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Abstract

Identification of dynamic nonlinear panel data models is an important and delicate problem

in econometrics. In this paper we provide insights that shed light on the identification of

parameters of some commonly used models. Using this insight, we are able to show through

simple calculations that point identification often fails in these models. On the other hand,

these calculations also suggest that the model restricts the parameter to lie in a region that

is very small in many cases, and the failure of point identification may therefore be of little

practical importance in those cases. Although the emphasis is on identification, our techniques

are constructive in that they can easily form the basis for consistent estimates of the identified

sets.

1 Introduction

Dynamic panel data models have played an important role in applied economics dating back to the

work of Balestra and Nerlove (1966). Econometric specifications of these models typically specify

features of the conditional distribution of the dependent variable of interest for an individual i, yit,

conditional on lagged values of that variable, a set of possibly time-varying explanatory variables,

xi, and on an individual specific unobserved variable, αi. To fully specify such a model, one needs to
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also specify the distribution of the individuals’ dependent variable in the initial period conditional

on those variables. This is delicate if the process for an individual started prior to the initial period

in the sample because the distribution of the first observation will be tied to the distribution of the

later observations in a way that depends on what one assumes about how the process was started

and on the evolution of the explanatory variables prior to the sampling period.

For example, a parametric model might specify that the conditional distribution of yit depends

on lagged values only though yit−1, in which case the conditional distribution of yit has the form

ft (yit| yit−1, xi, αi; θ) (1)

where θ is a vector of unknown parameters to be estimated. The vector, xi, can consist of variables

that are constant over time as well as of the entire sequence of time–varying explanatory variables.

In a fully parametric (random effects) approach, one specifies the distribution of αi conditional on

the explanatory variables xi. In practice, αi is frequently assumed to be independent of xi, and the

random effects approach then specifies the distribution of αi. If (1) is static in the sense that the

density does not depend on yit−1, then this would allow one to write the likelihood function for an

individual with T observations as

L =
∫ T∏

t=1

ft (yit| yit−1, xi, αi) f (αi|xi) dαi

=
∫ T∏

t=1

ft (yit|xi, αi) f (αi|xi) dαi

On the other hand, if the model is dynamic so (1) does depend on yit−1, the likelihood function

has the structure

L =
∫

f1 (yi1|xi, αi)
T∏

t=2

ft (yit| yit−1, xi, αi) f (αi|xi) dαi

Unfortunately, it is not clear how one would go from (1) to f1 (yi1|xi, αi) since the relationship

between the two typically depends on the evolution of the explanatory variables before the start

of the sampling period. This is what is known as the initial conditions problem. Alternatively, one

could work with the likelihood function conditional on the first observation, yi1. This often leads

to convenient functional forms. But the random effects approach can be problematic in this case if

one wants it to be internally consistent across different number of time periods1.

1For a discussion of these issues see Wooldridge (2000) and Honoré (2002).
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A so–called fixed effects approach, on the other hand, attempts to estimate θ without making

any assumptions on f (αi|xi). This will in principle circumvent the initial conditions problem, but

there are at least two other problems with this approach. First, there are many dynamic panel data

models for which it is not known how to do fixed effects estimation, and even when it is known, the

maintained assumptions are often very strong. For example, the estimator of the dynamic discrete

choice model proposed by Honoré and Kyriazidou (2000) requires one to “match” the explanatory

variables in different time–periods, which rules out time–specific effects. Secondly, as discussed

by Wooldridge (2000), knowing θ does not always allow one to calculate the “marginal” effect of

interest.

The point of departure for this paper is that the random effects approach is attractive because it

allows one to estimate all quantities of interest, but that specifying f (αi|xi, yi1) or f1 (yi1|xi, αi) can

be problematic. The contribution of this paper is to provide insights through simple calculations

that allow us to examine the identified features of these models without making any assumptions on

f (αi|xi, yi1) or f1 (yi1|xi, αi) . Our calculations show that the parameters of interest are not point

identified in simple commonly used models. However the size of the identified regions suggest that

this lack of identification may not be of great practical importance. Although the emphasis is on

identification, our techniques are constructive in that they can easily be used to obtain consistent

estimates of the identified sets.

To focus ideas, we concentrate on special cases of the dynamic random effects discrete choice

model

yit = 1
{
x′itβ + yi,t−1γ + αi + εit ≥ 0

}
(2)

Recent empirical applications of this model include studies of labor force participation (Hyslop

(1999)), health status (Contoyannis, Jones, and Rice (2002) and Halliday (2002)), product purchase

behavior (Chintagunta, Kyriazidou, and Perktold (2001)) and welfare participation (Chay, Hoynes,

and Hyslop (2001)). Honoré and Kyriazidou (2000) showed how to estimate and identify a fixed

effects version of this model in the case where the change in the vector of explanatory variables has

support in a neighborhood around 0. One of the contributions of this paper is to show that such an

assumption is often necessary for identification, but that it is sometimes possible to construct tight

bounds on the parameters of such a model, even when it is not known that the model is identified.

A number of other papers have also proposed estimation of the parameters of versions of (2). For

example, Arellano and Carrasco (2003) explicitly model the distribution of αi + εit conditional on
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current and past observed values of xit and on the observed past values of yit. Our aim here is to

study what can be learned about parameters of interest without such assumptions.

Throughout this paper we will consider situations where the data consists of {(yit, xit)}T
t=1 and

we use the notation wt
i = (wi1, ...., wit). K will denote the number of elements in xT

i .

2 Basic Ideas

2.1 Identification

Consider (1) augmented with a model for the individual specific effect α (given xT ), and let θ be

the parameters of the model. In the dynamic probit model with normally distributed individual

specific effects, θ would be
(
β′, γ, σ2

)
, where σ2 is the variance of the individual specific effect. This

model is incomplete in the sense that it does not allow one to calculate the distribution of the

dependent variables conditional on the observed explanatory variables. For that, one would also

need the distribution of the initial conditions, p0

(
α, xT

)
= P

(
y0 = 1|xT , α

)
. More generically, we

will use p0

(
α, xT

)
to denote the distribution of yi0 given

(
xT , α

)
.

One can think of (p0 (·, ·) , θ) as the unknown parameters of the model, and knowledge of

(p0 (·, ·) , θ) allows one to calculate the conditional probability of any sequence of events A. In

a discrete choice model, A will be any sequence of subsets of {0, 1} such that A = A1∩A2∩ . . . AT .

Let π
(
A|xT , α; p0 (·, ·) , θ

)
denote the probability of the event A given

(
xT , α

)
predicted by the

model:

π
(
A|xT ; p0 (·, ·) , θ

)
=

∫
π

(
A|xT , α; p0 (·, ·) , θ

)
dG

(
α|xT ; θ

)

and let G
(
α|xT ; θ

)
denote the distribution of α given xT when the parameter value is θ. We use

π
(A|xT ; p0 (·, ·) , θ

)
and P

(A|xT
)

to denote the set of all π
(
A; p0 (·, ·) , θ|xT

)
and P

(
A|xT

)
where

A ∈ A. Here, P
(
A|xT

)
denotes the true conditional probability of A given xT . In the dynamic

discrete choice model π
(A; p0

(·, xT
)
, θ

∣∣xT
)

and P
(A|xT

)
are 2T –dimensional vectors.

With this notation, the set of (p0 (·, ·) , θ) that are consistent with a particular data–generating

process with probabilities P
(A|xT

)
, is given by

Ψ =
{
(p0 (·, ·) , θ) : P

(
π

(A|xT ; p0 (·, ·) , θ
)

= P
(A|xT

))
= 1

}

and the sharp bound on θ is given by

Θ =
{
θ : ∃p0 (·, ·) : <1+K → [0, 1] such that P

(
π

(A|xT ; p0 (·, ·) , θ
)

= P
(A|xT

))
= 1

}

4



2.2 Calculation of the identified region

There are a number of ways to write the identified region as the solution to a minimization problem.

We suggest three methods that can be used to obtain Θ: a minimum distance method, a maximum

likelihood method, and a linear programming method. The latter is especially convenient and

practical in the case where have discrete covariates. Applying the analogy principle to each of

these will lead to a different estimator of the identified region.

2.2.1 Minimum Distance

One can write Ψ as the solution to the following “minimum distance” minimization problem

min
p0(·,·),θ

E
[∥∥π

(A|xT ; p0 (·, ·) , θ
)− P

(A|xT
)∥∥ w

(
xT

)]
(3)

for some positive weighting function w. Conceptually, it is possible to obtain the set of parameters

that solve the above minimization problem. In section 4, we provide some examples to illustrate

this.

It is also clear that using a sample analog, one can obtain consistent estimates of the identified

set. To get these estimates, one can use the analogy principle to obtain the empirical analog of

(3). This entails obtaining consistent estimates of P
(A|xT

i

)
in a first step, and then collecting all

the parameter values that come within εn from minimizing the sample objective function, where

εn > 0, and εn → 0 as sample size increases. For more on this see Manski and Tamer (2002). When

the distribution of x is continuous, P
(A|xT

i

)
will be imprecisely estimated in regions where the

density of x is small. The weighting function in (3) can be used to downweight the observations in

this region.

2.2.2 Maximum likelihood

The identified set can also be characterized as maximizing a likelihood function. Recall that

yi denotes {yi1, ..., yiT }, and let d denote a sequence of T zeros or ones. Consider 2T non–negative

functions gd (·) such that
∑

d gd (·) = 1. Standard theory for maximum likelihood implies that for

any positive weighting function, w, the function

E
[
log

(
gyi

(
xT

i

))
w

(
xT

i

)]

is uniquely maximized (as a function of the gd (·)’s) at

gd

(
xT

i

)
= P

(
yi = d|xT

i

)
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This means that the set of maximizers (over p0 and θ) of

E
[
log

(
π

(
yi; p0

(·, xT
)
, xT , θ

))
w

(
xT

i

)]
(4)

= E

[
log

(∫ {
p0

(
α, xT

)yi1
(
1− p0

(
α, xT

))1−yi1

T∏

t=2

P
(
yit|xT

i , yit−1; θ
)
}

dG
(
α|xT

i ; θ
)
)

w
(
xT

i

)
]

is the set of p0 and θ such that

π
(
d; p0

(·, xT
)
, xT , θ

)
= P

(
d|xT

)

for all sequences d and for almost all xT . Hence, as in the minimum distance method, the identified

set is the maximand of the objective function (4). In addition, one can obtain the set estimator by

those parameter values that come within εn of the empirical analog of (4).

Maximizing the likelihood over all distributions for the initial conditions as well as over the

other parameters of the model was first proposed by Heckman (1981b), who implicitly assumed

that the underlying model is identified. This estimator is interesting because it corresponds to the

idea that one can “solve” the initial conditions problem by specifying a flexible functional form

for p0

(
α, xT

)
(see, for example, the discussion in Heckman (1981a, 1981b)). If one interprets the

flexible functional form as an implementation of a sieve estimator, then this method can be seen

as an application of (4) with the important caveat that the maximum likelihood estimator will,

loosely speaking, eventually be in the identified region. To consistently estimate the whole identified

region, one needs to look at the set of all the parameters values that are close to maximizing the

likelihood function.2

2.2.3 Linear Programming: the Case for Discrete X

If xi and α have a discrete distribution then it is possible to derive a different characterization of

the identified region for θ, which is more convenient than the minimum distance and maximum

likelihood characterizations above. Suppose α has a discrete distribution with a known maximum

number of points of support, M . The points of support are denoted by am and the probabilities

2A recent paper by Chernozhukov, Hahn, and Newey (2004) considers maximum–likelihood estimation of the

bounds of a the parameters of a related, but different, panel data discrete choice model.
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by ρm. For the moment ignore xT
i . We can then write

π (A; p0 (·) , θ) =
M∑

m=1

ρm (p0 (am) π (A| y0 = 1; θ) + (1− p0 (am))π (A| y0 = 0; θ))

=
M∑

m=1

zmπ (A| y0 = 1; θ) +
M∑

m=1

zM+mπ (A| y0 = 0; θ)

where

zm = ρmp0 (am)

and

zM+m = ρm (1− p0 (am))

The sharp identified set Θ, consists of the values of θ for which the equations

M∑

m=1

zmπ (A| y0 = 1; θ) +
M∑

m=1

zM+mπ (A| y0 = 0; θ) = P (A) for allA ∈ A (5)

2M∑

m=1

zm = 1 (6)

zm ≥ 0 (7)

have a solution for {zm}2M
m=1.

Equations (5)–(7) have exactly the same structure as the constraints in a linear programming

problem, so checking whether a particular θ belongs to Θ can be done in the same way one checks for

a feasible solution in a linear programming problem that has (5)–(7) as the constraints. Specifically,

consider the linear programming problem

maximize
{zm},{vi}

∑

i

−vi (8)

P (A)−
M∑

m=1

zmπ (A| y0 = 1; θ)−
M∑

m=1

zM+mπ (A| y0 = 0; θ) = vA for allA ∈ A (9)

1−
2M∑

m=1

zm = v0 (10)

zm ≥ 0 (11)

vi ≥ 0 (12)

This problem clearly has a feasible solution (namely vA = P (A) for A ∈ A, v0 = 1and zm = 0 for

m = 1, ..., 2M), and the optimal function value will be 0 if and only if all vi = 0, i.e, if a solution
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exists to (5)–(7). If (5)–(7) do not have a solution, then the maximum function value in (8) is

negative. For a given value of θ, one can therefore check whether it belongs to Θ, by solving a

linear programming problem and comparing the optimal function value to 0. Alternatively, if one

defines Q (θ) to be

Q (θ) = max
{zm},{vi}

∑

i

−vi subject to (9)–(12)

then the identified region for θ is the set of maximizers of Q (·). A consistent estimator of the

identified region can then be obtained by replacing P (A) in (9) by a consistent estimator, and

checking whether, for a give θ, the resulting objective function is within εn of the maximum value

of 0 (or within εn of the optimal function value).

Provided that xi is discrete, one can mimic this argument for each value in the support of xi

which will then contribute a set of constraints to the linear programming problem.

2.3 Using single index restrictions

The optimization problems (3) and (4) require optimization over p0 (·, ·), which is a function that

maps all possible values of xi and αi to the interval [0, 1]. If x is multi-dimensional, then this

may be very difficult. Moreover (3) involves the conditional probability of all choice sequences

conditional on xi. In such cases it may be useful to consider other restrictions that can reduce the

dimensionality of the problem. For example, suppose that yit is generated by the probit model

yit = 1
{
yi,t−1γ + δt + x′iβ + αi + εit ≥ 0

}
for t = 1, 2, ..., T (13)

where εit is independent of {xi, αi} and δt is a set of time–dummies. Without the time–dummies,

and if it is reasonable to assume that (13) has been in effect for a long time before the start of

the sample, it might be reasonable to assume that p0 (α, xi) = P (yi0 = 1|xi, αi) is the stationary

distribution of yit given (xi, αi) and in that case one would not have an initial conditions problem.

See for example the discussion in Heckman (1981b) and Card and Sullivan (1988). With the time–

dummies, the process will not be stationary and this approach will not necessarily work. But if the

process has been going on “forever” then p0 (α, xi) = P (yi0 = 1|xi, αi) will be a monotone function

of x′iβ, where the actual functional form is unknown because of the nonstationarity introduced by

the δt’s. The distribution of (yi1, ..., yiT ) given xi therefore depends on xi only through x′iβ and β

is therefore identified up to scale under appropriate regularity conditions since p0 (α, xi) depends

only on x′iβ + αi. This can reduce the dimensionality of the problem.
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A monotone index assumption can also be justified if the process has a natural finite starting

time where the first observation of y is generated by a model that depends on xi and αi only through

x′iβ + αi.

3 Marginal Effects

In nonlinear models like (2), it is often interesting to estimate marginal effects. Using the ideas

developed above, we can construct bounds on these marginal effects. To illustrate this, consider

the setup in section 2.2.3 and assume that one wants to explore the difference in period t + 1

choice probabilities between artificially setting yit = 0 and setting yit = 1 for an individual with

explanatory variables x. This difference would be

E
[
Φ

(
x′β + γ + α

)− Φ
(
x′β + α

)]
=

∑
m

(
Φ

(
x′β + γ + am

)− Φ
(
x′β + am

))
P (α = am|x)

=
∑
m

(
Φ

(
x′β + γ + am

)− Φ
(
x′β + am

))
(P (α = am, y0 = 1|x) + P (α = am, y0 = 0|x)) (14)

Note that P (α = am, y0 = 1|x) and P (α = am, y0 = 0|x) are exactly the z’s in section 2.2.3. In

other words, for given values of γ and β in the identified region, we can calculate the upper

and lower bounds on the marginal effects by maximizing and minimizing the linear function (14)

subject to the linear constraints in section 2.2.3. This can easily be done by linear programming.

To find the overall bounds, one can then minimize and maximize these bounds over γ and β in the

identified region. Of course, there are many ways to define marginal effects and the specifics of the

calculations will depend on which marginal effect is of interest. But it is clear that these marginal

effect can be easily constructed using the ideas provided in section 2.2.3 above.

4 Examples

In this section we present a number of examples that illustrate the usefulness of the approach

suggested here. The examples are special cases of the probit or logit version of the dynamic

discrete choice model

yit = 1
{
x′itβ + yi,t−1γ + αi + εit ≥ 0

}
(15)

with εit i.i.d. and N (0, 1) or logistically distributed.

Although the examples are motivated by computational simplicity, they are all models for which

it is not known whether the parameters of interest are point identified. It is therefore of interest to
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investigate the identified region for these examples. All of the examples have aggregate explanatory

variables xit, and

P (αi = aj) =





Φ
(

aj+aj+1

2

)
for aj = −3.0

Φ
(

aj+aj+1

2

)
− Φ

(
aj+aj−1

2

)
for aj = −2.8,−2.6, .., 2.8

1− Φ
(

aj+aj−1

2

)
for aj = 3.0

In words, the true distribution of unobserved heterogeneity is discrete but it closely resembles a

standard normal.

While the assumption that the explanatory variable is the same across the individuals makes

the calculations much easier, it is also made in order to contrast the matching approach in Honoré

and Kyriazidou (2000). If the explanatory variables are independent across individuals and satisfy

a support condition, then we know from that paper that the parameters of the model are identified

with more than four time–periods. The calculations below will demonstrate that identification can

fail with simple violations of this support condition.

We use the linear programming method to compute the identified set in all the examples.

4.1 Only lagged dependent variable

Consider a model with no regressors

yit = 1 {yi,t−1γ + αi + εit ≥ 0} for t = 1, 2, ..., T (16)

P (αi = aj) = ρj for j = 1, ..., 31, and P (yi0|αi) = 0.5. In calculating the identified region for γ, we

assume that it is known that αi is discrete and that the points of support are {−3.0,−2.8, ..., 2.8, 3.0},
but that the associated probabilities are unknown. Since εit is standard normal, this means that

the distribution of αi is extremely flexible over the relevant region. For T ≥ 4, it is known from

Cox (1958) (see also Chamberlain (1985) and Magnac (2000) ) that γ would be identified if εit has

a logistic distribution, but to our knowledge, it is not known whether this result carries over to

other distributions for εit.

Using the linear programming techniques developed in section 2.2.3 , we calculate the identified

region for γ as a function of the true γ when T = 3. The results are presented in Figure 1 where

the upper and lower bound on the identified region for γ is plotted as a function of its true value.

It is clear from Figure 1 that γ is not identified when T = 3 if γ 6= 0. On the other hand, the

figure suggests that the sign of γ is identified. Lemma 1 of the Appendix shows that this is indeed

the case.
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Figure 1: Identified region for γ as a function of its true value

For T = 4, a graph similar to that in Figure 1 would suggest that γ is point identified. However,

a close inspection of the numbers reveal that this is not the case. For example, if γ = 1, the

identified region is (0.9998, 1.0003).

Similar calculations for the case where εit is logistically distributed yields a graph like that in

Figure 1 for T = 3, and confirms that γ is point–identified for T = 4.

4.2 Lagged dependent variable and time–trend

Of course, many applications do have explanatory variables. If these are individual specific, then

the linear programming approach becomes somewhat more cumbersome as each value of x yields

constraints of the form (5)–(7). On the other hand, a number of examples include only aggregate

variables, such as time trends and time dummies, as explanatory variables. The linear programming

technique makes it relatively straightforward to calculate the identified region in cases like this.

As an example, consider the same design as in the previous example, but we include a time

trend

yit = 1 {yi,t−1γ + tβ + αi + εit ≥ 0} for t = 1, 2, ..., T (17)

with εit i.i.d. standard normal.

Models with time trends are interesting because some of the existing techniques for dealing

with models like (15) are based on matching values of xit over different time periods. For example,

Honoré and Kyriazidou (2000) show that if xi4−xi3 has support in a neighborhood of 0, then (γ, β)

in (15) is identified up to scale with T ≥ 4 even if the distribution of εit is unknown. The scale is

also identified if εit is logistic. The time trend in (17) is a simple case in which such a matching

strategy fails.
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Figures 2 and 3 give the identified regions in this case for nine combinations of (γ, β).

Figure 2: Identified region for (γ, β). T = 3

It is not surprising that (γ, β) is not point–identified with T = 3 since γ would not be identified

even without the time trend. It is interesting that the identified region for (γ, β) is not a singleton

when T = 4. This suggests that the matching approach in Honoré and Kyriazidou (2000) is essential

for obtaining point identification. On the other hand, the size of the identified region suggests that

the lack of identification is of little practical consequence.

4.3 Lagged dependent variable and time–dummies

A linear time trend like that in the previous example is very dramatic (and often highly unrealistic)

when T is big. In this section we therefore investigate identification when it is replaced by a set of

unrestricted time–dummies. Specifically, we consider

yit = 1 {yi,t−1γ + δt + αi + εit ≥ 0} for t = 1, 2, ..., T (18)

12



Figure 3: Identified region for (γ, β). T = 4
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where δ1 is normalized to 0.3 Figures 4 and 5 present the identified regions for any pair of the

parameters based on T = 3 and T = 4, respectively, when the true parameters are γ = 1, δ2 = 0.3,

δ3 = 0.2 and δ4 = 0.1.

Figure 4: Identified region when T = 3, γ = 1, δ2 = 0.3 and δ3 = 0.2

Figure 5: Identified region when T = 4, γ = 1, δ2 = 0.3, δ3 = 0.2 and δ4 = 0.1

The most striking features of Figures 4 and 5 are that it appears that the δ’s are identified except

for an additive constant and that they are quite poorly identified without such a normalization. The

3If the distribution αi is unrestricted, then a trivial location–normalization would be needed on the δ’s. Formally,

the distribution of αi used here is not unrestricted, but it is very flexible, and we therefore impose such a location

normalization.

14



first feature is an artifact of the precision of the figure. An inspection of the actual numbers reveals

that what appear to be line–segments in Figure 4 are actually two–dimensional sets with a non–

empty interior. The intuition for why it appears that the time–dummies need an additional location

normalization is that the unobserved yi0 will have a positive effect on all future probabilities. Since

the distribution of yi0 is unspecified, this would mean that it is difficult to separate the location of

this distribution from an additive constant in the δ’s. Smaller values of γ would make the effect of

the distribution of yi0 look less like a constant over time, and one would therefore expect smaller

identified regions when γ is smaller. This is confirmed in Figure 6, which presents the results for

γ = 0.2.

Figure 6: Identified region when T = 4, γ = 0.2, δ2 = 0.3, δ3 = 0.2 and δ4 = 0.1

Overall, the results presented in Figures 1–6 suggest that identification of dynamic discrete

choice models relies critically on the ability to match explanatory variables in different time–periods

as was done in Honoré and Kyriazidou (2000)4.

4The assumptions on the individual specific effects made here are stronger than the assumptions usually made in

the fixed effects literature (see for example Honoré and Kyriazidou (2000)). The nonidentification documented here

therefore implies that the corresponding fixed effects models are not identified.
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5 Conclusion

This paper examines the question of identification in some nonlinear dynamic panel data models.

In particular, we focus on the initial condition problem and its effects on identification of the

parameters of interest. This is a classic problem in econometrics that dates back to the work of

Heckman ((1978, 1981a, 1981b))). We provide insights that lead to new ways in which identification

can be examined and illustrate our approach using the probit version of the dynamic discrete choice

model. We give three methods that can be used to construct the identified sets. These methods

are constructive in that they can be used, by way of the analogy principle, to obtain consistent

estimates of these identified set. In particular, a linear programming method proved to be especially

convenient and practical in constructing the identified set when the regressors are discrete.
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6 Appendix

Lemma 1 (1) Suppose (yi1, yi2, yi3) is a random vector such that

P (yi1 = 1|αi) = p1 (αi)

and

P (yit = 1|αi, yi1, ..., yit−1) = F (αi + γyit−1) , for t = 2, 3

where p1 is an unknown function taking between 0 and 1 and is an unknown and strictly increasing

distribution function. Then the sign of γ is identified.

Proof.

Consider the probabilities

P ((yi1, yi2, yi3) = (0, 1, 0)|αi) = (1− p1 (αi)) · F (αi) · (1− F (αi + γ))

18



and

P ((yi1, yi2, yi3) = (0, 0, 1)|αi) = (1− p1 (αi)) · (1− F (αi)) · F (αi)

Clearly

P ((yi1, yi2, yi3) = (0, 1, 0)|αi) Q P ((yi1, yi2, yi3) = (0, 0, 1)|αi) ⇐⇒ 0 Q γ

and hence

P ((yi1, yi2, yi3) = (0, 1, 0)) Q P ((yi1, yi2, yi3) = (0, 0, 1)) ⇐⇒ 0 Q γ

This shows that the sign of γ is identified.
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