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Abstract

In this paper reasonable payoff intervals for players in a game in parti-
tion function form (p.f.f. game) are introduced and used to define the notion
of compromisable p.f.f. game. For a compromisable p.f.f. game a compro-
mise value is defined for which an axiomatic characterization is provided.
Also a generic subclass of games in extensive form of perfect information
without chance moves is introduced. For this class of perfect extensive form
games there is a natural credible way to define a p.f.f. game if the players
consider cooperation. It turns out that the p.f.f. games obtained in this way
are compromisable.

1 Introduction

Games in partition function form (or p.f.f. games) are introduced in Thrall (1962),
Thrall and Lucas (1963). In the last decade these games have received an in-
creasing attention, especially in the environmental literature (Chander and Tulkens
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(1997), Funaki and Yamato (1999), Pham Do (2003)) because they are suitable for
handling externality problems in cooperative situations. Especially various cores
(Chander and Tulkens (1997), Funaki and Yamato (1999)) and Shapley values
(Bolger (1983), Pham Do and Norde (2002), Potter (2000)) have been studied.

Inspired by the literature on reasonable outcomes (cf. Milnor (1952), Gerard-
Varet and Zamir (1987), Tijs and Lipperts (1982)) and on compromise values
for TU-games (cf. Tijs (1981), Tijs and Otten (1993), van den Brink (1994),
Bergantinos and Masso (1996)) and for cooperative fuzzy games (Branzei et al.
(2002)) we introduce in Section 2 of this paper for p.f.f. games reasonable payoff
intervals for players cooperating in the grand coalition and use them to define
compromisable p.f.f. games. For the subclass of compromisable p.f.f. games a
compromise value is defined. Each coordinate of the compromise value lies in the
reasonable payoff interval of the corresponding player.

In Section 3 of this paper a subclass of games in extensive form is considered,
where subgame perfect equilibria (Selten (1965, 1975)) play an essential role to
relate such games, when cooperation is considered, with a p.f.f. game in a natural
way. For p.f.f. games obtained in this way the compromise value exists.

Section 4 concludes with some remarks.

2 Reasonable outcomes and a compromise value for
games in p.f.f.

Let N = {1,2, . . . , n} be the set of players and let Π(N) be the set of possible
partitions of N. So, each π ∈ Π(N) is of the form {S 1, S 2, . . . , S k}, where the
non-empty subcoalitions S 1, S 2, . . . , S k in π are pairwise disjoint and N = ∪kr=1S r.

If π ∈ Π(N) and S ∈ π, then (S | π) is called a π-embedded coalition. A game
〈N,V〉 in p.f.f. assigns to each π-embedded coalition (S | π) a real number V(S | π).
This real number expresses the value of S given π, i.e. the amount the players in
S can obtain given that the player set N splits up according to π. In the following
we suppose that

V(N | {N}) = max


∑
S ∈π

V(S | π)

∣∣∣∣∣∣∣ π ∈ Π(N)

 .

Let us denote for each i ∈ N by Πi(N) the set {π ∈ Π(N) | {i} ∈ π}. For a
game 〈N,V〉 in p.f.f. we define now for each player i ∈ N the (possibly empty)
reasonable payoff interval Ii = [�i, ui] as follows. The lower value �i for each
i ∈ N is given by

�i = min{V({i} | π) | π ∈ Πi(N)}
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and the upper value ui is given by

ui = V(N | {N}) − �N\{i} ,

where �N\{i} = min

{ ∑
S ∈π\{i}

V(S | π)
∣∣∣∣∣∣ π ∈ Πi(N)

}
.

Note that �i is the payoff guaranteed to player i if he stays alone; whatever the
partition of N\{i} in subcoalitions his payoff is at least �i and there is a partition
of N\{i} where he does not get more. Similarly, �N\{i} is the payoff guaranteed to
N\{i} if player i wants to stay alone. So, the marginal contribution of {i} to the
grand coalition is at most ui, and this is a reasonable upper bound of the payoff
interval of player i.

Definition 1. Let 〈N,V〉 be a p.f.f. game and for each i ∈ N let Ii = [�i,ui]
be the corresponding reasonable payoff interval for player i. Then 〈N,V〉 is a
compromisable game if

(C.1) �i ≤ ui for each i ∈ N;

(C.2)
∑
i∈N �i ≤ V(N | {N}) ≤

∑
i∈N ui.

Definition2. Let 〈N,V〉 be a compromisable game. The compromise value ψ(N,V)
is the convex combination α(�1, �2, . . . , �n)+(1−α)(u1, u2, . . . , un) of � and u, where
α is such that

∑
i∈N ψi(N,V) = V(N | {N}).

Note that for a compromisable game the reasonable payoff intervals are non-empty
and that the lower vector � = (�1, �2, . . . , �n) lies ‘below’ the hyperplane

H =

x ∈ RN

∣∣∣∣∣∣∣
n∑
i=1

xi = V(N | {N})


and the upper vector u = (u1, u2, . . . ,un) lies ‘above’ this hyperplane. ψ(N,V) is
the point in the intersection H ∩ L(�,u), where L(�, u) is used for the line segment
with end points � and u.

Example 1. Let N = {1,2}. Let V be given by

V({1} | {{1}, {2}}) = 6, V({2} | {{1}, {2}}) = 0, V(N | {N}) = 10.

Then [�1, u1] = [6,10], [�2, u2] = [0,4], and ψ(N,V) = α(6,0) + (1 − α)(10,4) =

(8,2), where α = 1
2 .

Let us denote the set of compromisable n-person p.f.f. games by CPGN . Now
we list some properties of the compromise value on CPGN .
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(i) (Individual Rationality) ψi(N,V) ≥ �i for each 〈N,V〉 ∈ CPGN and each
i ∈ N.

(ii) (Efficiency)
∑
i∈N ψi(N,V) = V(N | {N}) for each 〈N,V〉 ∈ CPGN .

(iii) (Additive Game Property) Let a ∈ RN and let 〈N,Va〉 be the additive game
corresponding to a ∈ R

N with the property that for each π ∈ Π(N) and
S ∈ π: V(S | π) =

∑
i∈S ai. Then 〈N,Va〉 ∈ CPGN and ψ(N,Va) = a.

(iv) (Covariance Property) Let 〈N,V〉 ∈ CPGN and 〈N,Va〉 be the additive game
corresponding to a ∈ RN . Then 〈N,V − Va〉 ∈ CPGN and ψ(N,V − Va) =

ψ(N,V) − a.

(v) (Weak Proportionality Property) Let 〈N,V〉 ∈ CPGN and let the lower vector
� of 〈N,V〉 be equal to 0 ∈ RN . Then ψ(N,V) is a multiple of the upper
vector u.

We leave the proofs of the properties (i) – (v) to the reader.
The following theorem shows that the properties (ii), (iv) and (v) are charac-

terizing properties for the compromise value ψ (cf. Tijs (1987)).

Theorem 1. There is a unique solution ϕ : CPGN → R
N with the properties

Efficiency, Covariance and Weak Proportionality, and it is the compromise value
ψ.

Proof. We know already that ψ possesses the three properties. Take ϕ : CPGN →
R
N satisfying the three properties. We have to prove that ϕ(N,V) = ψ(N,V) for

each 〈N,V〉 ∈ CPGN . Take 〈N,V〉 ∈ CPGN . Let a ∈ RN be the vector with ai equal
to the lower value �i for each i ∈ N. Then for 〈N,V − Va〉 ∈ CPGN the lower value
is 0. By the Efficiency Property and the Weak Proportionality Property for ψ and
ϕ we obtain

(1) ψ(N,V − Va) = ϕ(N,V − Va).

From (1) and the Covariance Property then it follows ψ(N,V) = ϕ(N,V). �
In Section 3 we consider a class of compromisable games arising from a sub-

class of extensive form games, where the players consider cooperation possibili-
ties.
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3 Cooperation in perfect extensive form games

In this section we pay attention to a generic subclass of games in extensive form of
perfect information without chance moves. We adopt as much as possible notation
from Selten (1975), cf. Varoufakis (2001) andwe refer also to this source for back-
ground information. So, we denote such a game with player set N = {1, 2, . . . , n}
by Γ = 〈N,K, P, h〉. Here K is the game tree with origin or root 0. With Z we
denote the set of vertices which are end points in the tree K, and with X we de-
note the set of other vertices. P = {X1, X2, . . . , Xn} is the player partition of X,
where Xi is the set of decision vertices of player i ∈ N. The payoff function
is h : Z → R

N and the i-th coordinate hi(z) of h(z) is the payoff resulting for
player i if the point z is reached as a result of the decisions of the players. For
each partition π = {S 1, S 2, . . . , S k} of Π(N) we consider the extensive form game
Γ(π) = 〈π,K(π), P(π), hπ〉 which corresponds to the situation where the player set
N splits up in cooperative player collectives S 1,S 2, . . . , S k who decide (jointly) in
all their decision vertices with the aim to maximize the sum of their payoffs.

Formally, given Γ = 〈N,K, P, h〉 and π ∈ Π(N) we introduce the game in
extensive form Γ(π) = 〈π,K(π), P(π), hπ〉 as follows:

(i) The players are collectives S 1, S 2, . . . , S k, subsets of N, such that
π = {S 1, S 2, . . . , S k};

(ii) K(π) = K;

(iii) P(π) = {XS 1, XS 2 , . . . , XS k} is the player partition of X, where for each r ∈
{1,2, . . . , k}, XSr = ∪i∈S rXi;

(iv) hπ = (hπS 1 ,h
π
S 2
, . . . , hπS k) is the payoff function,where for each r ∈ {1,2, . . . , k},

hπS r(z) =
∑
i∈S r hi(z) for each z ∈ Z.

Note that the original game Γ coincides with Γ(π d), where π d is the discrete parti-
tion of N.

Example 2. Let Γ be the (perfect) extensive form game depicted in Figure 1,
where the game tree K has origin v1 and where N = {1,2}, Z = {z1, z2, z3}, X =

{v1, v2}, P = {{v1}, {v2}} and h : Z → R
2 is given by h(z1) = (6,0),h(z2) = (2,1)

and h(z3) = (5,5).
The corresponding extensive form game Γ({N}), where the players cooperate,

is depicted in Figure 2. The game tree is the same but now we have a one-player
game with player N, so P({N}) = {v1, v2}, h{N}N (z1) = 6, h{N}N (z2) = 3 and h{N}N (z3) =

10.
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We are only interested in subgame perfect equilibria for the family of games in
extensive form {Γ(π) | π ∈ Π(N)}. We will restrict our attention to perfect extensive
form games. We will call a game Γ a perfect extensive form game if two conditions
are satisfied:

(P.1) (Perfect Information Condition) Γ is a game in extensive form of perfect
information without chance moves;

(P.2) (Genericity Condition) In each game Γ(π) with π ∈ Π(N) and also in each of
its subgames there is a unique subgame perfect equilibrium (SP-equilibrium).

We call property (P.2) the genericity condition because (a) for each game sat-
isfying (P.1) by stochastically perturbing the payoffs we get with probability 1 a
game satisfying (P.1) and (P.2); (b) for each game satisfying (P.1) and each ε > 0
there is a game satisfying (P.1) and (P.2) for which the payoffs do not differ with
more than ε than the corresponding payoffs in the original game.

Remark 1. The extensive form games in Example 2 and Example 3 are perfect
extensive form games.

Now, in a natural credible way we can define a p.f.f. game 〈N,V〉 correspond-
ing to a perfect extensive form game Γ = 〈N,K, P, h〉: for each partition π ∈ Π(N)

6
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and S ∈ πwe define V(S | π) as the payoff to the (collective) player S in the unique
subgame perfect equilibrium of Γ(π).

Remark 2. The p.f.f. game 〈N,V〉 corresponding to the perfect extensive form
game in Example 2 is the game described in Example 1. See also the p.f.f. game
〈N,V〉 ontained from the perfect extensive form game in Example 3.

The p.f.f. games corresponding to perfect extensive form games have a spe-
cial superadditivity property for root-connected coalitions, which is described in
Theorem 2. Here a coalition S of players is called a root-connected coalition if
for each player i ∈ S and each v ∈ Pi, the path [0, v] from origin to v contains only
vertices in XS = ∪ j∈S X j. Note that N is always a root-connected coalition. In Ex-
ample 3 the root-connected coalitions are {1}, {1,2} and {1,2,3}, but the coalition
S = {1,3} is not root-connected.

Theorem 2. Let 〈N,V〉 be the p.f.f. game corresponding to a perfect game in
extensive form 〈N,K, P, h〉. Let S ∈ 2N\{∅} be a root-connected coalition and
let π be a partition of N with S ∈ π. Let T1, T2, . . . , Tm be a partition of S and
π′ = {T1, T2, . . . , Tm} ∪ π \ {S }. Then

V(S | π) ≥
m∑
r=1

V(Tr | π′).

Proof. Note that the root 0 ∈ XS . Let [v0, v1, v2, . . . , vt] be the path in the tree cor-
responding to the unique SP-equilibrium of Γ(π′). Since S is root-connected, there
is an i ∈ {0, . . . , t − 1} such that 0 = v0, v1, . . . , vi ∈ XS and vi+1, vi+2, . . . , vt � XS .
This implies that by choosing suitable actions in the decision points v0, v1, . . . , vi
the coalition S can assure the same path resulting in a total payoff for S of∑m
r=1 V(Tr | π′). If this path is not optimal for S given π,

then V(S | π) ≥ ∑m
r=1 V(Tr | π′). �
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Example 3. Consider the perfect extensive form game depicted in Figure 3 with
player set N = {1,2,3}.

The corresponding p.f.f. game 〈N,V〉 is described by

V({1} | {{1}, {2}, {3}}) = 6, V({2} | {{1}, {2}, {3}}) = 10,
V({3} | {{1}, {2}, {3}}) = 11, V({1,2} | {{1,2}, {3}}) = 16,
V({3} | {{1,2}, {3}}) = 11, V({1,3} | {{1,3}, {2}}) = 10,
V({2} | {{1,3}, {2}}) = 6, V({1} | {{1}, {2,3}}) = 6,
V({2,3} | {{1}, {2,3}}) = 21, V(N | {N}) = 34.

Note that (see Theorem 2)

V({1,2} | {{1,2}, {3}}) = 16 ≥
2∑
i=1

V({i} | {{1}, {2}, {3}}),

but for the non root-connected coalition {1,3} we have

V({1,3} | {{1,3}, {2}}) = 10 < 6 + 11

= V({1} | {{1}, {2}, {3}}) + V({3} | {{1}, {2}, {3}}).

Theorem 3. Let 〈N,V〉 be the p.f.f. game corresponding to the perfect extensive
form game Γ = 〈N,K, P, h〉. Then 〈N,V〉 is compromisable.

Proof. Let π d = {{i} | i ∈ N} be the discrete partition of N. From the definition of
�i, �N\{i},ui we obtain for each i ∈ N

(1) �i ≤ V({i} | πd), �N\{i} ≤
∑

j∈N\{i} V({ j} | π d);
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(2) ui ≥ V(N | {N}) −
∑

j∈N\{i} V({ j} | πd).

Since N is a root-connected coalition by Theorem 2 we have

(3) V(N | {N}) ≥ ∑
j∈N V({ j} | π d).

To prove that ui ≥ �i for each i ∈ N note that applying (2), (3) and (1)

ui ≥ V(N | {N}) −
∑
j∈N\{i}

V({ j} | π d) ≥ V({i} | π d) ≥ �i.

That
∑
i∈N �i ≤ V(N | {N}) follows from (1) and (3):∑

i∈N
�i ≤

∑
i∈N

V({i} | π d) ≤ v(N | {N}).

Finally
∑
i∈N ui ≥ V(N | {N}) follows from∑

i∈N
ui ≥

∑
i∈N
(V(N | {N}) −

∑
j∈N\{i}

V({ j} | π d))

= nV(N | {N}) −
∑
i∈N

∑
j∈N\{i}

V({ j} | πd)

= nV(N | {N}) − (n − 1)
∑
j∈N

V({ j} | π d)

≥ V(N | {N}).

by applying (2) in the first inequality, and (3) in the second inequality. Hence
〈N,V〉 is compromisable. �

Example 4. Consider the compromisable game 〈N,V〉 in Example 3. Then � =

(6,6,11),u = (13,24,18) and ψ(N,V) = (8.40625,12.1875,13.40625), where
α = 0.65625.

4 Concluding remarks

Remark 3. In the paper of Tijs (1981) two compromise values were introduced:

(i) the τ-value on the cone of quasi-balanced games

(ii) the σ-value on the larger cone consisting of n-person games with

(a) v({i}) ≤ v(N) − v(N\{i}) for all i ∈ N;
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(b)
∑
i∈N
v({i}) ≤ v(N) ≤ ∑

i∈N
(v(N) − v(N\{i})).

In this paper we have defined a compromise value on the set CPGN of compro-
misable n-person p.f.f. games. The next example shows that the set CPGN is not a
cone.

Example 5. Let N = {1,2,3} and let V and W be defined as following.
V(N | {N}) = 5,W(N | {N}) = 2, and for i, j, k ∈ N with i � j, j � k, k � i,

V({i} | {{i}, { j}, {k}}) = 3, V({i} | {{i}, { j, k}}) = 0, V({ j, k} | {{i}, { j, k}}) = 3
W({i} | {{i}, { j}, {k}}) = 0, W({i} | {{i}, { j, k}}) = 1, W({ j, k} | {{i}, { j, k}}) = 2.

Then �Vi = 0 and uVi = 5 −min{6,3} = 2, and �Wi = 0 and uWi = 2 −min{0,2} = 2.
Now for V + W, we have �V+W

i = 1 and uV+W
i = 7 −min{6,5} = 2. (C.2) does not

hold, i.e.
∑
i∈N
uV+W
i = 6 < 7 = V(N | {N}). Thus 〈N,V +W〉 � CPGN .

Remark 4. An interesting topic for further research might be the introduction of
other reasonable payoff intervals based on which new compromise values can be
defined for the corresponding compromisable p.f.f.games.

Remark 5. In the paper of Tijs (1981) it is proved that the core of a game is
included in the hypercube [av, bv] determined by the lower vector (minimum right
vector) and the upper vector (marginal contribution vector). For a game 〈N,V〉 ∈
CPGN it turns out that the hypercube [�,u] = {x ∈ RN | �i ≤ xi ≤ ui for each i ∈ N}
induced by the reasonable payoff intervals Ii = [�i,ui] for each i ∈ N, contains the
pessimistic core of 〈N,V〉 as Theorem 4 shows.

Recall that the pessimistic core of 〈N,V〉 is the core C(v) of the pessimistic
TU-game 〈N, v〉 obtained from 〈N,V〉 by

v(S ) = min{V(S | π) | π � S }, S ⊆ N

(see Theorem 3 in Funaki and Yamato (1999)).

Theorem 4. Let 〈N,V〉 ∈ CPGN and let 〈N, v〉 be the corresponding pessimistic
TU-game. Suppose for any π � {N}, V(N | {N}) >

∑
S ∈π V(S | π). Then the hyper-

cube [�, u] catches the pessimistic core.
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Proof. First we prove that [av, bv] ⊆ [�,u].

avi = v({i}) = min
π�{i}

V({i} | π) = �i;

bvi = v(N) − v(N\{i})
= v(N) −min{V(N\{i} | π) | π � N\{i}}
= V(N | {N}) − V(N\{i} | {N\{i}, {i}})
≤ V(N | {N}) −min{V(S | π) | π ∈ Πi(N)} = ui.

Now note that [�, u] ⊇ C(v) follows from [av,bv] ⊇ C(v) (Tijs (1981)). �

Remark 6. We have shown that for the generic class of perfect games in exten-
sive form the corresponding credible games in p.f.f. based on subgame perfect
equilibria are compromisable. A topic for further research might be the study of
p.f.f. games arising when relaxing the perfectness conditions (P.1) and (P.2) for
games in extensive form.

References
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