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Abstract

In this note we study the endogenous formation of cooperation structures. Ac-

cording to several equilibrium concepts the full cooperation structure will form or

some structure that is payoff-equivalent to the full cooperation structure. As a

by-product we find a class of games in strategic form where several equilibrium

concepts coincide.

Journal of Economic Literature classification numbers: C71, C72.

1 Introduction

In the past few years several papers have modelled the process of distributing the payoffs

in a cooperative situation as a two-stage game. In the first stage, the players negotiate

on the cooperation structure. The second stage then determines the payoffs, usually

according to some exogenously given allocation rule.

In this note we will follow Dutta, Nouweland, and Tijs (1998). They analyze the

link formation games introduced by Myerson (1991), which were also studied by Qin

(1996). Dutta et al. (1998) find that given a superadditive game and an allocation

rule satisfying some appealing properties, the full cooperation structure will form or a

structure resulting in the same payoffs as the full cooperation structure. These results

are shown for two equilibrium concepts, undominated Nash equilibria and coalition proof

Nash equilibria. We will extend these results for several other equilibrium concepts,

specifically strictly proper, proper, weakly proper, strictly perfect and perfect equilibria.

As a by-product we find a class of games in strategic form where several equilibrium

concepts coincide.
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bDepartment of Econometrics and CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,

The Netherlands. E-mail: M.Slikker@kub.nl
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The plan of this paper is as follows. Section 2 deals with games in strategic form, e-

quilibrium concepts for such games, and the relation between these equilibrium concepts.

In section 3 we describe and analyze the link formation games. We show that according

to the equilibrium concepts described in section 2 the full cooperation structure will

form or a cooperation structure that results in the same payoff as the full cooperation

structure.

2 Games in strategic form

In this section we introduce some notation for games in strategic form. We also show

some relationships between equilibrium concepts, which will be used in the subsequent

section on link formation games. For a survey of equilibrium concepts for games in

strategic form we refer to Van Damme (1991).

Let Γ = (N ; (Si)i∈N ; (fi)i∈N ) be a game in strategic form, where N = {1, . . . , n}

denotes the player set, Si the strategy space of player i, and fi the payoff function of

player i, which assigns to every tuple s ∈ S =
∏
i∈N Si a payoff fi(s) ∈ IR. Denote

f = (fi)i∈N .

The first equilibrium concept we define is the undominated Nash equilibrium. Recall

that a strategy profile is a Nash equilibrium if no player can improve his payoff by a

unilateral deviation. For any i ∈ N , si dominates s′i if for all s−i ∈ S−i :=
∏
j∈N\{i} Si,

fi(si, s−i) ≥ fi(s′i, s−i) with the inequality being strict for some s−i ∈ S−i. Now, s∗i ∈ Si

is an undominated strategy if there is no si ∈ Si such that si dominates s∗i . Let Sui (Γ)

be the set of undominated strategies for i in Γ and define Su(Γ) :=
∏
i∈N S

u
i (Γ). If no

confusion on the underlying game can arise we simply write Sui and Su. A strategy tuple

s is an undominated Nash equilibrium if s is a Nash equilibrium and s ∈ Su.

A strategy si of player i is a weakly dominant strategy if for all s−i ∈ S−i and all

s′i ∈ Si, fi(si, s−i) ≥ fi(s′i, s−i). Denote the set of weakly dominant strategies of player

i by Swi (Γ) and define Sw(Γ) :=
∏
i∈N S

w
i (Γ). We also write Swi and Sw if no confusion

on Γ can arise. Note that every s ∈ Sw is a Nash equilibrium and that every weakly

dominant strategy is undominated.

The following lemma shows that if a player has a weakly dominant strategy, then all

his undominated strategies are weakly dominant.

Lemma 2.1 Let Γ be a game in strategic form. If Swi 6= ∅ then Swi = Sui .

Proof: Obviously, Swi ⊆ Sui . Assume Swi 6= ∅, so there exists si ∈ Swi . Let s′i ∈ S
u
i . We

will show that s′i is a weakly dominant strategy. Since si is a weakly dominant strategy it
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holds for all s−i ∈ S−i that fi(si, s−i) ≥ fi(s′i, s−i). But s′i is undominated and hence this

inequality holds with equality for all s−i ∈ S−i. Since si is a weakly dominant strategy

this implies that s′i is a weakly dominant strategy and hence, Swi ⊇ Sui . This completes

the proof. 2

Remark 2.1 Note that if si, s′i ∈ S
w
i (Γ) then for all s−i ∈ S−i it holds that fi(si, s−i) =

fi(s′i, s−i).

From now on assume that the strategy space of every player is finite, i.e. |Si| < ∞

for all i ∈ N . A mixed strategy pi of player i is a probability distribution on Si. The

probability player i assigns to strategy k ∈ Si will be denoted by pki . Hence, the set of

mixed strategies of player i is described by1

Pi :=

pi ∈ IRSi |
∑
k∈Si

pki = 1, pki ≥ 0 for all k ∈ Si

 .
Denote Γp = (N ; (Pi)i∈N ; (f ′i)i∈N ), the mixed extension of Γ, where f ′i(p) denotes the

expected payoff to player i according to mixed strategy profile p = (pi)i∈N ∈ P :=∏
i∈N Pi and the original payoff function fi, i.e.

f ′i(p) =
∑
s∈S

∏
j∈N

p
sj
j fi(s).

For notational convenience we define for all i ∈ N and all s−i ∈ S−i the probability

that the players in N\{i} play s−i by,

p(s−i) = p((sj)j∈N\{i}) :=
∏

j∈N\{i}

p
sj
j .

For all i ∈ N and all k ∈ Si denote the mixed strategy associated with pure strategy k

of player i by ei,k. So,

eli,k =

 1 , if l = k

0 , otherwise
.

Furthermore, we denote for all s ∈ S, es = (ei,si)i∈N .

Before we can define strictly proper equilibria we need some more notation. For all

ηi = (ηki )k∈Si ∈ IRSi
++ we define

Pi(ηi) :=
{
pi ∈ Pi | p

k
i ≥ η

k
i , for all k ∈ Si

}
.

For η = (ηi)i∈N ∈
∏
i∈N IRSi

++ the set of Nash equilibria of the game

(N ;P1(η1), . . . , Pn(ηn); f ′) is denoted by E(Γp, η). This game is called a perturbed game.

1For notational convenience we will simply write Pi in stead of P (Si).
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In such a perturbed game every player plays each of his strategies with at least some pre-

specified positive probability. For all η̂ ∈
∏
i∈N IRSi

++ define Uη̂ := {η ∈
∏
i∈N IRSi

++; η < η̂}.

Now, we can describe the strictly proper equilibria of a strategic form game Γ. A

strategy profile p ∈ P is a strictly proper equilibrium of Γ if there exists some η̂ ∈∏
i∈N IRSi

++ and a continuous map η → p(η) from Uη̂ to P =
∏
i∈N Pi such that p(η) ∈

E(Γp, η) for all η and limη↓0 p(η) = p. The set of strictly proper Nash equilibria in Γ

will be denoted by StrProp(Γ). Note that by definition a strictly proper equilibrium of a

strategic form game is a mixed strategy of that game. This strategy does not necessarily

correspond to a pure strategy.

In the following lemma we show that every weakly dominant strategy in the mixed

extension of a game puts positive weights on strategies that are weakly dominant in the

original game.

Lemma 2.2 Let Γ be a game in strategic form. Then

Swi (Γp) = conv{ei,k | k ∈ S
w
i (Γ)}.2

Proof: First we will show that Swi (Γp) ⊆ conv{ei,k | k ∈ Swi (Γ)}. Let pi ∈ Swi (Γp)

and suppose pi 6∈ conv{ei,k | k ∈ Swi (Γ)}. Note that every mixed strategy is a convex

combination of mixed strategies associated with pure strategies, pi =
∑
k∈Si p

k
i ei,k.

Since pi 6∈ conv{ei,k | k ∈ Swi (Γ)} there exists l ∈ Si with l 6∈ Swi (Γ) and pli > 0. Since

l 6∈ Swi (Γ) there exists l̂ ∈ Si and s−i ∈ S−i such that fi(l̂, s−i) > f(l, s−i). Now, define

p̂ki =


pki , for all k ∈ Si\{l, l̂}

pki + pli , k = l̂

0 , k = l

.

Let p−i = (pj)j∈N\{i} be the mixed strategy profile of N\{i} associated with s−i, i.e.

p−i = (ej,sj)j∈N\{i}. If player i plays p̂i instead of pi against p−i he improves his payoff,

since

f ′i(p̂i, p−i)− f
′
i(p) = pli

(
fi(l̂, s−i)− fi(l, s−i)

)
> 0.

So, pi 6∈ Swi (Γp), a contradiction with pi ∈ Swi (Γp). Hence,

Swi (Γp) ⊆ conv{ei,k | k ∈ S
w
i (Γ)}.

Secondly, we will show that all pi ∈ conv{ei,k | k ∈ Swi (Γ)} belong to Swi (Γp). There-

fore, let pi ∈ conv{ei,k | k ∈ Swi (Γ)}. Let p−i ∈ P−i :=
∏
j∈N\{i}Pj and let p̂i ∈ Pi.

2Conv{A} denotes the set of all convex combinations of elements of A, where conv{∅} := ∅.
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Then

f ′i(pi, p−i) =
∑

k∈Swi (Γ)

pki f
′
i(ei,k, p−i)

=
∑

k∈Swi (Γ)

pki
∑

s−i∈S−i

p(s−i)fi(k, s−i)

≥
∑

k∈Swi (Γ)

pki
∑

s−i∈S−i

p(s−i)
∑
l∈Si

p̂lifi(l, s−i)

=
∑

k∈Swi (Γ)

pki f
′
i(p̂i, p−i)

= f ′i(p̂i, p−i),

where the equalities follow by definition of the strategies. The inequality follows since

fi(k, s−i) ≥ fi(l, s−i) for all l ∈ Si and
∑
l∈Si p̂

l
i = 1.

So, pi is a weakly dominant strategy in Γp. Hence,

Swi (Γp) ⊇ conv{ei,k | k ∈ S
w
i (Γ)}.

This completes the proof. 2

Before we can prove the main result of this section, we need two more lemmas. First

we show that every weakly dominant mixed strategy profile is a strictly proper Nash

equilibrium.

Lemma 2.3 Let Γ be a game in strategic form. Then

Sw(Γp) ⊆ StrProp(Γ).

Proof: Let p ∈ Sw(Γp). We have to show that p ∈ StrProp(Γ). By lemma 2.2 it holds

for all i ∈ N that pi is a convex combination of mixed strategies associated with weakly

dominant pure strategies,

pi =
∑

k∈Swi (Γ)

pki ei,k.

Let m :=
∑
i∈N |Si| and let η̂ ∈

∏
i∈N IRSi

++ with η̂ki = 1
m

for all i ∈ {1, . . . , n} and all

k ∈ Si. For all η ∈ Uη̂, all i ∈ {1, . . . , n}, and all k ∈ Swi (Γ) let

qli,k(η) =

 ηli , for all l ∈ Si\{k}

1−
∑
r∈Si\{k} η

r
i , l = k

. (1)

Furthermore, let qi(η) =
∑
k∈Swi (Γ) p

k
i qi,k(η) for all i ∈ N . Note that qi(η) ∈ Pi(ηi) for all

i ∈ N since qli,k(η) ≥ ηli for all k ∈ Swi (Γ), all l ∈ Si, and all i ∈ N .
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Let i ∈ N . For all k ∈ Swi (Γ) the map η → qi,k(η) from Uη̂ to Pi is continuous,

with qi,k(η) ∈ Pi(ηi) for all η, and limη↓0 qi,k(η) = ei,k. Then it follows immediately that

η → q(η) = (qi(η))i∈N is a continuous map from Uη̂ to P with limη↓0 q(η) = p = (pi)i∈N .

It remains to show that q(η) ∈ E(Γp, η), for all η ∈ Uη̂ . Therefore, let η ∈ Uη̂ and

consider a possible deviation of player i ∈ {1, . . . , n}, ui ∈ Pi(ηi). The change in payoff

for player i by deviating from qi(η) to ui is equal to

f ′i(ui, q−i(η))− f ′i(q(η))

=
∑

k∈Swi (Γ)

pki (f ′i(ui, q−i(η))− f ′i(qi,k(η), q−i(η)))

=
∑

k∈Swi (Γ)

pki

 ∑
l∈Si\{k}

(uli − η
l
i)f
′
i(ei,l, q−i(η))

+

(1−
∑

l∈Si\{k}

uli)− (1−
∑

l∈Si\{k}

ηli)

 f ′i(ei,k, q−i(η))


=

∑
k∈Swi (Γ)

pki

 ∑
l∈Si\{k}

(uli − η
l
i) (f ′i(ei,l, q−i(η))− f ′i(ei,k, q−i(η)))


≤ 0,

where the equalities follow by definition of the strategies. The inequality holds since for

all k ∈ Swi (Γ) and all l ∈ Si\{k} it holds that uli ≥ ηli and since for all k ∈ Swi (Γ), all

l ∈ Si\{k}, and all t−i ∈ S−i, fi(k, t−i)− fi(l, t−i) ≥ 0.

This completes the proof. 2

The following result is taken from Van Damme (1991).

Lemma 2.4 For a game in strategic form Γ

StrProp(Γ) ⊆ Su(Γp).

Proof: See Van Damme (1991). 2

We can now state the main result of this section.

Theorem 2.1 Let Γ be a game in strategic form. If Sw(Γ) 6= ∅ then

Su(Γp) = StrProp(Γ) = Sw(Γp) =
∏
i∈N

conv{ei,k | k ∈ S
w
i (Γ)}.

Proof: Assume Sw(Γ) 6= ∅. Then

StrProp(Γ) ⊆ Su(Γp) = Sw(Γp) ⊆ StrProp(Γ)
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by lemmas 2.4, 2.1, and 2.3 respectively. Lemma 2.2 completes the proof. 2

Recall that every profile of weakly dominant strategies is a Nash equilibrium. Hence,

by lemma 2.1, if every player has a weakly dominant strategy then every strategy pro-

file consisting only of undominated strategies is a Nash equilibrium. There are several

equilibrium concepts that result in supersets of the set of strictly proper Nash equilibria

and subsets of the set of undominated Nash equilibria in mixed strategies. For a survey

see Van Damme (1991). He shows that for a strategic form game with a finite strat-

egy space for all players the sets of (i) proper equilibria, (ii) weakly proper equilibria,

(iii) strictly perfect equilibria, and (iv) perfect equilibria are all supersets of the set of

strictly proper equilibria and subsets of the set of undominated Nash equilibria in mixed

strategies. Using this and the theorem above the following corollary results for strategic

form games with a weakly dominant strategy for all players.

Corollary 2.1 Let Γ be a game in strategic form. If Sw(Γ) 6= ∅ then the following sets

of equilibria coincide with Sw(Γp) and the set of undominated Nash equilibria in mixed

strategies : strictly proper, proper, weakly proper, strictly perfect, and perfect equilibria.

3 Link formation

In this section we will describe and analyze a class of link formation games, introduced

by Myerson (1991) and also studied by Qin (1996) and Dutta et al. (1998).

A communication situation is a triple (N, v, L), with (N, v) a cooperative game and

(N,L) a cooperation graph (N,L). So, N = {1, . . . , n} denotes the player set, v the

characteristic function that assigns to every subset of N a value, and L a set of pairs of

players in N , describing the cooperation possibilities between the players.

The pair (N,L) is an undirected (communication) graph. A link in the graph indicates

that the players forming this link can cooperate with each other directly. If two players

are not connected directly but there is a path in the graph between the players, then

these two players can communicate with each other indirectly via the players on the path.

The notion of connectedness induces a partition of the player set into communication

components, where i and j are in the same component if and only if i = j or i and j

can communicate with each other, directly or indirectly. The resulting partition will be

denoted by N/L.

An allocation rule γ assigns to every communication situation (N, v, L) a payoff vector

γ(N, v, L) ∈ IRN . Here, we will restrict ourselves to the same class of allocation rules as

studied by Dutta et al. (1998). This class is described by the following properties.
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• Component efficiency (CE): For all communication situations (N, v, L) and all

communication components C ∈ N/L it holds that
∑
i∈C γi(N, v, L) = v(C).

• Weak link symmetry (WLS): For all communication situations (N, v, L) and

all i, j ∈ N , if γi(N, v, L ∪ {{i, j}}) > γi(N, v, L) then γj(N, v, L ∪ {{i, j}}) >

γj(N, v, L).

• Improvement property (IP): For all communication situations (N, v, L) and all

i, j ∈ N , if there exists k ∈ N\{i, j} with γk(N, v, L∪{{i, j}}) > γk(N, v, L), then

γi(N, v, L ∪ {{i, j}}) > γi(N, v, L) or γj(N, v, L ∪ {{i, j}}) > γj(N, v, L).

The following lemma was proven by Dutta et al. (1998).

Lemma 3.1 Let γ be an allocation rule that satisfies CE, WLS, and IP and (N, v, L) a

communication situation with (N, v) superadditive.3 For all i, j ∈ N it holds that

γi(N, v, L ∪ {{i, j}}) ≥ γi(N, v, L). (2)

Proof: See Dutta et al. (1998) 2

The property incorporated in equation (2) will be called link monotonicity.

We will now describe the class of link formation games. Let γ be an allocation rule

and (N, v) a cooperative game. The link formation game Γ(N, v, γ) is described by the

tuple (N ; (Si)i∈N ; (fγi )i∈N) where for all i ∈ N the set Si = 2N\{i} represents the strategy

set of player i. A strategy of player i is an announcement of the set of players he wants

to form communication links with. A communication link between two players will only

form if both players want to form the link. The set of links that will form according to

strategy profile s ∈ S =
∏
i∈N Si will be denoted by

L(s) := {{i, j} ⊆ N | i ∈ sj , j ∈ si}.

The payoff function fγ = (fγi )i∈N is defined as the allocation rule γ applied to the

communication situation (N, v, L(s)), i.e.

fγ(s) = γ(N, v, L(s)).

In the following lemma we show that the link formation games described above have

a weakly dominant strategy profile. Moreover, this strategy profile results in the full

cooperation structure (i.e. every player cooperates directly with every other player).

This strategy profile is denoted by s̄, i.e. s̄i = N\{i} for all i ∈ N .

3The game (N, v) is superadditive if for all S, T ∈ 2N with S ∩ T = ∅, v(S) + v(T ) ≤ v(S ∪ T ).
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Lemma 3.2 Let γ be an allocation rule that satisfies CE, WLS, and IP and (N, v) a

superadditive cooperative game. Then s is a weakly dominant strategy profile in the

associated link formation game Γ := Γ(N, v, γ).

Proof: Let i ∈ N , si ∈ Si and s−i ∈ S−i. Define the following sets of links: L1 =

L(si, s−i) and L2 = L(si, s−i). Since si ⊆ si it holds that L2 ⊆ L1. Furthermore,

L1\L2 ⊆ {{i, j} | j ∈ N\{i}}, since only the strategy of player i has been changed. If

we apply lemma 3.1 for all {i, j} ∈ L1\L2 then

fγi (si, s−i) = γi(N, v, L
1) ≥ γi(N, v, L

2) = fγi (si, s−i). (3)

We conclude that si ∈ Swi (Γ) and hence, s ∈ Sw(Γ). 2

Lemma 3.2 was not proven explicitly in Dutta et al. (1998). However, they showed it

implicitly in showing that s̄ is an undominated Nash equilibrium.

Now that we have showed the existence of a weakly dominant strategy profile we

can use the results of the previous section to give some relations between equilibrium

concepts for mixed extensions of link formation games.

Theorem 3.1 Let γ be an allocation rule that satisfies CE, WLS, and IP and let (N, v)

be a superadditive cooperative game. Then the following relations between several equi-

librium refinements hold for the corresponding link formation game Γ := Γ(N, v, γ):

{es} ⊆
∏
i∈N

conv{ei,k | k ∈ S
w
i (Γ)} = Su(Γp) = StrProp(Γ) = Sw(Γp). (4)

Proof: From lemma 3.2 it follows that s ∈ Sw(Γ). Then it follows from theorem 2.1

that

Su(Γp) = StrProp(Γ) = Sw(Γp) =
∏
i∈N

conv{ei,k | k ∈ S
w
i (Γ)}.

Since s is a weakly dominant strategy it holds that

es ∈
∏
i∈N

conv{ei,k | k ∈ S
w
i (Γ)}.

This completes the proof. 2

Note that the result in theorem 3.1 depends only on the assumption that γ satisfies

link monotonicity, which is implied by CE, WLS, and IP.

Remark 3.1 Obviously we can also extend the theorem above to include proper, weakly

proper, strictly perfect and perfect equilibria (see corollary 2.1).
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Remark 3.2 It can be shown that if γ satisfies CE, WLS, and IP then fγi (s) =

fγi (s′i, s−i) for some i ∈ N implies that fγ(s) = fγ(s′i, s−i) (This follows directly from

lemmas 1 and 2 in Dutta et al. (1998)). So, if γ satisfies CE, WLS, and IP then this

implies that all weakly dominant strategy profiles result in the same payoff. Dutta et

al. (1998) call structures that lead to identical payoffs payoff-equivalent. Furthermore,

they call a structure essentially complete if it is payoff-equivalent to the full coopera-

tion structure. The structures that can result according to any p ∈ Su(Γ(N, v, γ)p) =

StrProp(Γ(N, v, γ)) are obviously all essentially complete. We cannot speak of the struc-

ture that will result since p is a mixed strategy profile.
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