situations in which the per-

formance measures developed in this paper may add value to investors. However, the main 

contribution of this paper is new theory while the task of making the methods developed in 

this paper fully operational in practice certainly is a separate project which should be ad-

dressed by future work. 
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1 Notice, that U(1,−0.5)(.) and 1.5⋅U(1,−0.5)(.) are equivalent because of the cardinality of Von 

Neumann-Morgenstern utility functions. Because of a similar reason, it is here possible to re-

define z for the derivation of Proposition 4 as one half of the original decision variable z (i.e. 

0.5⋅z is simply replaced by z). 

2 For further information on these indices see e.g. http://www.finix.at and particular for the 

former DAX 100 see Deutsche Boerse Group(2003), p. 6. 
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Appendices 

 

Appendix A: Proof of (6) 

 

Case b = 0: 

         
( )( )

(a,b) 1 1 0 f P(2)

0 0 f P

0 f P(5)

1 1U (W ) exp W exp W (1 R (1 x) (y r (1 y) r ))
a a

1 1exp W (1 R) exp W (1 x) (y r (1 y) r )
a a
1exp W (1 R) exp z (y r (1 y) r )
a
1exp
a

   = − − ⋅ =− − ⋅ ⋅ + + − ⋅ ⋅ + − ⋅   
   

    = − − ⋅ ⋅ + ⋅ − − ⋅ ⋅ − ⋅ ⋅ + − ⋅        
 =− − ⋅ ⋅ + ⋅ − − ⋅ ⋅ + − ⋅ 
 

= − − 0 (1,b) f PW (1 R) U (z (y r (1 y) r )). ⋅ ⋅ + ⋅ ⋅ ⋅ + − ⋅ 
 

(A.A1) 

 

Case b = 1: 

 

(a,b) 1 1 0 f P(2)

0 f P
0

0

0 f P(5)

0 (1,b) f

U (W ) ln(a W ) ln(a W (1 R (1 x) (y r (1 y) r )))

W (1 x) (y r (1 y) r )ln (a W (1 R)) 1
a W (1 R)

ln(a W (1 R)) ln(1 z (y r (1 y) r ))

ln(a W (1 R)) U (z (y r (1

= + = + ⋅ + + − ⋅ ⋅ + − ⋅

  ⋅ − ⋅ ⋅ + − ⋅
= + ⋅ + ⋅ +   + ⋅ +  
= + ⋅ + + + ⋅ ⋅ + − ⋅

= + ⋅ + + ⋅ ⋅ + Py) r )).− ⋅

 (A.A2) 

 

Case  b ∈ ℜ \ {0, 1}: 

 

1 11 1
b b

(a,b) 1 1 0 f P(2)

111 b1
0 f Pb

0
0

11
b

0 f P(5)

1 1U (W ) (a b W ) (a b W (1 R (1 x) (y r (1 y) r )))
b 1 b 1

W (1 x) (y r (1 y) r )1(a b W (1 R)) 1 b
b 1 a b W (1 R)

1(a b W (1 R)) 1 b z (y r (1 y) r
b 1

− −

−
−

−

= ⋅ + ⋅ = ⋅ + ⋅ ⋅ + + − ⋅ ⋅ + − ⋅
− −

 ⋅ − ⋅ ⋅ + − ⋅
= + ⋅ ⋅ + ⋅ ⋅ + ⋅ − + ⋅ ⋅ + 

= + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ + − ⋅
−

( )
11
b

11
b

0 (1,b) f P

)

(a b W (1 R)) U (z (y r (1 y) r )).

−

−
= + ⋅ ⋅ + ⋅ ⋅ ⋅ + − ⋅

 

  (A.A3) 
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Appendix B: Proof of the Lemma 

 

First of all, the investor faces the optimization problem  

 f P z, y
E[U(z (y r (1 y) r ))] max.!⋅ ⋅ + − ⋅ →  (A.B1) 

Thus, the corresponding necessary conditions are as follows:  

 f P f PE[U '(z (y r (1 y) r )) (y r (1 y) r )] 0,⋅ ⋅ + − ⋅ ⋅ ⋅ + − ⋅ =  (A.B2) 

 f P f PE[U '(z (y r (1 y) r )) z (r r )] 0.⋅ ⋅ + − ⋅ ⋅ ⋅ − =  (A.B3) 

 

(i): 

A value of zero for z leads to a modification of (A.B2) as follows: f PE[U '(0) (y r (1 y) r )]⋅ ⋅ + − ⋅  

= 0. This equality is fulfilled if and only if f Py E[r ] (1 y) E[r ] 0⋅ + − ⋅ = . This in turn is equiva-

lent to P P fy E[r ] /(E[r ] E[r ])= −  and thus the statement of (i) is proven.  

 

(ii): 

By the use of the necessary condition (A.B2) z is implicitly defined. Since we have E[V1⋅V2] 

= cov[V1,V2]+E[V1] ⋅E[V2] for arbitrary random variables V1 and V2, (A.B2) is equivalent to  

 f P f P

f P f P

cov[U '(z(y) (y r (1 y) r )), y r (1 y) r ]
E[U '(z(y) (y r (1 y) r ))] E[y r (1 y) r ].

⋅ ⋅ + − ⋅ ⋅ + − ⋅
= − ⋅ ⋅ + − ⋅ ⋅ ⋅ + − ⋅

 (A.B4) 

As a consequence of positive marginal utility we have E[U '(.)] 0> . Therefore, the right-hand 

side of (A.B4) has the opposite sign of f Py E[r ] (1 y) E[r ]⋅ + − ⋅ . Since 'U  is a decreasing func-

tion, the sign of the left-hand side of (A.B4) is positive for z(0) < 0 and negative for z(0) > 0. 

This means that it is the opposite of the sign of z(0). Since the signs of the left-hand side and 

the right-hand side of (A.B4) must be equal, so must be the signs of z(0) and of 

f Py E[r ] (1 y) E[r ]⋅ + − ⋅ . 
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(iii): 

In the case P fE[r ] E[r ]>  statement (i) leads to f P P fŷ E[r ] /(E[r ] E[r ]) 1= − >  and in the case 

P fE[r ] E[r ]<  the inequality f P P fŷ E[r ] /(E[r ] E[r ]) 0= − <  is true. Moreover, with 

 f P f PE[U '(z (y r (1 y) r )) (y r (1 y) r )] F(y, z),⋅ ⋅ + − ⋅ ⋅ ⋅ + − ⋅ =  say (A.B5) 

we get from (A.B2) under consideration of ˆz(y) 0=  the equality F( ŷ , ˆz(y) ) = F( ŷ ,0) = 0. 

Application of the Implicit Function Theorem1 (with r(y) as a shortcut for fz(y) (y r⋅ ⋅ +  

P(1 y) r )− ⋅ ) yields 

 

ˆ(y,z) (y,0) f P f P
2

f Pŷ ˆ(y,z) (y,0)

f P
2ˆr(y) 0

f P

F / y ˆ ˆ ˆE[U ''(r(y)) (r r ) r(y) U '(r(y)) (r r )]z
ˆ ˆ ˆy F / z E[U ''(r(y)) (y r (1 y) r ) ]

U ''(0) 0 U '(0) (E[r ] E[r ]) .
ˆ ˆE[U ''(0) (y r (1 y) r ) ]

=

=

=

∂ ∂ ⋅ − ⋅ + ⋅ −∂
= − = −

∂ ∂ ∂ ⋅ ⋅ + − ⋅

⋅ + ⋅ −
=

− ⋅ ⋅ + − ⋅

 (A.B6) 

Since the denominator and )0('U  are positive, the sign of ˆy yz / y | =∂ ∂  corresponds with the 

sign of f PE[r ] E[r ]− . Finally, following (i) z has a unique zero at ŷ  implying all further state-

ments of (iii).  

 

(iv): 

From portfolio theory we know2 that the problem  

 
f P

f f P P ,
E[U( r r )] max.!

ξ ξ
ξ ⋅ + ξ ⋅ →  (A.B7) 

owns a unique maximum and no other local extrema. This problem is equivalent to problem 

(A.B1) if the potential solution of no risky engagement (z = 0) is excluded. For z ≠ 0 the sum 

Pf ξ+ξ  corresponds with z and )/( Pff ξ+ξξ  equals y. Thus, there are only two candidates 

for a local extremum: the unique maximum of the problem mentioned above and (y,z) = 

( ŷ ,0).  
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To analyze the second potential extremum we have to form the first and the second partial de-

rivative of f PGSM(y,z(y)) E[U(z(y) (y r (1 y) r ))]= ⋅ ⋅ + − ⋅ :  

 f P f P f P

f P f P(A.B2)

GSM(y,z(y))
y

E[U '(z(y) (y r (1 y) r )) (( z / y) (y r (1 y) r ) z(y) (r r ))]
E[U '(z(y) (y r (1 y) r )) z(y) (r r )]

∂
∂

= ⋅ ⋅ + − ⋅ ⋅ ∂ ∂ ⋅ ⋅ + − ⋅ + ⋅ −
= ⋅ ⋅ + − ⋅ ⋅ ⋅ −

(A.B8) 

 

2

2

f P f P f P

f P f P f P

GSM(y,z(y), y)
y

E[U ''(z(y) (y r (1 y) r )) (( z / y) (y r (1 y) r ) z(y) (r r ))
z(y) (r r )] E[U '(z(y) (y r (1 y) r )) ( z / y) (r r )].

∂
∂

= ⋅ ⋅ + − ⋅ ⋅ ∂ ∂ ⋅ ⋅ + − ⋅ + ⋅ −
⋅ ⋅ − + ⋅ ⋅ + − ⋅ ⋅ ∂ ∂ ⋅ −

 (A.B9) 

Obviously we get ˆy yGSM(y,z(y)) / y 0=∂ ∂ = . Moreover, 

 
2

ˆy y f P2 (iii)

GSM(y, z(y)) ˆ(y) U ''(0) 0 U '(0) ( z / y) | (E[r ] E[r ]) 0
y =

∂
= ⋅ + ⋅ ∂ ∂ ⋅ − >

∂
, (A.B10) 

so that GSM(z(y), y)  has a local minimum in ŷ . Since there are only two potential extrema 

the local minimum as well as the local maximum are unique.  

 

(v): 

To prove this statement we distinguish between two cases.  

 

Case 1: *z(y ) 0>  

 

Let *y 0<  ( * *z(y ) y 0⇒ ⋅ < ). Firstly, let P fE[r ] E[r ]> . Following (iii) we get ŷ 1>  and thus 

* ˆy y< . According to (iv) GSM(y,z(y))  is strictly decreasing on the interval * ˆ[y , y] [0, 1]⊃ .  

 

Secondly, let P fE[r ] E[r ]< . Part (iii) leads to ŷ 0< . We do not have * ˆy y<  since this state-

ment corresponds with *z(y ) 0<  according to (iii) and is therefore not treated in Case 1. Us-
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ing (iv) again we get that GSM(y,z(y))  is strictly decreasing on *[y , ) [0, 1]∞ ⊃ . Hence, we 

have characterized the monotonic behavior of GSM(y,z(y))  and shown that **y 0=  is the 

optimal restricted engagement.  

 

Now look at *y 1>  ( * *z(y ) (1 y ) 0⇒ ⋅ − < ). Again we firstly analyze P fE[r ] E[r ]>  so that (iii) 

leads to ŷ 1> . Analogously to the proof above we get * ˆy y<  according to (iii) and Case 1 

since * ˆy y>  does not correspond with Case 1. Using (iv) GSM(y,z(y))  is strictly increasing 

on *( , y ] [0, 1]−∞ ⊃ .  

 

Let secondly P fE[r ] E[r ]< . From (iii) we know ŷ 0<  and thus * ˆy y< . According to (iv) 

GSM(y,z(y))  is strictly increasing on the interval *ˆ[y, y ] [0, 1]⊃ . Consequently, the deriva-

tive of GSM(y,z(y))  has a positive sign on *(0, y )  and this leads to **y 1=  to be the optimal 

restricted engagement.  

 

Case 2: *z(y ) 0<  

 

We immediately get from (ii) * *
f Py E[r ] (1 y ) E[r ] 0⋅ + − ⋅ <  and *y [0, 1]∉  respectively. Espe-

cially * *z(y ) y 0⋅ <  corresponds with *y 1>  and * *z(y ) (1 y ) 0⋅ − <  complies with *y 0< .  

 

Firstly, the case *y 0<  is treated ( * *z(y ) (1 y ) 0⇒ ⋅ − < ). The assumption P fE[r ] E[r ]>  leads 

to ŷ 1>  and consequently * ˆy y<  which in turn implies *z(y ) 0>  according to (iii). This is 

inconsistent with Case 2.  
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Consequently, we have P fE[r ] E[r ]< . This also implies ŷ 0<  and because of *z(y ) 0<  and 

(iii) it follows * ˆy y< . Thus, GSM(y,z(y))  is strictly increasing on ˆ[y, ) [0, 1]∞ ⊃  and **y 1=  

is the optimal engagement.  

 

Secondly, we suppose *y 1>  ( * *z(y ) y 0⇒ ⋅ < ). From P fE[r ] E[r ]>  it follows ŷ 1>  using 

(iii) and because of *z(y ) 0<  and (iii) also the statement *ŷ y<  is true. Thus, GSM(y,z(y))  

is strictly decreasing on ˆ( , y] [0, 1]−∞ ⊃  and **y 0=  is optimal in the restricted case.  

 

Finally, P fE[r ] E[r ]<  cannot occur, since (iii) leads to ŷ 0<  and thus * ˆy y>  and according to 

(iii) especially to *z(y ) 0> , which is not consistent with the assumption of Case 2. 

 

Appendix C: Proof of (11) 

 

From (10) we know that fund g is better than fund h for yg = yh = ε → 0 if 

 P g P hE[U '(z(0) r ) r ] E[U '(z(0) r ) r ]⋅ ⋅ > ⋅ ⋅ . (A.C1) 

Because of cov[V1,V2] = E[V1⋅V2]−E[V1] ⋅E[V2] for arbitrary random variables V1 and V2, 

we have P f P f P fcov[U '(z(0) r ), r ] E[U '(z(0) r ) r ] E[U '(z(0) r )] E[r ]⋅ = ⋅ ⋅ − ⋅ ⋅ . Inequality (AC.1) is 

therefore equivalent to 

 P g P g

P h P h

E[U '(z(0) r )] E[r ] cov[U '(z(0) r ), r ]

E[U '(z(0) r )] E[r ] cov[U '(z(0) r ), r ].

⋅ ⋅ + ⋅

> ⋅ ⋅ + ⋅
 (A.C2) 

Since PE[U '(z(0) r )]⋅  is positive inequality (A.C2) can be transformed into the following form 

P g P h
g h

P P

cov[U '(z(0) r ), r ] cov[U '(z(0) r ), r ]E[r ] E[r ] .
E[U '(z(0) r )] E[U '(z(0) r )]

⋅ ⋅
+ > +

⋅ ⋅
 (A.C3) 
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Further, we know P P P P P Pcov[U '(z(0) r ), r ] E[U '(z(0) r ) r ] E[U '(z(0) r )] E[r ]⋅ = ⋅ ⋅ − ⋅ ⋅  and (from 

the definition of z (0)) P PE[U '(z(0) r ) r ] 0⋅ ⋅ = , so that (A.C3) is equivalent to 

P g P h
g P h P

P P P P

cov[U '(z(0) r ), r ] cov[U '(z(0) r ), r ]E[r ] E[r ] E[r ] E[r ].
cov[U '(z(0) r ), r ] cov[U '(z(0) r ), r ]

⋅ ⋅
− ⋅ > − ⋅

⋅ ⋅
 (A.C4) 

 

Appendix D: Proof that the generalized Sharpe measure of optimal portfolio structure 

* *(y , z )  (Proposition 1) and the Treynor measure (Definition 4) do not belong to the class 

of period weighting measures 

 

Let rP,t and rf,t be the excess returns of portfolio P and of fund f, respectively, from time t−1 to 

t. Following Grinblatt and Titman(1989) the period weighting measure PWM of a fund f can 

then be defined as follows: 

 
T

P,t f ,tT t 1
PWM p lim (r ,T) r

→∞
=

= − ω ⋅∑ . (A.D1) 

In this context the terms ω(rP,t,T) characterize arbitrary weights that only depend on rP,t and T 

and thus are independent of the realizations rf,t for any fund f at any point in time t. It is suffi-

cient to show that the quadratic optimized Sharpe measure does not belong to the class of pe-

riod weighting measures. According to Jobson/Korkie(1984) (in the case without short sales 

restrictions) this measure is equivalent to the (square of the) Treynor/Black measure. It thus 

suffices to show that the latter one does not belong to the class of period weighting measures. 

This in turn can be explained by using the quadratic Jensen measure. The Jensen measure is a 

period weighting measure as was shown by Grinblatt and Titman(1989)3 and the correspond-

ing period weights are  

 
2
P P,t P P

P,t 2
P

ˆ (T) (r r (T)) r (T)
(r ,T)

ˆT (T)
σ − − ⋅

ω =
⋅σ

, (A.D2) 
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with Pr (T)  and 2
Pˆ (T)σ  defined as T

P,tt 1
(1/ T) r

=
⋅∑  and T 2

P,t Pt 1
(1/ T) (r r (T)) ,

=
⋅ −∑  respectively, 

as the estimators of the expected excess return and the excess return variance. The (quadratic) 

Treynor/Black measure is defined as the quotient of the quadratic Jensen measure and the 

variance fPvar[ ]ε  of the error term from a linear regression of rf on rP thus depending on the 

fund's excess return rf. These statements and the definition of the period weighting measure 

lead to a dependency of potential weights ω̂  for forming the Treynor/Black measure on the 

excess returns rf,t of fund f so that a representation like (AD.1) (with weights ω̂  being inde-

pendent of rf) is not possible for this measure.  

 

The same arguments can be given for the quadratic Treynor measure since the following 

equality holds in the general case:  

 P
fP

GJMGTM E[r ]= +
β

. (A.D3) 

Consequently, since weights according to (AD.2) are independent of rf potential weights for 

the quadratic Treynor measure must be depending on rf. 

 

Appendix E: Proof of (13) 

 

If we rank normalized funds according to the generalized Jensen measure a fund g is better 

than a fund h if 
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g h

g

g g P P h h P P

g P h PE[r ] E[r ]

P g g P h h

P P P P

P g
g

E[r ]

E[r ] E[r ] E[r ] E[r ]

cov[U '(z(0) r ), (1 x ) r ] cov[U '(z(0) r ), (1 x ) r ]
cov[U '(z(0) r ), r ] cov[U '(z(0) r ), r ]

cov[U '(z(0) r ), r ]
(1 x )

cov[U '(z(

° °

° ° ° °

° °=

° °

°

µ°
=

−β ⋅ > −β ⋅

⇔ β < β

⋅ − ⋅ ⋅ − ⋅
⇔ <

⋅ ⋅
⋅

⇔ − ⋅

gP hPh

g h

hPgP

P h
h

P P P P

E[r ]

gP hP
g h

E[r ] E[r ]0

cov[U '(z(0) r ), r ](1 x )
0) r ), r ] cov[U '(z(0) r ), r ]

E[r ] E[r ]

1 1 .

°

µ°
=

=β =β

µ°>
ββ

⋅
< − ⋅

⋅ ⋅

µ° µ°
⇔ ⋅β < ⋅β

⇔ − > −

 (A.E1) 

 

Appendix F: Proof of (16) 

 

Using the (exact4) Taylor series expansion around rE[r(y, z)] µ ,=  say, we get the following 

formula for 3
f PU(r(y, z)) (z (y r (1 y) r ) 1)= ⋅ ⋅ + − ⋅ − : 

 
r r r

2 3
r r r r

U(r(y, z)) U( ) U '(µ ) (r(y, z) µ )
1 1U ''( ) (r(y, z) µ ) U '''( ) (r(y, z) µ ) .
2 6

= µ + ⋅ −

+ ⋅ µ ⋅ − + ⋅ µ ⋅ −
 (A.F1) 

Based on (AF.1) it follows: 

 

2 3
r r r r r

3 2 3
r r r r

3 2 2 3 3
q q q q

2 3
q q q

1 1E[U(r(y, z))] U( ) U ''( ) U '''( )
2 6

( 1) 3 ( 1)

(z 1) 3 (z 1) z z

( , , ).

= µ + ⋅ µ ⋅σ + ⋅ µ ⋅ γ

= µ − + ⋅ µ − ⋅σ + γ

= ⋅µ − + ⋅ ⋅µ − ⋅ ⋅σ + ⋅ γ

= Φ µ σ γ

 (A.F2) 
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Appendix G: Proof of the relevance of skewness in the case of cubic rather than quad-

ratic utility and monotonic dependency of (16) regarding to qµ , 2
qσ  and 3

qγ  

 

If we assume a quadratic (HARA) utility function U (i.e. b = −1 ) expected utility can be cal-

culated as 2
f PE[U(r(y, z))] E[(z (y r (1 y) r ) 1) ]= − ⋅ ⋅ + − ⋅ − . Again, using the (exact) Taylor se-

ries expansion around r E[r(y, z)]µ =  leads to 

 

2
r r r

2 2
r r

2 2 2
q q

1E[U(r(y, z))] U( ) U ''( )
2

1( 1) 2
2

(z 1) z .

= µ + ⋅ µ ⋅σ

= − µ − − ⋅ ⋅ σ

= − ⋅µ − − ⋅σ

 (A.G1) 

Thus, in contrast to the cubic case skewness plays no role in situations with quadratic utility. 

In addition we get the following partial derivatives of (16): 

 

2 3
q q q 2 3 2 2 2 2

q q q q
q

2 3
q q q 2

q2
q

2 3
q q q 3

3
q

( , , )
3 z (z 1) 3 z z (3 (z 1) 3 z ),

( , , )
3 (z 1) z ,

( , , )
z .

∂Φ µ σ γ
= ⋅ ⋅ ⋅µ − + ⋅ ⋅σ = ⋅ ⋅ ⋅µ − + ⋅ ⋅σ

∂µ

∂Φ µ σ γ
= ⋅ ⋅µ − ⋅

∂σ

∂Φ µ σ γ
=

∂γ

 (A.G2) 

Further, r r q0 U ''( ) 6 ( 1) 6 (z 1),> µ = ⋅ µ − = ⋅ ⋅µ −  so that the second equality of (A.G2) implies 

2 3
q q q(µ , , )Φ σ γ  to be decreasing in 2

qσ . For x < 1, i.e. no riskless lending financed by short sales 

of risky assets, (5) leads to z > 0. Under consideration of this property the first and the third 

equality of (A.G2) result in 2 3
q q q q( , , ) / 0∂Φ µ σ γ ∂µ >  and 2 3 3

q q q q( , , ) / 0∂Φ µ σ γ ∂γ > . 
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Appendix H: Proof of Proposition 4 

 

For given optimal value *y  we can determine the corresponding solution for z by deriving 

(16) with respect to z for *y y= . The necessary condition *y y
/ z 0

=
∂Φ ∂ =  leads to the follow-

ing solution: 

 

2 2 2 2 2 3
q* q* q* q* q* q* q*

2 2 4 2 2 3
q* q* q* q* q* q* q*

3 2 3
q* q* q* q*

!
3 (z 1) 3 z 3 (z 1) 2 z 3 z 0

z

z .
3

±

∂Φ
= ⋅ ⋅µ − ⋅µ + ⋅µ ⋅ ⋅ σ + ⋅ ⋅µ − ⋅ ⋅ ⋅ σ + ⋅ ⋅ γ =

∂

µ + σ ± σ − σ ⋅µ − γ ⋅µ
⇔ =

µ + ⋅σ ⋅µ + γ

(A.H1) 

Φ is a polynomial of third order in z with leading coefficient 3 2 3
q* q* q* q*3µ + ⋅σ ⋅µ + γ , so that we 

have to distinguish between a positive sign and a negative sign of this term. In the first case 

the local maximum of Φ obviously is smaller than the local minimum which implies z−  to de-

termine the local maximum. In the second case the local minimum of Φ is smaller than the lo-

cal maximum. But in this case the denominator of (A4) has a negative sign whereby z z− +>  

and again the local maximum is characterized by z− . Substitution of z−  in (16) gives5  

 

( ) ( )3 3 2 2
q* q* q* q* q*
3 3 2q*q* q* q*

q* q* q*

6 3 3 3 2 4 2 6 4 2 2 3 1.5
q* q* q* q* q* q* q* q* q* q* q* q* q* q*

3 2 3 2
q* q* q* q*

3 3 6 4 1.5
q* q* q* q*

( , , )

( 3 ) 2 (3 ) 2 ( )
( 3 )

3 2 3 1 2 ( ) 1γ µ µ µ µ
σσ σ σ

Φ µ σ γ

−γ + γ ⋅µ − ⋅ γ ⋅ σ ⋅µ − ⋅ ⋅ σ ⋅µ + σ + ⋅ σ − σ ⋅µ − γ ⋅µ
=

µ + ⋅σ ⋅µ + γ

−γ ⋅σ ⋅ − + ⋅ − ⋅σ ⋅ ⋅ + + ⋅ σ ⋅ −
=

( )
( )

3
q* q*

2 4
q* q*

3 3
q* q* q*
3 3 q*q* q*

q* q* q* q* q* q* q* q

q* q* q* q* q* q* q* q

q* q* q*

q* q* q*

1.5

2
3 2
q*

3 3 3 2 2 3 1.5

3 3 2

(A.H2)
( ) 3

( ) (( ) ( ) 3 ) 2 (3 ( ) 1) 2 (1 ( ) ( ) )

(( ) ( ) 3 )

γ ⋅µ

σ σ

γ µ µ
σσ σ

γ γ µ µ µ µ µ γ
σ σ σ σ σ σ σ σ

γ µ µ
σ σ σ

−

σ ⋅ + + ⋅

− ⋅ − + ⋅ − ⋅ ⋅ + + ⋅ − − ⋅
=

+ + ⋅
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With 1 q* q*/α = µ σ  and 2 q* q*/α = γ σ  we immediately get the measure of Proposition 4. The 

same holds true for y = y** and thus q = q**, that is, in the case of the explicit recognition of 

short sales restrictions. 

 

Appendix I: Examples for increasing (scenario 1) and decreasing (scenario 2) optimal 

cubic performance when switching from a fund g with αg,1 and αg,2 to a fund h with αh,1 

> αg,1 and αh,2 < αg,2. 

 

fund q*µ  q*σ  q*γ  1α  2α  CSM* 

g 10 % 10 % −20 % 1.0 −2.0 −0.672 

h (scenario 1) 20 % 10 % −50 % 2.0 −5.0 −0.660 

h (scenario 2) 20 % 10 % −60 % 2.0 −6.0 −0.719 

When we compare fund g and fund h in both scenarios, we have 1,h1,g α<α  and 2,h2,g α>α . 

But in the first case the performance measure rises from approximately −0.672 to −0.66 while 

it declines from approximately −0.672 to −0.719 in the second case. 

 

Appendix J: Derivation of (20) 

 

As z(0) is positive and the second derivative of U is negative, we have a negative (and fund-

independent) value of P Pcov[U '(z(0) r ), r ]⋅  as well. Using the definition of fPβ  inequality (13) 

can thus be transformed to 

 P g P h

g h

cov[U '(z(0) r ), r ] cov[U '(z(0) r ), r ] .
E[r ] E[r ]

⋅ ⋅
>  (A.J1) 

In the special case of the cubic (HARA-) utility function6 3)2W()W(U −=  we get 

2)2W(3)W('U −⋅=  and consequently 
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 2 2
P f P f P fcov[U '(z(0) r ), r ] 3 z(0) cov[r , r ] 12 z(0) cov[r , r ]⋅ = ⋅ ⋅ − ⋅ ⋅ . (A.J2) 

In addition we have 

 

2
P f

2 2
f f P P

2 2
f f P P P P

2 2
f f P P P P f f

0

2
f f P P P f f P P

cov[r , r ]

E[(r E[r ]) (r E[r ])]

E[(r E[r ]) (r 2 r E[r ] E [r ])]

E[(r E[r ]) (2 r E[r ] E [r ])] E[r ] E[r E[r ]]

E[(r E[r ]) (r E[r ]) ] 2 E[r ] E[(r E[r ]) (r E[r ])]

E[(r

=

= − ⋅ −

= − ⋅ − ⋅ ⋅ +

+ − ⋅ ⋅ ⋅ − − ⋅ −

= − ⋅ − + ⋅ ⋅ − ⋅ −

= 2
f f P P P f PE[r ]) (r E[r ]) ] 2 E[r ] cov[r , r ].− ⋅ − + ⋅ ⋅

 (A.J3) 

Summarizing, for 3)2W()W(U −=  (A.J1) is equivalent to 

 ( )

2 2
g g P P P g P P g

g

2 2
h h P P P h P P h

h

2 2
g g P P P z(0)

3 z(0) (E[(r E[r ]) (r E[r ]) ] 2 E[r ] cov[r , r ]) 12 z(0) cov[r , r ]
E[r ]

3 z(0) (E[(r E[r ]) (r E[r ]) ] 2 E[r ] cov[r , r ]) 12 z(0) cov[r , r ]
E[r ]

E[(r E[r ]) (r E[r ]) ] 2 E[r ] co

⋅ ⋅ − ⋅ − + ⋅ ⋅ − ⋅ ⋅

⋅ ⋅ − ⋅ − + ⋅ ⋅ − ⋅ ⋅
>

− ⋅ − + ⋅ − ⋅
⇔

( )

P g

g

2 2
h h P P P P hz(0)

h

v[r , r ]
E[r ]

E[(r E[r ]) (r E[r ]) ] 2 E[r ] cov[r , r ]
.

E[r ]
− ⋅ − + ⋅ − ⋅

>

 

  (A.J4) 

 

Appendix K: Derivation of (22), (23), and (24)  

 

The derivation of f PGSM(y, z) E[U(z (y r (1 y) r ))]= ⋅ ⋅ + − ⋅  with respect to z for given value y 

leads to the following first-order necessary condition for z(y):  

 f P f PE[U '(z (y r (1 y) r )) (y r (1 y) r )] 0.⋅ ⋅ + − ⋅ ⋅ ⋅ + − ⋅ =  (A.K1) 

The parameter z(0) is thus determined by the implicit definition (A.K1) for the special case y 

= 0. With y 0=  and 3)2W()W(U −=  formula (A.K1) becomes: 
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P P
2

P P
2 3 2

P P P

2 2 2 3
P P P P

3
P

E[U '(z(0) r ) r ] 0

E[(z(0) r 2) r ] 0

z (0) E[r ] 4 z(0) E[r ] 4 E[r ] 0

E[r ] E [r ] E[r ] E[r ]
z (0) 2 .

E[r ]
±

⋅ ⋅ =

⇔ ⋅ − ⋅ =

⇔ ⋅ − ⋅ ⋅ + ⋅ =

± − ⋅
⇔ = ⋅

 (A.K2) 

Since )0(z  characterizes a maximum of PE[U(z r )]⋅  for give value y = 0, the second-order 

condition for )0(z  is 

 

2
P P

2
P P

3 2
P P

2
3P
P3

P
2

3P
P3

P

E[U ''(z(0) r ) r ] 0

E[(z(0) r 2) r ] 0

z(0) E[r ] 2 E[r ] 0

E[r ]2 , if E[r ] 0,
E[r ]

z(0)
E[r ]2 , if E[r ] 0.
E[r ]

⋅ ⋅ ≤

⇔ ⋅ − ⋅ ≤

⇔ ⋅ − ⋅ ≤


≤ ⋅ >
⇔ 
≥ ⋅ <

 (A.K3) 

Because of the requirement (A.K3), )0(z  is obviously always identical to )0(z−  in (A.K2). 

With 2 2
P P PE[r ] var[r ] E [r ]= +  and (A.J3) we get 3 2 2

P P P P PE[r ] cov[r , r ] E[r ] E[r ]= + ⋅  

3 3
P P P P PE[(r E[r ]) ] 3 E[r ] var[r ] E [r ].= − + ⋅ ⋅ +  Now using the market portfolio M as reference 

portfolio P leads to the postulated results. 

 

Appendix L: Determination of small, medium-level and great values of an investor’s risk 

tolerance and computation of relative certainty equivalents according to Table 3 

 

First of all we have to analyze the connection between parameter a in the quadratic case 

(aquadr) and parameter a in the cubic case (acub). If we look at cubic preferences we are allowed 

to consider the transformed cubic utility function  

 cub

3
(a , 0.5) 1 cub 1

3 2 2 3
cub cub 1 cub 1 1

1.5 U (W ) (a 0.5 W )

a 3 a 0.5 W 3 a 0.25 W 0.125 W .
−⋅ = − − ⋅

= − + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅
 (A.L1) 
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In addition we assume that the considered approximative quadratic utility function will be 

generated from cubic utility by deleting the cubic terms in (A.L1). Thus, the relevant quad-

ratic utility function has the form 

 
2 2

1 cub 1 cub 1
2 2

cub cub 1 cub

U(W ) 3 a 0.5 W 3 a 0.25 W

0.75 a [(a W ) a ].

= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

= − ⋅ ⋅ − −
 (A.L2) 

Because of the cardinality of utility functions we are able to substitute the utility function 

(A.L2) by 2
1 cub 1U(W ) (a W )= − −  which is a quadratic HARA utility function with aquadr = 

acub. Thus we have to identify acub with aquadr = a. 

 

For given value of y according to the decision rule under consideration denote zquad as the op-

timal value for z in the case of quadratic utility. In addition, define zcub as the corresponding 

value for z in the case of cubic HARA utility which would lead to the same riskless invest-

ment as for zquad and quadratic utility. From (5) we know 

   quad 0 quad 0 cub 0 cub 0z ((1 x) W ) /(a W (1 R)), z ((1 x) W ) /(a 0.5 W (1 R))= − ⋅ − ⋅ + = − ⋅ − ⋅ ⋅ + . (A.L3) 

 

Consequentially, the relationship between zquad and zcub can be described in the following 

way: 

 

cub

0 0quad

0
cub quad

0

z 1 x 1 x
(a / W ) 0.5 (1 R) (a / W ) (1 R)z

(a / W ) (1 R)z 2 z . .
2 (a / W ) (1 R)

   − −
=    − ⋅ + − +   

 − +
⇔ = ⋅  ⋅ − + 

 (A.L4) 

 

From this we get zcub = 2⋅zquad for a/W0 = 0 and zcub = zquad for a/W0 → ∞. However, we have 

to allow for the restriction a/W0 > 1+R so that the term in brackets on the right-hand side of 

(A.L4) can only obtain values between 0 and 0.5 and is monotone increasing in a/W0. As 

a/W0 → 1+R implies the optimality of sole riskless lending, we consider − somewhat arbitrar-
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ily − situations with zcub = 2⋅zquad⋅0.05= 0.1⋅zquad, zcub = 2⋅zquad⋅0.25 = 0.5⋅zquad and zcub = 

2⋅zquad⋅0.45= 0.9⋅zquad. Thereby, we implicitly define risk tolerance measured by a/W0 for 

given value of R. The greater zcub/zquad, the greater is ceteris paribus an investor’s risk toler-

ance. Based on y and zcub we are then able to compute the resulting investor’s certainty 

equivalent according to the transformed utility function (AL.1). We come to relative certainty 

equivalents according to Table 3 by dividing the certainty equivalents resulting from the ap-

proximative solution y and zcub by maximum achievable certainty equivalents when directly 

maximizing expected cubic (HARA) utility (AL.1). As we consider 25 periods of fund selec-

tion, all values of Table 3 are average results based on twenty-five different relative certainty 

equivalents. 

 

 

 

 

                                                 

Endnotes (relating to the appendices) 

1 See e.g. Ingersoll, J. E., Jr., (1987), Theory of Financial Decision Making (Rowman and Lit-

tlefield Publishers Inc., Maryland), p. 3. 

2 See again e.g. Ingersoll, (1987), p. 65. 

3 See Grinblatt and Titman(1989), p. 407 in connection with formula (11) on p. 405. 

4 The Taylor series expansion is exact because all derivatives of the utility function of fourth 

or higher order are zero. 

5 The first equality can be checked with a Software like Mathematica or Maple. 

6 Again, as in connection with formula (15) (see endnote 1 of our paper), we use an equivalent 

utility function U(.) = 12 ⋅ U(1,−0.5)(.). 



Table 1 

Average ranking positions of German funds according to several performance measures 

Ranking positions are presented for different performance measures. Performance measures under 

consideration comprise the Sharpe, Treynor, and Jensen measure for quadratic as well as cubic (HARA) 

utility, the quadratic Treynor/Black measure (TB) and the optimized quadratic or cubic performance 

measure (SM**) in the case of short sales restrictions. Top ten funds are shaded. 

  quadratic utility cubic utility 

 fund name Sharpe Treynor Jensen TB SM** Sharpe Treynor Jensen SM** 

1 Aberdeen Global German Eq 46 46 46 44 46 46 46 46 46

2 AC Deutschland 27 24 24 24 24 26 24 24 24

3 ADIFONDS 21 22 22 22 22 20 21 22 21

4 Baer Multistock German Stk A 6 6 8 8 6 6 6 6 6

5 Baring German Growth 11 4 2 9 7 9 4 3 7

6 BBV Invest Union 7 9 9 7 8 7 9 9 8

7 CB Lux Portaolio Euro Aktien 35 38 38 40 38 33 37 38 38

8 Concentra 26 27 28 29 28 23 27 27 27

9 CS EF (Lux) Germany  39 40 40 38 40 39 40 40 40

10 DekaFonds 30 33 33 34 33 31 31 32 32

11 DELBRÜCK Aktien UNION-Fonds 45 45 45 45 45 45 45 45 45

12 Dexia Eq L  Allemagne C 40 41 41 41 41 40 41 40 40

13 DIT Fonds für Vermögensbildung 31 28 27 26 27 29 28 28 28

14 DIT Wachstumfonds 5 8 7 4 5 5 8 6 5

15 DVG Fonds SELECT INVEST 8 10 10 5 9 8 10 10 9

16 DWS Deutschland 13 14 14 14 14 13 14 14 14

17 EMIF Germany Index plus B 43 44 44 46 44 43 44 44 44

18 Fidelity Fds Germany 22 21 21 21 21 22 22 21 22

19 Flex Fonds 44 43 43 43 43 44 43 43 43

20 Frankfurter Sparinvest Deka 24 25 25 25 25 24 25 25 25

21 FT Deutschland Dynamik Fonds 18 18 18 17 17 18 17 17 17

22 Gerling Deutschland Fonds 38 32 29 30 30 38 34 30 30

23 HANSAeffekt 25 26 26 27 26 27 26 26 26

24 Hauck Main I Universal Fonds 34 34 32 33 32 34 32 33 33

25 Incofonds 1 1 1 2 1 1 1 1 1

26 Interselex Equity Germany B 29 30 31 36 31 30 30 31 31

27 INVESCO GT German Growth C 14 2 4 13 10 15 3 8 10

28 Investa 12 13 13 11 13 12 13 13 13

29 Köln Aktienfonds DEKA 23 23 23 23 23 25 23 23 23

30 Lux Linea 33 30 35 32 34 36 32 36 36

31 Metallbank Aktienfonds DWS 4 3 6 6 4 4 2 4 4

32 MK Alfakapital 36 36 39 35 39 35 36 39 39

33 MMWI PROGRESS Fonds 28 29 29 30 29 28 29 29 29

34 Oppenheim Select 37 39 37 37 37 37 39 37 37

35 Parvest Germany C 20 19 19 20 19 21 20 20 20

36 Plusfonds 10 12 11 12 12 11 11 11 11

37 Portfolio Partner Universal G 41 37 34 28 36 41 38 34 35

38 Ring Aktienfonds DWS 9 11 12 10 11 10 12 12 12

39 SMH Special UBS Fonds 1 16 16 16 15 16 14 15 15 15

40 Thesaurus 31 35 36 39 35 32 35 35 34

41 Trinkaus Capital Fonds INKA 14 15 15 16 15 16 16 16 16

42 UniFonds 19 17 17 18 18 19 18 18 18

43 Universal Effect Fonds 42 42 42 42 42 42 42 42 42

44 VERI VALEUR Fonds 3 5 3 3 3 2 5 2 2

45 VICTORIA Eurokapital 2 7 5 1 2 3 7 5 3

P DAX XETRA 100 17 20 20 19 20 17 19 19 19

 



Table 2 

Ranking correlation coefficients between various performance measures for German, British, and French funds (top ten funds) 

Performance measures under consideration comprise the Sharpe, Treynor, and Jensen measure for quadratic as well as cubic (HARA) utility, the 

quadratic Treynor/Black measure (TB) and the optimized quadratic or cubic performance measure (SM**) in the case of short sales restrictions. 

Moreover, funds are ranked according to historical average excess return µ. 
  linear utility quadratic utility cubic utility 
  µ Sharpe Treynor Jensen TB SM** Sharpe Treynor Jensen SM** 
 German funds  

linear utility µ 100.00% 53.37% 10.30% 41.24% 49.09% 41.82% 52.73% 20.00% 43.03% 45.54%
Sharpe 53.37% 100.00% 33.96% 62.38% 83.69% 95.82% 95.82% 40.02% 54.58% 91.61%
Treynor 10.30% 33.96% 100.00% 88.54% -6.67% 55.15% 43.03% 98.79% 89.09% 63.52%
Jensen 41.24% 62.38% 88.54% 100.00% 27.90% 77.62% 66.71% 90.96% 97.03% 83.22%

TB 49.09% 83.69% -6.67% 27.90% 100.00% 73.33% 74.55% -4.24% 18.79% 62.32%
quadratic utility 

SM** 41.82% 95.82% 55.15% 77.62% 73.33% 100.00% 92.73% 58.79% 68.48% 95.87%
Sharpe 52.73% 95.82% 43.03% 66.71% 74.55% 92.73% 100.00% 49.09% 62.42% 95.87%
Treynor 20.00% 40.02% 98.79% 90.96% -4.24% 58.79% 49.09% 100.00% 91.52% 68.31%
Jensen 43.03% 54.58% 89.09% 97.03% 18.79% 68.48% 62.42% 91.52% 100.00% 79.09%

cubic utility 

SM** 45.54% 91.61% 63.52% 83.22% 62.32% 95.87% 95.87% 68.31% 79.09% 100.00%
 British funds  

linear utility µ 100.00% 26.06% 20.87% 20.87% 10.30% 4.36% 4.91% -16.58% -16.36% -3.03%
Sharpe 26.06% 100.00% 13.51% 13.51% 40.61% 59.18% 94.54% 43.82% 39.39% 62.42%
Treynor 20.87% 13.51% 100.00% 100.00% 78.58% 77.99% 0.50% 66.47% 71.22% 62.62%
Jensen 20.87% 13.51% 100.00% 100.00% 78.58% 77.99% 0.50% 66.47% 71.22% 62.62%

TB 10.30% 40.61% 78.58% 78.58% 100.00% 86.58% 22.10% 71.07% 70.91% 72.12%
quadratic utility 

SM** 4.36% 59.18% 77.99% 77.99% 86.58% 100.00% 50.23% 83.75% 82.85% 92.81%
Sharpe 4.91% 94.54% 0.50% 0.50% 22.10% 50.23% 100.00% 44.87% 40.52% 58.94%
Treynor -16.58% 43.82% 66.47% 66.47% 71.07% 83.75% 44.87% 100.00% 99.49% 91.20%
Jensen -16.36% 39.39% 71.22% 71.22% 70.91% 82.85% 40.52% 99.49% 100.00% 89.09%

cubic utility 

SM** -3.03% 62.42% 62.62% 62.62% 72.12% 92.81% 58.94% 91.20% 89.09% 100.00%
 French funds  

linear utility µ 100.00% 26.06% 29.70% 41.82% 28.48% 28.48% 45.54% 34.75% 44.24% 36.97%
Sharpe 26.06% 100.00% 64.85% 67.27% 86.67% 86.67% 88.68% 68.31% 68.48% 75.76%
Treynor 29.70% 64.85% 100.00% 97.58% 89.09% 89.09% 88.68% 98.27% 96.36% 95.15%
Jensen 41.82% 67.27% 97.58% 100.00% 91.52% 91.52% 91.08% 97.07% 98.79% 97.58%

TB 28.48% 86.67% 89.09% 91.52% 100.00% 100.00% 95.87% 92.28% 92.73% 96.36%
quadratic utility 

SM** 28.48% 86.67% 89.09% 91.52% 100.00% 100.00% 95.87% 92.28% 92.73% 96.36%
Sharpe 45.54% 88.68% 88.68% 91.08% 95.87% 95.87% 100.00% 91.71% 92.28% 94.67%
Treynor 34.75% 68.31% 98.27% 97.07% 92.28% 92.28% 91.71% 100.00% 98.27% 97.07%
Jensen 44.24% 68.48% 96.36% 98.79% 92.73% 92.73% 92.28% 98.27% 100.00% 98.79%

cubic utility 

SM** 36.97% 75.76% 95.15% 97.58% 96.36% 96.36% 94.67% 97.07% 98.79% 100.00%

 



Table 3  

Average relative certainty equivalents attainable by the application of different performance measures when utility is actually cubic and of 

the HARA type 

Attainable average fractions of maximum certainty equivalents for an investor with cubic HARA utility are displayed for the case that the investor 

deviates from the best portfolio consisting of a fund f, the reference portfolio P and riskless lending or borrowing implied by cubic HARA utility. 

Deviations are caused by the application of another performance measure than the optimized cubic performance measure CSM** (identical to SM** 

in the line of Table 3 belonging to cubic utility) and comprise the selection of other funds than the best one and the suboptimal combination of this 

fund with reference portfolio P and riskless lending and borrowing. Moreover, the extent of the investor’s welfare loss caused by linear or quadratic 

utility approximation depends on the investor’s risk tolerance.  

 

 
Investor’s risk 

tolerance 
low medium high 

linear utility µ 15.145% 62.167% 86.758% 

Sharpe 16.511% 68.006% 95.110% 

Treynor 11.032% 44.660% 60.448% 

Jensen 11.032% 44.660% 60.448% 
quadratic utility 

SM** 16.536% 68.095% 95.093% 

Sharpe 99.997% 

Treynor 61.800% 

Jensen 61.800% 
cubic utility 

SM** 100.000% 

 

 




