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Abstract

In this paper we compare the traditional econometric �xed e¤ect/�rst
di¤erence estimator with the maximum likelihood estimator implied
by covariance structure models for panel data. Our �ndings are that
the maximum likelihood estimator is remarkable robust to mis-speci�cations,
however in general the �xed estimator is preferable in small samples.
Furthermore, we argue that we can use the Hausman test as a test
of consistency of the maximum likelihood estimator. Finally we show
that the covariance structure models is not identi�ed in the case of
time-invariant independent variables.

�CAM, Institute of Economics, University of Copenhagen.
yCAM and Departement of Sociology, University of Copenhagen.
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1 Introduction

When analyzing panel data using linear regression models one faces the prob-
lem of clustered observations. However, panel data also o¤er a way to study
the correlation between observed and unobserved variables. Ignoring cluster-
ing yields biased estimates of the variance of any estimated coe¢ cients, see
e.g. Diggle et al. (1994). Ignoring correlations yields biased estimates, see
e.g. Wooldridge (2002). For example, if we study the e¤ects of educational
attainment on individual earnings in a simple linear model, we might �nd a
signi�cant positive least squares estimate of the e¤ect of years of education
on earnings. However, the problem is that we do not know if this is the �true�
e¤ect�. The education variable might both pick up an genuine e¤ect from
education, but also e¤ects from other variables not included in the model,
such as di¤erent family background variables. If the in�uence from family
background cannot be completely measured and thus taken into account in
the model, the ordinary least squares (OLS) estimate of the e¤ect of years
of education will be biased. Hence additional modelling is required.
Two estimators have been proposed to take this into account. The �xed

e¤ect (FE) estimator, which only look at di¤erences of earnings from unit
means and Covariance structure estimators (CSM), that speci�es a complete
model for both observed and unobserved e¤ects. The last estimator has just
recently been proposed for panel data model in a paper by Teachman, Ducan,
Yeung and Levy (2001). Both estimators take into account the clustered na-
ture of panel data and also addresses the problem of unobserved variables
being correlated with observed variables. Hence both estimators yield con-
sistent estimators of the e¤ect of the observed explanatory variables. But the
two models di¤er in the complexity of underlying assumptions. On one hand,
the �xed e¤ect estimator is the one that requires the fewest assumptions, but
on the other hand, the covariance structure estimator o¤ers insight into the
correlation structure between the observed and unobserved components of
the model. None of the models allow the estimation of time invariant ob-
served variables. That the �xed e¤ect estimator only allow the estimation of
time varying e¤ects has been known for a long time, see Wooldridge (2002).
In this paper we show that this also is the case for the CSM estimator.
The CSM estimator provides more insight about the correlation between

the unobserved component and observed variables, and for this reason, it
should be preferable. But the CSM estimator also relies on more assumptions,
which may not be ful�lled. This suggest that one should apply the CSM
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estimator but only when it is valid. Therefore, we propose a test which
makes us able to tell when the more complicated CSMmodel o¤ers consistent
estimates from the perspective of the more simple �xed e¤ect model.
The remaining paper is organized as follows. Section 2 presents the CSM

and Fixed e¤ect models, section 3 illustrates the performance of the estima-
tors by a simulation study, section 4 discusses a test for comparing the �xed
e¤ect and the CSM estimator and section 5 has a small application of the
estimators and �nally section 6 o¤ers some concluding remarks.

2 The model

In this section we will state a couple of di¤erent models in which we compare
the covariance structure model (CSM) approach with the traditional panel
data estimators: �xed e¤ect (FE), First di¤erence (FD) and random e¤ect
(RE). We will here discuss the properties of the di¤erent estimators in an
analytical framework. In the next section the we further investigate the es-
timators in the di¤erent models by using simulation studies. As a baseline
model we use the model stated in Teachman et al. (2001). This model is
a panel data model including a �xed e¤ect which potentially may be corre-
lated with the explanatory variables. We will show that this model is rather
restrictive and consider four di¤erent extensions of the model.

2.1 Baseline model

The baseline model is a standard panel data model where we allow for an
individual unobserved e¤ect. The key feature of this model is that all the
explanatory variables are time varying and the errors are assumed normal.
For simplicity we assume only one explanatory variable and that all variables
are centered. None of the results rely on these assumptions. The model is
given by

yit = �xit + �i + "it; i = 1; : : : ; N; t = 1; : : : ; T

where xit is the time varying explanatory variable, �i is the individual spe-
ci�c e¤ect, which is assumed to be normal �i � N(0; �2�) and independent
across individuals. In this setup we allow that this individual e¤ect may
be correlated with the explanatory variable such that Cov(xit; ai) = � and
Cov(xit; aj) = 0 if j 6= i: The last term "it is an idiosyncratic error term
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which is assumed to be independent of all the other terms and is normally
distributed "it � N(0; �2"): The parameters are �; �2�; �2" and � ; however our
parameter of primarily interest is �:
As already pointed out in Teachman et al. (2001), the Random e¤ect

estimator of � is biased and inconsistent in this model unless � = 0: The two
other estimators CSM and Fixed e¤ect yield consistent estimates of �. The
last estimator we focus on is the �rst di¤erence estimator and it turns out
that this estimator is also consistent.
The CSM estimator is based on following covariance structure

var(yit) = �2var(xit) + 2�� + �
2
� + �

2
" (1)

cov(yit; yis) = �2cov(xit; xis) + 2�� + �
2
� s 6= t (2)

cov(yit; xit) = �var(xit) + � (3)

cov(yit; xis) = cov(yis; xit) = �cov(xit; xis) + � s 6= t (4)

Since we assume independence across individuals, all covariances across indi-
viduals zero. The four parameters of the model is identi�ed from the covari-
ance structure and the estimation is performed by applying the maximum
likelihood approach. The likelihood function for the model is given by:

lnL = ln j�(�)j+ tr
�
S��1(�)

�
expect from an additive constants and where � = (�; � ; �2�; �

2
"); S is the sam-

ple covariance matrix of (y; x) and �(�) is the CSM covariance structure
given by equation (1)-(4).
The �rst di¤erences and the �xed e¤ect estimator are obtained by trans-

forming the model such that the individual e¤ect cancels out. The �rst
di¤erence estimator is based on �rst di¤erences such that the model is trans-
form

yit � yit�1 = �xit + �i + "it � �xit�1 � �i � "it�1; i = 1; : : : ; N; t = 2; : : : ; T

�yit = ��xit +�"it; i = 1; : : : ; N; t = 2; : : : ; T:

The Fixed e¤ect estimator (or Within estimator, which the �xed e¤ect esti-
mator is sometimes also called) can be obtained from the following transfor-
mation

yit � yi: = �xit + �i + "it � �xi: � �i � "i:; i = 1; : : : ; N; t = 1; : : : ; T

y�it = �x�it + "
�
it; i = 1; : : : ; N; t = 2; : : : ; T;
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where yi: = 1
T

PT
t=1 yit; xi: =

1
T

PT
t=1 xit and "i: =

1
T

PT
t=1 "it:For both esti-

mators the estimate of � is obtained by running an OLS regression on the
transformed model. The estimators are given by

�̂FD =

PN
i=1

PT
t=2�yit�xitPN

i=1

PT
t=2�x

2
it

; �̂FE =

PN
i=1

PT
t=1 y

�
itx

�
itPN

i=1

PT
t=1 x

�2
it

In the case where T = 2 the FD and FE are identical.
To establish the link between the CSM estimator and the First Di¤erence

estimator, we can show that FD and FE is also based on the covariance
structure outlined for the CSM approach. However, instead of using all four
moment conditions to estimate parameters, the FD and FE estimator only
uses a linear combination of the moment conditions (In the appendix the it
is shown how one can derive the FD on the basis of the moment conditions).
In the baseline model the CSM, FE and FD are consistent, but CSM

is asymptotically more e¢ cient than the other two because it is equivalent
to MLE. The RE estimator is inconsistent. Therefore, the CSM model is
preferable in large samples. However, what we will show is that the CSM
estimator is less robust when relaxing some of the assumption in the model.
In the following we relax the model in three di¤erent ways.

2.2 A Model with heterogeneity

In this model we allow for heterogeneity in the correlation between the indi-
vidual e¤ect and the explanatory variables. This can be done by assuming
that Cov(xit; �i) = � i: What we assume here is that some individuals may
have a positive correlation while other can have a negative correlation, and
that the size of the correlations might di¤er in size.
In this case the CSM is misspeci�ed.1 In the simulation studies in the

next section we show how this a¤ects the CSM estimator. On the other
hand one can easily show that this extension does not a¤ect the FD or FE
estimators. For both estimators the transformation of data is still valid.

1One can of cause introduce these N new parameters �1; ::; �N and the model is no
longer misspeci�ed. However, the purpose of this paper is to investigate the CSM estimator
to the baseline model. Furthermore, by allowing individual correlations, we no longer have
large N asymptotics for the CSM estimator, see e.g. Night (2000).
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2.3 A Model with Non-normal errors

In the baseline model we have assumed normality for all the error terms and
the individual e¤ect. This assumption may be rather restrictive, since in a
lot of contexts we do not know the distribution of the errors. In particular,
one can think of examples where the distribution of the individual e¤ect
is non-normal. As an extreme, one can assume that the individual e¤ect
can take two values. In this case the distribution is a binomial distribution
and is characterized by two parameters: the probability p and the mass
point w : Pr(ai = w) = p: The other mass point is given by �wp

(1�p) and the
probability is 1� p.2
However, for the FD and FE estimator normality is not necessary, while

the CSM estimator relies on normality. What we will need in order to obtain
consistent an estimate of � using either FD or FE is that the errors have
mean zero and a �nite variance. The reason why FD and FE does not rely on
normality is because they are general moment estimators, see e.g. Woolridge
(2002). The impact of non normal individual e¤ects for the CSM is examined
in the simulation studies. We also study the e¤ect of non-normality of the
idiosyncratic error term.

2.4 A Model with Non-linear dependency between �
and x

In the baseline model it is assumed that the explanatory variable x and the
individual e¤ect � are joint normally distributed. This implies that x can be
written as a linear function of �:However, one can also imagine cases where
x is a non-linear function of �:If x is a non-linear function of the individual
e¤ect

xit = f(�i)

the assumption of joint normality is violated. A particular example is when
the individual speci�c e¤ect does not only in�uence the conditional mean of
the variable x but also the conditional variance. Let the explanatory variable
be given by

xit = (�
2
i ) � (�it +

��i
3
) �it � iiN(�x; �2�);

2This condition insures that the mean of the individual e¤ect is zero.
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where � and � are mutual independent.3 In this example the conditional
mean and variance of x is given by

E(xitj�i) = (�2i ) � (�x +
��i
3
)

V (xitj�i) = �4i � �2� :

In this case the CSM model is misspeci�ed, while FD or FE are still
consistent because they do not rely on any distributional assumption of the
explanatory variables and the unobserved e¤ect. The fact, that for both FD
and FE , the individual e¤ect is eliminated by a transformation, means that
it does not cause any problem that the explanatory variable is any function
of the uobserved individual e¤ect, �.

2.5 A Model with a time invariant variable

In the baseline model, we only considered time varying explanatory variables.
However, often in empirical analyses, one also would like to include time
invariant variables. The model with time invariant variables is given by

yit = �xit + zi + �i + "it; i = 1; : : : ; N; t = 1; : : : ; T;

where zi is the time invariant explanatory variable. We also allow that zi
can be correlated with �i such that cov(�i; zi) = �:For the time varying ex-
planatory variable and the error terms the assumptions are as in the baseline
model. In this model we have six parameters: �; ; �2a; �

2
e; � and �:

In this model the covariance structure is given by:

var(yit) = �2var(xit) + 
2var(zi) + 2�cov(xit; zi) + 2�� + 2�+ �

2
� + �

2
"

cov(yit; yis) = �2cov(xit; xis) + 
2var(zi) + 2�cov(xit; zi) + 2�� + 2�+ �

2
� s 6= t

cov(yit; xit) = �var(xit) + cov(xit; zi) + �

cov(yit; xis) = cov(yis; xit) = �cov(xit; xis) + cov(xis;zi) + � s 6= t
cov(yit; zi) = �cov(xit; zi) + var(zi) + �:

In this model the parameters in is not identi�ed with a CSM estimation.
The easiest way of verifying this, is by seeing that we introduce two new
parameters to the model:  and �; but the new model only give rise to one

3The functional form is chosen such that cov(�i; xi) = � :

7



extra equation in the covariance matrix namely cov(yit; zi):The di¤erence
between introducing a time invariant variable and a time varying variable
w is that the time varying variable generates two extra equations in the
covariance structure: cov(yit; wit) and cov(yis; wit):
However, in contrast to the CSM model which is not identi�ed the FD

and FE can still obtain consistent estimate of �: The reason why FD and FE
are still valid is because the transformation are still valid. By performing the
transformation outlined in the baseline model, the time invariant variable
cancels out. This means that one is not able to identify the e¤ect of the time
invariant variable but one can get a consistent estimate of �: The conclusions
about the estimators hold irrespective of whether � and � are zero. One can
of course also estimate the CSM model while absorbing the time independent
variable into the uobservable individual e¤ect, �.
In contrast to the CSM, FD and FE the RE estimator can produce an

estimate of : However, this estimate is only consistent if � = � = 0:

3 Simulation studies

In the previous section we outlined various extensions of the baseline model,
in which the CSM estimator was misspeci�ed. In order to investigate the
impact of the misspeci�cation, we conduct a number of simulation studies
where we compare the di¤erent estimators. In all the models we consider
the two cases: no correlation and a positive correlation between individual
e¤ects and the explanatory variable. In the simulation study, we report
the average and standard error for the di¤erent estimators. Furthermore,
we also perform a test for no correlation between the individual e¤ect and
explanatory variable. For the CSM estimation this test can be formulated as
a hypothesis directly on the estimated parameter of the covariance � :

H0 : � = 0:

The test in the simulation study is conducted as a Wald test, where the test
statistics is given by

q =
�̂ 2

var(�̂)

a� �2(1):

The usual test for correlation between individual e¤ect and explanatory vari-
ables is performed using a Hausman test, Hausman (1978). The underlying
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idea of this test is that if there is no correlation between the individual e¤ect
and the explanatory variable the both the RE estimator and the FE (or FD)
estimator are consistent, but only the RE estimator is e¢ cient. If there is a
correlation then only FE (or FD) are consistent. This implies that if there is
no correlation the RE estimator and the FE estimator are close. The Haus-
man test is not a direct test on the covariance but and indirect test. The
test and the test statistics are formulated as

H0 : No correlation between �i and xit

H =

�
�̂RE � �̂FE

�2
V (�̂FE)� V (�̂RE)

where V (�̂FE) and V (�̂RE) are the variances of �̂RE and �̂FE respectively.
The simulation experiment is set up such that each simulation consists

of 250 units observed over two time-periods, which makes 500 observations.
Total number of replications are 10,000. In all the simulations, the variances
of �i and "is are set to one.
In table 1, the baseline model has been simulated for two values of � : The

�rst two columns refers to the case where � = 0 indicating no correlation be-
tween �i and xit. As expected, all the considered estimates of � are centered
around the true value. Moving to the case where � = 0:25 we �nd that both
OLS and RE-e¤ect estimator is biased while CSM and FE remain unbiased.
The bias of the OLS estimator is of the magnitude 12 percent and the bias
of RE estimator of about 6 percent in this simulation. The CSM estimates
of � are in both cases unbiased.
The variance of the estimators of � in this estimation study suggests that

the variance of the FE and the CSM estimates are of the same magnitude,
while the RE-estimates have lower variance.
Turning to the test for no correlation between �i and xit we �nd that the

Hausman test reject ( at a 5 percent signi�cance level) the true hypothesis
in 5.0 percent of the cases where the CSM test rejects the true hypothesis in
17.3 percent of the cases. Hence, this simulation example actually indicates
that the Hausman test may be preferable to the CSM test, since it rejects
�too often�a true hypothesis. When the hypothesis is not true the CSM test
seem to have more power in rejecting a wrong hypothesis; CSM test rejects
in 91 percent of the cases where the Hausman test only rejects in 76 percent
of the cases.
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Table 1. Baseline model:
� = 0 � = 0:25

Estimator Mean std Mean std
OLS � 1.0004 0.0451 1.1213 0.0447
Fixed E¤ect � 1.0004 0.0446 1.0004 0.0446
Random E¤ect � 1.0004 0.0388 1.0616 0.0392
CSM � 0.9958 0.0447 0.9962 0.0447

� 0.0043 0.0904 0.2533 0.0955
Fraction of rejections of H0 : � = 0 at a 5 percent signi�cance level
CSM model (t-test) 0.1733 0.9124
Hausman-test (FE against RE) 0.0503 0.7648
Note: � = 1; �i � iiN(0; 1); "it � iiN(0; 1);

xit = �it + ��i; �it � iiN(0; 2)
In table 2, we simulated the model with heterogenous correlation between

�i and xit described in section 2.2. In this particular study we assume that
for 50 percent of the individuals there are no correlation between �i and xit;
while for the remaining 50 percent they have a correlation corresponding to
� = 0:5: The simulation results seem almost una¤ected by the fact that the
correlation is heterogenous. The same seem to be the case when change the
distribution of the individual e¤ect from a normal distribution to a binomial
distribution (see table 3). This suggests that the CSM model is very robust
to these two types of misspeci�cation.

Table 2. Heterogenous correlation:
� = 0 �� = 0:25

Estimator Mean std Mean std
OLS � 1.0004 0.0451 1.1185 0.0449
Fixed E¤ect � 1.0004 0.0446 1.0004 0.0446
Random E¤ect � 1.0004 0.0388 1.0611 0.0391
CSM � 0.9958 0.0447 0.9960 0.0447

� 0.0043 0.0904 0.2557 0.1002
Fraction of rejections of H0 : � = 0
CSM model (t-test) 0.1733 0.8967
Hausman-test (FE against RE) 0.0503 0.7396
Note: � = 1; �i � iiN(0; 1); "it � iiN(0; 1); xit = �it + � i�i;

�it � N(0; 2); P r(� i = 0) = Pr(� i = 0:5) = 0:5
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Table 3. Non-normal individual speci�c e¤ect
� = 0 � = 0:25

Estimator Mean std Mean std
OLS � 1.0002 0.0451 1.1213 0.0443
Fixed E¤ect � 1.0003 0.0450 1.0003 0.0450
Random E¤ect � 1.0003 0.0391 1.0616 0.0393
CSM � 0.9955 0.0450 0.9959 0.0449

� 0.0044 0.0893 0.2534 0.0933
Fraction of rejections of H0 : � = 0
CSM model (t-test) 0.1692 0.9185
Hausman-test (FE against RE) 0.0467 0.7720
Note: � = 1; "it � iiN(0; 1); xit = �it + ��i; �it � N(0; 2)

Pr(�i =
p
3) = 0:25;Pr(�i = � 1p

3
) = 0:75

In table 4, the model has been changed such that there is a non-linear
relation between �i and xit:In the case with no correlation between �i and xit
we have that OLS, FE and RE are unbiased, but the CSM estimator of � is
biased. The magnitude of the bias is about 4 percent. Furthermore, the CSM
estimate of � is also biased. When we move to the case with a correlation
between between �i and xit we still get that OLS and RE is biased but also
the CSM. The magnitude of the bias of the CSMmodel is at the same level as
the the RE model. This indicates that in cases with non-linear relationship
between �i and xit the CSM estimator do not perform well.

Table 4. Non-linear relation between � and x
� = 0 � = 0:25

Estimator Mean std Mean std
OLS � 1.0007 0.0636 1.0809 0.0601
Fixed E¤ect � 0.9995 0.0387 0.9995 0.0387
Random E¤ect � 1.0001 0.0426 1.0418 0.0423
CSM � 0.9668 0.0513 0.9696 0.0489

� 0.0545 0.1967 0.2944 0.2191
Fraction of rejections of H0 : � = 0
CSM model (t-test) 0.4399 0.7686
Hausman-test (FE against RE) 0.2487 0.5741
Note: � = 1; "it � iiN(0; 1); xit = �2i (�it + ��i

3
);

�i � iiN(0; 1); �it � N(0; 2)
To sum up the results of the four simulation study, we �nd that the FE

estimator is superior to the CSM estimator because it does not exhibit any
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bias in then four di¤erent set ups and variance of the estimator is almost
identical to the CSM estimator. Furthermore, when testing for correlation
between the individual e¤ect and the explanatory variable the CSM estima-
tor also seem to have a problems by rejecting the true hypothesis too often.
However, the simulation study also suggested that CSM estimator is robust
to misspeci�cations with respect to the distributional assumptions and het-
erogeneity in the correlation. Moreover, in the cases when the CSM provides
an unbiased estimate of � it also seems to yield unbiased estimate of � .

4 A test of consistency of the CSM model

In the previous section we illustrated by a simulation study that in some
cases of misspeci�cation the CSM estimator do not perform well. This sug-
gests that one should use the FD or FE estimator instead, which are very
robust to misspeci�cations. However, one of the shortcomings of the FE and
FD is that they does not provide any information about the correlation be-
tween the individual e¤ect and the explanatory variable, except that one can
test whether the correlation is zero. Therefore, one may prefer to use the
CSM estimator, when it is consistent. To �nd out if the CSM estimator is
consistent, we suggest to apply a Hausman test.
The idea is to compare the CSM estimator with the FE estimator which

are consistent under weak assumptions. If there is a large di¤erence be-
tween the estimators, this suggest that the CSM estimator is not consistent.
In order to derive the test, we assume that the FD or FE estimators are
consistent. We can then employ the Hausman-test as a consistency test of
the CSM estimator of �, see Lee (1996) for some other general applications
of the Hausman test:

H0 : �̂CSM � �̂FE = 0

H =

�
�̂CSM � �̂FE

�2
V (�̂FE)� V (�̂CSM)

� �2(1):

In case this test is accepted there is also reason to believe that �CSM is
consistent. Hence the Hausman test can be used as a speci�cation test of the
CSM model, and we can use the CSM model to obtain consistent information
on � .
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5 A case study

As an illustration of the previous discussion, we will apply the FE and the
CSM estimator to the case of earnings among siblings. The data are taken
from the Panel Study of Income Dynamics (PSID) like in Teachman et al.
(2001). We study the earnings from siblings from a random selection of
families from wave 1988 to 1992. We use information on earnings and years
of education when each of the siblings are 36 during the sample period. By
making this restriction we do not have to take any age dependency into
consideration in our modelling. We also restrict the analysis to individuals
with none-zero earnings. All earnings are discounted to 1992 price level.
Both types of restrictions means that some individuals appear in the data
without siblings even though they actual might have some.
We propose a model where individual earnings depends on some indi-

vidual characteristics: gender, years of education and birth order and some
family characteristics, fathers education. We also assume that there may be
unobserved family speci�c e¤ects, such as the family genome and parental
behavior that a¤ect earnings of the children. As both behavior as well as ge-
netics4 are very likely both to a¤ect the children�s earnings capacity over and
above that induced by their educational choice, as well as their educational
choice, it is equaly likely that the family speci�c e¤ect will be correlated
with the educational attainment of the children. Hence, we expect that any
estimator (OLS, RE) that does not take this into account will be biased.
Formerly our model is:

yit = �0 + �j�jxjit + �i + "it; i = 1; : : : ; N; t = 1; : : : ; T

where i now indexes family units and t children. In this model the term �i
captures the family speci�c e¤ect.
In table 5 we show some summary statistics of the data.

4Individuals with non-biological parents (i.e. siblings with fathers with di¤erent edu-
cation) has been eliminated from our sample.
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Table 5. Summary statistics
Variable Mean sd.dev min max
ln(Income) 2:304 0:711 �1:061 4:723
Years of education 13:366 2:057 6 17
Years of education (father) 12:794 1:916 6 14
Women 0:531 - 0 1
no. of children per family 1:404 - 1 8
No. of individuals 868
No. of individuals with siblings 442
No. of families 614

The data is unbalanced in the sense that the di¤erent families in the
might have di¤erent number of children, and some families appears to have
only one child.
For comparison we estimate the model by using four di¤erent approaches:

OLS, RE, FE and CSM. When estimating the model with OLS, RE and
parts of the CSM, that measures inter family correlations we can include the
variables that are the same for all children within a family such as father�s
education, but when estimating the model with FE or the part of the CSM
where measures of intra family correlations, these have to be omitted. This
means that the family speci�c e¤ect in the FE and CSM model also contains
the impact of father�s education. The covariance structure of the model is
shown below. It only di¤ers from the structure shown in 1-4 due to the
inclusion of more explanatory variables:

var(yit) = �l�j�j�lcov(xjit; xlit) + 2�j�j� j + �
2
� + �

2
" (5)

cov(yit; yis) = �l�j�j�lcov(xjit; xlis) + 2�j�j� j + �
2
�; s 6= t (6)

cov(yit; xjit) = �l�lcov(xjit; xlit) + �l� l; j = 1; 2 (7)

cov(yit; xjis) = �l�lcov(xjit; xlis) + �l� l; j = 1; 2; s 6= t (8)

Estimation results for di¤erent estimators of the model is shown in table 6
below.
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Table 6. Estimation results.
Variable OLS RE FE CSM

Constant
0:779
(:146)

0:931
(0:141)

�
(�)

�
(�)

Years of education
0:111
(0:012)

0:099
(0:012)

0:062
(0:022)

0:055
(0:013)

Father�s education
0:0390
(0:013)

0:048
(0:015)

�
(�)

�
(�)

Gender
�0:291
(0:044)

�0:331
(0:037)

�0:418
(0:061)

�0:339
(0:038)

� 1 - - -
0:317
(0:048)

� 2 - - -
0:011
(0:006)

�2� - 0:209 - 0:160
�2" 0:411 0:202 0:309 0:211

First, we test if the family speci�c e¤ect is correlated with the explanatory
variables. This is done by a Hausman test where the RE estimates are
compared the FE estimates. The Hausman test statistic for the consistency
of the RE model against the FE model is 7:12 � �2(2). Thus the RE model
is rejected against the FE model, which indicates that the family speci�c
e¤ect is correlated with the time varying explanatory variables5. This means
that OLS and RE will produce biased estimates. When comparing the OLS
and RE estimates we �nd a much higher return to education than for the FE
and CSM model, which suggests that OLS and RE overestimates the return
to education (as expected).
As shown in the previous section both the FE and CSM estimates are

consistent when there is a correlation between the family speci�c e¤ect and
explanatory variables, but the FE is consistent under weaker assumptions.
To test if CSM estimates are consistent we perform the Hausman test de-
scribed in section 4. The value of the Hausman test statistic for consistency
of the CSM model (CSM against FE) is: 4:77 � �2(2) which is insigni�-
cant (at a 5 % level). Hence, the CSM model is consistent according to the
test and the average correlations between the family speci�c e¤ects and the

5Note the the RE model takes into account farthers education. Hence, other unobserved
unit invariant variables must generate the correlation between the time varying observed
variables and the unobserved familiy variables.
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observed explanatory variables are consistently estimated. The estimates of
the correlation indicate that the family speci�c e¤ect is positively and sig-
ni�cantly correlated with years of education, while we �nd an insigni�cant
correlation with the dummy for women. One interpretation of this result is
that on one hand a �good� family background increases both the average
earning capacity (above the level imposed by the educational attainment)
and average educational level of the children from the family. On the other
hand a good family background is not a¤ecting the gender mix within a fam-
ily. (fraction of daughters in a family). These results seem plausible and in
accordance of what we expected. Finally, in this model we can perform a
test of hypothesis that family speci�c e¤ects are uncorrelated with the ex-
planatory variables. The hypothesis is given by H0 : � 1 = � 2 = 0: The Wald
test-statistic is 12:45 � �2(2), also rejects the hypothesis that the family
e¤ect is uncorrelated with the explanatory variables. The CSM estimates
indicate that the annual earnings increases by about 5:5 percent per extra
year of education.6 Furthermore we �nd that women earn about 34 percent
less than men.
To summarize the results, we �nd evidence for the existence of a corre-

lated family speci�c e¤ect in the earnings equation. This implies that the
coe¢ cient for years of education is biased for the OLS and RE. When per-
forming a Hausman test comparing the FE and the CSM estimates, we �nd
that the CSM estimates are valid and we can use the estimates of the co-
variances between the family e¤ect and explanatory variables. We �nd that
years of education are positively correlated with the unobserved family e¤ect,
and for this reason the pay-o¤ from years on education are exaggerated for
the OLS and RE estimators.

6 Conclusion

In this paper we have discussed modelling panel data with �xed e¤ects. We
have shown, as many others have before us, that the Ordinary least squares
estimator and the random e¤ects estimator yields biased estimates when time
invariant unobserved e¤ects are correlated with the observed explanatory
variables. Two alternative estimators have been proposed in the literature,
namely the covariance structure estimator and the �xed e¤ect estimator.

6Although we have controlled for family speci�c unobsered e¤ects, one may still consider
if this esimate is a true estimate of the return to education.
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Both take into account the possible correlation between observed and unob-
served variables. However, they di¤er in the how they approach the prob-
lem. The Fixed e¤ect estimator use a concentrated likelihood approaches
and sweeps out the �xed e¤ect, whereas the covariance structure estima-
tor speci�es the correlation between the unobserved and observed variables.
This leaves the latter approach more vulnerable to misspeci�cation but also
o¤ers more insight into the structure of the data. In this paper we examines
in details how the misspeci�cations a¤ect the covariance structure estimator
and suggest a way to test whether it is mispecci�ed against the more robust
�xed e¤ect estimator in actual applications.

7 Appendix. Deriving the First di¤erence es-
timator from the covariance equations.

The FD estimator is based on the di¤erence between cov(yit; xit) and cov(yit; xis)
when s = t� 1

[cov(yit; xit)� cov(yit; xit�1)] = �(var(xit)� cov(xit; xit�1)),
[E(yitxit)� E(yitxit�1)] = �(E(x2it)� E(xitxit�1),

E(yit�xit) = �E(xit�xit):

Similar one can get that

[cov(yit�1; xit)� cov(yit; xit�1)] = �(cov(xitxit�1)� var(xit�1)),
E(yit�1�xit) = �E(xit�1�xit):

By subtracting these two expressions we obtain

E(yit�xit)� E(yit�1�xit) = �E(xit�xit)� �E(xit�1�xit),
E(�yit�xit) = �E(�x2it),

� =
E(�yit�xit)

E(�x2it)

By replacing the moment conditions with the sample moment condition one
can obtain an estimate of �;which is equivalent to the FD estimator of �:
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