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1 Introduction 

There is a long and on-going debate regarding the precise value of the market risk premium, 

i.e. the difference between the expected one-period return of a broad portfolio of stocks and 

the corresponding risk-free interest rate. In particular, according to the seminal paper by 

Mehra and Prescott (1985), theoretically justifiable market risk premia are much smaller than 

those computed on the basis of averages of historical stock returns. Several avenues have been 

taken to address this issue. First of all, one may improve upon the theoretical analysis in order 

to explain higher risk premia than determined by Mehra and Prescott (1985). Such an 

approach is followed by Benartzi and Thaler (1995) and Barberis et al. (2001) who make use 

of behavioral finance arguments like myopia, loss aversion, and ambiguity aversion in order 

to resolve the “equity premium puzzle”. Nevertheless, such approaches face some problems: 

Even if there might be behavioral anomalies due to bounded rationality so that stock 

investments are not sufficiently appreciated why do investors not take measures in order to 

mitigate the consequences of their bounded rationality as Ulysses had done when tying 

himself to the mast just to save himself against the Sirens (see DeLong and Magin, 2009, p. 

200)? Other theoretical explanations refer to transaction costs arguments (see, e.g., Mankiw 

and Zeldes, 1991, Constantinides et al., 2002) or (temporary) subjective misperceptions of 

return distributions (see, e.g., McGrattan and Prescott, 1993, and Fama and French, 2002), but 

– at least up to now – are not fully convincing. 

 

Therefore, a second strand of literature has gained more and more importance, i.e., alternative 

ways to estimate market risk premia. First of all, one may refine computations based on 

historical return data as in Fama and French (2002). Secondly, one may simply make use of 

survey data extracted by asking specialists directly for their opinion regarding market risk 

premia (see, e.g., Welch, 2000, and Graham and Campbell, 2007). Certainly, the procedures 

by which those experts have obtained their market risk premium estimates remain opaque. 
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Thirdly, as a quite new approach, one may make use of credit risk spread data in order to 

derive equity risk premia on an options-price theoretical basis (see, e.g., Berg and Kaserer, 

2008). Fourthly and finally, one may rely on analysts’ earnings forecasts as the basis of net 

present value computations (see, e.g., Claus and Thomas, 2001, and Gebhardt et al., 2001). 

Equaling these net present values with current stock prices makes it possible to derive an 

internal or implied rate of return that may be used as an estimator for future expected one-

period returns. After subtraction of the relevant riskless interest rate, this gives an estimator 

for the market risk premium. As implied rates of return are generally smaller than the 

historical average of realized rates of return, this alternative estimation procedure also may 

contribute to resolving (or at least mitigating) the equity premium puzzle (see, e.g. Claus and 

Thomas, 2001).  

 

Thereby, referring to implied rates of return instead of estimators based on historical rates of 

return may be superior because the so-called discount rate effect (first discussed by Fama and 

French, 1988) is effectively avoided. Changes in relevant discount rates, i.e. implied rates of 

return, are ceteris paribus associated with opposing reactions of stock prices. Assume, for 

example, an increase in the implied rate of return from 5 % to 10 % for a situation with a 

constant expected dividend of $1 per period till infinity. Then the stock price will fall from 

$20 to $10 implying an immediate negative return of (1−10)/20 = −45 %, while an investor 

will earn on average 1/10 = 10 % per period on this stock after this discount rate adjustment 

instead of 1/20 = 5 % in the situation before this change. Apparently, estimators based on 

historical return realizations have to cope with the problem of the discount rate effect. Large 

lengths of historical samples are necessary to neutralize outliers like those −45 %, but then 

stationarity assumptions may not hold any longer. On the contrary, the estimation approach 

based on implied rates of return will immediately reveal the change in expected rates of return 
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from 5 % to 10 %. For dividend forecasts being sufficiently precise, this estimation procedure 

thus seems to be advantageous to approaches that rely on historical return realizations. 

 

Apparently, utilizing implied rates of return in this sense at least implicitly assumes that 

analysts’ earnings forecasts are suited to derive representative return expectations for the 

whole capital market. In what follows, we do not address primarily this problem of analysts’ 

expectations being representative for the capital market as a whole, but we ask whether these 

forecasts can be exploited to derive reasonable estimators of expected rates of return 

regardless of their representativeness: However, in a somewhat indirect manner, our findings 

are relevant for this latter issue as well, as we will explain later on. 

 

To be more precise, we show analytically and numerically that implied rates of return per se 

are only loosely connected to expected one-period stock returns. In fact, both rates of return 

are systematically identical only in the special case of implied rates of returns being constant 

over time. In case implied rates of return are varying randomly, even in situations with an 

expected change of zero from period to period, expected one-period stock returns are higher 

than those implied rates of return. Certainly, this bias is the greater the more implied rates of 

return are fluctuating over time. Nevertheless, it might be that the empirical relevance of this 

bias problem only is rather small. However, we show that in spite of only a small variation in 

implied rates of return over time, the resulting bias may be quite large. We present a bootstrap 

approach with a difference between implied rates of return and true expected rates of return of 

about 1 percentage point on a monthly (!) basis and interpret this as evidence for implied rates 

of return being only poor predictors of expected one-period returns. This holds true, although 

in our settings implied rates of return are indeed the true discount rates for future earnings, as 

future expected dividends are – by assumption – forecast without any bias. 
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As is long known in financial literature, as a consequence of Jensen’s inequality, discount 

rates and average historical one-period returns cannot be identical in situations under risk. In 

fact, the arithmetic mean of historical return realizations is only an upward biased estimator 

for the implied rate of return and thus the adequate discount rate in net present value 

computations (see, e.g., Butler and Schachter, 1989). In a similar way, we now show that the 

implied rate of return as a discount rate is only a downward biased estimator of expected one-

period returns. Our paper therefore is related to the literature that addresses the problem of 

upward biases in arithmetic mean estimators like Butler and Schachter (1989), Cooper (1996) 

and – more recently – Breuer et al. (2010). 

 

Moreover, we are able to mitigate this estimation problem with respect to current implied 

rates of return by deriving an unbiased forecast equation regarding future expected one-period 

returns which refers to current and historical implied rates of return and which may be utilized 

as a basis for predicting future one-period returns. Compared to determining future expected 

rates of return on the basis of historical return realizations, it offers the advantage of not 

depending on dividend volatility. Estimators based on implied rates of return may thus be 

advantageous not primarily because they offer shelter against the discount rate effect, but 

because they prevent estimates from being affected by dividend fluctuations. This is even true 

in situations where implied rates of return are expected to be constant once again after 

changes caused by exogenous shocks. In such a situation, the new implied rate of return 

would indeed be an unbiased estimator of future expected one-period returns. This, however, 

would also be true with respect to any future return realization. In this sense, the discount rate 

effect does not really lead to a significant advantage of estimates based on implied rates of 

return in comparison to estimates based on historical return realizations. But once again, the 

variance of estimators would be higher in the latter case due to the adverse influence of 

dividend volatility. 
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There are two main implications of our theoretical findings: First of all, one may not refer to 

considerations of current implied rates of return as an estimator for expected rates of return in 

order to resolve the equity premium puzzle because these estimators are downward biased. 

Moreover, our newly introduced unbiased estimator of expected rates of return that refers to 

past and current implied rates of return will – on average – lead to the same estimates of 

market risk premia as an estimator based on historical return realizations. It thus seems that 

estimators based on implied rates of return cannot contribute to the resolution of the equity 

premium puzzle. 

 

Secondly, however, our newly introduced estimator for expected rates of return should do 

better than an estimator based on historical return realizations in portfolio selection problems 

from the point of view of an expected utility maximizing investor.  We show this analytically 

and determine the potential extent of the welfare increase by way of our bootstrap approach as 

well. Nevertheless, biases in analysts’ forecasts (see, e.g., Stickel, 1990, Easterwood and Nutt, 

1999 and Capstaff et al., 2001) may affect in practice the success of estimation procedures 

based on implied rates of return. Therefore, we also present a simple practical application of 

our approach for real-life capital market data which only consists of combining a given 

portfolio of risky assets with a riskless security. We find evidence that superior portfolio 

selection decisions are indeed achievable by the estimation procedure suggested in this paper. 

In addition, this finding might be interpreted as additional evidence against using implied 

rates of return as a starting point for estimates of market risk premia, as the latter have to be 

based on representative expectations that are not suited to result in superior portfolio 

selection. This view is supported by the fact that estimates of expected rates of return 

according to our approach are often even negative – a fact which explains their good 

performance under bearish market conditions, but is not consistent to market expectations. In 
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any case, it may pay to take a closer look at our approach in future research. This holds 

particular true as our approach may also be utilized in more complex selectivity problems. 

 

The rest of the paper is organized as follows. Section 2 is devoted to an analytical 

examination of the general bias problem when relying only on current implied rates of return 

for estimation issues and the derivation of our alternative estimation procedure for future 

expected one-period returns based on current and past implied rates of return. Additionally, 

we present the advantage of our approach by the analysis of the simple portfolio selection 

problem where an investor only has to determine the optimal combination of a risky and a 

riskless asset. In Section 3, we undertake a bootstrap approach based on data from the German 

stock market in order to estimate the extent of the bias problem and to determine the welfare 

gain for investors when referring to our modified approach instead of simple estimates based 

on actually realized historical returns. We find that – at least for our setting – implied rates of 

return are not suited as estimators for one-period expected stock returns even if analysts’ 

forecasts are unbiased. However, our alternative estimation procedure performs far better. 

Therefore, in Section 4, we take a closer look at our alternative approach for real-life capital 

market data and investigate its superior performance when compared to estimates of expected 

rates of return based on historical return realizations. Section 5 concludes. 

 

2 The general bias problem with implied rates of return 

At each point in time t we assume the validity of the (single-stage) dividend discount model. 

Concretely, we consider a firm that earns (as seen from time t) uncertain dividends dW  at 

(discrete) points in time W ≥ t+1. Furthermore, the (conditional) expected dividend 

t t 1 t 1 tE (d ) : E(d | d )� �  of the next period is exogenously given e.g. because of using analysts’ 
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dividend forecasts. The following expected dividends tE (d )W  (W � t+2) are assumed to 

increase with an exogenously given constant growth rate g. Summarized, we get 

t
t 1 t t 1 t t 1E (d ) (1 g) E (d ) E (d ) (1 g) E (d ) for all t 0 and all t 1.W�

W� W W� � � º ⇒  � º � W � �  (1) 

In addition, there shall be just one share of this firm and its (already realized) value amounts 

to Vt at time t. Then the implied rate of return (impl)
tr  as seen from time t is implicitly defined 

by the following equation: 

(impl)t t 1 t t 1
t t(impl)

t t

E (d ) E (d )V r g.
r g V

� � ¾  �
�

 (2) 

Supporters of the implied rate of returns approach assert that (impl)
tr  is a reasonable estimator 

for the expected one-period rate of return from holding the stock from time t to time t+1. 

However, the latter is defined as the expectation value of 

t 1 t 1
t 1

t

V dr 1.
V

� �
�

� �  (3) 

With 

t 1 t 2
t 1 (impl)

t 1

E (d )V
r g

� �
�

�

 
�

 (4) 

(3) becomes 

t 1 t 2
t 1(impl)

t 1
t 1

t t 1
(impl)
t

E (d ) d
r gr 1.

E (d )
r g

� �
�

�
�

�

�
� �

�

 (5) 

In the following, we make the reasonable assumption of (impl)
t 1r �  and t 1 t 2E (d )� �  being 

independent. We will briefly return to this point later on. In addition, we assume “time 

consistency” in dividend expectations, i.e. t t 1 t 2 t t 2E (E (d )) E (d )� � � . On this basis taking 

expectations on both sides of (5) gives
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t t 2 t t t 1(impl)
t 1 (impl)

t t 1 t t (impl)
t 1t t 1

(impl)
t

1E (d ) E E (d )
r g 1 gE (r ) 1 (r g) E 1 1,

r gE (d )
r g

� �
�

�
��

⎛ ⎞
º �⎜ ⎟ ⎛ ⎞� ⎛ ⎞�⎝ ⎠ �  � º � �⎜ ⎟⎜ ⎟⎜ ⎟�⎝ ⎠⎝ ⎠

�

 (6)

 

where (impl)
t t 1 t 1 t tE (r ) : E(r | r ,d )� �  and (impl) 1 (impl) 1 (impl)

t t 1 t 1 t tE ((r g) ) : E((r g) | r ,d )� �
� ��  �  stand for 

the conditional expectation values given (impl) (impl)
t tr r  and t td d . Apparently, for 

(impl) (impl)
t 1 tr r�  , (6) simplifies to 

(impl)
t t 1 tE (r ) r .�   (7) 

In such a situation, estimating expected returns simply by looking at (impl)
tr  obviously is 

superior to any approach that is based on the consideration of historical return realizations, as 

the variance of this unbiased estimator is just zero. However, in the general case, (7) will not 

hold true. According to Jensen’s inequality, the following relationship is valid:

t (impl) (impl)
t 1 t t 1

1 1E .
r g E (r ) g� �

⎛ ⎞
!⎜ ⎟� �⎝ ⎠

 (8) 

As a consequence, for (impl)
t 1r �  and t 1 t 2E (d )� �  being independent (or negatively correlated), we 

have 

(impl)
t t 1 t (impl)

t t 1

1 gE (r ) (r g) 1 1.
E (r ) g�

�

⎛ ⎞�! � º � �⎜ ⎟�⎝ ⎠
 

(9) 

For the simple case (impl) (impl)
t t 1 tE (r ) r ,�   i.e. the time series of the implied rates of return 

following a martingale, we directly get from (9) 

(impl)
t t 1 tE (r ) r .� !  (10) 

The consequences of variations in annual growth rates for the goodness of the implied rate of 

return as an estimator for the actual expected one-period return can be examined under two 

different conditions. First of all, one may assume ceteris paribus variations of g by the 

estimating individual without any direct relevance for market assumptions. This means that 
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we have to distinguish between g(E) and g(M) with the former growth rate being assumed by 

the estimating individual and the latter being assumed by the market, i.e. entering firm 

valuation. Apparently, as long as g(E) < g(M), a rise in g(E) will improve the goodness of (impl)
tr

as an estimator for the true expected one-period return. The reason simply is that variations of 

g(E) from g(E) to g(E)+'g(E) do not affect t t 1E (r )�  according to (3) but only imply (impl)
tr to rise to 

(impl) (E)
tr g� ' . Since even for g(E) = g(M) the implied rate of return is a downward biased 

estimator, this holds true for all growth rates g(E) < g(M) as well. However, it would be 

advantageous to overestimate g, i.e. to have g(E) > g(M) just in order to reduce the bias 

problem. Unfortunately, as the extent of the bias is not known, this finding is not really of 

immediate practical value. 

 

Secondly, one may assume variations of g in situations with g = g(E) = g(M). In this case, based 

on (6), some comparative statics apply which are presented as part (ii) of the following 

proposition. Moreover, part (iii) examines the consequences of varying volatility of implied 

rates of return, while part (i) simply restates our finding according to formula (9). 

 

Proposition 1. Assume the time series of implied rates of return to follow a martingale, i.e. 

�  ( impl ) ( impl )
t t 1 tE ( r ) r  for all t, and all implied rates of return and future dividend expectations 

to be independent. Furthermore, expectations fulfill the “time consistency property” 

1 2( ( ))t t tE E d� �  2( )t tE d � . Then the following statements apply: 

(i) Only for �  ( impl )
t t 1Var ( r ) 0, the implied rate of return at time t is an unbiased estimator of 

the expected rate of return �t t 1E ( r ) . Otherwise, we have � ! ( impl )
t t 1 tE ( r ) r  .  
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(ii) The bias in utilizing implied rates of return as an estimator for one-period expected stock 

returns becomes greater for ceteris paribus greater growth rates g, i.e. the partial derivative

�� � �( impl )
t t 1 t( E ( r ) r ) / g  is positive. 

(iii) Let the implied rate �
( impl ,B )

t 1r  be a mean preserving spread of the implied rate �
( impl ,A )

t 1r , i.e. 

� � �( impl ,B ) ( impl ,A )
t 1 t 1r r H  with ( impl ,A )

t t 1E ( | r ) 0H �   for all realizations �
( impl ,A )

t 1r . In this situation, the 

estimation bias for B is higher than the bias for A, i.e. � �� � �( A ) ( impl ,A ) ( B ) ( impl ,B )
t t 1 t t t 1 tE ( r ) r E ( r ) r . 

Proof. For part (i), see derivation above, for parts (ii) and (iii), see Appendix 1. 

 

Proposition 1 requires that future implied rates of return and expected dividend expectations 

are independent. From an economic point of view, there is no reason why future implied rates 

of return and expected dividends should be correlated. A ceteris paribus increase in expected 

future dividends should lead to a corresponding rise in stock price with the implied rate of 

return being unaffected. Changes of implied rates of return should be in the first place a 

consequence of changes in attitudes towards risk, as is a result of the well-known Capital 

Asset Pricing Model. Therefore, such changes would simply lead to reduced market values 

with expected future dividends being unaltered. Summarizing, in situations with unbounded 

rationality we would expect that there is no relationship between future implied rates of return 

and expected future dividends. 

 

However, things may change if we take into account that the computation of implied rates of 

return are based on analysts’ dividend forecasts. If these forecasts were independent of actual 

market forecasts, then changes in analysts’ dividend forecasts would not be compensated by 

corresponding changes in stock prices. As a consequence, estimators for implied rates of 

return and future expected dividends would become positively correlated. However, at the 

same time, the „true“ implied rate of return could only be estimated with a bias, unless market 
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expectations are on average identical to analysts’ expectations. In fact, with a superscript 

“(A)” for variables based on analysts’ forecasts and “(M)” for variables based on market 

forecasts, we have: 

(A) (M) (M)
(impl,M) (impl,A)t t 1 t t 1 t t 1

t t t t(impl,A) (impl,M) (A)
t t t t 1

E (d ) E (d ) E (d )V , V r (r g) g.
r g r g E (d )

� � �

�

  ⇒  � º �
� �

 (11) 

This gives us the following proposition. 

 

Proposition 2. Assume analysts’ dividend forecasts to be more optimistic than market 

expectations underlying stock price formation, i.e. ( A ) ( M )
t t 1 t t 1E ( d ) E ( d ),� �!  then the corres-

ponding implied rate of return estimator ( impl ,A )
tr  is greater than the corresponding estimator 

( impl ,M )
tr  based on market expectations. For given expectations, the difference between ( impl ,A )

tr  

and ( impl ,M )
tr is independent of the assumed annual growth rate g of annual cash flows. 

Proof. See Appendix 2. 

 

In fact, there is empirical evidence that analysts’ earnings forecasts are typically too 

optimistic (see, e.g., Stickel, 1990, Easterwood and Nutt, 1999 and Capstaff et al., 2001). 

Thus, when relying on (impl,A)
tr  instead of (impl,M)

tr  the corresponding upward bias may (at least) 

partially neutralize the downward bias according to formula (10). Nevertheless, it does not 

seem to be too sensible to fight one estimation error by another. We will return to this issue 

later on. 

 

Up to now, we have focused on the simple case of the time series of implied rates of return 

following a martingale. However, an alternative assumption would be to consider implied 

rates of return that are independently and identically distributed (i.i.d., henceforth) over time. 

This directly implies  
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(impl) (impl)
t t 1E (r ) µ�   for all t.  (12) 

Apparently, (12) can be viewed as an alternative extension of the “deterministic” case 

(impl) (impl)
t 1 tr r ,�   as the latter equality would once again be true in expectation values. Even 

under (12), the previous analyses are of use as they show that even for situations with the 

actual implied rate of return being identical to the expected implied rate of return, the 

expected one-period return will be greater than the current implied rate of return. All results 

so far apply to this special case as well. Moreover, it is immediately clear that for current 

implied rates below the corresponding expectation value the bias will be even greater. 

Certainly, by (pure) chance there may also be levels of (impl)
tr  above (impl)µ  so that the 

expected one-period return is forecast without any bias. However, if we compare 

unconditional expectation values, it is straightforward to show that implied rates of return 

remain a downward biased estimator of future one-period expected rates of return, i.e. we 

have (impl)
t 1 tE(r ) E(r )� ! . Based on this finding, the other parts of Proposition 1 apply as well 

for unconditional expectations (see Appendix 3).  

 

However, afterwards we will not make explicit assumptions regarding the process of implied 

rates of return. In fact, we assume one-period returns tr  to be i.i.d. over time. We do so, 

because this assumption is quite conventional and it favors estimates based on historical 

return realizations. Alternatively, one may assume implied rates of return to be i.i.d. The 

consequences of such an assumption will briefly be addressed later on. 

 

In addition, we continue to accept the independence between (impl)
t 1r �  and t 1 t 2E (d )� �  for all 

points in time t which implies the validity of equality (6). This in turn suggests to define  

t 1
(impl) (impl)
t , (impl)

t 1

1 1 gµ : (r g) 1 1
r g

�

N W
W �N W�

⎛ ⎞� º � º � �⎜ ⎟N �⎝ ⎠
∑  (13) 
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as a “new” unbiased estimator of the unconditional expected one-period return, because (6), 

(13), and the i.i.d. property of the one-period returns lead to 

t 1
(impl)
t , t 1 t 1

t

1E(µ ) E(r ) E(r ).
�

N � �
W �N

 º  
N ∑  (14) 

A conventional estimator defined as the arithmetic mean of historical one-period return 

realizations according to (5), 

1 2
1(impl)t 1 t 1

(real) 1
t ,

t t 1
(impl)

E (d ) d
r g1 1µ : r 1,

E (d )
r g

W� W�
W�� �

W�
N W

W �N W �N W W�

W

�
� º  º �

N N
�

∑ ∑  (15) 

would also be an unbiased estimator of the expected one-period return but its variance would 

be higher than that of (13), as (13) is not affected by variations of dividends and their 

expectation values. In order to examine the relationship between the estimators according to 

(13) and (15) in more detail, the following lemma regarding mean preserving spreads will 

prove helpful. 

 

Lemma. Consider two random variables x  and y  with ranges X and Y, respectively. 

Furthermore, we look at two functions f:X�¥ and h:XxY�¥ that fulfill the following 

property: ( ) ( ( , ) | )  f x E h x y x x  for all x±X. Then ( , )h x y  is a mean preserving spread of 

( )f x . 

Proof. See Appendix 4. 

 

On this basis, we are able to present the following proposition. 

 

Proposition 3. Consider a situation with one-period returns tr  to be i.i.d. over time and for 

all points in time t the implied rate of return ( )
1�
impl

tr  and the expected dividend 1 2( )� �t tE d  to be 
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independent. Furthermore, expectations fulfill the “time consistency property” 1 2( ( ))t t tE E d� �  

2( )t tE d � . Then the following statements apply: 

(i) Both estimators of the unconditional expected one-period returns ((13) and (15)) are 

unbiased. 

(ii) For all points in time t the one-period return 1tr �  is a “conditional” mean preserving 

spread of � �( ) ( )
1( ) (1 ) / ( ) 1 1impl impl

t tr g g r g�� º � � � � , i.e. there exists a random variable 1tH �  

with � �( ) ( )
1 1 1( ) (1 ) / ( ) 1 1impl impl

t t t tr r g g r g H� � � � º � � � � �  and ( )
1 1( | ) 0impl

t t tE rH � �   for all ( )
1
impl

tr � . 

In addition, 1tr �  is also an unconditional mean preserving spread of ( )( )impl
tr g� º  

( )
1((1 ) / ( ) 1)impl

tg r g�� � � . 

(iii) The estimator for expected one-period returns according to (15) is an unconditional 

mean preserving spread of the estimator according to (13). Consequently, although both 

approaches lead to unbiased estimators of �t 1E( r ) , the estimator according to (13) will be 

less volatile. 

Proof. For part (i), see derivation above, for parts (ii) and (iii), see Appendix 5. 

 

Proposition 3 is the main finding of our theoretical section, as it describes a new estimator for 

future expected returns. This estimator is based on implied rates of return, but – in contrast to 

the conventional procedure – in general, it does not suffice to simply look at the current 

implied rate of return (unless implied rates are constant over time), but at historical implied 

rates of return as well. 

 

It should be noted, that similar results apply for implied rates of return being i.i.d. instead of 

realized rates of return. First of all, in a strict sense, as can be seen by (6), both assumptions 

are mutually exclusive. Moreover, for implied rates of return being i.i.d., one may simply use 
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(impl) (impl)
t t t(impl) (impl)

t 1 t 1

1 g 1 g(r g) E 1 1 (r g) E 1 1
r g r g� �

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞� �� º � �  � º � �⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟� �⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (16) 

as a starting point for estimating the expected rate of return as seen from time t. (16) can be 

determined by computing the arithmetic mean of historical values for (impl)
t(1 g) / (r g)� � . The 

alternative utilization of (13) in order to estimate expected rates of return remains possible as 

well, because unconditional expectation values tE(r )  are still identical for all points in time t 

even with implied rates of return being i.i.d. 

 

Both situations, either realized rates of return being i.i.d. or implied rates of return being i.i.d., 

may be justified. The former assumption, however, is more conventional. In what follows, we 

will therefore continue to address this situation in more detail. 

 

Since the conventional estimator (15) is a mean-preserving spread of the newly defined 

estimator (13), it is generally advantageous to refer to (13) instead of (15). To show this, 

consider an investor combining i = 1, …, N risky stocks with riskless lending or borrowing at 

a rate rf. Then the following corollary applies. 

 

Corollary. Assume an expected utility maximizing investor who combines risky securities 

with riskless lending or borrowing and who is fully informed about the distribution of 

centralized returns � � �( c )
i ,t 1 i ,t 1 ir r P  of all risky stocks i = 1, …, N. Particularly, the investor 

knows all relevant central moments � � k
i ,t 1 iE[( r ) ]P  of the stock returns. Uncertainty is only 

assumed regarding the expected returns iP  (i= 1, …, n). Against this background, the 

investor will achieve a higher expected utility level if he or she bases his or her estimation of 

expected returns on (13) than when applying (15). 

Proof. See Appendix 6. 
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Moreover, the estimator according to (13) enables us to reconsider the discount rate effect 

first discussed by Fama and French (1988). When using historical rates of return for 

estimation purposes, one faces the problem that changes in implied rates of returns, i.e. (impl)
tr , 

lead to offsetting changes of stock prices in the opposite direction implying negative realized 

rates of return for increasing implied rates of return and vice versa. One potential advantage 

of using implied rates of return as estimators for future expected rates of return apparently is 

that this approach is not diluted by opposing price effects. In contrast, a change in implied 

rates of return could directly be identified and used as an adjusted estimator for the future 

expected rate of return. According to our analysis, such an approach requires that there is just 

a singular change in the implied rate of return so that it is constant (again) for all periods 

thereafter. Otherwise, this estimator (typically) would be downward biased and one would 

have to rely on (13), that is, historical implied rates of return as well. In fact, this is superior to 

looking at historical return realizations, but not because of their immunity against the discount 

rate effect, but simply because of their independence of dividend volatility. This can best be 

seen for dividends being riskless over time. Then the estimators (13) and (15) are simply 

identical. 

 

Thus, we may conclude the following: 

1) The current implied rate of return is an unbiased (and perfect) estimator of the future 

expected rate of return only in situations where there are no changes over time in the implied 

rate of return. Then indeed, this approach is immune against the discount rate effect discussed 

in Fama and French, 1988. 

2) For implied rates of return being stochastic as well, an unbiased estimator of future 

expected one-period returns may be based on historical realizations of implied rates of return. 
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This approach is superior to relying on historical realizations of actual one-period returns 

because this implied-oriented estimator is independent of dividend volatility. 

 

However, it remains to analyze in more depth the practical relevance of our two main 

findings. To do so, we have to refer to real capital market data and a numerical analysis of the 

problem. This will be the object of the next section.  

 

3 A bootstrap approach to quantify the bias problem 

We examine monthly returns on stocks on the German capital market for the time period from 

01/01/1997 to 02/01/2009. In order to do so, we use data from Thomson Reuters Datastream 

to compute monthly implied rates of return. For each point in time, we restrict our analysis to 

those firms in the German stock index HDAX (for 1997 we used the index DAX 100) for 

which analysts’ dividend forecasts are available. The number of these stocks varies from 76 to 

119 with an average number of approximately 107. All stocks are aggregated according to 

their relative contribution to overall market capitalization of the assets under consideration. 

 

Thereby, we follow two approaches. In the first one, we utilize only analysts’ dividend 

forecasts for the first following year and then assume a constant growth rate of future 

dividends (“one-period model”). In the second one, analysts’ dividend forecasts for the next 

three years are explicitly considered and after this a constant growth rate is assumed (“three-

period model”). All computations are performed for several different cash flow growth rates 

of 0 %, 1 %, 2 %, 3 % and 4 %. Resulting average implied rates of return over all 145 months 

as well as corresponding return standard deviations are depicted in Table 1. 

 

>>> Insert Table 1 about here <<< 
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There are several opportunities to derive corresponding annual rates of return from the 

monthly return data of Table 1. Due to the very small variation of monthly implied returns, all 

these approaches lead to almost identical results. We therefore simply determine to each 

monthly return value rmonth the corresponding annual value (1+rmonth)12−1 and present the 

results together with corresponding annual return standard deviations in Table 1. Almost the 

same results would be obtained if firstly all 145 implied rates of return on a monthly basis 

were transformed into annual data and then, secondly, the average annual value across all 

these 145 values were calculated. Apparently, variations of annual growth rates are almost 

completely translated into accordingly higher estimates for expected one-period returns. 

Moreover, for given constant annual growth rate, the one-period model and the three-period 

model lead to very similar results. At any rate, and most importantly, average realized 

monthly returns on corresponding stock portfolios exhibit a value of 1.0651 % with a return 

standard deviation of 9.2866 %. Apparently, both values are much higher than those based on 

implied monthly returns. The same holds true for average realized annual returns with a value 

of 11.60 % and a corresponding standard deviation of 29.22 %. Because of the high standard 

deviation, annual return values have to be computed separately from monthly values. We 

therefore determined a time series of 134 annual return data for overlapping intervals of 12 

months each. Simply computing 1.01065112−1 = 13.56 % would obviously lead to another 

(biased) result. Our findings so far are in line with other results reported in the literature. 

Implied rates of return are much smaller than historical realized rates of return. Since up to 

now, we have only referred to analysts’ dividend forecasts, a correction for these forecasts to 

be overly optimistic would lead to even smaller implied rates of return. Let us assume that 

analysts’ dividend forecasts exceed market expectation by a certain percentage p = 10 %, 

50 %, 100 %, or 200 %, then the application of equation (11) to the annual results according 

to the one-period model leads to “correct” (market-based) implied rates of return according to 

Table 2.  
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>>> Insert Table 2 about here <<< 

 

Supporters of the implied rates of return approach propagate that implied rates of return are a 

much better estimator for future stock returns than historically realized returns and may 

resolve the equity premium puzzle. Apparently, from this point of view, a correction for 

analysts’ overoptimism according to (11) would even do “better”, as adjusted implied rates of 

return are even smaller. Nevertheless, it remains an open question whether the estimators of 

Table 2 are indeed suited to forecast future one-period returns. To this end, we must go 

beyond Tables 1 and 2. 

 

In order to examine the relevance of the bias problem explained above, we additionally 

perform a bootstrap approach. According to the results of Table 1, we simply focus on a 

situation with g = 0 % and apply the one-period model. The general findings are apparently 

unaffected by variations in assumed growth rate g and by utilizing explicit dividend forecasts 

for only one or more future periods. 

 

For this setting, we utilize the 145 implied rates of return on a monthly basis. According to (5)

realized rates of return are determined by current and future implied rates of return and future 

dividends. Typically, realized rates of return are assumed to be stationary following a random 

walk. To study the stationarity of return time series we use unit root tests, such as the 

Augmented Dickey-Fuller (ADF) and the KPSS. The null hypothesis of the ADF test is non-

stationarity, complementing the KPSS test. The KPSS test is applied since the ADF test has 

low power against stationary near unit root processes. In fact, the null hypothesis of the ADF 

test is rejected at the 1 % level for time series of realized rates of return. In addition, the null 

hypothesis of the corresponding KPSS test is rejected at the 10 % level. Based on these 

statistical finding, we start our simulation procedure to achieve stationary series of realized 
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rates of return. The simulation is based on drawn implied rates of return and drawn dividend 

payments as input variables. On this basis, we are able to determine realized rates of return 

according to (5) as our dependent variable. 

 

Concretely, we compute all 144 potential differences between two successive implied rates of 

return and take by chance one of all 145 implied rates of return for each of our 10,000 

simulated time series of implied rates of return as a starting point. Then we generate time 

series of 100 implied rates of return from t = 0 to t = 99 by adding randomly for each point in 

time one of the calculated 144 differences to the preceding implied rate of return simulation in 

order to create a martingale of implied rates of return. In addition, we draw stochastic 

dividends from t = 1 to t = 99. Thereby, we assume dividends to be lognormally distributed 

with an expectation value of time t+1 that is equal to the dividend at time t. The standard 

deviation of monthly dividends is derived from actual DAX data over the time period from 

1997 to 2008. Under the assumption that actual dividends are paid on an approximately 

annual basis, we determine such a standard deviation for monthly dividends that on a yearly 

basis the real-life value results. We first consider a situation with monthly dividends, because 

equation (5) is based on the assumption of dividend periods being equal to the time periods of 

implied and realized rates of return. Consequences of only annual dividends will be discussed 

later on in this section. 

 

Furthermore, we assume analysts to correctly forecast current expectation values of future 

dividend payments. This implies that expected dividends are independent of implied rates of 

return, as has been the basis for our theoretical analysis. In order to test whether there is any 

statistically significant connection between expected dividends and implied rates of return for 

our real capital market data, we carry out Johansen cointegration tests. We use the 

methodology developed in Johansen (1991) under different assumptions of deterministic 
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trends and calculate both the trace and the max-eigenvalue test. The tests indicate no 

cointegration at 5 % and 1 % levels for neither assumption of dividend growth rate g of 0 %, 

1 %, 2 %, 3 %, and 4 %. 

 

Under these conditions, it is possible to derive the time series of monthly stock prices for 

given implied rates of return. The stock price Vt at time t is computed as 

t t 1
t (impl)

t

E (d )V .
r g

� 
�

 (17) 

In turn, stock prices enable us to compute actual realized monthly rates of return for each of 

the 99 periods from t = 1 to t = 99 for all 10,000 runs. Applying once again ADF and KPSS 

tests for each of the 10,000 time series of realized rates of returns on 1 % or 10 % significance 

levels, the hypothesis of the time series being stationary cannot be rejected in any case. Our 

numerical simulation thus seems to deliver reasonable results that are in line with actual 

empirical evidence. 

 

Moreover, based on these assumptions, we get across all 10,000 runs an average monthly 

implied rate of 0.1940 % with a return standard deviation of 0.0653 % and an average annual 

implied rate of return of about 2.3558 % with a corresponding return standard deviation of 

0.8026 %. Apparently, these values are almost perfectly identical to those presented in Table 

1 for the case g = 0 %. Furthermore, the average realized monthly rate of return is 1.1051 % 

and thus also almost identical to the actual empirical finding. However, while this value in our 

empirical investigation is just based on a sample of 144 values, in our bootstrap approach it is 

based on about 1,000,000 draws from the same probability distribution and thus almost surely 

identical to the true expected monthly period return. Apparently, simple implied rates of 

return are only quite poor estimators of the true expected one-period return in our bootstrap 
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setting. In addition, according to this approach the simple historical average of realized 

monthly returns may do a good job in practice. 

 

On the basis of these simulation runs, we are now able to compare the performance of the two 

estimation procedures described by (13) and (15) for N = 36. In fact, both approaches are able 

to approximate the true expected rate of return across all 10,000 runs almost perfectly, as we 

get an average estimator for the expected monthly rate of return of 1.1465 % on the basis of 

(15) and of 1.0866 % on the basis of (13). Nevertheless, in the second case, there is a 

corresponding variance of estimators of only 0.0084 %, while it amounts to 0.1274 % in the 

first case. It is indeed this advantage which makes the estimator according to (13) so attractive 

for practical applications, as has been stated in the Corollary of the preceding section. 

 

This finding can easily be verified for our numerical simulation. To this end, consider an 

investor who is maximizing a mean-variance preference function )(µ, V) = µ−0,5·D·V2 which 

is defined in expected one-period return and the variance of future one-period return. Under 

the assumption of normally distributed one-period returns and constant absolute risk aversion, 

the parameter D is the product of the investor’s absolute risk aversion and his or her initial 

endowment and thus his or her relative risk aversion for given initial wealth. In this case, the 

preference function simply is the investor’s certainty equivalent of uncertain portfolio returns. 

 

Now assume that this investor is combining a portfolio of stocks with expected return PS and 

return standard deviation VS with riskless lending or borrowing at a rate of return rf. However, 

let us assume that he or she only knows VS, but not µS. Instead he or she relies on an estimator 

Sµ̂  for PS. Then it is easy to show that the optimal fraction x* of his or her initial endowment 

to be invested in the stock portfolio amounts to 
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* S f
2
S

µ̂ rx .� 
D ºV

 (18) 

From the point of view of a decision-maker who knows the real value Sµ , the investor thus 

realizes a preference value of  

2
* * S S S

f 2
S

ˆ ˆ(µ r) (µ r) 0,5 (µ r)(µ(x ), (x )) r .� º � � º �) V  �
D ºV

 (19) 

As can be seen from (19), even if two estimation procedures are both unbiased so that 

S SˆE(µ ) µ , a smaller variance of the estimator Sµ̂  implies a higher average preference value. 

This means that average preference values (AP-values, henceforth) according to (19) across a 

large number of portfolio selection problems following (18) should be greater in the case of 

estimates according to (13) than when estimating according to (15). The computation of AP-

values seems to be widely accepted in the literature (see, e.g., Kan and Zhou, 2007, or 

DeMiguel et al., 2009). Not very surprisingly, this theoretical superiority of the estimation 

procedure (13) in comparison to (15) is also reflected in our numerical analysis as is revealed 

by Table 3, where AP-values are depicted for various values of risk aversion parameter D and 

riskless interest rate rf. For our numerical analysis, in all cases, we made use of the “true” 

variance of the return of the risky subportfolio as based on all 10,000 simulation runs. 

  

Apparently, for all combinations, AP-values are greater zero for estimates on the basis of (13), 

while they are often negative for estimates on the basis of (15) and always smaller than the 

corresponding values on the basis of (13). 

 

>>> Insert Table 3 about here <<< 

  

However, the results of Table 3 are based on the assumption that there are monthly dividend 

payments, because (13) was derived for such a situation. As already pointed out, we therefore 
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also look at a situation with only annual dividend payments (holding annual dividend standard 

deviation constant). In such a situation, (13) could also be used as an approximative 

estimation procedure. Indeed, results are almost unaffected by this slight modification. In 

particular, the resulting true expected monthly rate of return now amounts to 1.138 % with 

estimators according to (13) and (15) being equal to 1.146 % or 1.139 %, respectively, for N = 

36. Moreover, as is revealed by Table 4, (13) remains superior to (15). 

 

>>> Insert Table 4 about here <<< 

 

5 Empirical application of the modified implied rates of return estimator 

According to the bootstrap approach applied above, the estimation procedure (13) may be 

viewed as a serious alternative to the simple arithmetic mean of historical return realizations 

according to (15). However, in real applications one may face the problem of analysts’ 

forecasts being biased to an extent that is not exactly known. Moreover, while the simulation 

approach enables us to apply the true portfolio return moments in order to compute preference 

values according to (19), in reality this is not possible. For example, portfolio return variance 

has to be estimated as well. Hence, the empirical application of the estimation procedure (13) 

may lead to less advantageous results than those obtained in the simulation of Section 4. 

Instead of using simulated return data, in this section, we therefore rely on the actual time 

series of returns from 01/01/1997 to 01/01/2009 and – starting from 01/01/2000 on – we 

determine mean-variance optimal combinations of the risky portfolio of our subsample of 

DAX 100 or HDAX stocks and riskless lending or borrowing for each month till 12/01/2008. 

Return variance is estimated based on the last 36 monthly return realizations. For estimates 

based on (15), the same applies to estimated expectation values of the rate of return of the 

stock portfolio, while for estimates based on (13), the last 36 monthly implied rates of returns 

according to the one-period model are utilized in order to determine estimators for expected 
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monthly returns. Optimal portfolios are computed for different growth rates g of expected 

annual dividend payments of 0 %, 1%, 2 %, 3 %, and 4 %. Risk aversion parameters D are 

varied from 0.1 to 10. Moreover, short-sales restrictions are employed, as it is well-known 

that this generally leads to better results in the presence of estimation problems. For each 

different setting regarding D and g and each of the two estimation procedures, an out-of-

sample series of 110 rates of return of monthly optimized portfolios is obtained. For these 

actual portfolio return time series, we compute AP-values as defined above. Moreover, we 

calculate corresponding Sharpe ratios as a most common measure of comparison among 

different portfolio optimization techniques. Results are presented in Fig. 1 for annual growth 

rates of expected cash flows of g = 0 % and g = 4 % with “impl” and “real” denoting findings 

based on (13) and (15), respectively. Apparently, our empirical outcomes are in line with both 

our theoretical considerations and the results of our simulation: Portfolio optimization based 

on (13) leads to consistently better outcomes than portfolio selection based on (15). Moreover, 

portfolio selection according to (13) is unambiguously superior to simply holding the “market 

portfolio” or riskless lending (which would exhibit a Sharpe ratio and an AP-value of just 0). 

The market portfolio in our case is identical to the (time-varying) portfolio of stocks under 

consideration (results denoted by “market”). The same outcomes hold true for other annual 

growth rates between 0 % and 4 %. In fact, the only difference caused by variations of g is 

that the absolute level of the Sharpe ratio of the portfolio optimization based on (13) is 

affected, while the curvature remains almost completely the same. AP-values, in addition, are 

almost completely unaltered. This is quite remarkable, as the estimator according to (13) 

reacts sensitively to changes in g in a similar manner as the simple implied rate of return (for 

the latter problem see, e.g., Berg and Kaserer, 2008). However, the precise determination of g 

does not seem to be of major importance for the performance of the estimator according to 

(13) in actual portfolio selection problems. 
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As is well-known, there is a lack of powerful significance tests for differences in performance 

of alternative estimation methods. This is particularly true for the Jobson and Korkie (1981) 

test for significant differences in resulting Sharpe ratios (the same holds true for the correction 

of the Jobson and Korkie test presented in Memmel, 2003). In fact, although the differences 

reported in Fig. 1 for the resulting Sharpe ratios look economically significant, we cannot 

confirm statistically significant differences according to the Jobson and Korkie test. However, 

the purpose of Fig. 1 was simply to examine whether the finding for our bootstrap simulation 

does not contradict reality in an obvious way. Taking the results of this section and the 

preceding one together, we are convinced that the superiority of the estimation approach (13) 

in comparison to (15) can be concluded. 

 

>>> Insert Fig. 1 about here <<< 

 

Due to all these findings, it thus seems reasonable to employ (13) instead of (15) as the 

relevant estimation procedure in order to determine expected rates of return. Based on (15) for 

N = 36 for our real capital market data, one would get on average a monthly rate of return of 

0.7762 % with a return standard deviation of this estimator of 1.5874 %. However, estimates 

for monthly expected future returns based on (13) are much lower even for an assumed annual 

growth rate of g = 4 %, as Table 5 reveals. At the same time, the standard deviation of this 

return estimator is indeed somewhat smaller than that of the standard estimator according to 

(15). In fact, estimates based on (13) are often negative and in general even smaller than when 

simply referring to the current implied rate of return as an expectation value estimator. 

Nevertheless, these estimators according to (13) do a good job in portfolio selection problems 

and are theoretically founded. In this sense, such estimators may prove superior. However, 

even if one should refer to these estimates, it remains an open issue whether such an estimator 

would be able to approximate market risk premia, because these reflect the assessment of the 
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whole capital market. The better an estimation procedure works in portfolio selection 

problems, the less representative corresponding estimates will be for the capital market as a 

whole. So, even if we started this paper with a reflection on the equity premium puzzle and 

although estimators according to (13) are quite low for our real capital market data and thus 

may contribute to a resolution of the equity premium puzzle, they may not be representative 

for capital market participants as a whole. Nevertheless, this problem holds true for each 

approach that aims at estimating future expected rates of return. In fact, for estimating market 

risk premia it seems that expectations are necessary that lead to the holding of the market 

portfolio. We therefore have to distinguish between these two goals of estimation procedures 

for expected rates of return: support of portfolio optimization and quantification of market 

risk premia. Both goals seem to be mutually exclusive. In this sense, our empirical findings 

may be understood as another reason why implied rates of return are not suited for market risk 

premia estimation even when based on equation (13). 

 

>>> Insert Table 5 <<< 

 

6 Conclusion 

Implied rates of return are not suited for estimates of future one-period returns. The reason 

simply is the discrepancy between discount rates and expected returns. We derive analytically 

the relationship between implied rates of return and expected future returns and show that 

implied rates of return are on average a downward biased estimator for future one-period 

returns unless implied rates of return are constant over time. Moreover, we present an 

alternative estimation procedure based on the historical time series of implied rates of return 

and show theoretically its superiority to an estimator that is based on historical return 

realizations. Our theoretical findings are supported by a bootstrap approach and an empirical 

analysis. Rather interestingly, even for this newly introduced approach, resulting estimators of 
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expected rates of return seem to be smaller than in the case of estimates based on historical 

return realizations. In this sense, this new estimation procedure may also contribute to the 

resolution of the equity premium puzzle, although it does not lead to systematically 

downward biased estimates. However, it remains open to question whether this new 

estimation procedure (or any other alternative one) is able to approximate aggregate capital 

market expectations. 

 

In this paper, we restricted ourselves to quite simple applications of the newly suggested 

optimization procedure. Certainly, it is possible to combine this approach with other methods, 

e.g. Bayesian estimation techniques, to improve portfolio selection techniques even more. 
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Appendix 1 

Proof of Proposition 1 (ii): 

According to (2), we have the following identity: 
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Using (6) leads to  

t 1
tt (impl)

t 1 t 1 t 2(impl) (impl) (impl)
t t 1 t t t1

t 1 t 2(impl)
tt

t 1

V1 g (1 g) E 1E 1
r g E (d )

E (r ) r (1 r ) (1 r )1 E (d )Er g V

�

� � �
� �

� �

�

⎛ ⎞⎛ ⎞� � º �� ⎜ ⎟⎜ ⎟�⎝ ⎠ ⎝ ⎠�  � �  � �
⎛ ⎞
⎜ ⎟�
⎝ ⎠

 (A3) 

and consequently (since from (2) we have (impl)
tr / g 1� �  ) 
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The latter inequality immediately follows from Jensen’s inequality which implies 
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Proof of Proposition 1 (iii): 

(6) immediately gives 
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Thus, it is sufficient to show the inequality 

t t(impl,B) (impl,A)
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r g r g� �
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According to Jensen’s inequality, each realization (impl,A)
t 1r �  leads to 
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which in turn implies the postulated result by taking expectations over all (impl,A)
t 1r �  in (A8). 

 

Appendix 2 

Proof of Proposition 2: 

Under consideration of (M) (A)
t t 1 t t 1E (d ) / E (d ) 1,� � �  equation (11) immediately leads to the 

inequality (impl,M) (impl,A)
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and thus 
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Appendix 3: 

We show that the statements of Proposition 1 apply for unconditional expectations if we 

assume implied rates of return to be i.i.d. 

Proof of Proposition 1 (i) for unconditional expectations: 

According to (6) we have 
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Taking unconditional expectations on both sides of (A11) and considering (impl)
tr  and the 

expectation value (impl)
t t 1E ((1 g) / (r g))�� �  to be independent leads to 
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The latter equality results from the fact that implied rates of return are assumed to be 

identically distributed over time. The inequality in (A12) only holds if the variance of (impl)
tr  is 

positive. Otherwise, we immediately get (impl)
t 1 tE(r ) r�  . 

 

Proof of Proposition 1 (ii) for unconditional expectations: 

(A1) under consideration of the i.i.d. property of the implied rates of return leads to 
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Using these identities in (A12) immediately implies 
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The rest of the proof is analogous to (A4) and (A5) if we replace conditional expectations by 

unconditional expectations. 

 

Proof of Proposition 1 (iii) for unconditional expectations: 

Under consideration of 
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and (impl,A) (impl,B)
t tE(r ) E(r )  the proof proceeds analogously to the proof of part (iii) of 

Proposition 1. 

 

Appendix 4: 

Proof of the Lemma: 

With : h(x, y) f (x)H  �  we have h(x, y) f (x) � H . If we consider an arbitrary realization x of 
x,  we immediately get the following relationship 

E( | x x) E(h(x, y) | x x) f (x) 0.H    �   (A16) 

Thus, h(x, y)  is a mean preserving spread of f (x) . 

 

Appendix 5: 

Proof of Proposition 3 (ii): 

From (5), we know that (impl) (impl)
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According to the Lemma, t 1r �  is a conditional mean preserving spread of (impl) (impl)
t t 1f (r , r )� . On 

this basis, we define (impl)
1(r )W� WH  as that random variable which implies 
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With the abbreviation (impl)
1 1: (r )W� W� WJ  H , this result can be generalized to an “unconditional” 

statement, since obviously 
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Proof of Proposition 3 (iii): 

With function f from above we have t 1(impl) (impl) (impl)
t , 1t

µ (1 / ) f (r , r )�
N W W�W �N

 N º∑ . Since for each W the 
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Thus, (real)
t ,µ N  is a mean preserving spread of (impl)

t ,µ N . 

 

Appendix 6: 

Proof of the Corollary: 

In the following, we identify riskless lending or borrowing with security i = 0 and define 

(impl)*
ix  (i = 0, 1, …, N) as the optimal fraction of wealth invested in security i if the investor 

bases his or her estimation of expected returns on (13). In addition, (real)*
ix  (i = 0, 1, …, N) 

stands for the corresponding fraction if the decision relies on the application of (15). 

Furthermore, we define (impl)
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and the statement of Proposition 3 immediately imply (real)
P,t 1r �  to be a mean preserving spread of 

(impl)
P,t 1r � . Thus, for all portfolios P and an arbitrary (strictly increasing and concave) utility 

function U we obtain the inequality  

(impl) (real)
P,t 1 P,t 1E U(r ) E U(r )� �⎡ ⎤ ⎡ ⎤!⎣ ⎦ ⎣ ⎦ . (A22) 
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If we denote (impl)* (impl)* (impl)* (impl)*
0 1 NP (x , x , ..., x )  and (real)* (real)* (real)* (real)*

0 1 NP (x , x , ..., x )  we 

finally get the postulated statement 

(impl)* ( real)* ( real)*
(impl) (impl) (real)
P ,t 1 P ,t 1 P ,t 1

E U(r ) E U(r ) E U(r ) .
� � �
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The first inequality is a result of the optimality of (impl)*P  in the “estimation case” (13) and the 

second inequality is an application of (A22) in the case (impl)*P P .  
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Table 1 
Average implied monthly and annual rates of return and corresponding standard deviations  

  One-Period Model Three-Period Model 

  Average Return Return Standard 
Deviation Average Return Return Standard 

Deviation 
Monthly Values         
g = 0 % 0.1926% 0.0639% 0.2344% 0.0801% 
g = 1 % 0.2747% 0.0637% 0.3119% 0.0797% 
g = 2 % 0.3561% 0.0635% 0.3889% 0.0798% 
g = 3 % 0.4367% 0.0633% 0.4654% 0.0806% 
g = 4 % 0.5166% 0.0630% 0.5412% 0.0818% 
Annual Values 
g = 0 % 2.34% 0.79% 2.85% 0.98% 
g = 1 % 3.35% 0.79% 3.81% 0.97% 
g = 2 % 4.36% 0.79% 4.77% 0.96% 
g = 3 % 5.37% 0.80% 5.73% 0.94% 
g = 4 % 6.38% 0.80% 6.70% 0.93% 
 
Average implied monthly and annual rates of return and corresponding standard deviations 
are computed based on monthly returns on stocks on the German capital market for the time 
period from 01/01/1997 to 02/01/2009. For each point in time, the analysis is restricted to 
those firms in the German stock index HDAX (for 1997 we used the index DAX 100) for 
which analysts’ dividend forecasts are available. The number of these stocks varies from 76 to 
119 with an average number of approximately 107. All stocks are aggregated according to 
their relative contribution to overall market capitalization of the assets under consideration. 
Two approaches are applied: In the first one, we utilize only analysts’ dividend forecasts for 
the first following year and then assume a constant growth rate of future dividends (“one-
period model”). In the second one, analysts’ dividend forecasts for the next three years are 
explicitly considered and after this a constant growth rate is assumed (“three-period model”). 
All computations are performed for several different cash flow growth rates of 0 %, 1 %, 2 %, 
3 % and 4 %. 
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Table 2 
Implied rates of return after correcting for analysts’ overoptimisms 

Analysts' Overoptimism 
Annual 

Growth Rate 0.00% 10.00% 50.00% 100.00% 200.00% 
0 % 2.34% 2.13% 1.56% 1.17% 0.78% 
1 % 3.35% 3.14% 2.57% 2.18% 1.78% 
2 % 4.36% 4.15% 3.57% 3.18% 2.79% 
3 % 5.37% 5.15% 4.58% 4.19% 3.79% 
4 % 6.38% 6.16% 5.59% 5.19% 4.79% 

 
Table 2 is based on the assumption that analysts’ dividend forecasts exceed market expecta-
tion by a certain percentage p = 10 %, 50 %, 100 %, or 200 %. Against this background, the 
application of equation (11) to the annual results according to the one-period model presented 
in Table 1 (see also the column “0.00 %” of Table 2) leads to “correct” (market-based) 
implied rates of return according to Table 2.  
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Table 3 
AP-values according to estimation procedures (13) and (15) for different decision situations 
(monthly dividend payments) 

 AP-values based on (13) AP-values based on (15) 
 rf = 0.1 % rf = 0.3 % rf = 0.5 % rf = 0.1 % rf = 0.3 % rf = 0.5 % 

D = 0.1 0.2339% 0.1472% 0.1239% −9.1904% −9.2771% −9.3004% 
D = 0.5 0.1268% 0.2694% 0.4248% −1.7581% −1.6154% −1.4601% 
D = 1 0.1134% 0.2847% 0.4624% −0.8290% −0.6577% −0.4800% 
D = 2 0.1067% 0.2924% 0.4812% −0.3645% −0.1789% 0.0100% 
D = 3 0.1045% 0.2949% 0.4875% −0.2097% −0.0192% 0.1733% 
D = 4 0.1033% 0.2962% 0.4906% −0.1323% 0.0606% 0.2550% 
D = 5 0.1027% 0.2969% 0.4925% −0.0858% 0.1085% 0.3040% 
D = 6 0.1022% 0.2975% 0.4937% −0.0548% 0.1404% 0.3367% 
D = 7 0.1019% 0.2978% 0.4946% −0.0327% 0.1632% 0.3600% 
D = 8 0.1017% 0.2981% 0.4953% −0.0161% 0.1803% 0.3775% 
D = 9 0.1015% 0.2983% 0.4958% −0.0032% 0.1936% 0.3911% 

D = 10 0.1013% 0.2985% 0.4962% 0.0071% 0.2042% 0.4020% 
 
Table 3 presents average preference values (“AP-values”) for a mean-variance investor with 
preference function µ−0.5·D·V2 and constant risk aversion parameter D. Thereby, two 
estimation procedures for expected one-period returns are applied. While the estimation 
procedure (13) is based on past and current implied rates of return, estimation procedure (15)
is simply based on historical return realizations. Results are computed for different pairs of 
risk aversion parameter D and riskless interest rate rf in a bootstrap environment with 10,000 
runs each comprising 100 months of resampled return data under the assumption of monthly 
dividend payments. The bootstrap approach is based on German capital market data for the 
time period from 01/01/1997 to 02/01/2009. 
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Table 4 
AP-values according to estimation procedures (13) and (15) for different decision situations 
(annual dividend payments) 

 AP-values based on (13) AP-values based on (15) 
 rf = 0.1 % rf = 0.3 % rf = 0.5 % rf = 0.1 % rf = 0.3 % rf = 0.5 % 

D = 0.1 0.5959 % 0.0117 % −0.4052 % −1.4847 % −2.0688 % −2.4857 % 
D = 0.5 0.1992 % 0.2423 % 0.3190 % −0.2169 % −0.1738 % −0.0971 % 
D = 1 0.1496 % 0.2712 % 0.4095 % −0.0585 % 0.0631 % 0.2014 % 
D = 2 0.1248% 0.2856% 0.4547% 0.0208% 0.1816% 0.3507% 
D = 3 0.1165% 0.2904% 0.4698% 0.0472% 0.2210% 0.4005% 
D = 4 0.1124% 0.2928% 0.4774% 0.0604% 0.2408% 0.4254% 
D = 5 0.1099% 0.2942% 0.4819% 0.0683% 0.2526% 0.4403% 
D = 6 0.1083% 0.2952% 0.4849% 0.0736% 0.2605% 0.4502% 
D = 7 0.1071% 0.2959% 0.4871% 0.0774% 0.2662% 0.4573% 
D = 8 0.1062% 0.2964% 0.4887% 0.0802% 0.2704% 0.4627% 
D = 9 0.1055% 0.2968% 0.4899% 0.0824% 0.2737% 0.4668% 

D = 10 0.1050% 0.2971% 0.4909% 0.0842% 0.2763% 0.4701% 

 

Table 4 presents average preference values (“AP-values”) for a mean-variance investor with 
preference function µ−0.5·D·V2 and constant risk aversion parameter D. Thereby, two 
estimation procedures for expected one-period returns are applied. While the estimation 
procedure (13) is based on past and current implied rates of return, estimation procedure (15)
is simply based on historical return realizations. Results are computed for different pairs of 
risk aversion parameter D and riskless interest rate rf in a bootstrap environment with 10,000 
runs each comprising 100 months of resampled return data under the assumption of annual 
dividend payments. The bootstrap approach is based on German capital market data for the 
time period from 01/01/1997 to 02/01/2009. 
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Table 5 
Estimators for expected monthly returns according to (13) for different annual dividend 
growth rates and extent of analysts’ overoptimism 

 Analysts’ Overoptimism 

 0 % 10 % 50 % 100 % 200 % 
Annual 
Growth 
Rates avr. ret. std. dev. avr. ret. std. dev. avr. ret. std. dev. avr. ret. std. dev. avr. ret. std. dev. 

g = 0 % -0.1601% 0.8689% -0.1772% 0.8689% -0.2225% 0.8688% -0.2537% 0.8689% -0.2849% 0.8690% 

g = 1 % -0.0742% 0.8695% -0.0911% 0.8695% -0.1363% 0.8695% -0.1673% 0.8695% -0.1984% 0.8696% 

g = 2 % 0.0116% 0.8702% -0.0052% 0.8701% -0.0502% 0.8701% -0.0811% 0.8702% -0.1120% 0.8703% 

g = 3 % 0.0973% 0.8708% 0.0805% 0.8708% 0.0357% 0.8708% 0.0050% 0.8708% -0.0258% 0.8709% 

g = 4 % 0.1828% 0.8714% 0.1661% 0.8714% 0.1215% 0.8714% 0.0909% 0.8715% 0.0602% 0.8716% 

 
Based on German capital market data for the time period from 01/01/1997 to 02/01/2009 and 
an application of the one-period dividend discount model with constant dividend growth rate 
g, expected one-period returns and corresponding standard deviations of return estimators are 
computed based on the estimation procedure (13) for different annual dividend growth rates 
and extent of analysts’ overoptimism (i.e., percentage p = 0 %, 10 %, 50 %, 100 %, or 200 % 
by which analysts’ dividend forecasts exceed market expectation). 
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Fig. 1. Sharpe ratios and AP-values of the strategies based on (13) (“impl”), on (15) (“real”), and on simply holding the “market portfolio” 
 
Based on German capital market data for the time period from 01/01/1997 to 02/01/2009 revolving monthly portfolio optimization is applied for the combination of the “market 
portfolio” of risky stocks with riskless lending and borrowing. Resulting Sharpe ratios and average preference values (“AP-values”) for a mean-variance investor with preference 
function µ−0.5·D·V2 and constant risk aversion parameter D are presented for different values of D. Ex-ante estimators for expected rates of return are computed either on the 
basis of equation (13) (“impl”) or on (15) (“real”). Moreover, as a third alternative the simple holding of the market portfolio is considered (“market”). 
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