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LEARNING [N SENDER-RECEIVER GAMES

By Andreas Blume, Douglas V. DeJong, George R. Neumann and N. E. Savin~

Headnote

This paper compazes a well-known stimulus-response (SR) model and a belief-based

learning (BBL) model using experimental data from sender-receiver games. When the

models are fitted to the data by maximum likelihood, the fits aze good for both models. In

contrast to Camerer and Ho [1997], we compaze the models using a formal statistical
procedure based on the Davidson and MacKinnon P-test for non-nested hypotheses. The
motivation for using this test is that the models are naturally non-nested. Both models

involve a certain adjustment parameter, which measures the importance of forgetting.

Our results show that the outcome of the test is sensitive to the value chosen for the

adjustment pazameter. Depending on the value selected, the P-test favors the SR model,

the BBL model or neither of the models. A point often overlooked in empirical work is
that information from learning can only come from observations where learning occurs.

A preliminary examination suggested that our results were affected to some degree by

observations taken after behavior has converged. We adjusted the data for this

convergence effect and found that the results where not mazkedly different from our

original findings.

Keywords: Games, experiments, non-nested testing

JEL codes: C7, C9, C13



1. INTRODUCTION

Our objective in this paper is to use experimental data to investigate how much available

information players use when leaming how to play a game. Three appealing criteria for a

learning model are the following: (1) leaming at the level of the individual; (2) stochastic

choice; and (3) parsimony. The well-known stimulus-response SR model of Roth and

Erev [1995] satisfies all three of these criteria, besides being consistent with some of the

stylized facts established in the psychological leaming literature. The key feature of SR

learning is that it requires only minimal cognitive abilities on the part of players. This

feature of the model is appealing for those who want to show that high-rationality

predictions can be derived from a low-rationality model. A closely related feature is that

SR leaming requires only minimal infortnation. All that players need to know are the

payoffs from their own past actions; they need not know that they are playing a game,

they need not know their opponents' payoff or their past play. These two closely related

features make the SR model a natural benchmark in our investigation. In addition, it can

be applied in a wide variety of settings.

On the other hand, it seems quite likely that individuals would try to exercise

more cognitive ability and hence try to use other available information. In belief based

learning (BBL) models, like fictitious play (Robinson, 1951) or one of its stochastic

variants (Fudenberg and Kreps, 1993), the players use more infortnation than their own

historical payoffs. This information may include their own opponents' play, the play of

all possible opponents and the play of all players. Models of this kind embody a higher

level of rationality; e.g. fictitious play can be interpreted as optimizing behavior given

beliefs that are derived from Bayesian updating. In our investigation, we compare a

simple BBL model against the SR model.

We consider five experimental treatments, each with three replications. Each

replication is divided into two sessions, Session I, which is common to all treatments and

Session II, which varies across treatments, both of whích last for 20 rounds. We

concentrate on Session II data. In each treatment, there are two populations of players,



senders and receivers, where in each round one sender is randomly matched with one

receiver to play a given sender-receiver game. The treatments examined here differ in

terms of the players' incentives and the infotmation that is available afier each round of

play. For one treatment, the only information available to a player is the history of play in

her own past matches. Two questions are examined for these cases. The first is whether

learning takes place. If leaming does take place, the second question is whether the

leaming is captured by SR model. In all the other treatments, there is information

available to the players in addition to the history of play in their own past matches. For

both senders and receivers, this information is the history of play of the population of

senders. Three questions aze examined for these treatments. The first again is whether

leaming takes place. If leazning does take place, the second question is whether learning

is different from that in the previous treatment, and the third is whether the BBL model

better describes learning than the SR model. The data used in this paper is from the

experiments in Blume, DeJong, Kim and Sprinkle [1997].

The initial step in our analysis was to fit the SR and BBL models to the data

generated by the various treatments. We found that, regardless of treatment, both models

fit about equally well as measured by the coefficient ofdetermination.

We let the BBL model take a form that is analogous to the SR model. In both

cases choice probabilities depend on propensities. The models differ in how the

propensities are updated. In the SR model the propensity for taking an action is solely

dependent on a player's own past payoffs from that action, whereas in the BBL model

the propensity depends on the average payoff across all players who took that action.

Owing to the similar structure, it would appear that the SR and BBL models can be

nested in an encompassing model, like that of Camerer and Ho [1997]. However, the

approach of Camerer and Ho [1997] is misleading since the propensities, which are

calculated from the estimated parameter values, differ across the models. One way to

calculate the unobserved propensities is to impose the paruneter values used in the

literature. We found, however, that these values are overwhelmingly rejected by data. For

the purpose of comparing the models, a more natural approach is to use a non-nested



testing procedure. In this paper, we employ the Davidson and MacKinnon P-test for non-

nested hypotheses. The outcome of the P-test is sensitive to the value chosen for the

adjustment parameter. We show that depending on the value selected, the P-test favors

the SR model, the BBL model or neither of models

A point often overlooked in empirical work is that information about learning can

only come from observations where learning occurs. Once behavior has converged,

observations have no further information about leaming. Including such observations

will make the model appear to fit better, while at the same time reducing the contrast

between the models, making it difficuit to distinguish the models empirically. We call

this effect convergence bias. A preliminary examination suggested that our results were

afTected to some degree by convergence bias. Accordingly, we eliminated observations

where it appeared that learning has ceased and reanalyzed the remaining data. The results

of this reexamination were not markedly different from our original finding.

2. GAMES AND EXPERIMENTAL DESIGN

Our data aze generated from repeated play of sender-receiver games among randomly

matched players. Players aze drawn from two populations, senders and receivers, and

rematched after each round of piay. The games played in each round are between an

informed sender and an uninformed receiver. The sender is privately informed about his

type, t, or tz, and types are equally likely. The sender sends a message, ' or ti, to the

receiver, who responds with an action, a„ a2 or a~. Payofis depend on the sender's private

information, his type, and the receiver's action, and not on the sender's message. The

payoffs used in the different treatments are given in TABLE I below, with the first entry

in each cell denoting the sender's payoff and the second entry the receiver's payoff. For

example, in Game 2, if the sender's type is t, and the receiver takes action aZ, the payofis

to the sender and receiver are 700,700, respectively.

A strategy for the sender maps types into messages; for the receiver, a strategy maps

messages to actions. A strategy pair is a Nash equilibrium if the strategies aze mutual
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best replies. The equilibrium is called separating if each sender type is identified through

his message. In a pooling equilibrium, the equilibrium action does not depend on the

sender's type; such equilibrium exists for all sender-receiver games. In Game 2, an

example of a sepazating equilibrium is one where the sender sends ~` if he is ti and ~

otherwise and the receiver takes action a2 after message' and a, otherwise. An example

of a pooling equilibrium is one in which the sender, regardless of type, sends ~` and the

receiver always takes action a,.

A replication ofa game is played with a cohort of twelve players, six senders and six

receivers. Players are randomly designated as either a sender or receiver at the start of thc

replication and keep their designation throughout. [n each period of a game, senders and
receivers are paired using a random matching procedure. Sender types are independently

and identically drawn in each period for each sender.

In each period, players then play a two-stage game. Prior to the first stage, senders

are informed about their respective types. In the first stage, senders send a message to the

receiver they are paired with. In the second stage, receivers take an action after receiving

a message from the sender they are paired with. Each sender and receiver pair then learns

the sender type, message sent, action taken and payoff received. All players next receive

information about all sender types and all messages sent by the respective sender types.

This information is displayed for the current and all previous periods of the replication.
To ensure that messages have no a priori meaning, each player is endowed with his

own representation of the message space, i.e. both the form that messages take and the

order in which they are represented on the screen is individualized. The message space

M-{', !~ } is observed by all players and for each player either appeazs in the order ~,t

or ', !k. Unique to each player, these messages aze then mapped into an underlying,

unobservable message space, M-{A,B}. The mappings are designed such that they
destroy all conceivable focal points that players might use for a priori coordination,

Blume et aL[1997]. The representation and ordering are stable over the replication.

Thus, the experimental design focuses on the cohort's ability to develop a language as

function of the game being played and the population history provided.
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Note that in this setting we learn the players' action choices, not their strategies. Also,

the players themselves receive information about actions, not strategies. They do not

observe which message (action) would have been sent (taken) by a sender (receiver) had

the sender's type (message received) been different. This is important for how we

formulate our learning rules; e.g. in our setting the hypothetical updating (see Camerer

and Ho (1997)) ofunused actions that occurs in BBL cannot rely on knowing opponents'

strategies but instead uses infonnation about the population distribution of play. For

example, for the receiver the best reply to a message that he did not receive is determined

by the distribution of sender types that sent the messages.

The data consist of three replications for each game. Replications for Game 1 and 2

were played for 20 periods and Game 3 and 4 for 40 periods.' There were two different

treatments conducted with Game 1, one with and one without population history. In the

treatment with history, senders and receivers observe sender history, that is, the types of

drawn and the messages sent by type in all prior periods. In each replication two sessions

of the game were played. In this paper we focus on the analysis of sender behavior using

the data from the second session. The attraction of wncentrating on sender behavior is

that senders have the same number of strategies in all of our treatments. A potential

drawback of this focus is that since senders do not receive information about the history

of receiver play at the population level, they cannot form beliefs based on that

infotmation. Instead they have to make inferences from what they leam about sender

population. We also examined receiver behavior and found essentially the same results

as for senders.

3. TESTING SR AND BBL MODELS

In this section we report the results of estimation of SR and BBL models of

behavior. The models are similar in that both use propensities to determine choice

probabilities. In our extensive form game setting, we have to make a choice of whether

we want to think of players as updating propensities of actions or of strategies. Both

choices constrain the way in which the updating at one information set affects the
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updating at other information sets. If actions are updated, then there are no links across

information sets. If strategies aze updated, then choice probabilities change continually at

every information set. We chose updating of actions, which amounts to treating each

player-information set pair as a separate player. We use the index i to refer to such a pair

(n, 0), where n denotes one of the six senders, 0 a type realization for that sender, and the

pair i is called a player.

By SR we mean that individual play is affected only by rewards obtained from

own past play. Specifically, following Roth and Erev [1995] define the propensity, Q;~(t),

of player i to play action j a[ time t as:

(3.1) ~;i(t)-rVoQ~(t-1)t~,X,~(t-1)

where X;~(t-1) is the reward player i receives from taking action j at time t-l. Time here

measures the number ofoccurrences ofa specific type for a fixed sender; cpo measures the

lag effect ( i.e. the importance of forgetting), and cp~ the contribution of the most recent

observation. Note that t is not real time. Given this specification of propensities, the

probability that player i takes action j is a logit functionz

(3.2) P,-~ (t) - Pr(Player i lakes action j at time t) - Q'(~)
~Qr(~)

To complete the specification of the SR model we require an initial condition for the

propensities- the values of Q;~(1). Values chosen for Q;~(1) afiect P;~(1) and the speed with

which rewards change probabilities of playing a particular action. In the spirit of Roth

and Erev [1995] we set Q;,(1) - Qiz(1)- 500, which is on the scale of rewards received by

participants in the experiments.'

For these experiments we examine the behavior of senders, who can be of two

types. Each type could send message "1" or "2". Let y- I{message-"2"}, where I{A}

is the indicator function that takes the value 1 if event A occurs and 0 otherwise. The log
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likelihood function for the sender data is
N 1'

(3.3) ln!(wo.~Gi)-~~Y„]n(~z(r))t(1-Y„)In(1-P,i(t)).

The likelihood function was maximiud separately for each of the 15 replications using

observations from round 2 onwards. Because the quantal choice model has a regression

structure the maximi7ation can be achieved by Iteratively Re-Weighted Least Squazes,

which provides measures of fit for the non-lineaz regression. We use these measures to

describe the explanatory power ofeach specification. The results ofdoing so are shown

in TABLE II. Columns 2 and 3 of the table contain the estimates of ~po and ~p, and

columns 4 and 5 contain the log likelihood value at the optimum, and the R' statistic, the

squared correlation ccefficient between the binary dependent variable and its predicted

value. Column 6 contains the likelihood ratio test statistic for the hypothesis Ho: wo -~v~ -

1.0, parameter values consistent with mean updating.

Two features stand out in the table. First, estimates of cpo and w, aze generally

quite far from l, judging from the LR test p-values reported in column 7. Only for

G1NHR2 would the hypothesis not be rejected by the conventional statistical test.

Second, the SR model, when the parameters are chosen optimally, fits the experimental

data well, judging by the R2 values reported in column 5. Over the I S replications the SR

model explained 79"~0 of the variation in messages sent by the participants. Figure 1

shows the probability of sending message 2 for each agent type by period for the 15

replications. The line mazked with the numeral "1" shows the fraction of type 1 agents

playing message "2" each period while the line marked with a circle shows the model's

predicted fraction of type 1 agents playing message 2. Precisely the same information is

shown for type 2 agents by the line mazked with the numeral 2(actual fraction) and a

triangle (predicted fraction). Thus, in the game shown in the top left-hand graph in the

figure - G1R1 - 50"~0 of type 1 agents play message 2 in round 1, as do SOo~o of type 2

agents. By period 7, 100"~0 of type 1 agents play message 2, and 100"~0 of type two agents

play message 1. A similar pattern appears in replications 2 and 3 of Game 1, and in all

three replications of Game 2. A complete discussion of the empirical pattems in these
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experiments is given in Blume, DeJong, Kim, and Sprinkle [1997j. Figure I

demonstrates that SR when fitted to the experimental data of BDKS fits that data closely.

An alternative literature (e.g., van Huyck, et al [1996], Cheung and Friedman

[1997j), and Camerer and Ho [1997]) argues that variants of fictitious play -BBL --are

better characterizations of play in experiments. BBL is expected to dominate SR because

BBL uses more information, namely in our setting the experiences of other participants.

Specifically, define the propensity, Q;~(t), of player i to play action j at time t as:

(3.4) Q;;(i)-QoQ;i~i-t)tQ,X,(r-1)

that jZ (t-1) is the average reward all players received from taking action j at time t-1.

Note that j{. - k~X ;~ t(1-k) X-;;, where k- lltt{persons playing action j in round t}

and X-;~ is the average return to all individuals other than i who play action j. Note that if

Ho: po - p„ this is (weighted) mean updating. The choice probabilities again are logit as

in (2.2) with (2.4) replacing (2.1) as the definition of Q;~, and the likelihood function is

(2.3).

TABLE III contains the estimates for each of the 15 replications. Columns 2 and 3

of the table contain the estimates of po and p„ and columns 4 and 5 contain the log

likelihood value at the optimum, and the R2 statistic evaluated at the mle. Column 6

contains the likelihood ratio test statistic for the hypothesis EIo:[3o -[i„ the value implied

by strict mean updating.

Again, two features stand out in the table. First, estimates of po generally are

fairly close to 1, but estimates of p, aze substantially lazger, indicating that recent rewards

are given greater weight. The hypothesis that they aze given equal weight is rejected by a

wide margin in all cases, as judged by the likelihood ratio test shown in column 6.
Second, the BBL model, when the pazameters are chosen to maximize a likelihood

function, also fits the experimental data well. In the 15 cases the RZ value ranges from

.62 to . 97; on average the BBL model explains 79.90~0 of the variation in messages sent.

The fit of this model is illustrated in Figure 2, which shows the relation of predicted
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response and actual response by period. The comparison of RZ's is suggestive: BBL

"wins" in most cases with population history information, SR wins without that

information.

4. COMPARING SR AND BBL MODELS

Figures l and 2 demonstrate the problem of distinguishing SR and BBL models of

behavior. Both SR and BBL learning fit the data well; hence, distinguishing these

models is difficult. For example, in the BDKS data the average difference in R' is .008,

and the typical sample size is 108. Thus, an eyeball test dces not show a great preference

for one leaming specification. But an eyeball test may not be very powerful in these

circumstances so resort might be had to a more formal testing procedure. Making

probabilistic comparisons between the SR and BBL models is difficult because the

models are non-nested. By a nested model we mean that the model being tested, the null

hypothesis, is simply a special case of the altemative model to which it is compared. In

contrast to Camerer and Ho [1997], we compare the SR and BBL models in a non-nested

framework. In particular, we employ Davidson and MacKinnon's P-test for non-nested

hypothesis testing in the following manner. Write the models described in equations

(3. I) and (3.4) and a nested composite model as:

H,:E(Y~(t))- F;íQ,-~,Xj(t -1);~)
(4.1) HZ:E(Y~(!))-F(Q,-~,Xi(!-1);~

H.: E(Yi U)) -(I -a)F,(Q~-i, X;~(t -1),~V) f~:(Q,-i, X~(t -1);~

where ~p and p are ( kf 1) x 1 dimension vectors with k the dimensionality of X;~ , and Q;~

and Q;~ are the propensities evaluated at the estimated parameter values. Models 1 and 2

differ because X;~ s X; in general, and because the Q's differ unless the parameter

restrictions discussed above hold. (To reinforce the latter point, the two Q's are

distinguished by using a hat and a tilde.). Following Davidson and MacKinnon [1984,
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1993] we test H, against H~ by replacing ~3 by its mle, ~i, and constructing the artificial

regression:

(4.2) V-"Z(y- F,)-V-"Zf,X,~rptcrV-"Z(FZ-F)tresiduul

where V""Z is the square root of the variance covariance matrix for the dichotomous

variable y. In the same fashion we test Hz against H~ by replacing ~p by its mle, ~, and

constructing a similar artificial regression. The test for nesting is a test of the hypotliesis

that a - 0. There are four outcomes that can arise from this pair of tests: (a) accept both

models; ( b) reject both models; (c) accept model 1 and reject model 2; and (d) accept

model 2 and reject model 1. Obviously, the first outcome provides no evidence favoring

either model of behavior. A rejection ofboth models could occur for several reasons, one

of which is a mixture model. Specifically, the composite hypothesis H~, can also be

interpreted as the hypothesis that a percent of the population plays according to BBL and

(1-a)-percent use SR.

There are two reasons why the BBL and SR models are non-nested hypothesis,

and consequently we proceed in two steps to test the hypotheses. In the first stage we

maintain the assumption that the adjustment parameters are the same:Q~ - ~po, and that

only the specification of the X's differs between the models. Because the test statistic

depends upon which (common) value is assigned to the adjustment pazameter, we

evaluate it once at the mle for ~p, computed assuming that the SR model is correct, and

once at the mle for p, computed assuming that BBL is coaect. Finally, we compute the

P-test statistic without any constraint on the adjustment pazameter. TABLE IV contains

the absolute value of the t-statistics for testing the hypothesis a- 0 for each of the 15 sets

of experiments. In discussing these tests we use a 950~o confidence interval as a reference.

Summaries of the tests are shown in Figure 3.

Figure 3 shows that the choice ofhow propensities or attractions are updated has a

large influence on the test results. When ~io -~o - ~ïsR , as in ( a), the data accept SR in

13 of 15 cases. When ~o - Qo - ~iBeL as it does in Figure 3, the evidence becomes

persuasive for BBL. [n only 4 of IS cases is SR accepted, while BBL is accepted in 14 of
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15. But when (~o and rpo are unconstrained, ~po -~o~ and Qo - ~o .~ in the artificial

regressions summarized in (c), the evidence supporting either theory is equivocal. In 8 of

I 5 cases SR is accepted, and in 8 cases BBL is accepted. Ignoring the 5 cases where both

models are accepted and the 4 cases where both cases are rejected, leaves 3 cases where

SR is accepted and BBL rejected, and precisely 3 cases where the reverse is true. Thus

the data render a Scotch verdict: the case for either model is not proved.

There is a pattem in the tests that suggests an explanation for these results. The 3

cases that support SR and reject BBL all come from the experiments G1NH. These are

the experiments where history of play information was not made available to senders or

receivers. Consequently, the case for SR behavior is stmngest here. Similarly, 2 of the 3

cases that support BBL and reject SR come from the G1 experiments where information

about the history ofplay was made available to receivers. In these experiments a stronger

a prrori case for BBL can be made. Thus, it appears that the structure of the experiment

has an important effect upon the modality of leaming behavior that occurs.

We also examined receiver behavior. Unlike senders, receivers actually have the

information that is needed to engage in forms of leanting like fictitious play. Thus a

comparison between sender and receiver learning can inform us about the importance of

the type of information that is available at the population level. A direct comparison

between sender and receiver behavior is not possible for all experiments because

receivers frequently had more actions that they could take. However, for Gamel, both

with and without information on history ofplay, both senders and receivers faced binary

choices and a comparison could be made. Generally, the results for the receiver data

looked much like the sender data. Both SR and BBL models fit the data well, with SR

doing slightly better in the games with no history, and BBL doing better where history of

play information was available. The average difference in R' was 0.03 across the six

gameslreplications. Figure 4 summarizes the six experimental results. Overall, the test

results in Panel (c) of the figure show SR being the preferred model in 4 of the 6 cases,

with BBL the preferred model in the other two cases, both ofwhich were from the games

with history of play information available. Though consistent with a learning story, this

is only weak evidence in favor ofone model, and underscores our point that it is difficult
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to tell these models apart with any degree ofprecision.

5. CONVERGENCE BIAS

It is common practice to include all observations from a particular experiment in

any statistical estimation or testing exercise based on that experiment. Yet information

about leaming can only come from observations where leaming occurs. Once behavior

has converged, observations have no further information about learning. Including such

observations will make the model appear to "fit" better, while at the same time reducing

the contrast between models, making it difficult to distinguish the models empirically.

The data shown in Figures 1 and 2 indicate that convergence typically occurs within 5 to

7 rounds, while observations are included in the estimation for the entire period, in these

data up to 20 periods. To illustrate the possible bias that this might cause we calculated

R' and average log likelihood (- maximized log likelihoodl Ik of observations used) by

progressively removing observations from the right tail, that is, by removing observations

that include convergence. Figure 5 illustrates this bias for the experiments of game l.

Under the hypothesis of no convergence bias we would expect the slopes of each line in

panels (a) and ( b) of the figure to have zero slope. In fact, all four lines have positive

slope, which is characteristic of convergence bias. However, the difference between the

lines in each panel is approximately constant in these data, which suggests that

convergence bias makes both models appear to fit the data better, but does not otherwise

bias the comparison of SR and BBL.

To measure the amount of bias requires taking a position on when convergence

has occurred, a classification that is better made on individual data. We define the

convergence operator TP(y;,) by

(5) T~(Y;i) - 1 ~i Yn -Y,i-i -...-Y,i-n

- 0 el.se
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In other words a player's (pure) strategy is said to have converged if the same action is

taken p times in a row.' To eliminate convergence bias one simply excludes observation

where TP 1. We used this procedure with p- 3 and p- 4 to assess the extent of this bias.

We found that at least for these data, the extent of the bias was small. For example, the

non-nested hypothesis tests shown in Figure 3(c) had the same off-diagonal values (3),

while the accept -accept entry changed from 5 to 3, while the reject-reject entry changed

from 4 to 6. In other words, correcting for convergence bias sharpened the distinction

between the two models but it did not favor either model.

6. RELATED LITERATURE

There is an extensive and growing literature in experimental economics on

learning, e.g. Boylan and EI-Gamal [1993], Camerer and Ho [1997], Cheung and

Friedman [1997], Cooper and Feltovich [1996], Cox, Shachat and Walker [1995],

Crawford [1995], Roth and Erev [1995]. The literature generally focuses on two broad

classes of learning models, stimulus-response and belief based play. A wide variety of

games are considered with various designs, e.g., whether or not players are provided with

the history of the game. The perfonnances of the leanvng models are evaluated using

simulation and various statistical techniques. Unfortunately, the findings are mixed at

best. This could be due to statistical issues, Fudenberg and Levine's [1997] conjecture

that with convergence to Nash in the "short tenn," the models maybe indistinguishable, or

a combination of the two.

The seminal paper that deals with the stimulus-response model is Roth and Erev

[1995]. Their concern is high (super rationality) versus low (stimulus-response) game

theory and intermediate (e.g., Fudenbetg and Levine's "short term") versus asymptotic

results. Roth and Erev focus on a simple individual reinforcement dynamic in which

propensities to play a strategy are updated based upon success of past play. Using

simulation, they avoid the problem of estimation and compare the simulations to their

experiments. The simulated outcomes are similar to observed behavior and, more
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importantly, vary similarly across the different games considered. They interpret this as

robustness of the intermediate run outcomes to the chosen learning rule.

Roth and Erev's dynamic is similar to the reinforcement dynamic of Bush and

Mosteller [1955] and Cross [1983] except that in the latter probabilities are updated

instead of propensities. Mookherjee and Sopher [1994] evaluate the rote model of Bush

and Mosteller by comparing its performance to the belief based fic[itious play model

using logit and other statistical comparisons. In the matching pennies game with a mixed

strategy equilibrium (with and without game history), nothing works in the no

information condition. With information, average payoffs and Bush-Mosteller had some

explanatory power but not fictitious play.

Cheung and Friedman's [1997] conclusions are just the opposite. Using a variety

of games and an information condition (with and without game history), Cheung and

Friedman compare the performance of Cournot, fictitious play and rote learning. In the

extended probit, the belief based model has more support than rote learning and

information matters. Boylan and EI-Gamal [1993] compaze Coumot and fictitious play in

a broad cross-section of games obtained from other reseazchers. Using a Bayesian

approach, fictitious play is the overwhelming choice.

Van Huyck, Battalio and Rankin [1997] focus on 2x2 symmetric coordination

games and evaluate the performance of the replicator dynamic, fictitious and exponential

fictitious play. Models of reinforcement leaming can be used to justify the replicator

dynamic (e.g., Boergers and Sarin [1995]). Using the standard logit model to rank

performance, exponential fictitious play does best, followed by fictitious play and then

the replicator dynamic.

McKelvey and Palfrey's [1995] model of quantal response equilibria in normal

form games deserves some attention here. The quantal response model is Nash with

error. Mckelvey and Palfrey develop this model with a logistic quantal response

function. The equilibrium is then evaluated using the logit model and the developed

maximum likelihood estimates for the data considered. They find that the quantal

response model wins when compared to Nash without error and random choice.

Important for us is their conclusion that errors are an important component in explaining
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experimental results. This has been implicitly assumed in the previous studies when

logits and probits aze used to analyze data and explicitly assumed in the Erev and Roth

study cited below.

The lack of general findings in these and other papers has prompted a new series

of studies.' The studies can be broadly described by the approaches they take. Camerer

and Ho [1996] essentially give up on the horse race and develop a general model, which

has as special cases the principle learning models in the literature. The key that ties the

SR models to the belief BBL models is the reinforcement used. In the SR model the

reinforcement is the average of past payoffs and for BBL models it is previous expected

payoffs. When average and expected payoffs aze the same so are the models. Using

maximum likelihood estimation under the constraints of logit, Camerer and Ho evaluate

the possible contribution of the general model across a variety of games. As one would

hope, the general model explains more of the variation; note, however, that we have to

interpret this result with caution because of the lack of nesting.

Erev and Roth [1997] continue their focus on the SR model via simulation but

expand their analysis in two ways. First, they obtained data for games that were

conducted for ] 00 periods or more. Second, they use the error structures from the

simulations with statistical tests to compare the performance of their model with

alternative models. In particulaz, the Nash equilibrium prediction, deterministic and

stochastic fictitious plan at the aggregate level and for the within subjects comparison,

they added exponential stochastic fictitious play and best reply to the previous period.

Their model outperforms the others. The key insight is that a very simple SR model

generates simulated data that closely mirror experimental data under a wide variety of

circumstances. Furthermore, the SR model cannot easily be improved on by other (more

sophisticated ) models.

Selten [1997] is the true agnostia, He claims there is not enough data to fortn any

conclusions, either theoretical or statistical. The best we can do is very general qualitative

models (e.g., learning direction theory) in which there are tendencies that aze distinct

from random behavior but nothing more. This view brings us full circle to Fudenberg

and Levine's conjecture about whether you can distinguish among the models if
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equilibrium play is observed in the "short term"or altematively, the statistical issues make

such comparisons moot.

The resolution of this debate is ultimately an empirical one. Based on the data in

this paper, we find that it is difficult to discriminate between the SR and BBL models. In

general, it appears that care are must be exercised when constructing the statistics for the

horse races and simulation comparisons that are made.

7. SUMMARY AND CONCLUSIONS

In this paper we investigated how well SR and BBL models describe learning in a

sender-receiver game experiment. In the experiment an extensive form game is played

repeatedly among players who are randomly matched before each round of play. This

population-game environment is particularly appropriate for a comparison of myopic

learning rules, if we believe that it lessens the role of repeated game strategies. Sender-

receiver games with costless and a priori meaningless messages have the advantage that

no matter how we specify the incentives, coordination requires leaming. One

consequence of studying learning in extensive form games is that since players in the

experiment observe only each others' actions, not strategies, the principle difference

between the two learning models is in the roles they assign to own experience versus

population experience. Another consequence is that there are different natural

specifications even for a learning model as simple as SR; we chose the cognitively least

demanding one, in which experience at one information set does not transfer to other

information sets.

We found that both models fit our data well and the predicted choice probabilities

closely track the actual choice frequencies. It is suggestive that the BBL model fits

slightly better than SR when population information is available, and vice versa without

such information. However the differences are not lazge enough to be conclusive.

There have been recent efforts to embed both models in an encompassing model

and to perform nested tests on this modeL However, such tests are invalid if the supposed
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encompassing model involves unobserved variables whose values have to be calculated

from the pazameters of the model. Therefore a non-nested test is appropriate. Using such

a test, we found that depending on parameter choices, this test may favor either model. If

parameters aze unrestricted, both models are approximately equally often accepted and

rejected. Thus, like the comparison of fits, the formal test does not pen~nit us to choose

one model over the other. We raise the issue of convergence bias and show that for our

data correcting for this bias does not lead to better discrimination between the two

models.

Our treatment of testing with experimental data has been, from a statistical point

of view, entirely conventional. We have assumed that standard asymptotic theory

provides a reliable guide for inference in models with sample sizes encountered in

experimental economics. Consequently, we have not studied issues such as the size and

power of these tests, nor have considered the optimal design of experiments. We note

however that the theories of leaming in games are unusually rich in that they specify the

data generation process precisely enough so that statistical performance under a specific

null hypothesis can be assessed prior to obtaining the data by experimentation. Current

practice in experimental economics chooses some experimental design par~ameters by

whimsy, e.g., assigning participants to "types", choosing the number of periods to run an

experiment, allocating payoffs for particular response. Consideration of optimal

experimental design issues will allow a principled choice of these parameters, as has long

been the case in other sciences with experimental data.

In summary, we provide further evidence that often very simple low-rationality

models provide good descriptions of experimental leaming data. While the availability of

more information appears to favor the model that makes use of that information, it is

difficult to significantly improve on the cognitively least demanding model. The issue of

how well the available information is used appears to be difficult resolve and may require

examination of (1) whether the classical tests are valid in such settings and (2) what size

and type of data sets would permit a distinction.
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FOOTNOTES

' We gratefully acknowledge the helpful comments of Drew Fudenberg in early

discussions and Al Roth and Ido Erev for giving us access to their software.

2 All replications had a common session, which preceded the games described above. In

particular, each cohort participated in 20 periods of a game with payoffs as in Game 1 and

a message space ofM-{A,B}. The common session provides players with experience

about experimental procedures and ensures that players understand the structure of the

game, message space and population history.

' The specification of the logit function in (2.2) exploits the fact that all rewards, X, in the

games that we examine aze non-negative. Were this not the case, a transform that keeps

the value of the payoffs non-negative, such as the exponential function, can be used.

" We note that in principle one could treat Q;~(1) as a factor common to all agents and

estimate its value by exploiting cross-sectional differences in play. For the experiments

that we analyze in this paper the number ofcross-section units is 6, so this is not a useful

strategy.

5 Defining convergence for mixed strategies is conceptually the same as the pure strategy

case; empirically identifying convergence is more difficult.

R The number of studies is growing at an increasing rate. Consequently, we select

representatives from the set and apologize for any omissions.
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Table I

Payoffs of Games in Experiments

Panel (a)

Game2
a,

Types Game 1
a, az a, aZ

Actions

t, 0,0 700,700 0,0 700,700 400,400
tZ 700,700 0,0 70Q700 0,0 400,400

Panel (b)

Types Game 3
Actions

Game 4
a, az a, a, ai a,

t, 0,0 200,700 400,400 0,0 200,500 400,400
t2 200,700 QO 400,400 200,500 0,0 400,400
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TABLE II

Model
G1R1
(N-108)
G1R2
(N-108)
G1R3
(N-138)
G1NHR1
(N-108)
G1NHR2
(N-108)
G1NHR3
(N-108)
G2R1
(N-108)
G2R2
(N-108)
G2R3
(N-108)
G3R1
(N-108)
G3R2
(N-138)
G3R3
(N-138)
G4R1
(N-138)
G4R2
(N-138)
G4R3
(N-138)

Maximum Likelihood Estimates ofSR Model

No
0.3802
(O.1S6)
0.4996
(O.1S6)
0.5137
(O.1S9)
0.5903
(0.107)
0.9590
(0.121)
0.7133
(0.098)
0.3357
(0.189)
-0.0012
(0.086)
-0.0003
(O.11S)
-0.0018
(0.179)
0.7710
(0.095)
1.0040

(0.120)
0.61 S 1
(0.098)
0.6586
(0.097)
0.6253
(0.087)

~p, Lnl R` LR-stat P-value
0.6477 -35.44 .8233 19.9 O.Ooro
(O.S46)
0.6125 -25.89 .8728 9.4 0.20~0
(0.425)
0.8767 -44.26 .8064 ] 3.5 O.Ooro
(0.786)
O.S519 -49.46 .7309 10.9 0.1"~0
(0.3SS)
0.8658 -57.42 .6327 0.2 67.3"~0

(O.SSS)
0.9876 -40.39 .7744 13.1 O.Oo~o

(O.S28)
0.8265 -13.77 .9257 28.8 0.0"~0
(0.713)
-0.0023 -9.02 .9487 32.7 0.0"ro
(0.164)
-0.0009 -25.84 .9253 7.7 O.SaIo
(0.308)
-0.0143 -9.03 .8992 58.0 O.Ooro
(0.002)
1.4869 -70.25 .6824 4.1 4.4oro
(0.938)
2.0306 -63.40 .6802 4.1 4.4oro
(1.165)
0.2335 -70.01 .6472 15.7 0.0"~a
(0.203)
3.9301 -30.40 .8684 30.3 O.Oo~a
(2.241)
0.3408 -76.28 .6445 7.2 0.7"~0
(0.264)

Notes: Standard errors in parentheses beneath coefficient estimates.
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TABLE III

Maximum Likelihood Estimates ofBBL Model

Model po p, Lnl R LR-stat P-value
G1R1 0.7839 8.2170 -27.55 .8633 24.5 0.0"ro
(N-108) (0.201) (3.580)
G1R2 0.1374 8.6047 -27.37 .8780 9.4 0.2oro
(N-108) (0.144) (2.989)
G I R3 0.8388 16.6120 -36.04 .8327 32.3 0.0"ro
(N-138) (0.129) (8.276)
G1NHR1 1.1054 1.8291 -56.92 .6831 6.0 1.4"Io
(N-108) (0.276) (1.456)
GINHR2 0.9760 1.8845 -61.72 .6173 2.0 15.3"Io
(N-108) (0.179) (1.136)
G1NHR3 0.5252 4.7377 -44.23 .7623 9.3 0.2oro
(N-108) (0.171) (1.781)
G2R1 0.1048 32.7738 -13.54 .9436 29.7 O.Ooro
(N-108) (0.062) (17.245)
G2R2 0.3271 13.3560 -11.61 .9452 24.8 O.Ooro
(N-108) (0.117) (4.354)
G2R3 0.4319 9.3153 -14.76 .9738 23.8 O.Ooro
(N-108) (0.135) (2.944)
G3R1 0.0034 52.0285 -15.61 .9249 47.1 O.Ooro
(N-108) (0.037) (19.110)
G3R2 1.5835 -0.2113 -70.23 .6883 3.8 S.Ooro
(N-138) (0.269) (0.912)
G3R3 1.9936 -1.8643 -64.65 .6700 17.1 0.0"ro
(N-138) (0.215) (0.337)
G4R1 1.7421 -0.8367 -64.45 .6706 17.4 O.Ooro
(N-138) (0.271) (0.582)
G4R2 1.0725 11.7503 -27.16 .8825 46.5 O.OoIo
(N-138) (0.220) (5.216)
G4R3 1.2841 0.6672 -74.00 .6488 7.1 0.8"ro
(N-138) (0.251) (1.146)
Notes: Standard errors in parentheses beneath ccefficient estimates.
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TABLE IV

Non-Nested Tests

Model assumed True: SR Model assumed True: BBL

RO - ~VOSR
~0 - ~OBBL

WO - ~00, ~0 - ~POS WO -
~oeBL

YO - Y0.

GAME t-statistics t-statis[ics
G1R1 0.00 6.29 6.58 0.56 0.83 0.87
G 1 R2 0.00 0.00 1.97 2.31 2.30 2.27
GIR3 0.00 4.56 4.47 0.63 0.30 0.33
GINHRI 0.00 1.46 0.44 4.96 4.17 5.31
G1NHR2 0.00 0.38 0.38 3.28 3.23 3.33
G1NHR3 0.00 0.00 1.95 3.01 3.47 6.94
G2R1 0.00 0.00 5.32 0.98 2.14 3.01
G2R2 0.00 0.00 5.79 0.00 2.32 2.22
G2R3 0.00 0.00 3.68 4.75 3.63 4.46
G3R1 0.00 1.10 0.88 1.63 0.82 0.77
G3R2 2.00 2.33 1.90 1.06 1.28 1.27
G3R3 1.79 2.39 1.88 0.17 0.90 1.95
G4Rl 0.78 1.14 1.43 6.06 0.00 0.53
G4R2 2.94 6.09 4.33 1.81 1.41 1.36
G4R3 0.00 0.28 1.73 0.98 0.34 0.70
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Figure 1.-Plots of the actual and predicted fraction ofplayers sending message 2 by
type when the SR model is true.
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