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ABSTRACT

The reference prior algorithm (Berger and Bernardo, 1992) is applied to location-
scale models with any regular sampling density. A number of two-sample problems is
analyzed in this general context, extending the difference, ratio and product of Normal
means problems outside Normality, while explicitly considering possibly different sizes for
each sample. Since the reference prior turns out to be improper in all cases, we examine
existence of the resulting posterior distribution and its moments under sampling from
scale mixtures of Normals. In the context of an empirical example, it is shown that a
reference posterior analysis is numerically feasible and can display some sensitivity to the
actual sampling distributions. This illustrates the practical importance of questioning the
Normality assumption.

Keywords: Behrens-Fisher problem; Fieller-Creasy problem; Gibbs sampling; Jeffreys’
prior; Location-scale model; Posterior existence; Product of means; Scale mixtures of
Normals; Skewness.

1. INTRODUCTION

The search for a standard “non-informative” prior distribution, to formally express
prior ignorance or for the purpose of scientific reporting started in earnest in Jeffreys
(1961). The principle introduced in Jeffreys (1961) has gained widespread acceptance for
models with only one parameter. However, in the presence of multiple parameters, various
alternative approaches have been suggested. Jeffreys himself (1961, p.182) considers a
modification of his rule for the cases where “a previous judgement of irrelevance” seems
reasonable. The resulting prior will be denoted as the “independence Jeffreys’ prior” in
the sequel.

A formal methodology for multiparameter models was introduced in Bernardo (1979)
on the basis of information theory arguments and distinguishing between parameters of
interest and nuisance parameters. This “reference prior” algorithm was further developed
and defined in Berger and Bernardo (1992). They introduce and discuss some technical
refinements, such as a nested sequence of compact sets (hereafter denoted by {Θl}), con-
verging to the entire parameter space when the latter is non-compact. The reference prior
is then derived by first considering Θl and afterwards taking a limit on l. In addition, in
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the case of more than two parameters, they consider a finer grouping of parameters than
the one that merely separates the parameter of interest from the nuisance parameters.
The choice of the sequence of sets, as well as the choice and order of the parameter groups
are found to potentially influence the form of the reference prior. On the basis of their
experience with various models, Berger and Bernardo (1992) state that usually the choice
of the sequence {Θl} does not matter, and they recommend using a separate group for
each parameter. For the ordering of the groups, however, they give no strict guidelines,
other than ordering according to “inferential importance”. Thus, the form of the reference
prior can be subject to a number of essentially arbitrary decisions.

In this paper, we shall consider the Berger and Bernardo reference prior. Some re-
cent publications in this area are, among others, Sun and Ye (1995), Datta and Ghosh
(1995) and Clarke (1996). Alternative noninformative prior distributions are proposed in
e.g. Tibshirani (1989), Ghosh and Mukerjee (1992) and Clarke and Wasserman (1993).
Kass and Wasserman (1996) give a comprehensive overview of such prior selection rules.

The present paper focuses on the case of two independent samples from multivariate
location-scale models and inference concerning some function of both locations. In partic-
ular, we aim to extend the distributional assumptions under which reference priors have
been derived from the restrictive Normal sampling to any combination of regular sampling
densities. Section 2 presents some general results. An interesting feature is that the ratio
of the sample sizes may enter the reference prior. Due to the presence of more than two pa-
rameters, grouping and ordering the parameters becomes an issue. Throughout the paper,
we shall follow the recommendation of Berger and Bernardo (1992) to put each parameter
in a separate group. If, in addition, the scales are ranked last, the reference prior is seen to
be the product of the independence Jeffreys’ prior and some function of the locations. The
latter function can depend on the sampling distributions, the ratio of the sample sizes, and
the choices of the parameter of interest and the sequence {Θl}. Thus, whereas the inde-
pendence Jeffreys’ prior is the same for any two-sample problem, the form of the reference
prior may vary according to some features of the problem. In particular, its dependence
on the parameter of interest is an intrinsic characteristic of this method. Different choices
of the parameter of interest define different problems, and in Sections 3-5 we discuss in
detail the difference, ratio and product of locations. In this way, we respectively generalize
the well-known Behrens-Fisher, Fieller-Creasy and product of means problems, previously
examined in the reference prior literature under the assumption of two Normal samples
(see Liseo, 1992, 1993; Bernardo, 1977; Berger and Bernardo, 1989; Bernardo and Smith,
1994), to any two regular continuous location-scale models with possibly different sample
sizes. In addition, we also treat the product of locations with unknown equal scale.

Since the reference priors thus derived are all improper, existence of the posterior dis-
tribution becomes an issue. Thus, we complement our results with necessary and sufficient
conditions for propriety of the posterior under sampling from the practically useful class
of scale mixtures of Normals. Following Florens, Mouchart and Rolin (1990), we have a
well-defined conditional distribution of the parameters given the observables (i.e a proper
posterior distribution) whenever the marginal distribution of the observables is σ-finite.
The latter, however, does not exclude the possibility that its density becomes infinite in
a set of Lebesgue measure zero, which would preclude posterior inference for samples in



3

that set. The origins of this potential danger reside in the general “incompatibility” be-
tween continuous sampling models and point observations, and is not specific to the use
of improper priors. This issue, however, is outside the scope of the present paper.

Section 6 contains an empirical illustration of the difference and ratio of locations,
using a clinical data set presented in Karpatkin, Porges and Karpatkin (1981). We contrast
different sampling assumptions and illustrate the feasibility of a reference analysis under
a variety of sampling distributions.

Some main conclusions are summarized in Section 7.
Throughout the paper, we assume the sufficient regularity conditions for asymptotic

Normality of the likelihood function in DeGroot (1970, Ch.10), which implies that the
reference prior can be derived solely on the basis of the information matrix (Section 2.3 of
Berger and Bernardo, 1992, and Proposition 6.30 of Bernardo and Smith, 1994). For the
particular sampling distributions considered in some detail in this paper, i.e. Student-t
and Skewed Exponential Power (with q > 1) (see Appendix B), we have checked that
asymptotic Normality of the likelihood function holds. For reference priors in non-regular
models, see Ghosal (1997).

Finally, we shall use p(·) to denote probability density functions on observables,
whereas the notation π(·) shall be reserved for parameters. Proofs are sketched in Ap-
pendix A.

2. TWO SAMPLES FROM GENERAL LOCATION-SCALE MODELS

We consider m independent and identically distributed (i.i.d.) replications from a
general r-variate location-scale model, with density function

p(x|α, σ) = σ−rf{σ−1(x− α)}, (2.1)

where x ∈ <r, α ∈ <r is a location parameter, σ > 0 is a scale parameter and f(·) is a prob-
ability density function (p.d.f.) in <r. A second independent sample of n i.i.d. observations
is assumed to be generated from the model

p(y|β, ξ) = ξ−sg{ξ−1(y − β)}, (2.2)

where y ∈ <s, β ∈ <s is a location parameter, ξ > 0 is the scale and g(·) is a p.d.f. in
<s. Implicitly, we shall assume throughout that the regularity conditions for asymptotic
Normality mentioned in the Introduction hold for both (2.1) and (2.2).

Our parameter of interest, denoted by θ, will be some function of the locations α and
β, and can be either uni- or multi-dimensional depending on the context. Under Normal
sampling, three well-known cases that have been previously addressed in the reference prior
literature are the difference of means (Behrens-Fisher problem), the ratio of means with
σ = ξ (Fieller-Creasy problem) and the product of means with known σ and ξ. In this
paper, we mainly concentrate on analyzing the extensions of these classical two-sample
problems to the context of two general location-scale models as in (2.1) and (2.2), without
the Normality assumption.

Observe that we explicitly allow for any sample sizes, m and n, possibly different. It is
well-known that in the one-sample case, sample size does not affect the reference prior. The
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basic experiment, upon which the reference prior is based, is then just one replication. In
the two-sample situation, however, relative sample size m/n enters the information matrix
in a non-trivial way. The basic experiment in this case requires fixing relative sample size,
and thus the reference prior can depend on the ratio m/n. However, it will not depend on
the number of i.i.d. replications from the basic experiment, parallelling the result for one
sample in that sense.

First, we present a general result on reference priors for two-sample problems. Through-
out the paper, we will reparameterize (α, β) into (θ, ρ), where θ is the parameter of interest
and ρ some nuisance parameter. We shall always assume a Cartesian product structure
between (θ, ρ), σ and ξ in Θl; this will be denoted as

Θl = Θl
θ,ρ ×Θl

σ ×Θl
ξ.

We now distinguish between the case of unknown but equal scales (i.e. σ = ξ) and the
case where σ and ξ are unknown and potentially different.

Proposition 1. Consider two independent samples of m i.i.d. replications from (2.1) and
n i.i.d. replications from (2.2).
(i) Equal scales: We assume σ = ξ and take three groups ordered as {θ, ρ, σ}. Then the
reference prior in the original parameterization is

π(α, β, σ) ∝ σ−1R(α, β), (2.3)

for some non-negative function R(·), the form of which may depend on the choice of (θ, ρ),
as well as on f(·), g(·), m/n and {Θl

θ,ρ}.
(ii) Potentially different scales: With four groups ordered as {θ, ρ, σ, ξ} or {θ, ρ, ξ, σ}, the
reference prior is

π(α, β, σ, ξ) ∝ σ−1ξ−1Q(α, β), (2.4)

for some non-negative function Q(·), the form of which may depend on (θ, ρ), as well as
on f(·), g(·), m/n and {Θl

θ,ρ}.

Remark that the independence Jeffreys’ prior would always be π(α, β, σ) ∝ σ−1 for
the case ξ = σ [see (A.1) in Appendix A], and π(α, β, σ, ξ) ∝ σ−1ξ−1 for possibly different
scales [from (B.1) in Appendix B]. Our results in Proposition 1 add an additional factor,
R(·) or Q(·), which depends on a number of features of the problem. In line with the
underlying motivation for the reference prior, the choice of the parameter of interest plays
a crucial role in the form of the reference prior (as we shall see in the next three sections),
whereas it leaves the Jeffreys’ prior totally unaffected.

3. THE DIFFERENCE OF LOCATIONS

In the Behrens-Fisher problem (see e.g. Fisher, 1956, chap. 4) the issue is to conduct
inference on the difference of the means of two independent Normal samples with unknown
and possibly different variances. The reference prior for this problem, which corresponds
to choosing for f(·) in (2.1) and for g(·) in (2.2) standard Normal p.d.f.’s and r = s, was
derived in Liseo (1992) for r = s = 1. In this section, we examine the problem of the
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difference of locations when we drop the assumption of Normality and we consider instead
any two location-scale models with any value for r = s and any two sample sizes m and n.
We thus take the parameter of interest to be θ = α − β, and we shall choose as nuisance
parameters β, σ and ξ. Our main result is summarized in the following theorem.

Theorem 1. Consider four groups in the order {θ, β, σ, ξ} or {θ, β, ξ, σ}, with Θl
θ,β =

Θl
θ × Θl

β or Θl
θ,β corresponding to rectangles for (α, β) such that αj ∈ [−aj(l), aj(l)],

βj ∈ [−bj(l), bj(l)], where {aj(l)} and {bj(l)} are increasing sequences of positive numbers
with liml→∞{aj(l)/bj(l)} = 1 for all j = 1, . . . , r (αj and βj denote the jth component of
α and β, respectively). Then we obtain as the reference prior

π(θ, β, σ, ξ) = π(α, β, σ, ξ) ∝ σ−1ξ−1, (3.1)

for any choice of f(·) in (2.1) and g(·) in (2.2), with any r = s, m and n.

Remark that the Normality assumption plays no role whatsoever when Θl
θ,β = Θl

θ ×

Θl
β . In this problem, however, one could find it more natural to focus on the original

parameterization. From Theorem 1 we see that if Θl
θ,β corresponds to a natural sequence

of rectangles for (α, β), (3.1) is still the reference prior. Clearly, relative sample size does
not affect the reference prior in (3.1) either. In terms of Proposition 1 (ii), (3.1) corresponds
to Q(α, β) = 1, regardless of f(·), g(·) and m/n, and thus coincides with the independence
Jeffreys’ prior.

Since we now have more than one nuisance parameter, their ordering becomes an
issue. Theorem 1 addresses the situation where the scales are ranked last [as was the case
in Proposition 1 (ii)]. If at least one of the scales precedes β, then with the same choices
of {Θl} we can still obtain (3.1) under the following condition:

Proposition 2. If f(·) and g(·) both lead to a block diagonal information matrix between
location and scale [i.e. b(f) = b(g) = 0 in (B.1)], then (3.1) is the reference prior (with
four groups) under any ordering of the nuisance parameters.

The condition of Proposition 2 is assured whenever we have axial symmetry (e.g.
sphericity, which includes the class of scale mixtures of Normals described in (3.2), or lq-
sphericity as defined in Osiewalski and Steel, 1993), but also holds in other cases such as
Skewed Exponential Power distributions, as explained in Appendix B.

When block diagonality fails to hold for at least one of the information matrices,
we typically lose the form of the reference prior in (3.1) if one or both scales precede β.
As mentioned in Berger and Bernardo (1992), the ordering of the nuisance parameters is
essentially arbitrary and different orderings can lead to different forms of the reference
prior.

As a result of the particular product structure of the reference prior in (3.1) and the
independence between both samples, (α, σ) and (β, ξ) are independent a posteriori, and
propriety of the posterior distribution holds if and only if it holds for each of the samples
separately. In addition, positive-order posterior moments of θ exist if and only if the
corresponding posterior moments of α and β exist. As an important example, we consider
sampling from scale mixtures of Normals, which corresponds to the following choice of
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f(·):

f(z) =

∫ ∞
0

(
λ

2π

)r/2
exp

(
−
λ

2
z′z

)
dPλ, (3.2)

where z ∈ <r and Pλ is any probability distribution for the mixing variable λ in <+. This
is a rich class, which contains as leading examples the r-variate Normal and Student-t
distributions.

Proposition 3. Combining m i.i.d. replications from (2.1) with f(·) as in (3.2) with the
prior π(α, σ) ∝ σ−1, leads to a well-defined conditional distribution of the parameters given
the observables if and only if m ≥ 2. Positive-order posterior moments of the components
of α exist up to the order r(m − 1) (not including).

In a multivariate framework (r, s > 1), we could also reparameterize α and β in terms
of lower-dimensional vectors γ and δ, respectively, and focus our interest on γ − δ. Note
that now we can allow for x and y to have different dimensions (i.e. r = s is no longer
imposed) as long as both γ and δ share some lower dimension p. In the extreme case of
common location, α = γιr and β = διs with p = 1 and ιq denoting a q × 1 vector of ones.
Then, using the four groups γ − δ, δ, σ, ξ, the results in Theorem 1 and Proposition 2
directly apply, defining θ = γ − δ and replacing α and β by γ and δ respectively.

4. THE RATIO OF LOCATIONS

As before, we shall consider m i.i.d. observations from (2.1) and n i.i.d. observations
from (2.2) under independence between both samples. We assume r = s = 1, i.e. univariate
observations. The focus of interest is now the ratio of locations: θ = α/β. Traditionally,
this problem has been posed in the context of Normality and equal unknown variances σ2.
The seminal discussion of this issue can be found in Fieller (1954) and Creasy (1954), who
both propose different fiducial solutions to this problem.

Bernardo (1977) derives the reference prior in this Normal case, and obtains for θ
being the parameter of interest:

π(α, β, σ) ∝ σ−1(α2 + β2)−1/2 (4.1)

in terms of the original parameterization. Even though Bernardo (1977) derived this prior
for general sample sizes m and n, our results indicate that (4.1) requires m = n. We now
investigate this problem outside the Normal context, retaining θ = α/β as the parameter
of interest and denoting the common scale parameter by σ (i.e. ξ = σ).

Theorem 2. With the order {θ, β, σ} (three groups) and Θl
θ,β = Θl

θ × Θl
β or Θl

θ,β cor-
responding to [−a(l), a(l)] × [−b(l), b(l)] for (α, β), where {a(l)} and {b(l)} are increasing
sequences of positive numbers, we obtain as the reference prior

π(α, β, σ) ∝ σ−1S−1/2(α, β), (4.2)

where

S(α, β) =

[
m

n
A(f)

{m
n
c(f) + c(g)

}
−
m2

n2
b2(f)

]
α2 − 2

m

n
b(f)b(g)αβ

+
[
A(g)

{m
n
c(f) + c(g)

}
− b2(g)

]
β2

(4.3)
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with A(·), b(·) and c(·) as defined in (B.1) taking r = 1.

The prior in (4.2) corresponds to R(α, β) = S−1/2(α, β) in Proposition 1 (i). The
general expression for the reference prior is thus found to depend on the functional form
of each sampling model as well as on the relative sample size. However, the expression for
S(α, β) simplifies in the following situations:

Corollary 1. If b(f) = b(g) = 0, the reference prior becomes

π(α, β, σ) ∝ σ−1

(
mA(f)

nA(g)
α2 + β2

)−1/2

. (4.4)

If, in addition, f(·) = g(·), then we obtain

π(α, β, σ) ∝ σ−1
(m
n
α2 + β2

)−1/2

. (4.5)

In order to obtain the same reference prior for an entire class of sampling models,
Corollary 1 imposes that f(·) = g(·), apart from the condition b(f) = 0. Thus, for
example, if both samples are generated from the same symmetric distribution, we have
(4.5) as the reference prior. This, of course, applies to the original Fieller-Creasy problem,
where Normality was assumed. The expression in (4.5) still depends on relative sample
size, i.e. the definition of the underlying basic experiment. Only if m = n do we obtain
(4.1).

Again, the reference prior in (4.2) is not proper, which raises the issue of existence of
the posterior. If we sample within the class of scale mixtures of Normals b(f) = b(g) = 0
and the prior in (4.2)− (4.3) simplifies to (4.4). The following result then holds.

Proposition 4. Combining i.i.d. samples of m ≥ 1 observations from (2.1) and n ≥ 1
observations from (2.2), where both f(·) and g(·) correspond to scale mixtures of Normals
and σ = ξ, with the prior (4.4) leads to a proper posterior if and only if m + n ≥ 3.
Furthermore, first and higher order posterior moments of θ = α/β do not exist.

5. THE PRODUCT OF LOCATIONS

We now consider a first sample of m univariate observations from (2.1) and a second
sample of n univariate observations from (2.2) and focus our interest on the product of
the locations. Thus, θ = αβ is the parameter of interest. Berger and Bernardo (1989)
treat this problem with Normality imposed on both samples, with α, β ≥ 0 and known
unitary variances (σ = ξ = 1). They comment on the difficulties encountered in classical
estimation of θ = αβ, when α, β ≥ 0. Implicitly, Berger and Bernardo (1989) assume both
samples to be of equal size (m = n), whereas Bernardo and Smith (1994, Example 5.19)
explicitly treat different sample sizes.

We shall extend their analysis in two stages. Firstly, we introduce general forms for
f(·) and g(·), and secondly we consider unknown equal scales (σ = ξ). Overall, we shall
choose as nuisance parameter ρ = (β/α)1/2. For the first extension, we assume σ = ξ = 1,
but the analysis is trivially extended to any known values of σ and ξ as also mentioned in
Berger and Bernardo (1989) for the Normal case. Our main results are summarized in the
following theorems:
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Theorem 3. Known scales
For m replications from (2.1) and n replications from (2.2) with σ = ξ = 1, and two groups
in the order {θ, ρ}, the reference prior is:
(i) if Θl = Θl

θ ×Θl
ρ

π(α, β) ∝ (αβ)−1

(
m

n

A(f)

A(g)
α2 + β2

)1/2

, (5.1)

(ii) if Θl corresponds to [0, a(l)]× [0, b(l)] for (α, β), where {a(l)} and {b(l)} are increasing
sequences of positive numbers,

π(α, β) ∝

(
m

n

A(f)

A(g)
α2 + β2

)1/2

, (5.2)

with A(·) as defined in (B.1) with r = 1.

As mentioned in Berger and Bernardo (1989) for the Normal case, the choice of the
sequence of sets clearly matters. Both (i) and (ii) could be considered natural choices for
Θl, but they lead to rather different forms for the reference prior. Generally, the choice
of the sampling distributions also matters in (5.1) and (5.2), although it does not when
f(·) = g(·). Thus, the reference priors derived by Berger and Bernardo (1989) under
Normality for m = n, extend to the case of taking both equal-sized samples from the same
general location model. Berger and Bernardo (1989) intuitively favour taking rectangles in
the original parameterization. Tibshirani (1989) builds on earlier results by Stein (1985)
to give an asymptotic coverage probability motivation for the prior preferred by Berger
and Bernardo (1989). In our more general framework (i.e. for any f(·) and g(·) and any
sample sizes m and n), Tibshirani’s method can also be applied leading to the prior in
(5.2). Thus, from this point of view, the prior in (5.2) is preferable to the prior in (5.1).

There is still the issue of the existence of the posterior distribution left to resolve
under both candidate reference priors. The following proposition collects results when
both samples are taken from scale mixtures of Normals:

Proposition 5. Using m observations from (2.1) and n observations from (2.2), where
both f(·) and g(·) are scale mixtures of Normal density functions and σ = ξ = 1, the
prior (5.1) will never lead to a proper posterior distribution. In contrast, the prior in
(5.2) results in a proper posterior if min{m,n} ≥ 2 and posterior moments of θ of order
q ∈ [0,min{m,n} − 2] are finite.

Thus, under the prior in (5.1) posterior inference is precluded, for any sample sizes and
sampling densities within the entire class of scale mixtures of Normals. This immediately
implies that the posterior distribution does not exist under Normal sampling either, a
result that is implicit in Sun and Ye (1995), who consider a product of many Normal
means. On the basis of plots of the (nonexisting) posterior, Berger and Bernardo (1989)
conclude that the prior in (5.1) is “highly counterintuitive”. We could thus considerably
strengthen this to stating that (5.1) can not lead to posterior inference. Note that this
fully resolves the choice between (5.1) and (5.2) (at least under a wide and relevant class
of sampling distributions) and the question in which parameterization one should choose
rectangles becomes moot in this case.
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Theorem 4. Unknown equal scales
We consider samples of sizes m and n from (2.1) and (2.2), respectively, with σ = ξ
unknown and the three groups in the order {θ, ρ, σ}. If either or both of b(f) and b(g) is
zero, the reference prior is:
(i) if Θl

θ,ρ = Θl
θ ×Θl

ρ

π(α, β, σ) ∝ σ−1(αβ)−1

(
m

n

M(f, g, n
m

)

M(g, f, m
n

)
α2 + β2

)1/2

, (5.3)

(ii) if Θl
θ,ρ corresponds to [0, a(l)] × [0, b(l)] for (α, β),

π(α, β, σ) ∝ σ−1

(
m

n

M(f, g, n
m

)

M(g, f, m
n

)
α2 + β2

)1/2

, (5.4)

where

M(f, g,
n

m
) = A(f) −

b2(f)

c(f) + n
m
c(g)

, (5.5)

with A(·), b(·) and c(·) as in (B.1) with r = 1.

Note that if b(f) = 0, then M(f, g, n/m) = A(f). Thus, if both b(f) and b(g) are
zero, we obtain the same expressions as in Theorem 3 with an additional factor σ−1. Just
like in Theorem 3, the choice of {Θl} influences the reference prior. This contrasts with
Theorem 1 for the difference and Theorem 2 for the ratio of locations, where both choices
of {Θl} led to the same form of the reference prior. The problem of products of locations
is particularly sensitive to the choice of the sequence of sets, as already noted by Berger
and Bernardo (1989) in the Normal context. Theorem 4 presents another example of
Proposition 1 (i), where the form of the function R(·) now also depends on the sequence
{Θl

θ,ρ}.
Let us now check for existence of the posterior distribution and moments in this case

with equal unknown scales.

Proposition 6. Combining m observations from (2.1) and n observations from (2.2),
where both f(·) and g(·) are scale mixtures of Normal density functions and σ = ξ, with
the prior (5.3) will never lead to a proper posterior distribution. If we use the prior in
(5.4) we obtain a proper posterior if min{m,n} ≥ 2 and posterior moments of θ of order
q ∈ [0, (min{m,n} − 2)/2] are finite.

Just like in the case of known scales, taking the sets Θl
θ,ρ = Θl

θ × Θl
ρ leads to a

nonexistent posterior distribution for a large and practically useful class of sampling dis-
tributions. Thus, the choice between (5.3) and (5.4) can immediately be decided, at least
when sampling from scale mixtures of Normals.

As a final remark, the conditions stated in Propositions 5 and 6 under the priors (5.2)
and (5.4) are merely sufficient conditions that need not be necessary in general.
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6. EMPIRICAL ILLUSTRATION

In this section we shall use the reference priors derived previously in analyzing a set of
data collected in a clinical trial. Karpatkin, Porges and Karpatkin (1981) investigate the
impact of maternal steroid therapy on the platelet counts of newborn infants. The data
are here taken in thousands of platelets per mm3, and are also reported in Pocock (1983).
We have univariate observations (r = s = 1) on the infant platelet count after delivery for
m = 7 mothers not given steroids and n = 12 mothers that were given steroids. In this
application, it seems natural to assume independence between both samples. Furthermore,
we shall assume the samples were i.i.d. drawings from the location-scale models in (2.1) and
(2.2), respectively, and we will now focus on the difference and the ratio of the locations.
The data for mothers without steroids, (x1, . . . , xm), display some skewness (Pearson’s
measure of skewness, γ1, is 1.00), whereas the second sample, (y1, . . . , yn), has even more
skewness (γ1 = 1.53) and also possesses excess kurtosis (γ2 = 1.74). Hence, a rank-based
procedure was proposed in Pocock (1983).

6.1. The Difference of Locations
Often, this problem is posed under Normality with unknown and possibly different

variances (Behrens-Fisher problem). Here we shall also investigate the problem under alter-
native assumptions for f(·) and g(·): Student-t distributions, which give thicker tails, and
Skewed Exponential Power distributions with q = 2, thus introducing skewness [see (B.2)
and (B.4) in Appendix B]. Since these sampling distributions all lead to block-diagonal
information matrices [given in (B.3) and (B.5), respectively], Proposition 2 applies and
the reference prior is (3.1) for all models. Due to the product structure of (3.1) and the
independence of both samples, we know that (α, σ) and (β, ξ) (and thus α and β) are a
posteriori independent. Thus, it suffices to present the derivation of the posterior distri-
bution for just one sample. Then, different stochastic assumptions for x in (2.1) and y in
(2.2) can immediately be combined. Let us thus only describe the analysis of the posterior
distribution of α, computed under m replications from (2.1) with the prior π(α, σ) ∝ σ−1.
From independent drawings on α and β we directly construct drawings for θ = α − β,
which is the focus of interest. Throughout this subsection, our empirical results will be
based on 50,000 drawings. In cases (ii) and (iii) drawings on α are generated using a Gibbs
sampler on (α, σ), possibly augmented with some other variables.

(i) NORMAL SAMPLING
It is well-known that if f(·) is a Normal p.d.f., the marginal posterior distribution of

α is a Student-t distribution with m − 1 degrees of freedom. Clearly, moments will exist
up to the order m− 1 (not including).

(ii) STUDENT SAMPLING WITH ν DEGREES OF FREEDOM
This corresponds to sampling from (2.1) with f(·) as given in (B.2) (choosing r =

1). Contrary to the previous case, a tractable analytical expression for the marginal
posterior density of α does not exist, and we shall resort to Gibbs sampling (see Gelfand
and Smith, 1990; Casella and George, 1992). From Proposition 3, the posterior density of
α is proper if and only if m ≥ 2 and has moments up to and not includingm−1. Exploiting
the representation of a Student-t distribution as a scale mixture of Normals [with Pλ in
(3.2) a Gamma(ν/2, ν/2) distribution], a Gibbs sampler on α, σ and the mixing variables
λ1, . . . , λm can easily be set up as described in e.g. Geweke (1993).
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(iii) SKEWED EXPONENTIAL POWER SAMPLING
Finally, we introduce skewness into the sampling distribution by considering f(·) given

in (B.4) for r = 1 and q = 2 (i.e. a “Skewed Normal” as defined in Fernández and Steel,
1998). The marginal posterior density of α is then a mixture of truncated Student-t
distributions with m− 1 degrees of freedom. Therefore, it is proper provided sample size
m ≥ 2, and has moments up to (and not including) m− 1, just as in both previous cases.
In addition, we can prove that its density, π(α|x1, . . . , xm), is continuous and first order
differentiable, despite being a mixture of truncated densities. In order to generate drawings
from this non-standard distribution for α, we shall use a Gibbs sampler on α and σ, which
is a simpler version of the one devised by Fernández and Steel (1998) for Skewed Student
sampling.

Figure 1 plots the posterior density function of θ = α− β on the basis of the platelet
data and for three different sampling schemes. First, we consider Normality for both
samples, i.e. the usual Behrens-Fisher problem. Then, we introduce thicker tails and, in
view of the data kurtosis in both samples, we choose to use a Student-t with ten degrees of
freedom for f(·) and a Cauchy for g(·). This change of sampling distributions has a rather
marked effect on the posterior of θ. Finally, we acknowledge the fact that the data display
considerable positive skewness, as discussed above. In order to account for this, we use
the Skewed Exponential Power (SEP) distribution in (B.4) with q = 2, and take γ = 1.5
for f(·) and γ = 2 for g(·). We then obtain the third posterior density of θ displayed in
Figure 1. From the previous theory, we know that all three posterior distributions have
moments up to min{m− 1, n− 1}, which is six in our case.

Apart from the difference of the locations (which correspond to the modes under all
three sampling schemes), we might be interested in the mean difference between the counts
in both samples. For symmetric choices of f(·) and g(·) these are equivalent (provided the
mean exists), but for the SEP this is not the case. Figure 1 also indicates the mean
difference under the SEP specifications, and, as expected, it is much closer to the Normal
result than the difference between the modes. Of course, if our interest would really be
the mean difference, rather than the difference between the modes, we would have to use
the appropriate reference prior for that parameter of interest.

For illustrative purposes we have fixed the values of the degrees of freedom, ν, in
the Student case, and the skewness parameter, γ, for the SEP specification, roughly in
accordance with the characteristics of the data. In serious applications, we would, of
course, recommend estimating these parameters jointly with location and scale parameters,
as described in Fernández and Steel (1998) in the context of Skewed Student-t sampling.
Note, however, that treating γ and ν as unknown parameters to be estimated, could change
the form of the reference prior for the location and scale parameters.

Some sensitivity with respect to sampling assumptions is directly apparent from Figure
1. While all sampling schemes would agree to a positive effect of steroids on the modal
platelet count, they vary quite a bit as to the size of such an effect.

6.2. The Ratio of Locations
In this subsection we shall first treat the usual Fieller-Creasy problem with Normal

sampling and unknown equal variances. In addition, we shall examine the case where the
first sample is still assumed to come from a Normal distribution, whereas for the second



12

sample we take a Cauchy distribution. Note that here the common scale, denoted by σ
(σ = ξ), links both samples and thus we need to consider the joint posterior of α and
β, from which drawings of θ = α/β will be generated. By changing g(·) to a Cauchy
distribution (for which even the mean does not exist) the assumption of a common scale
parameter is no longer in flagrant contradiction with the fact that the variance of the
second sample is much larger than that of the first.

Applying Corollary 1, the reference prior is given by (4.5) under Normality for both
samples, and by

π(α, β, σ) ∝ σ−1
(m
n

2α2 + β2
)−1/2

, (6.1)

when g(·) is replaced by a Cauchy p.d.f. Since the posterior analysis greatly simplifies if
we use instead of (4.5) or (6.1) the independence Jeffreys’ prior

π(α, β, σ) ∝ σ−1, (6.2)

we adopt the following strategy outlined in Stephens and Smith (1992):
First, we use (6.2) and generate drawings from the corresponding marginal posterior

distribution for (α, β). In a second stage we resample (with replacement) from the set of
generated drawings with weights proportional to {(m/n)α2 +β2}−1/2 for the Normal case,
and {(m/n)2α2 + β2}−1/2 for the Normal-Cauchy sampling. This Sampling-Importance
Resampling (SIR) technique will then generate drawings from the posterior distributions
of (α, β) under the priors (4.5) and (6.1). In the actual computations we used a sample of
150,000 values from which we resampled 10,000 drawings of (α, β), which were then simply
transformed to drawings of θ = α/β.

(i) NORMAL SAMPLING
Under the simple prior in (6.2), it is easy to derive that the posterior distribution

π(α, β|data) is a bivariate Student with m + n − 2 degrees of freedom. The numerical
analysis will now be conducted by drawing α and β from this bivariate Student-t distribu-
tion and resampling with the weights corresponding to the second factor in (4.5). We note
that this SIR scheme requires propriety of the Student-t distribution, which translates to
m + n ≥ 3, i.e. a total of at least three observations. This is exactly the necessary and
sufficient condition for a proper posterior distribution, as explained in Proposition 4.

(ii) NORMAL-CAUCHY SAMPLING
We now assume that the second sample (y1, . . . , yn) is generated from a Cauchy dis-

tribution. Thus, following (3.2),

p(yi|β, σ, λi) = f1
N (yi|β, σ

2λ−1
i ), i = 1, . . . , n,

where each λi has an independent Gamma(1/2,1/2) distribution and frN (z|a,B) corre-
sponds to an r-variate Normal distribution with mean a and covariance matrix B.

Proposition 4 establishes propriety of the posterior distribution under the prior in
(6.1) if and only if m+n ≥ 3. The same can be shown to hold under the prior (6.2). Now,
even with the latter prior, the posterior distribution of (α, β) displays a non-standard
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form, requiring numerical techniques for its analysis. We shall use a Gibbs sampler on
(α, β, σ, λ1, . . . , λn) through the following conditionals [under (6.2)]:

π
(
α, β, σ−2|λ1, . . . , λn, data

)
= f2

N


α

β

 |

∑m
i=1 xi/m∑n

i=1
λiyi∑n

i=1
λi

 , σ2

m 0

0
∑n

i=1 λi

−1


× fG

(
σ−2|

m+ n− 2

2
,

∑
i<j(xi − xj)

2

2m
+

∑
i<j λiλj(yi − yj)

2

2
∑n

i=1 λi

)
,

(6.3)
where fG(w|c, d) is the p.d.f. of a Gamma distribution with shape parameter c and mean
c/d, and

π(λ1, . . . , λn|α, β, σ
−2, data) =

n∏
i=1

fG

(
λi|1,

1 + σ−2(yi − β)2

2

)
. (6.4)

This Gibbs sampler is used to generate a set of drawings from (α, β), which is then resam-
pled with weights proportional to {(m/n)2α2 + β2}−1/2 in order to obtain drawings from
the marginal posterior distribution of (α, β) with the reference prior in (6.1).

Figure 2 summarizes the posterior inference on θ = α/β using the infant platelet
data described above. We note that the Normal-Cauchy sampling leads to quite different
posterior inference on θ than the usual Normal assumption. From Proposition 4, neither
of these distributions possesses a finite first order moment. Both sampling specifications
clearly indicate that the use of steroids increases platelet counts, since pr(θ < 1|data) is
virtually equal to unity. In order to investigate whether the use of steroids doubles the
platelet count, we can compute:

pr

(
θ <

1

2
|data

)
= pr(β > 2α|data) =

{
0.999 for Normal sampling
0.874 for Normal-Cauchy sampling.

7. CONCLUSIONS

This paper investigates the reference prior in the context of general multivariate con-
tinuous location-scale models, with unknown location and scale. In particular, we consider
the situation where two samples were obtained independently from different location-scale
models. The forms of the sampling densities are kept entirely free, subject to regularity
conditions assuring asymptotic Normality of the likelihood functions. Both samples can
be of different sizes and generated from different sampling distributions with p.d.f.’s f(·)
and g(·). The parameter of interest, denoted by θ, will be chosen as some function of both
locations, α and β. We treat in detail the difference, ratio and product of locations, and
thus generalize, respectively, the Behrens-Fisher, Fieller-Creasy and product of Normal
means problems. Generally, we show that the forms of the sampling distributions, the
ratio of the sample sizes, and the choices of θ and the sequence of sets {Θl} can influence
the reference prior.
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In contrast to the influence of the forms of the sampling distributions and the choice of
the parameter of interest, the fact that the relative sample size m/n can affect the reference
prior is perhaps somewhat counterintuitive. From a purely formal point of view, this arises
through the definition of the basic experiment and its information matrix. Intuitively, it is
not surprising that the way one accumulates sample information about the parameter of
interest may depend on m/n, and thus a prior that is expressly designed to maximize this
information may well posses the same type of dependence. For the difference of locations,
relative sample size is found not to influence the reference prior, but it always intervenes
in the other two problems.

A contentious issue in the application of the reference prior algorithm is the choice of
the sequence of nested compact sets {Θl}. It is often felt reasonable to choose a Cartesian
product for Θl (such as rectangles), but then it is not always clear whether rectangles in the
original parameters (locations) or in the transformed parameters (including the parameter
of interest) are preferable. For the difference and ratio of locations, both sequences lead
to exactly the same reference prior. If we are interested in the product of locations,
however, the same invariance no longer holds. Berger and Bernardo (1989) address this
situation in the context of a product of Normal means. We extend their results to general
sampling distributions and unequal sample sizes. The reference prior corresponding to
rectangles in the locations (i.e. original parameterization), can be given an asymptotic
coverage probability motivation, extending the analysis in Tibshirani (1989). An even
more compelling argument in favour of the latter prior is the fact that for a wide class
of sampling distributions, namely scale mixtures of Normals, the prior corresponding to
rectangles in the transformed parameters does not lead to a proper posterior distribution.
Thus, for many practically interesting sampling models this prior could never lead to
posterior inference. The same fundamental problem occurs if we allow for an unknown
scale factor common to both sampling models. Therefore, the apparent need to make an
essentially arbitrary choice for the reference prior on the basis of Θl vanishes in the case
of all two-sample problems considered here.

In addition to the influences that are formally examined in this paper, there are several
other issues that can potentially affect the form of the reference prior. The algorithm also
depends on the number of parameter groups and their ordering (apart from the fact that
we take the parameter of interest as the first group), and here we have generally followed
the strategy of putting each parameter in a separate group (as advocated by Berger and
Bernardo, 1992) and we have mostly ordered the scales last. In addition, whereas the choice
of the nuisance parameter is irrelevant when there are only two groups (see Proposition
5.27 of Bernardo and Smith, 1994), we know of no general results in this respect when the
number of groups is larger than two (as is mostly the case in this paper).

We use medical data on the effect of maternal steroid treatment on the platelet count
of newborn infants as an illustration of the generalized Behrens-Fisher and Fieller-Creasy
problems. For the difference of locations we contrast Normal sampling with independent
sampling from Student and Skewed Exponential Power distributions. All three cases share
a common form of the reference prior. Both departures from Normality clearly affect the
posterior inference on θ = α− β. For the case where θ = α/β, we first take both sampling
distributions to be Normal and we then consider the situation where f(·) is Normal and
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g(·) is a Cauchy p.d.f. The reference prior now varies with the sampling distribution.
Again, the posterior distribution of θ is substantially affected by the choice of sampling
scheme.

Our empirical exercise illustrates both the feasibility of posterior analysis under non-
Normal sampling distributions, using recently developed numerical techniques, and the
potential sensitivity of posterior inference to changes in the sampling distributions. Thus,
extending the reference posterior analysis to non-Normal sampling distributions is of gen-
uine practical interest. We feel our theoretical results on the influence of the sampling
scheme and the choices of {Θl} and θ on the reference prior also increase our understand-
ing of the intricate workings of this algorithm.

APPENDIX A: SKETCHED PROOFS

Proposition 1: We present the proof for σ = ξ (the proof for the case of different scales
can be done along the same lines). The information matrix for (α, β, σ) takes the form

I(α, β, σ) = σ−2nB(f, g,m/n), (A.1)

for some (r + s+ 1)× (r + s+ 1) matrix B(·). Using (A.1) and the suitable Jacobian, we
obtain the information matrix for (θ, ρ, σ). We now apply the reference prior algorithm of
Berger and Bernardo (1992) following their notation:

Since h3 ∝ σ−2, we obtain πl3(σ|θ, ρ) ∝ σ−1. The marginal prior for (θ, ρ) obviously
does not depend on σ, from which Proposition 1 (i) follows directly.

Theorem 1: Applying the reference prior algorithm to the information matrix of (θ, β, σ, ξ)
following the notation of Berger and Bernardo (1992), we obtain h4 ∝ ξ−2, h3 ∝ σ−2,
whereas h2 and h1 do not depend on θ or β. This implies for either choice of Θl in
Theorem 1

πl1(θ, β, σ, ξ) ∝
σ−1ξ−1∫
Θl(θ) dβ

, where Θl(θ) = {β : (θ, β) ∈ Θl
θ,β}. (A.2)

When Θl
θ,β = Θl

θ × Θl
β , the integral in (A.2) is constant, thus obtaining (3.1) as the

reference prior. For the second choice of Θl
θ,β in Theorem 1, the integral in (A.2) can

depend on θ, but as
∫

Θl(θ=0) dβ/
∫

Θl(θ) dβ converges to one as l → ∞, we again obtain

(3.1) as the reference prior. The proof for the order {θ, β, ξ, σ} can be done in a similar
way.

Proposition 2: Similar to the proof of Theorem 1.

Proposition 3: Consider the product of |αj |q and the joint distribution of the observables,
α, σ and the mixing parameters λ1, . . . , λm from (3.2). After integrating out α and σ,
which requires q < r(m− 1), we are left with a bounded (for almost any sample) function
of (λ1, . . . , λm), which is therefore integrable with respect to any mixing distribution.

Theorem 2: Applying the reference prior algorithm on the information matrix of (θ, β, σ),
we obtain h3 ∝ σ−2, whereas h2 does not depend on β, and h1 ∝ β2σ−2S−1(θ, 1), with
S(·) defined in (4.3). This leads to

πl1(θ, β, σ) ∝
σ−1S−1/2(θ, 1)∫

Θl(θ)
dβ

exp

{∫
Θl(θ)

logβ2 dβ

2
∫

Θl(θ)
dβ

}
, (A.3)
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with Θl(θ) defined in (A.2), for either choice of Θl in Theorem 2. When Θl
θ,β = Θl

θ ×Θl
β,

each of the three integrals in (A.3) is a constant, thus obtaining the reference prior in
(4.2) -after a transformation to the original parameterization-. Under the second choice
of Θl

θ,β in Theorem 2, each of the integrals in (A.3) separately depends on θ but this
dependence cancels between them, so that the expression in (A.3) is still proportional to
σ−1S−1/2(θ, 1).

Proposition 4: Consider the joint distribution of the observables, the mixing parameters
[see (3.2)], and (θ, β, σ). We first integrate out σ−2 as a Gamma, then β as a Student-t,
leaving us with a posterior density for θ given the scale mixing parameters from both
samples which has a lower bound proportional to a Cauchy p.d.f. This explains the nonex-
istence of posterior moments of order one and higher. Finally, propriety for m = n = 1
never holds, whereas it can be established for m+n = 3 with any scale mixing distributions
(for almost any sample).

Theorem 3: Direct application of the reference prior algorithm starting from the infor-
mation matrix of (θ, ρ), leads to

πl1(θ, ρ) ∝
θ−1/2(Aρ−4 + 1)1/2∫
Θl(θ)

(Aρ−4 + 1)1/2dρ
exp

[
−

∫
Θl(θ)

(Aρ−4 + 1)1/2 log(Aρ−2 + ρ2)dρ

2
∫

Θl(θ)
(Aρ−4 + 1)1/2dρ

]
, (A.4)

where Θl(θ) = {ρ : (θ, ρ) ∈ Θl} and A = {mA(f)}/{nA(g)} with A(f) and A(g) defined
through (B.1). Theorem 3 (i) is immediate from (A.4). In order to prove Theorem 3 (ii),
we make the change of variables ω = ρA−1/4 in each of the three integrals in (A.4). The
resulting expression in (A.4) is then very close to that obtained under Normality, which
directly allows us to use the results in Section 5.2 of Berger and Bernardo (1989) to prove
Theorem 3 (ii).

Proposition 5: We consider the joint distribution of the observables, the mixing param-
eters and (α, β). The prior (5.1) has a lower bound proportional to max{1/α, 1/β} and
thus would require first order negative moments of a Normal to exist, which directly leads
to the result. For the prior (5.2) we use an upper bound proportional to max{α, β}. After
integrating out α and β, we are then left with a function of the mixing parameters, which
is bounded (for almost any sample) provided that q ≤ min{m,n} − 2.

Theorem 4: After a first step that leads to the factor σ−1, we follow the proof of Theorem
3, replacing A in (A.4) by {mM(f, g, n/m)}/{nM(g, f,m/n)} with M(·) defined in (5.5).

Proposition 6: Similar to the proof of Proposition 5, using a lower bound proportional to
σ−1 max{1/α, 1/β} for (5.3) and an upper bound proportional to σ−1 max{α, β} for (5.4).

APPENDIX B: SOME INFORMATION MATRICES

General location-scale model
The information matrix for the general location-scale model in (2.1) takes the form

I(α, σ) = σ−2

(
A(f) b(f)
b′(f) c(f)

)
, (B.1)
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where A(f) is an r × r matrix, b(f) ∈ <r and c(f) > 0. If f(·) is axially symmetric,
we can derive that I(α, σ) is diagonal. If, in addition, f(·) possesses exchangeability
[i.e. f(z1, . . . , zr) = f(zφ(1), . . . , zφ(r)) for any permutation {φ(1), . . . , φ(r)} of {1, . . . , r}],
then A(f) is a multiple of Ir, the identity matrix of rank r.

Student-t distribution
If, in the spherical context, we consider the r-variate Student-t with ν > 0 degrees of

freedom, which corresponds to

f(z) =
Γ
(
ν+r

2

)
Γ
(
ν
2

)
(νπ)r/2

(
1 +

1

ν
‖z‖2

)− ν+r
2

, (B.2)

the following information matrix results in (B.1):

I(α, σ) = σ−2

(
ν+r
ν+r+2Ir 0

0 2r ν
ν+r+2

)
. (B.3)

Note that, as ν → ∞, the information matrix in (B.3) converges to that of the Normal
distribution.

Skewed Exponential Power distribution
This family of distributions was introduced by Fernández, Osiewalski and Steel (1995),

and in an r-variate context corresponds to

f(z) =

 q

21/qΓ
(

1
q

)(
γ + 1

γ

)

r

exp

[
−

1

2

r∑
i=1

{(
zi
γ

)q
I[0,∞)(zi) + (−γzi)

qI(−∞,0)(zi)

}]
,

(B.4)
where γ ∈ (0,∞). For γ = 1, (B.4) corresponds to r i.i.d. replications from a univariate
Exponential Power distribution, and f(·) is therefore exchangeable and axially symmetric.
However, for γ 6= 1, f(·) no longer possesses axial symmetry. It can be shown that the
value of γ in (B.4) does not affect the information matrix in (B.1), which takes the form

I(α, σ) = σ−2

(
q(q−1)

41/q

Γ(1− 1
q )

Γ( 1
q )

Ir 0

0 rq

)
. (B.5)

Clearly, for q = 2, we recuperate the information matrix of the Normal case.
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