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Abstract

Dynamic discrete choice panel data models have received a great deal of attention. In those

models, the dynamics is usually handled by including the lagged outcome as an explanatory

variable. In this paper we consider an alternative model in which the dynamics is handled by

using the duration in the current state as a covariate. We propose estimators that allow for

group specific effect in parametric and semiparametric versions of the model. The proposed

method is illustrated by an empirical analysis of child mortality allowing for family specific

effects.
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1 Introduction

Dynamic discrete choice panel data models have received a great deal of attention. In those models,

the dynamics is usually handled by including the lagged outcome as an explanatory variable. See
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for example Cox (1958), Heckman (1981a, 1981b, 1981c), Chamberlain (1985) or Honoré and Kyr-

iazidou (2000). In this paper we consider an alternative model in which the dynamics is handled

by using the duration in the current state as a covariate. This is in the spirit of classical dura-

tion models where the dynamics is captured through duration dependence (see Lancaster (1990)).

The main contribution of the paper is to propose estimators that allow for group specific effect in

parametric and semiparametric versions of the model.

Heckman (1981a, 1981b, 1981c), Honoré and Kyriazidou (2000) and others studied a dynamic

panel data model of the type

yit = 1
{

x′itβ + γyi,t−1 + αi + εit ≥ 0
}

(1)

where the explanatory variables, xit, are strictly exogenous under various assumptions of the dis-

tribution of εit. This model is empirically relevant in many situations. Specifically, the term αi can

be thought of as capturing unobserved heterogeneity; some individuals are consistently more likely

to experience the event than others. The term, γyi,t−1, captures state dependence; the probability

that an individual experiences the event this period depends on whether the event happened last

period. See e.g., Heckman (1981c). While both unobserved heterogeneity and state dependence

are important, (3) ignores a third source of persistence, namely duration dependence. In duration

models, duration dependence refers to the phenomenon that the time since the last occurrence of

the event might affect the probability that the event occurs now. See e.g., Heckman and Borjas

(1980). Clearly the time since the last occurrence of the event is not strictly exogenous, and the

approach in Honoré and Kyriazidou (2000) will not work if it is included in xit.

Here we consider a model in which an individual occupies a certain state and the outcome of

interest is whether the individual leaves the state at time t. Notationally, y`t = 1 will be used to

describe the event that individual ` leaves the state at calendar time t, and we model this by

y`t = 1
{

x′`tβ + δS`t + α` + ε`t ≥ 0
}

(2)

where S`t denotes the number of periods since the individual entered the state. The maintained

assumption is that we observe a sample of individuals, `, that is grouped in such a way that the

individual–specific effect is the same across some `. This situation will for example emerge if one

has a sample of workers where some of them work in the same firm and where one wants to control

for firm–specific effects. A second example is the case where one observes individual members of a

household and wants to control for household specific effects.
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Throughout this paper, we will use i to denote a group and j to index individuals within a

group. We will assume that the number of groups is large relative to the number of time–periods

and the number of individuals within each group. The relevant asymptotic is therefore one that

assumes that the number of groups increases.

2 The Model and Estimator

In this section we focus on single spell models. Since some spells will be in progress at the start of

the sampling process, the time at which a spell ends will not necessarily equal the duration of the

spell. It is therefore necessary to define a number of variables related to the duration of the spell.

For each individual, we use Sji1 to denote the duration of the spell at the beginning of the sample

period, and we use Tji to denote the sampling period in which the spell ends. This means that the

duration of the spell for individual j in group iwill be Υji = Sji1 + Tji.

As mentioned in the introduction, we formulate the model as a modification of the dynamic

discrete choice model in (1) in which the lagged dependent variable has been replaced by the number

of periods since the individual entered the state of interest. Hence the model is

yjit = 1
{

x′jitβ + δSjit + αi + εjit ≥ 0
}

, t = 1, ..., t, j = 1, ..., J i = 1, ...n (3)

where Sjit denotes the duration of the spell at time t (i.e., Sjit = Sji1 + t). t is the end of the sam-

pling period. We will use yi and yji to denote
{

yjit : t = 1, ...t, j = 1, ..., J
}

and
{

yjit : t = 1, ...t
}

,

respectively. Similar notation will be used for the explanatory variables x. It is also not necessary

that one observes data for an individual after the event has occurred. This is for example relevant

if Tji is the time at which some failure (such as death) occurs. We will therefore assume that we

observe
{

x′jit : t = 1, ...Tji, j = 1, ..., J, i = 1, ...n
}

.

In what follows, we will assume that J is the same across groups. This can be easily relaxed

provided that J is exogenous (formally, the assumptions below have to hold conditional on J).

We assume that we have a random sample of groups indexed by i.

Assumption 1. All random variables corresponding to different i are independent of each

other and identically distributed.

We consider three versions of the model. The three differ in the assumptions that are made on

the distribution of εjit. To state the assumptions formally and in some generality, we define zi to
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be all the predetermined characteristics of the group at the beginning of the sample. These will

include αi, {xki1}
J
k=1, {Ski1}

J
k=1 as well as characteristics of the group that do not enter the model

directly.

Assumption 2a. For each i and t, the εjit’s are all logistically distributed conditional on
{

αi, {εjis}s<t , {xjis}s≤t , {εkis}s≤t+τ ,k 6=j , {xkis}s≤t+τ ,k 6=j , {Ski1}
J
k=1

}

for some known τ .

This assumption corresponds to the logit assumption used in Rasch (1960), Cox (1958), Ander-

sen (1970), Chamberlain (1985) and Honoré and Kyriazidou (2000).

The next assumption generalizes Assumption 2a in much the same way that Manski (1987)

generalized Rasch’s logit model with individual specific effects.

Assumption 2b. For some known τ (τ ≥ 0), and conditionally on zi , {εjit}
J
j=1 are independent

of each other and of
{

{εjis}s<t , {xjis}s≤t , {εkis}s≤t+τ,k 6=j , {xkis}s≤t+τ ,k 6=j

}

for t = 1, .., T , and

the conditional distributions of {εjit}
J,T
j=1,t=1 are identical.

Note that under Assumption 2b, the distributions of εjit is allowed to vary across i.

It will also be relevant to consider a generalization of Assumption 2b that allows the distribution

of εjit to depend on Sjit. This will make the duration dependence component of the model much

less parametric.

Assumption 2c. For some known τ (τ ≥ 0), and conditionally on zi, {εjit}
J
j=1 are indepen-

dent of each other and of
{

{εjis}s<t , {xjis}s≤t , {εkis}s≤t+τ ,k 6=j , {xkis}s≤t+τ,k 6=j

}

. Moreover, the

distributions of εjit and ε`is are identical if s and t correspond to the same duration time.

It is clear that Assumption 2c is weaker than Assumption 2b. This will, in itself, make it

interesting to consider Assumption 2c. However, the main motivation for Assumption 2c is that

it allows us to make a connection between the models considered here and the monotone index

model. See section 2.4

For a given individual, Assumptions 2a, 2b and 2c do not limit the feedback from the ε’s to

future values of x. The setup therefore allows x to be predetermined. As a result, there is no need

to treat δSjit in (3) differently from the other explanatory variables. However, the notation in (3)

makes it easier to compare the approach here to literature, and the duration dependence may be

of special interest.

However, when τ > 0, it is assumed that a “feedback” from one individual’s ε to the other
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group member’s x’s and ε’s is nonexistent for τ periods. τ is therefore application specific1.

For now assume that J = 2. We then have

Lemma 1 Let t1 and t2 be arbitrary with |t1 − t2| ≤ τ . Consider the two events A = {T1i = t1,

T2i > t2} and B = {T1i > t1, T2i = t2}. Under Assumption 2a

P (A|A ∪B, x1it1 , x2it2 , zi) =
exp

(

(x1it1 − x2it2)
′ β + (δt1+S1i1

− δt2+S2i1
)
)

1 + exp
(

(x1it1 − x2it2)
′ β + (δt1+S1i1

− δt2+S2i1
)
) ,

under Assumption 2b

P (A|A ∪B, x1it1 , x2it2 , zi)



















> 1
2 if (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) > 0,

= 1
2 if (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) = 0,

< 1
2 it (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) < 0,

and under Assumption 2c and if t1 + S1i1 = t2 + S2i1

P (A|A ∪B, x1it, x2it, zi)



















> 1
2 if (x1it1 − x2it2)

′ β > 0,

= 1
2 if (x1it1 − x2it2)

′ β = 0,

< 1
2 it (x1it1 − x2it2)

′ β < 0.

Hence under Assumption 2a, one can estimate β and {δt} by maximizing

n
∑

i=1

t
∑

t1=1

t
∑

t2=1

1 {|t1 − t2| ≤ τ} (1 {T1i = t1, T2i > t2}+ 1 {T1i > t1, T2i = t2})

· log

(

exp
(

(x1it1 − x2it2)
′ β + (δt1+S1i1

− δt2+S2i1
)
)1{T1i=t1,T2i>t2}

1 + exp
(

(x1it1 − x2it2)
′ β + (δt1+S1i1

− δt2+S2i1
)
)

)

(4)

Similarly,under Assumption 2b, one can estimate β and {δt} (up to scale) by maximizing

n
∑

i=1

t
∑

t1=1

t
∑

t2=1

1 {|t1 − t2| ≤ τ} · 1 {T1i = t1, T2i > t2} (5)

· 1
{

(x1it1 − x2it2)
′ β + (δt1+S1i1

− δt2+S2i1
) > 0

}

+ 1 {|t1 − t2| ≤ τ} · 1 {T1i > t1, T2i = t2}

· 1
{

(x1it1 − x2it2)
′ β + (δt1+S1i1

− δt2+S2i1
) < 0

}

subject to a scale normalization.

1In this version of the paper, we assume that the calendar time for the first observation is the same for all

individuals. This assumption is easily relaxed at the cost of slightly more cumbersome notation.
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Finally, under Assumption 2c, one can estimate β (up to scale) by maximizing

n
∑

i=1

t
∑

t1=1

t
∑

t2=1

1 {t1 + S1i1 = t2 + S2i1} · 1 {|t1 − t2| ≤ τ} ·

(

1 {T1i = t1, T2i > t2} · 1
{

(x1it1 − x2it2)
′ β > 0

}

+1 {T1i > t1, T2i = t2} · 1
{

(x1it1 − x2it2)
′ β < 0

})

(6)

subject to a scale normalization. In this case, the δ’s are not identified. This is because Assumption

2c places no restriction on the location of ε.

2.1 Group–Specific δ

Note that the δ–terms drop out in the case where t1 + S1i1 = t2 + S2i1 in Lemma 1. This allows

us to construct an estimator for the case where δt is also indexed by i by only including terms for

which t1+S1i1 = t2+S2i1 in (4), (5) and (6). This is similar in spirit to the continuous time panel

duration model considered by Ridder and Tunali (1999) (see below). It is also somewhat similar to

the approach in Chamberlain (1985), Honoré and D’Adddio (2003). Those papers consider models

with second order state dependence where the first order is allowed to be individual–specific.

2.2 Group–Specific x

If τ in Assumptions 2a–2c is positive, then the approach taken here allows us to estimate a model

in which all the explanatory variables are group–specific, x1it = x2it for all t.

2.3 Censoring

Covariate–dependent censoring is not a problem provided that it is independent of the ε’s. Specif-

ically, let Cji be the censoring time for individual j in group i. The argument above then applies

if assumptions 2a, 2b and 2c are modified to

Assumption 2a′. For each i and t, the εjit’s are all logistically distributed conditional on
{

αi, {εjis}s<t , {xjis}s≤t , {εkis}s≤t+τ ,k 6=j , {xkis}s≤t+τ ,k 6=j , {Ski1}
J
k=1 , {Cki}

J
k=1

}

for some known τ .

Assumption 2b′. For some known τ (τ ≥ 0), and conditionally on zi , {εjit}
J
j=1 are inde-

pendent of each other and of
{

{εjis}s<t , {xjis}s≤t , {εkis}s≤t+τ,k 6=j , {xkis}s≤t+τ,k 6=j , {Cki}
J
k=1

}

for

t = 1, .., T , and the conditional distributions of {εjit}
J,T
j=1,t=1 are identical.
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Assumption 2c′. For some known τ (τ ≥ 0), and conditionally on zi, {εjit}
J
j=1 are independent

of each other and of
{

{εjis}s<t , {xjis}s≤t , {εkis}s≤t+τ ,k 6=j , {xkis}s≤t+τ,k 6=j , {Cki}
J
k=1

}

. Moreover,

the distributions of εjit and ε`is are identical if s and t correspond to the same duration time.

Hence under Assumption 2a′, one can estimate β and {δt} by maximizing

n
∑

i=1

t
∑

t1=1

t
∑

t2=1

1

{

|t1 − t2| ≤ τ , t1 < min
k
{Cki} , t2 < min

k
{Cki}

}

(1 {T1i = t1, T2i > t2}+ 1 {T1i > t1, T2i = t2})

log

(

exp ((x1it1 − x2it2)β + (δt1+S1i1
− δt2+S2i1

))1{T1i=t1,T2i>t2}

1 + exp ((x1it1 − x2it2)β + (δt1+S1i1
− δt2+S2i1

))

)

Similarly,under Assumption 2b′, one can estimate β and {δt} (up to scale) by maximizing

n
∑

i=1

t
∑

t1=1

t
∑

t2=1

1

{

|t1 − t2| ≤ τ , t1 < min
k
{Cki} , t2 < min

k
{Cki}

}

· 1 {T1i = t1, T2i > t2} · 1 {(x1it1 − x2it2)β + (δt1+S1i1
− δt2+S2i1

) > 0}

+1

{

|t1 − t2| ≤ τ , t1 < min
k
{Cki} , t2 < min

k
{Cki}

}

· 1 {T1i > t1, T2i = t2} · 1 {(x1it1 − x2it2)β + (δt1+S1i1
− δt2+S2i1

) < 0}

subject to a scale normalization.

Finally, under Assumption 2c′, one can estimate β (up to scale) by maximizing

n
∑

i=1

t
∑

t1=1

t
∑

t2=1

1

{

|t1 − t2| ≤ τ , t1 + S1i1 = t2 + S2i1, t1 < min
k
{Cki} , t2 < min

k
{Cki}

}

·
(

1 {T1i = t1, T2i > t2} · 1
{

(x1it1 − x2it2)
′ β > 0

}

+1 {T1i > t1, T2i = t2} · 1
{

(x1it1 − x2it2)
′ β < 0

})

2.4 Pairwise Comparison Estimation When There Is No Group–Specific Effect

Following, for example Honoré and Powell (1994) it is natural to consider a non–panel version of

the model in (3),

yit = 1
{

x′itβ + δSit + εit ≥ 0
}

, t = 1, ...t, i = 1, ...n (7)
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and then apply the approach discussed earlier to all pairs of observations i1 and i2. In a semipara-

metric case, this would lead to an estimator defined by minimizing

n
∑

i1<i2

t
∑

t1=1

t
∑

t2=1

1 {Ti1 = t1, Ti2 > t2} · 1
{

(xi1t1 − xi2t2)
′ β + (δt1 − δt2) > 0

}

(8)

+ 1 {Ti1 > t1, Ti2 = t2} · 1
{

(xi1t1 − xi2t2)
′ β + (δt1 − δt2) < 0

}

In the case where t = 1, (3) is a standard discrete choice model, and in that case the objective

function in (8) becomes

n
∑

i1<i2

1 {yi1 > yi2} · 1
{

(xi1 − xi2)
′ β > 0

}

+ 1 {yi1 < yi2} · 1
{

(xi1 − xi2)
′ β < 0

}

which is the objective function for Han (1987)’s maximum rank correlation estimator.

It is also possible to link (7) to a general monotone index model of the form

G (T ∗i ) = x′iβ + εi (10)

where G is continuous and strictly increasing and a discretized version of T ∗i is observed. (10)

implies that2

P (T ∗i > t|xi) = P (G (T ∗i ) > G (t)|xi)

= P
(

x′iβ + εi > G (t)
∣

∣xi

)

= 1− F
(

G (t)− x′iβ
)

where F is the CDF for εi. This gives

P (T ∗i > t+ 1|xi, T
∗
i > t) =

1− F (G (t+ 1)− x′iβ)

1− F (G (t)− x′iβ)
.

When 1−F (·) is log–concave (which is implied by the density of εi being log–concave; see Heckman

and Honoré (1990)), the right hand side is an increasing function of x′iβ . This means that one can

write the event T ∗i > t+ 1|xi, T
∗
i > t in the form 1 {x′iβ > ηit} for some random variable ηit which

is independent of xi and has CDF
1−F (G(t+1)−·)
1−F (G(t)−·) . This has the same structure as (7) with time–

invariant explanatory variables combined with a non–panel version of Assumption 2c. In other

2Expressions of the form P (T ∗
i > t|xi) = 1 − F (at − x′iβ) can also be obtained without the assumption that G

is continuous and strictly increasing. The discussion here can therefore be generalized to more general monotone

transformation models (at the cost of additional notation).
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words, a monotone index model with discretized observations of the dependent variable and log–

concave errors, is a special case of the model considered here. The estimator that results from

exploiting this insight will share many of the rank estimators proposed in the literature such as

Han (1987), Cavanagh and Sherman (1998), Abrevaya (1999), Chen (2002) and Khan and Tamer

(2004). However, it does not appear that the estimator based on the approach taken here will be

a special case of any of them, or vice versa.

2.5 J>2

A similar approach can be used when there are more than two observations for each group.

To illustrate this, suppose that a group has three observations and defineA = {T1i = t1, T2i > t2,

T3i > t3}, B = {T1i > t1, T2i = t2, T3i > t3} and C = {T1i > t1, T2i > t2, T3i = t3}. Under the logit

Assumption 2a, we then have

P (A|A ∪B ∪ C, x1it1 , x2it2 , x3it3)

=
exp

(

x′1it1β + δt1+S1i1

)

exp
(

x′1it1β + δt1+S1i1

)

+ exp
(

x′2it2β + δt2+S2i1

)

+ exp
(

x′3it3β + δt3+S3i1

) .

For the semiparametric cases in assumptions 2b, we get

P (A|A ∪B ∪ C, x1it1 , x2it2 , x3it3)

> max {P (B|A ∪B ∪ C, x1it1 , x2it2 , x3it3) , P (C|A ∪B ∪ C, x1it1 , x2it2 , x3it3)}

if and only if

x′1it1β + δt1+S1i1
> max

{

x′2it2β + δt2+S2i1
, x′3it3β + δt3+S3i1

}

.

This has the same structure as the multinomial qualitative response model of Manski (1975), and

the insights there can be used to construct a maximum score estimator.

Under Assumption 2c, we can use the case where t1 + S1i1 = t2 + S2i1 = t3 + S3i1 (so they all

refer to the same duration) and we have

P (A|A ∪B ∪ C, x1it1 , x2it2 , x3it3)

> max {P (B|A ∪B ∪ C, x1it1 , x2it2 , x3it3) , P (C|A ∪B ∪ C, x1it1 , x2it2 , x3it3)}

if and only if

x′1it1β > max
{

x′2it2β, x
′
3it3β

}

.
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We could also define A = {T1i = t1, T2i = t2, T3i > t3}, B = {T1i = t1, T2i > t2, T3i = t3} and

C = {T1i > t1, T2i = t2, T3i = t3}. Under the logit Assumption 2a, we then have

P (A|A ∪B ∪ C, x1it1 , x2it2 , x3it3) =
c1

c2

where

c1 = exp
(

(x1it1 + x2it2)
′ β + (δt1+S1i1

+ δt2+S2i1
)
)

c2 = exp
(

(x1it1 + x2it2)
′ β + (δt1+S1i1

+ δt2+S2i1
)
)

+ exp
(

(x1it1 + x3it3)
′ β + (δt1+S1i1

+ δt3+S3i1
)
)

+ exp
(

(x2it2 + x3it3)
′ β + (δt2+S2i1

+ δt3+S3i1
)
)

.

For the semiparametric cases in Assumptions 2b, we get

P (A|A ∪B ∪ C, x1it1 , x2it2 , x3it3)

> max {P (B|A ∪B ∪ C, x1it1 , x2it2 , x3it3) , P (C|A ∪B ∪ C, x1it1 , x2it2 , x3it3)}

if and only if

(x1it1 + x2it2)
′ β + (δt1+S1i1

+ δt2+S2i1
)

> max
{

(x1it1 + x3it3)
′ β + (δt1+S1i1

+ δt3+S3i1
) , (x2it2 + x3it3)

′ β + (δt2+S2i1
+ δt3+S3i1

)
}

This can be used to construct a maximum score estimator in the spirit of Manski (1975).

Under Assumption 2c, we can use the case where t1 + S1i1 = t2 + S2i1 = t3 + S3i1 (so they all

refer to the same duration) and we have

P (A|A ∪B ∪ C, x1it1 , x2it2 , x3it3)

> max {P (B|A ∪B ∪ C, x1it1 , x2it2 , x3it3) , P (C|A ∪B ∪ C, x1it1 , x2it2 , x3it3)}

if and only if

(x1it1 + x2it2)
′ β > max

{

(x1it1 + x3it3)
′ β, (x2it2 + x3it3)

′ β
}

.

We can derive similar expression for J > 3. Alternatively, one could consider all pairs of

observations within a group.
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2.6 Conditional Likelihood

Most of the existing results for logit models with individual specific effects have been based on a

conditional likelihood approach. A sufficient statistic, Si, for αi in (3) is defined to be a function

of the data such that the distribution of yi conditional on (Si, xi, αi), does not depend on αi.

If one has a sufficient statistic, which furthermore has the property that the distribution of yi

conditional on (Si, xi, αi) depends on the parameter of interest, then those can be estimated by

maximum likelihood using the conditional distribution of the data, given the sufficient statistic.

Andersen (1970) proved that the resulting estimator is consistent and asymptotically normal under

appropriate regularity conditions. Unfortunately, it does not appear that the method proposed

here can be motivated as a conditional likelihood estimator.

For simplicity assume that xi is strictly exogenous. In that case the distribution of yi given

(xi, αi) is

(

T1i−1
∏

s=1

1

1 + exp (x′1isβ + δS1is
+ αi)

)

exp
(

x′1iT1i
β + δS1iT1i

+ αi

)

1 + exp
(

x′1iT1i
β + δS1iT1i

+ αi

)

(

T2i−1
∏

s=1

1

1 + exp (x′2isβ + δS2is
+ αi)

)

exp
(

x′2iT2i
β + δS2iT2i

+ αi

)

1 + exp
(

x′2iT2i
β + δS2iT2i

+ αi

)

=
exp (2αi) exp

(

x′1iT1i
β + δS1iT1i

+ x′2iT2i
β + δS2iT2i

)

T1i
∏

s=1

(

1 + exp
(

x′1isβ + δS1is
+ αi

))

T2i
∏

s=1

(

1 + exp
(

x′2isβ + δS2is
+ αi

))

It follows from that that the sufficient statistic is (T1i, T2i). Hence, a conditional likelihood approach

will not work.

2.7 Comparison to Continuous Case

The hazard for the proportional hazard model with time–varying covariates is

λ
(

t
∣

∣

∣
{xis}s≤t

)

= λ (t) exp
(

x′itβ
)

(see Kalbfleisch and Prentice (1980)). Cox’s estimator (Cox (1972), Cox (1975)) essentially condi-

tions on the failure times and, for each failure time, on the risk set (the set of observations that

have not yet experienced the event and are not yet censored). The contribution to the “likelihood”

function for an observation, i, that experiences the event at duration–time t is then the probability
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that, of the observations at risk at duration–time t, the i’th is the one to experience the event (given

that one of them will). For the proportional hazard model, this probability has the same functional

form as a multinomial logit. This insight was used in Ridder and Tunali (1999) in the case where

the observations are grouped in the way discussed here. The resulting estimator is based on an

objective function which has terms similar to the contributions in (4) from t1 + S1i1 = t2 + S2i1.

3 Multiple Spell Versions of the Model

The previous section considered single spell models. This is reasonable in situations where the

event is one that can happen only once. On the other hand, there are many situations in which

the event can reoccur. For example, one might want to model the duration between purchases of a

particular good. In that case it would be reasonable to assume that the process starts over at the

end of each spell. There are also cases that fall in between these extremes. One example of that

could be the timing of births. In this case, the spell between the first and second child starts at

the point when the first child is born. This is similar to the an individual purchasing a good. On

the other hand, it may not be reasonable to specify the same model for, for example, the duration

between the birth of the first and second child as one would for the duration between the birth

of the third and fourth child. A two–state discrete time duration model is also an “intermediate

case.”

In this section, we discuss how the ideas in the previous section generalize to multiple spell

models.

3.1 Models with Two Spells

To fix ideas, we augment the setup in the previous section by assuming that a new spell of a

potentially different type starts when the first spell ends. To accommodate this in the notation, we

use superscript 1 for the first duration and superscript 2 for the second duration.

The model then is

y1
jit = 1

{

x′jitβ
1 + δS1

jit
+ α1

i + εjit ≥ 0
}

, t = 1, ...t, j = 1, ..., J i = 1, ...n

y2
jit = 1

{

x′jitβ
2 + δS2

jit
+ α2

i + εjit ≥ 0
}

, t = T 1
ji + 1, ...t, j = 1, ..., J i = 1, ...n

This notation allows the two spells to be fundamentally different (e.g., a spell of employment
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followed by a spell of unemployment) and the case where they are of the same type is the special

case in which all parameters in the two equations are the same.

For notational simplicity, we consider only the case where J = 2.

3.1.1 Comparing First Spells

One can use the first spells of individual i1 and i2 to construct conditional statements like the ones

in the previous section.

3.1.2 Comparing Second Spells

Let t11, t
1
2, t

2
1 and t22 be arbitrary with t11 < t21, t

1
2 < t22 and

∣

∣t21 − t22
∣

∣ < τ.

DefineA =
{

T 1
1i = t11, T

2
1i = t21, T

1
2i = t12, T

2
2i > t22

}

andB =
{

T 1
1i = t11, T

2
1i > t21, T

1
2i = t12, T

2
2i = t22

}

.

Under the logit Assumption 2a, we then have

P
(

A|A ∪B, x1it2
1
, x2it2

2
, zi

)

=
exp

((

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

)

1 + exp
((

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

) ; (11)

Under Assumption 2b, we have

P
(

A|A ∪B, x1it2
1
, x2it2

2
, zi

)

=































> 1
2 if

(

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

> 0,

= 1
2 if

(

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

= 0,

< 1
2 it

(

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

< 0.

(12)

Finally, under Assumption 2c, and if t21 − t11 = t22 − t12

P
(

A|A ∪B, x1it2
1
, x2it2

2
, zi

)































> 1
2 if

(

x′
1it2

1

− x′
2it2

2

)

β2 > 0,

= 1
2 if

(

x′
1it2

1

− x′
2it2

2

)

β2 = 0,

< 1
2 it

(

x′
1it2

1

− x′
2it2

2

)

β2 < 0.

(13)

Since (11), (12) and (13) do not depend on t11 and t12, the same statements are true if we redefine

A and B as A =
{

T 2
1i = t21, T

2
2i > t22

}

and B =
{

T 2
1i > t21, T

2
2i = t22

}

.

3.1.3 Comparing First Spells to Second Spells ( Assuming α1
i = α2

i = αi)

Let t11, t21 and t12 be arbitrary with t11 < t21 and
∣

∣t21 − t12
∣

∣ ≤ τ . Consider the two events A =
{

T 1
1i = t11, T

2
1i = t21, T

1
2i > t12

}

and B =
{

T 1
1i = t11, T

2
1i > t21, T

1
2i = t12

}

.
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Under Assumption 2a, we have

P
(

A|A ∪B, x1it2
1
, x2it1

2
, zi

)

=
exp

(

x′
1it2

1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

)

1 + exp
(

x′
1it2

1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

) ; (14)

and under Assumption 2b

P (A|A ∪B, x1it1 , x2it2 , zi)























> 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

> 0,

= 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

= 0,

< 1
2 it x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

< 0.

(15)

Finally, under Assumption 2c, and if t21 − t11 = t12 + S2i1

P (A|A ∪B, x1it, x2it, zi)























> 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 > 0,

= 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 = 0,

< 1
2 it x′

1it2
1

β2 − x′
2it1

2

β1 < 0.

(16)

Since (14), (15) and (16) do not depend on t11, the same statements are true if we redefine A

and B as A =
{

T 2
1i = t21, T

1
2i > t12

}

and B =
{

T 2
1i > t21, T

1
2i = t12

}

.

4 An Empirical Application

In this section we illustrate the proposed estimation method by an analysis of child mortality

allowing for family specific effects. It is well-established in the demographic literature that child

mortality can be influenced by factors that are common to all siblings within a family such as

genetics and parental competence. To investigate this issue, we use the same child survival data

as Sastry (1997). The data come from the Presquisa Nacional sobre Saúde Materno-Infantil e

Planejamento Familiar – Brasil, a household survey of Brazil that was conducted in 1986 as part

of the Demographic and Health Survey program. Retrospective maternity histories were collected

from 5,892 women age 15-44 who reported a total of 12,356 births. Following Sastry (1997), we

restrict our analysis to the 2,946 singleton births that occurred within 10 years of the survey and

in the northeast region. The geographic restriction is motivated by the fact that the northeast

is a high-fertility and high-mortality region, which provides a better setting in which to study

the unobserved family effect because it is the variation among siblings’ survival that allows us to

estimate the model. For the period 1976-86, the infant mortality rate was 143.7 and the child
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mortality rate was 164.4 in the northeast, compared to 53.0 and 58.6, respectively, in the rest

of Brazil. In addition, previous studies have found that the relationship between covariates and

survival chances in this region is different from patterns found elsewhere in Brazil. (see e.g.,

Sastry(1995, 1997) for detail).

We consider a set of covariates that are typical in the previous demographic studies of child mor-

tality, including the child’s age and gender, birth order, birth-spacing and maternal age (mother’s

age at the birth of the child). Summary statistics for these variables are reported in Table 1.

The distribution of children by family is reported in Table 2. The 2,946 singleton births in the

sample occurred to 1,051 families. There is a substantial amount of clustering of observations by

family. Over 90% of the children belong to families that have two or more children in the sample.

The average number of children per family is 2.8. The magnitude of the family specific effect in

the model is mainly determined by the number of deaths per family since children in families with

multiple deaths face higher mortality risks. Of the 430 deaths in the sample, nearly 60% come

from the 9% families with two or more deaths. This suggests that it is important to control for

unobserved family specific effects in the analysis of the effects of covariates on child mortality.

We estimate three model specifications and the results are presented in Table 3. Model 1 is a logit

regression with no correction for family effects. Models 2 and 3 allow for unobserved family specific

effects. The difference between the latter two is the way in which mortality rates are modeled. In

Model 2, the mortality rates are defined over five (unequally spaced) age intervals; while Model 3

specifies the monthly mortality rates but restricts the duration coefficients to be the same within

each of the five age intervals. The estimated relationship between covariates and mortality in general

follows similar patterns across the three models. The mortality rate monotonically decreases with

child age and is higher for boys. High parity births and short interbirth intervals are associated with

higher mortality risks. However, compared to Model 1, the magnitude of the covariate coefficients

is greatly reduced once family effects are controlled for in Models 2 and 3. Another significant

difference is the estimated effect of maternal age. Without controlling for family effects, the risk

ratio decreases steadily with maternal age in our sample of women between 14 and 55 years old.

However, when family effects are accounted for in Models 2 and 3, the estimated child mortality

risk ratio decreases with the mother’s age initially but soon increases after age 30. In other words,

children of women who give birth at a younger and older age experience higher mortality rates,
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which is more consistent with previous studies.3

5 Conclusions

This paper considers a discrete choice/duration model in which the dynamics is handled by using

the duration in the current state as a covariate. The main contribution is to propose estimators

that allow for group specific effect in parametric and semiparametric versions of the model. This is

relevant in many empirical settings where one observes individuals that are grouped geographically,

by household, by employer, etc. On the other hand, there are also many situations in which one

would want to use the models considered here in applications where the grouping results from

multiple spells for the same individual. The approaches discussed in this paper do not automatically

apply in that case. The reason is that when one observes consecutive spells for the same individual,

the timing of the second spell (and hence the covariates for the second spell) will in general depend

on the length of the first spell. This will violate the assumptions made in this paper. Investigating

methods for dealing with that case is an interesting topic for future research.

We apply the methods developed here to an empirical analysis of child mortality with family

specific effects. In future work, we also plan to consider other applications such as a study of

employment durations with firm–specific effects.
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6 Appendix

6.1 Derivation of Lemma 1

Let t1 and t2 be arbitrary with |t1 − t2| ≤ τ , and recall that zi denotes the set of predetermined

variables for group i at the beginning of the sample.

18



Consider the two events A = {T1i = t1, T2i > t2} and B = {T1i > t1, T2i = t2}. Notationally, it

will be convenient to distinguish between the case where t1 = t2 and the case where t1 6= t2. In the

latter case there is no loss of generality in assuming that t1 < t2.

P
(

A, {x1it}
t1
t=2 , {x2it}

t2
t=2 |zi

)

= P1 (y1i1 = 0, y2i1 = 0 |zi )

·p2 (x1i2, x2i2 |zi, y1i1 = 0, y2i1 = 0)

· . . .

· . . .

·Pt1

(

y1it1 = 1, y2it1 = 0
∣

∣

∣
zi, {x1is, x2is}s≤t1

, {y1is = 0, y2is = 0}s<t1

)

·pt1+1

(

x2it1+1

∣

∣

∣
zi, {x1is, x2is}s≤t1

, {y1is = 0}s<t1
, y1it1 = 1, {y2is = 0}s≤t1

)

·Pt1+1

(

y2it1+1 = 0
∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t1+1 , {y1is = 0}s<t1
, y1it1 = 1, {y2is = 0}s≤t1

)

·pt1+2

(

x2it1+2

∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t1+1 , {y1is = 0}s<t1
, y1it1 = 1, {y2is = 0}s≤t1+1

)

·Pt1+2

(

y2it1+2 = 0
∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t1+2 , {y1is = 0}s<t1
, y1it1 = 1, {y2is = 0}s≤t1+1

)

· . . .

· . . .

·pt2

(

x2it2

∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t2−1 , {y1is = 0}s<t1
, y1it1 = 1, {y2is = 0}s≤t2−1

)

·Pt2

(

y2it2 = 0
∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t2
, {y1is = 0}s<t1

, y1it1 = 1, {y2is = 0}s≤t2−1

)

,

and

P
(

B, {x1it}
t1
t=2 , {x2it}

t2
t=2 |zi

)

= P1 (y1i1 = 0, y2i1 = 0 |zi )

·p2 (x1i2, x2i2 |zi, y1i1 = 0, y2i1 = 0)

· . . .

· . . .

·Pt1

(

y1it1 = 0, y2it1 = 0
∣

∣

∣
zi, {x1is, x2is}s≤t1

, {y1is = 0, y2is = 0}s<t1

)

·pt1+1

(

x2it1+1

∣

∣

∣
zi, {x1is, x2is}s≤t1

, {y1is = 0}s≤t1
, {y2is = 0}s≤t1

)

·Pt1+1

(

y2it1+1 = 0
∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t1+1 , {y1is = 0}s≤t1
, {y2is = 0}s≤t1

)

·pt1+2

(

x2it1+2

∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t1+1 , {y1is = 0}s≤t1
, {y2is = 0}s≤t1+1

)
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·Pt1+2

(

y2it1+2 = 0
∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t1+2 , {y1is = 0}s≤t1
, {y2is = 0}s≤t1+1

)

· . . .

· . . .

·pt2

(

x2it2

∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t2−1 , {y1is = 0}s≤t1
, {y2is = 0}s≤t2−1

)

·Pt2

(

y2it2 = 1
∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t2
, {y1is = 0}s≤t1

, {y2is = 0}s≤t2−1

)

.

The case where t1 = t2 is dealt with in the same way except that one calculates P
(

A, {x1it}
t1
t=2 ,

{x2it}
t1
t=2 |zi

)

and P
(

B, {x1it}
t1
t=2 , {x2it}

t1
t=2 |zi

)

P
(

A, {x1it}
t1
t=2 , {x2it}

t2
t=2 |zi

)

= P1 (y1i1 = 0, y2i1 = 0 |zi )

·p2 (x1i2, x2i2 |zi, y1i1 = 0, y2i1 = 0)

· . . .

· . . .

·Pt1

(

y1it1 = 1, y2it1 = 0
∣

∣

∣
zi, {x1is, x2is}s≤t1

, {y1is = 0, y2is = 0}s<t1

)

and similarly for P
(

B, {x1it}
t1
t=2 , {x2it}

t1
t=2 |zi

)

.

Either way one concludes that

P
(

A|A ∪B, {x1it}
t1
t=2 , {x2it}

t2
t=2 , zi

)

= P
(

A, {x1it}
t1
t=2 , {x2it}

t2
t=2

∣

∣A ∪B, {x1it}
t1
t=2 , {x2it}

t2
t=2 , zi

)

=
a1

a1 + a2

where

a1 = Pt1

(

y1it1 = 1, y2it1 = 0
∣

∣

∣
zi, {x1is, x2is}s≤t1

, {y1is = 0, y2is = 0}s<t1

)

·Pt2

(

y2it2 = 0
∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t2
, {y1is = 0}s<t1

, y1it1 = 1, {y2is = 0}s≤t2−1

)

a2 = Pt1

(

y1it1 = 0, y2i1 = 0
∣

∣

∣
zi, {x1is, x2is}s≤t1

, {y1is = 0, y2is = 0}s<t1

)

·Pt1

(

y2it2 = 1
∣

∣

∣
zi, {x1is}s≤t1

, {x2is}s≤t2
, {y1is = 0}s≤t1

, {y2is = 0}s≤t2−1

)

.

Under Assumptions 2a and 2b

a1 = F
(

x′1it1β + δt1+S1i1
+ αi

)

·
(

1− F
(

x′2it1β + δt1+S2i1
+ αi

))

·
(

1− F
(

x′2it2β + δt2+S2i1
+ αi

))

20



and

a2 =
(

1− F
(

x′1it1β + δt1+S1i1
+ αi

))

·
(

1− F
(

x′2it1β + δt1+S2i1
+ αi

))

· F
(

x′2it2β + δt2+S2i1
+ αi

)

so

P
(

A|A ∪B, {x1it}
t1
t=1 , {x2it}

t2
t=1 , zi

)

=
c1

c2
,

where

c1 = F
(

x′1it1β + δt1+S1i1
+ αi

)

·
(

1− F
(

x′2it2β + δt2+S2i1
+ αi

))

and

c2 = F
(

x′1it1β + δt1+S1i1
+ αi

)

·
(

1− F
(

x′2it2β + δt2+S2i1
+ αi

))

+
(

1− F
(

x′1it1β + δt1+S1i1
+ αi

))

· F
(

x′2it2β + δt2+S2i1
+ αi

)

.

This implies that

P (A|A ∪B, x1it1 , x2it2 , zi) =
c1

c2
.

Under Assumption 2a, F is the logistic CDF and

P (A|A ∪B, x1it1 , x2it2 , zi) =
exp

(

(x1it1 − x2it2)
′ β + (δt1+S1i1

− δt2+S2i1
)
)

1 + exp
(

(x1it1 − x2it2)
′ β + (δt1+S1i1

− δt2+S2i1
)
) .

Under Assumption 2b

P (A|x1it1 , x2it2 , zi)

P (B|x1it1 , x2it2 , zi)
=

F
(

x′1it1β + δt1+S1i1
+ αi

)

F
(

x′2it2β + δt2+S2i1
+ αi

) ·
1− F

(

x′2it2β + δt2+S2i1
+ αi

)

1− F
(

x′1it1β + δt1+S1i1
+ αi

)

and therefore

P (A|A ∪B, x1it1 , x2it2 , zi)



















> 1
2 if (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) > 0

= 1
2 if (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) = 0

< 1
2 it (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) < 0

.

Finally, under Assumption 2c

a1 = Ft1+S1i1

(

x′1it1β + αi

)

·
(

1− Ft1+S2i1

(

x′2it1β + αi

))

·
(

1− Ft2+S2i1

(

x′2it2β + αi

))

and

a2 =
(

1− Ft1+S1i1

(

x′1it1β + αi

))

·
(

1− Ft1+S2i1

(

x′2it1β + αi

))

· Ft2+S2i1

(

x′2it2β + αi

)

so if t1 + S1i1 = t2 + S2i1

P (A|A ∪B, x1it, x2it, zi)



















> 1
2 if (x1it1 − x2it2)

′ β > 0,

= 1
2 if (x1it1 − x2it2)

′ β = 0,

< 1
2 it (x1it1 − x2it2)

′ β < 0.
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6.2 Derivation of Results with Multiple Spells

This section derives the main claims of section 3.

We will consider three types of events (with corresponding contribution to the objective func-

tion). For each of those types of events there are a number of special cases depending on the

ordering of t11, t
2
1, t

1
2 and t22 defined below. However, the basic structures of the calculations are the

same throughout.

6.2.1 Comparing First Spells

One can use the first spells of individuals i1 and i2 to construct conditional probability statements

like the ones in the previous section.

6.2.2 Comparing First Spells to Second Spells

Let t11, t
2
1 and t12 be arbitrary with t11 < t21 and

∣

∣t21 − t12
∣

∣ ≤ τ , and let zi denote the set of predeter-

mined variables for group i at the beginning of the sample.

Consider the two eventsA =
{

T 1
1i = t11, T

2
1i = t21, T

1
2i > t12

}

andB =
{

T 1
1i = t11, T

2
1i > t21, T

1
2i = t12

}

.

We will consider three cases based on the ordering of t11, t12, and t21. The calculation below is for

the case where 1 < t11 < t12 < t21 (the other cases follow in exactly the same manner)

P
(

A, {x1it}
t1
1
+t2

1

t=2 , {x2it}
t1
2

t=2 |zi

)

= P1

(

y1
1i1 = 0, y

1
2i1 = 0 |zi

)

·p2

(

x1i2, x2i2

∣

∣zi, y
1
1i1 = 0, y

1
2i1 = 0

)

· . . .

· . . .

·Pt1
1

(

y1
1it1

1

= 1, y1
2it1

1

= 0
∣

∣

∣
zi, {x1is, x2is}s≤t1

1

,
{

y1
1is = 0, y

1
2is = 0

}

s<t1
1

)

·pt1
1
+1

(

x1it1
1
+1, x2it1

1
+1

∣

∣

∣
zi, {x1is, x2is}s≤t1

1

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,
{

y1
2is = 0

}

s≤t1
1

)

·Pt1
1
+1

(

y2
1it1

1
+1 = 0, y

1
2it1

1
+1 = 0

∣

∣

∣
zi, {x1is}s≤t1

1
+1 , {x2is}s≤t1

1
+1 ,

{

y1
1is = 0

}

s<t1
1

,

y1
1it1 = 1,

{

y1
2is = 0

}

s≤t1
1

)

·pt1
1
+2

(

x1it1+2, x2it1+2

∣

∣

∣
zi, {x1is}s≤t1

1
+1 , {x2is}s≤t1

1
+1 ,

{

y1
1is = 0

}

s<t1
1

, y1
1it1 = 1,

y2
1it1

1
+1 = 0,

{

y1
2is = 0

}

s≤t1
1
+1

)

·Pt1
1
+2

(

y2
1it1+2 = 0, y

1
2it1+2 = 0

∣

∣

∣
zi, {x1is}s≤t1

1
+2 , {x2is}s≤t1

1
+2 ,

{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,
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y2
1it1+1 = 0,

{

y1
2is = 0

}

s≤t1
1
+1

)

· . . .

· . . .

·pt1
2

(

x1it1
2
, x2it1

2

∣

∣

∣
zi, {x1is}s≤t1

2
−1 , {x2is}s≤t1

2
−1 ,

{

y1
1is = 0

}

s<t1
1

, y1
1it1 = 1,

{

y2
1is = 0

}t1
2
−1

s=t1
1
+1

,

{

y1
2is = 0

}

s≤t1
2
−1

)

·Pt1
2

(

y2
1it1

2

= 0, y1
2it1

2

= 0
∣

∣

∣
zi, {x1is}s≤t1

2

, {x2is}s≤t1
2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,

{

y2
1is = 0

}t1
2
−1

s=t1
1
+1

,
{

y1
2is = 0

}

s≤t1
2
−1

)

·pt1
2
+1

(

x1it1
2
+1

∣

∣

∣
zi, {x1is}s≤t1

2

, {x2is}s≤t1
2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,

{

y2
1is = 0

}t1
2

s=t1
1
+1

,
{

y1
2is = 0

}

s≤t1
2

)

Pt1
2
+1

(

y2
1it1

2
+1 = 0

∣

∣

∣
zi, {x1is}s≤t1

2
+1 , {x2is}s≤t1

2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,

{

y2
1is = 0

}t1
2

s=t1
1
+1

,
{

y1
2is = 0

}

s≤t1
2

)

· . . .

· . . .

·pt2
1

(

x1it2
1

∣

∣

∣
zi, {x1is}s≤t2

1
−1 , {x2is}s≤t1

2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,

{

y2
1is = 0

}t2
1
−1

s=t1
1
+1

,
{

y1
2is = 0

}

s≤t1
2

)

Pt2
1

(

y2
1it2

1

= 1
∣

∣

∣
zi, {x1is}s≤t2

1

, {x2is}s≤t1
2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,

{

y2
1is = 0

}t2
1
−1

s=t1
1
+1

,
{

y1
2is = 0

}

s≤t1
2

)

P
(

B, {x1it}
t1
1
+t2

1

t=2 , {x2it}
t1
2

t=2 |zi

)

is derived in exactly the same manner. We therefore have

P
(

A|A ∪B, {x1it}
t1
1
+t2

1

t=2 , {x2it}
t1
2

t=2 , zi

)

= P
(

A, {x1it}
t1
1
+t2

1

t=2 , {x2it}
t1
2

t=2

∣

∣

∣
A ∪B, {x1it}

t1
1
+t2

1

t=2 , {x2it}
t1
2

t=2 , zi

)

=
a1

a1 + a2

where

a1 = Pt1
2

(

y2
1it1

2

= 0, y1
2it1

2

= 0
∣

∣

∣
zi, {x1is}s≤t1

2

, {x2is}s≤t1
2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,

{

y2
1is = 0

}t1
2
−1

s=t1
1
+1

,
{

y1
2is = 0

}

s≤t1
2
−1

)

·Pt2
1

(

y2
1it2

1

= 1
∣

∣

∣
zi, {x1is}s≤t2

1

, {x2is}s≤t1
2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,
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{

y2
1is = 0

}t2
1
−1

s=t1
1
+1

,
{

y1
2is = 0

}

s≤t1
2

)

=
(

1− Ft1
2

(

x′1it1
2

β1 + δ1
t1
2
−t1

1

+ α1
i

))

·
(

1− Ft1
2

(

x′2it1
2

β1 + δ1
t1
2
+S2i1

+ α1
i

))

·Ft2
1

(

x′1it2
1

β2 + δ2
t2
1
−t1

1

+ α2
i

)

a2 = Pt1
2

(

y2
1it1

2

= 0, y1
2it1

2

= 1
∣

∣

∣
zi, {x1is}s≤t1

2

, {x2is}s≤t1
2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,

{

y2
1is = 0

}t1
2
−1

s=t1
1
+1

,
{

y1
2is = 0

}

s≤t1
2
−1

)

·Pt2
1

(

y2
1it2

1

= 0
∣

∣

∣
zi, {x1is}s≤t2

1

, {x2is}s≤t1
2

,
{

y1
1is = 0

}

s<t1
1

, y1
1it1

1

= 1,

{

y2
1is = 0

}t2
1
−1

s=t1
1
+1

,
{

y1
2is = 0

}

s<t1
2

, y1
2it1

2

= 1
)

=
(

1− Ft1
2

(

x′1it1
2

β1 + δ1
t1
2
−t1

1

+ α1
i

))

· Ft1
2

(

x′2it1
2

β1 + δ1
t1
2
+S2i1

+ α1
i

)

·
(

1− Ft2
1

(

x′1it2
1

β2 + δ2
t2
1
−t1

1

+ α2
i

))

so

P
(

A|A ∪B, {x1it}
t1
t=1 , {x2it}

t2
t=1 , zi

)

(17)

=

(

1− Ft1
2

(

x′
2it1

2

β1 + δ1
t1
2
+S2i1

+ α1
i

))

· Ft2
1

(

x′
1it2

1

β2 + δ2
t2
1
−t1

1

+ α2
i

)

Ft1
2

(

x′
2it1

2

β1 + δ1
t1
2
+S2i1

+ α1
i

)

·
(

1− Ft2
1

(

x′
1it2

1

β2 + δ2
t2
1
−t1

1

+ α2
i

))

1 +

(

1− Ft1
2

(

x′
2it1

2

β1 + δ1
t1
2
+S2i1

+ α1
i

))

· Ft2
1

(

x′
1it2

1

β2 + δ2
t2
1
−t1

1

+ α2
i

)

Ft1
2

(

x′
2it1

2

β1 + δ1
t1
2
+S2i1

+ α1
i

)

·
(

1− Ft2
1

(

x′
1it2

1

β2 + δ2
t2
1
−t1

1

+ α2
i

))

Unless α1
i = α2

i this will not lead to expressions that can be used to make inference about

β and the duration dependence parameters without additional assumptions on the group–specific

effects α1
i and α2

i . Of course, there are many cases in which it would be reasonable to assume that

the model (including the group specific effects) are constant from spell to spell. In that case (17)

implies that under Assumption 2a,4

P
(

A|A ∪B, x1it2
1
, x2it1

2
, zi

)

=
exp

(

x′
1it2

1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

)

1 + exp
(

x′
1it2

1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

) ; (18)

4In this case it would be reasonable to impose β1 = β2 and δ1
τ = δ2

τ . This would further change the notation, so

we do not impose this restriction.
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and under Assumption 2b

P (A|A ∪B, x1it1 , x2it2 , zi)























> 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

> 0,

= 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

= 0,

< 1
2 it x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

< 0.

(19)

Finally, under Assumption 2c, and if t21 − t11 = t12 + S2i1

P (A|A ∪B, x1it, x2it, zi)























> 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 > 0

= 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 = 0

< 1
2 it x′

1it2
1

β2 − x′
2it1

2

β1 < 0

. (20)

Since (18), (19) and (20) do not depend on t11 and t12, the same statements are true if we redefine

A and B as A =
{

T 2
1i = t21, T

1
2i > t12

}

and B =
{

T 2
1i > t21, T

1
2i = t12

}

.

6.2.3 Comparing Two Second Spells

We next turn to the case where we compare the duration of the second spell for two individuals.

Let t11, t
2
1, t

1
2 and t22 be arbitrary with t11 < t21, t

1
2 < t22 and

∣

∣t21 − t22
∣

∣ ≤ τ , and recall that zi denotes

the set of predetermined variables for group i at the beginning of the sample.

Consider the two events A =
{

T 1
1i = t11, T

2
1i = t21, T

1
2i = t12, T

2
2i > t22

}

and B =
{

T 1
1i = t11, T

2
1i > t21,

T 1
2i = t12, T

2
2i = t22

}

. Mimicking the calculations above we find that under Assumption 2a,

P
(

A|A ∪B, x1it2
1
, x2it2

2
, zi

)

=
exp

((

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

)

1 + exp
((

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

) ; (21)

and under Assumption 2b

P
(

A|A ∪B, x1it2
1
, x2it2

2
, zi

)































> 1
2 if

(

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

> 0,

= 1
2 if

(

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

= 0,

< 1
2 it

(

x′
1it2

1

− x′
2it2

2

)

β2 + δ2
t2
1
−t1

1

− δ2
t2
2
−t1

2

< 0.

(22)

Finally, under Assumption 2c, and if t21 − t11 = t22 − t12

P
(

A|A ∪B, x1it2
1
, x2it2

2
, zi

)































> 1
2 if

(

x′
1it2

1

− x′
2it2

2

)

β2 > 0,

= 1
2 if

(

x′
1it2

1

− x′
2it2

2

)

β2 = 0,

< 1
2 it

(

x′
1it2

1

− x′
2it2

2

)

β2 < 0.

(23)
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Since (21), (22) and (23) do not depend on t11, the same statements are true if we redefine A

and B as A =
{

T 2
1i = t21, T

2
2i > t22

}

and B =
{

T 2
1i > t21, T

2
2i = t22

}

.
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Table 1. Summary Statistics: Births in Northeast Brazil 1976-1986

Variables Mean or Percent in Category

Gender

Male 50.58%

Maternal age (years)

Mean 26.02

Standard deviation 6.01

Birth order/preceding birth intervala

First birth 21.11%

Order 2-4/short 9.40%

Order 2-4/medium 20.20%

Order 2-4/long 13.27%

Order 5+/short 9.00%

Order 5+/medium 16.84%

Order 5+/long 10.18%

Number of births 2,946

Number of deaths 430

a Previous birth interval length: short, <15 months; medium, 15-29 months; long, > 30 months.
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Table 2. Distribution of Children by Family

Children Death per family

per family 0 1 2 3 4 5 6 Total

1 255 12 267

2 239 44 2 285

3 143 41 15 3 202

4 69 30 9 2 0 110

5 43 34 15 9 3 0 104

6 15 18 8 5 3 0 1 50

7 4 4 7 4 2 0 0 21

8 1 2 4 3 1 1 0 12

Total 769 185 60 26 9 1 1 1,051
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Table 3. Estimates of Child Mortality Model With and Without Family Effects

Variables Model 1 Model 2 Model 3

Age (months)a

1-5 -2.649 (0.422) 0.462 (0.141) -1.215 (0.149)

6-11 -3.533 (0.429) 0.009 (0.160) -1.824 (0.167)

12-23 -5.229 (0.457) -1.076 (0.227) -3.533 (0.237)

24+ -7.901 (0.469) -1.200 (0.255) -5.069 (0.255)

Birth ordering

/preceding birth intervalb

First -0.897 (0.278) -0.264 (0.267) -0.589 (0.324)

Order 2-4/short 0.865 (0.294) 0.009 (0.225) -0.070 (0.289)

Order 2-4/long -1.237 (0.322) -0.550 (0.292) -0.811 (0.321)

Order 5+/short 1.206 (0.321) 0.172 (0.265) -0.088 (0.350)

Order 5+/medium 0.591 (0.276) 0.129 (0.268) -0.010 (0.376)

Order 5+/long -0.412 (0.376) -0.547 (0.387) -0.788 (0.567)

Gender

Male 0.229 (0.162) 0.178 (0.133) 0.106 (0.183)

Maternal age

Linear effect 0.030 (0.108) -0.447 (0.167) -0.291 (0.193)

Squared effect -0.0013 (0.0019) 0.007 (0.003) 0.005 (0.003)

a Omitted category: age < 1 month.
b Omitted category: order 2-4/medium.
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