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Abstract: This paper provides a non-linear pricing rule for the valuation

of assets on financial markets with intermediaries. The non-linearity arises

from the fact that dealers charge a price for their intermediation between

buyer and seller. The pricing rule we propose is an alternative for the well-

known no-arbitrage pricing on markets without frictions. The price of an

asset equals the signed Choquet integral of its discounted payoff with respect

to a concave signed capacity. We show that this pricing rule is consistent

with equilibrium. Furthermore, equilibria are shown to satisfy a notion of

constrained Pareto optimality.
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1 Introduction

On financial markets without frictions, no-arbitrage pricing allows to price

non-marketed redundant assets using the equilibrium prices of the marketed

assets (see for instance Magill and Shafer (1991)). The equilibrium prices

of the marketed assets determine a (set of) risk neutral probability distri-

bution(s) such that the equilibrium price of a redundant asset equals the

mathematical expectation of its discounted payoff with respect to this (these)

probability distribution(s). This pricing rule is consistent with equilibrium

in the sense that, introducing a redundant asset at its no-arbitrage price does

not affect the equilibrium allocations (see for example Harrison and Kreps

(1979)). On markets with frictions however, a pricing rule will in general be

non-linear. Consider for example bid-ask spreads or transaction costs. Then

clearly prices (as a function of asset payoffs) are non-linear, since the price

an agent has to pay for buying an asset is strictly larger than the price an

agent receives for selling it. Therefore equilibrium asset prices cannot be

represented by the mathematical expectation of their discounted payoff with

respect to a probability measure.

In this paper, we propose a non-linear pricing rule that allows for bid-ask

spreads. This pricing rule essentially amounts to replacing the risk-neutral

probability measure appearing in no-arbitrage pricing by a concave signed

capacity1 ν. The price of an asset then equals the signed Choquet integral2,

which in general is non-linear, of its discounted payoff with respect to ν.

1Consider a measure space (Ω,A). A set function µ : A → IR is concave if for all

A,B ∈ A one has µ(A ∪ B) ≤ µ(A) + µ(B) − µ(A ∩ B). A set function µ is a signed

capacity if it satisfies µ(Ω) = 1 and µ(∅) = 0. Signed capacities generalize capacities since

they need not satisfy monotonicity with respect to set inclusion.
2See for instance Schmeidler (1986) for details on the Choquet integral, and De Wae-

genaere and Wakker (1996) for details on the signed Choquet integral.
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We define a market model with bid-ask spreads and show that the above

described pricing rule is consistent with General Equilibrium pricing in the

sense that: i) the equilibrium price of a marketed asset equals the signed

Choquet integral of its discounted payoffs with respect to an equilibrium

concave signed capacity, and ii) introducing a redundant asset at the price

equal to the signed Choquet integral of its discounted payoffs with respect

to this concave signed capacity does not affect the equilibrium allocations.

2 Choquet equilibrium prices

We consider a two period asset market model with dealers charging bid-

ask spreads, show that equilibrium exists, and give a characterization of the

equilibrium prices of the assets. There are J nominal assets, indexed by

j ∈ J := {1, 2, . . . , J}. The assets can be traded in the first period, and

yield payoff in the second period. There are S possible states of the world

at the second period, indexed by s ∈ Ω := {1, 2, . . . , S}. For simplicity

of notation, we assume that there are no spot markets, i.e. there is only

one good at each state of the world, and assets yield payoff in quantities of

this good. A consumption bundle is a vector x = (x0, x1, . . . , xS)t ∈ IRS+1
+ ,

consisting of x0 units of the good in the first period, and xs units of the

good in the second period if state s occurs, for s ∈ Ω. The payoff of asset

j ∈ J is denoted by a vector Aj ∈ IRS. The matrix of asset payoffs is

denoted A ∈ IRS×J . There are I agents, indexed by i ∈ I = {1, 2, . . . , I}

with utility functions ui : IRS+1
+ → IR+. They have initial endowments

wi = (wi0, w
i
1, . . . , w

i
S)t, i ∈ I, and maximize utility by trading asset portfolios

z = (z1, . . . , zJ)t ∈ IRJ .

The model differs from the standard incomplete markets model in the

sense that assets can only be traded through the intermediation of dealers.

Again for simplicity of notation, we assume that there is only one dealer. The
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presence of a dealer is formalized by the fact that for each asset Aj, j ∈ J ,

there is a buying price q(Aj) and a selling price −q(−Aj). Typically, one will

have that q(Aj) > −q(−Aj), i.e. the dealer can make a profit equal to the

bid-ask spread γj := q(Aj)+q(−Aj), by buying the asset from an agent for the

price −q(−Aj) and selling it to an agent for the price q(Aj). Furthermore,

when a portfolio consisting of more than one asset is traded, the dealer

takes into account that hedging effects can reduce the risk of the portfolio.

Consequently, he might allow a price discount in this case. More precisely,

for a portfolio z ∈ IRJ , in general one will have that q(Az) + q(−Az) ≤∑J
j=1 |zj|(q(Aj)+q(−Aj)), i.e. the spread on a portfolio is less than or equal to

the sum of the individual spreads. When however the payoff vectorsX and Y

of two portfolios are comonotonic3, then V ar(X+Y ) ≥ V ar(X)+V ar(Y ), so

there is no hedging effect when combining the two portfolios. Consequently,

the dealer does not allow a price discount in this case. In short, we assume

that the price functional q : IRS → IR used by the dealer has the following

properties:

Properties P1:

P11) Continuity.

P12) Sub-additivity, i.e. q(X + Y ) ≤ q(X) + q(Y ) for all payoff vectors

X, Y ∈ IRS.

P13) Comonotonic additivity, i.e. if X and Y are comonotonic vectors in

IRS, then q(X + Y ) = q(X) + q(Y ).

When the dealer charges spreads, the inequality in P12 will in general be

strict for non-comonotonic assets, and consequently, there is no probability

3Vectors X, Y ∈ IRS are comonotonic if (Xs−Xt)(Ys−Yt) ≥ 0 for all s, t ∈ Ω. When X

and Y denote payoff vectors of portfolios, then comonotonicity means that they increase

each others risk, since they move in the same direction.
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measure such that the price of an arbitrary portfolio equals the expected

value of its discounted payoff with respect to that probability measure. Con-

sequently, traditional no-arbitrage pricing cannot be used in this case. In

the sequel, we show how the signed Choquet integral can be used to value

portfolios on markets with frictions. Let us therefore first recall the definition

of the signed Choquet integral.

Definition 2.1 For any set function µ on (Ω, 2Ω), and any random variable

X on (Ω, 2Ω), the signed Choquet integral of X w.r.t. µ, denoted by
∫
Xdµ,

is defined as follows.

(i) Take a permutation ρ(.) on Ω that is compatible with X, i.e.

X(ρ(1)) ≥ · · · ≥ X(ρ(S)).

(ii) Define πρ(s) := µ({ρ(1), . . . , ρ(s)}) − µ({ρ(1), . . . , ρ(s − 1)}), for all

s ≥ 2, and πρ(1) := µ({ρ(1)})− µ(∅).

Then the signed Choquet integral of X with respect to µ is given by:

∫
Xdµ =

S∑
s=1

πsX(s). (1)

Notice that, if X(i) = X(j) for some i 6= j, then the rank-ordering ρ(.)

above is not uniquely defined. It is elementarily verified that then any rank-

ordering ρ(.) that is compatible with X gives the same result, so that the

signed Choquet integral is well-defined.

Notice furthermore that, when µ is a signed measure (i.e. µ is additive

and µ(∅) = 0), then πρ(s) = µ({ρ(s)}) for all s ∈ Ω, and consequently, one

has
∫
Xdµ =

∑S
s=1 µ({s})X(s), i.e. the signed Choquet integral equals the

Lebesque integral of X with respect to µ. Hence, when µ is a probability

measure, then
∫
Xdµ equals the expected value of X with respect to µ.
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Since in our case, Ω = {1, 2, . . . , S}, and A = 2Ω, we can represent a

stochastic variable on (Ω,A) by a vector X ∈ IRS. Therefore in the sequel,

with slight abuse of notation, for any vector X ∈ IRS, and any set function

µ,
∫
Xdµ denotes the signed Choquet integral of the stochastic variable X̃

on (Ω,A) defined by X̃(s) := Xs, for all s ∈ Ω.

As stated above, with traditional no-arbitrage pricing, there exists a prob-

ability measure such that the price of an asset equals the Lebesque integral

of its discounted payoff with respect to this measure. In the sequel, we show

that, by replacing the Lebesque integral by the more general signed Choquet

integral, one obtains a pricing rule that is applicable to markets with frictions

as described above. The following lemma is crucial.

Lemma 2.1 A functional q : IRS → IR satisfies properties P1 if and only if

there exists a concave set function µ satisfying µ(∅) = 0 such that q(X) =∫
Xdµ, for all X ∈ IRS.

Proof: From theorem 1 in De Waegenaere and Wakker (1996), we know

that a functional q(.) can be represented as a signed Choquet integral with

respect to a set function µ iff q(.) satisfies P11 and P13. Clearly, without

loss of generality, one can take µ(∅) = 0. Given that q(X) =
∫
Xdµ for all

X ∈ IRS , it follows from theorem 3 in De Waegenaere and Wakker (1996)

that µ is concave iff the functional q(.) satisfies property P12. This concludes

the proof.

For this reason, asset valuation by means of a price functional q(.) that

satisfies P1 will in the sequel be called Choquet valuation, and the correspon-

ding functional will be called a Choquet functional.
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Corollary 2.1 For every Choquet functional q(.) that assigns a positive price

to the riskless bond, i.e. q((1, 1, . . . , 1)t) > 0, there exists a concave signed

capacity ν such that q(X) = q((1, 1, . . . , 1)t)
∫
Xdν for all X ∈ IRS.

Proof: From lemma 2.1 it follows that there exists a concave set function µ

satisfying µ(∅) = 0 such that q(X) =
∫
Xdµ, for all X ∈ IRS. By taking X =

(1, 1, . . . , 1)t, it follows that µ(Ω) > 0. Every concave set function µ satisfying

µ(Ω) > 0 and µ(∅) = 0 can be normalized to a concave signed capacity ν as

follows ν(.) := µ(.)/µ(Ω). By definition 2.1 one has
∫
Xd(tν) = t

∫
Xdν for

all X ∈ IRS , t ∈ IR, and any set function ν. This yields the desired result.

The above corollary shows that a dealer who uses Choquet valuation and

assigns a positive price to the riskless bond performs asset valuation in a way

similar to no-arbitrage pricing in the frictionless case, but with the probabi-

lity measure replaced by a concave signed capacity. The non-linearity of this

pricing rule then clearly generates profit for the dealer. We suppose that each

agent i ∈ I has a share ξi in the dealer’s firm, with
∑I
i=1 ξ

i = 1. After trade,

the dealer’s profit is redistributed amongst the agents proportional to their

shares. Keeping in mind lemma 2.1 this gives rise to the following definition.

Definition 2.2 A set function µ : 2Ω → IR is an equilibrium set function if

there exist consumption bundles {xi, i ∈ I}, asset portfolios {zi, i ∈ I}, and

dealer’s profit πd ∈ IR+ satisfying:

i) (xi, zi) ∈ argmax(x,z)∈Bi(µ,πd)u
i(x), i ∈ I,

ii)
∑I
i=1 x

i =
∑I
i=1 w

i,

iii)
∑I
i=1 z

i = 0,

iv) πd =
∑I
i=1

∫
Azidµ
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where, the budget set of agent i ∈ I is given by:

Bi(µ, πd) :=

(x, z) ∈ IRS+1
+ × IRJ

∣∣∣∣∣∣ x0 ≤ wi0 −
∫
Azdµ + ξiπd

xs ≤ wis + (Az)s, s ∈ Ω

 .

Before going to the main theorem, it is interesting to notice the following.

From theorem 5 in De Waegenaere and Wakker (1996) it follows that4, for

each price functional q(.) with properties P1, and therefore by lemma 2.1 for

every signed Choquet integral with respect to a concave set function satisfy-

ing µ(∅) = 0, there exists a vector π ∈ IRS, which can be interpreted as a vec-

tor of state prices, and a positive, continuous functional Ψ(π, .) : IRS → IR+,

such that q(X) = πX + Ψ(π,X), for all X ∈ IRS. Therefore, a dealer using

Choquet valuation applies a pricing rule that consists of a linear part, πX,

the ”price” of X, to which he adds a positive, sub-additive part, Ψ(π,X),

which represents the ”spread” he charges for his intermediation. For this rea-

son, Ψ(., .) will be called the spread functional. Now the following definition

follows naturally.

Definition 2.3 A spread functional Ψ(., .) : IRS × IRS → IR+ is compatible

with properties P1 if for every π ∈ IRS, the functional q(.) := π. + Ψ(π, .)

satisfies properties P1. Let C denote the set of all set functions on (Ω, 2Ω).

The set functions that correspond to a given spread functional Ψ(., .) that is

compatible with P1 are given by C(Ψ) := {µ ∈ C| ∃π ∈ IRS : πX + Ψ(π,X) =∫
Xdµ, for all X ∈ IRS}.

4It is shown in theorem 5 in De Waegenaere and Wakker (1996) that for a concave set

function µ satisfying µ(∅) = 0, the signed Choquet integral of a stochastic variableX with

respect to µ is given by
∫
Xdµ = max

{∫
XdP | P ∈ P(µ)

}
, where P(µ) = {P | P is an

additive set function such that P (A) ≤ µ(A) for all A ∈ A, and P (Ω) = µ(Ω)}.
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We will consider spread functionals that satisfy the following regularity prop-

erties.

Properties P2:

P21) Ψ(., .) is continuous.

P22) When {πn : n → ∞} is such that limn→∞(πnAj) = +∞(resp. −∞)

for some j ∈ J , then limn→∞ (−πnAj + Ψ(πn,−Aj)) = −∞ (resp.

limn→∞ (πnAj + Ψ(πn, Aj)) = −∞).

The intuition behind P22 is as follows. Suppose that there would be no deal-

er, i.e. Ψ(., .) = 0. Then it is well known that potential equilibrium values

for the asset prices qj := πAj are bounded. Indeed, a sequence such that

limn→∞ |qnj | = ∞ leads to unbounded aggregate demand for the good in at

least one state. Now P22 essentially says that the spread functional is such

that when the price of an asset becomes very high (resp. low), the net amount

received when selling it (price - dealer’s charge) gets very high (resp. the to-

tal cost for buying it (price + dealer’s charge) gets very low). Consequently,

spreads do not prevent that aggregate demand becomes unbounded.

Notice that properties P2 are satisfied for all spread functionals that are com-

patible with P1 and do not depend on π. A concrete example of a spread

functional that is compatible with P1 and satisfies P2 is given in section 4.

More general examples of spread functionals being compatible with P1 and

satisfying P2 can be constructed using theorem 5 in De Waegenaere and

Wakker (1996).

We can now go to the main theorem, which can be shown under the

following regularity assumptions.
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Assumptions A:

A1) The utility functions are continuous, strictly increasing, and quasi-

concave.

A2) The initial endowments are strictly positive, i.e. wis > 0, for all

i ∈ I and s ∈ {0, 1, 2, . . . , S}.

A3) There is no redundancy in the asset’s payoffs, i.e. rank (A)=J.

Now the main theorem reads as follows.

Theorem 2.1 Under assumptions A, for every spread functional Ψ(., .) that

is compatible with properties P1, and satisfies properties P2, an equilibrium

concave set function µ∗ ∈ C(Ψ) exists. When the riskless bond in redundant,

i.e. (1, 1, . . . , 1)t ∈< A >, then there exists a concave signed capacity ν∗ such

that the equilibrium price of a portfolio z ∈ IRJ , equals q∗rb
∫
Azdν∗, where q∗rb

denotes the equilibrium price of the riskless bond.

Proof: Definition 2.3 combined with lemma 2.1 implies that, for a given

Ψ(., .) that is compatible with P1, budget sets can be rewritten as follows,

Bi(π, πd) :=

(x, z) ∈ IRS+1
+ × IRJ

∣∣∣∣∣∣ x0 ≤ wi0 − π(Az)−Ψ(π,Az) + ξiπd

xs ≤ wis + (Az)s, s ∈ Ω

 ,
where the vector π ∈ IRS now becomes the equilibrium variable. Since

Ψ(., .) is compatible with P1, it follows from theorem 3 in De Waegenaere and

Wakker (1996) that Ψ(π, .) is a convex function for all π ∈ IRS. Assumptions

A and the fact that Ψ(., .) is compatible with properties P1 therefore imply

that budget sets are non-empty, closed and convex for every π ∈ IRS and

every πd ≥ 0. Furthermore, property P22 implies that potential equilibrium

values for πA are bounded. Existence of an equilibrium π∗ can therefore be

shown following the lines of Werner (1985). An equilibrium µ∗ is then given
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by µ∗(A) := π∗1A + Ψ(π∗, 1A) for all A ∈ 2Ω, where 1A satisfies (1A)s = 1 for

s ∈ A and (1A)s = 0 for s ∈ Ω \A.

Now let µ∗ ∈ C(Ψ) be an equilibrium set function. It then follows that

the equilibrium price of the riskless bond is given by q∗rb =
∫

(1, 1, . . . , 1)tdµ∗ =

µ∗(Ω). By no-arbitrage arguments, clearly q∗rb > 0. Then corollary 2.1 says

that there exists a concave signed capacity ν∗ such that
∫
Xdµ∗ = q∗rb

∫
Xdν∗

for all X ∈ IRS. This yields the desired result.

3 Constrained Pareto optimality

In this section, we address the issue of Pareto optimality. The example in

the next section shows that, even with complete markets, one cannot expect

to have Pareto optimality. In this model, there are three sources of Pareto

inefficiency. The first one is the incompleteness of the market. The second

one is the redistribution of the dealer’s profit according to the shares in the

dealer’s firm. The last one is the fact that the presence of frictions indirectly

limits the level of transactions. This leads to the following definition.

Definition 3.1 At a set function µ : 2Ω → IR, and dealer’s profit πd ∈ IR+,

the set of feasible allocations is defined as follows:

F(µ, πd) :=

x ∈ IR
I×(S+1)
+

∣∣∣∣∣∣∣∣∣∃z ∈ IR
I×J :

xis = wis + (Azi)s, s ∈ Ω∑I
i=1 z

i = 0,
∑I
i=1 x

i
0 =

∑I
i=1w

i
0∑I

i=1

∫
Azidµ ≤ πd

 .

We can show the following.

Theorem 3.1 Suppose that µ∗ is an equilibrium set function, and let (x∗, z∗, µ∗, πd∗)

satisfy i), ii), iii) and iv) in definition 2.2. Then there does not exist an al-

location x̃ ∈ F(µ∗, πd∗) such that ui(x̃i) ≥ ui(x∗i) for all i ∈ I with at least

one strict inequality.
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Proof: Goes along the usual lines.

Notice that this concept of constrained Pareto optimality is similar to

notions of second order optimality in the context of markets with taxation

(see for instance Guesnerie (1994)).

4 Example

In the following example, we compute all equilibrium concave set functions

for a specified economy, and show that the only Pareto optimal equilibrium

is the one that corresponds to no bid-ask spreads.

Consider a market with two agents, two assets, one good and two states

of the world at date one. There is no consumption at date zero. The date

one endowment of agent 1 is given by (0, 2)t. The date one endowment of

agent 2 is given by (1, 0)t.

Agent 1 has utility function u1(x1, x2) := 2 ln(x1) + ln(x2). Agent 2 has

utility function u2(x1, x2) := ln(x1) + 2 ln(x2). The dealer’s firm is owned by

agent two, i.e. ξ2 = 1, and ξ1 = 0. The asset payoffs are given by: A1 = (1, 0)t

and A2 = (0, 1)t. We consider price functionals q(.) given by q(X) =
∫
Xdµ

for all X ∈ IRS, where the concave set function µ is the equilibrium variable.

Notice that, for a given concave set function µ, the price functional equals

q(X) =
∫
Xdµ = πX + γ|X2 − X1|, with π1 = µ({1, 2}) − µ({2}), π2 =

µ({1, 2}) − µ({1}), and γ = µ({1}) + µ({2}) − µ({1, 2}). On the other

hand, for any γ ≥ 0, the above used spread functional is compatible with

a concave set function. Since there is no consumption at date zero, we can

without loss of generality normalize the price of the riskless bond (1, 1)t to

1, i.e.
∫

(1, 1)tdµ = µ({1, 2}) = 1. In the sequel, we denote µ1 = µ({1}), and

µ2 = µ({2}). It is straightforward to see that the equilibria in this economy
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are then given by:

x1 =

(
4

3

(1− µ1)

µ1

,
2

3

)t
, x2 =

(
1

3
+

πd

3(1− µ2)
,
2

3

(1− µ2)

µ2

+
2

3

πd

µ2

)t
,

for all µ1, µ2 and πd satisfying:

1

3
≤ µ2 ≤

3

5
, µ1 =

4(1− µ2)

7− 9µ2
, πd = 3µ2 − 1.

For Pareto optimality however, it is necessary that x1
1 = 4x1

2/(2 + 3x1
2).

Consequently, the only Pareto optimal equilibrium is:

x1 = (
2

3
,
2

3
)t, x2 = (

1

3
,
4

3
)t

µ1 =
2

3
, µ2 =

1

3
, πd = 0,

i.e., it is the unique equilibrium where there is no bid-ask spread (πd = 0),

and for this equilibrium the set function mu is a probability measure, since

then µ1 + µ2 = 1 = µ({1, 2}).

Remark: The multiplicity of equilibria is a result of the fact that we allow

for µ1 +µ2 > 1, i.e. we allow for spreads, and consequently µ is allowed to be

a concave signed capacity instead of a probability measure. When restricting

to µ1 + µ2 = 1, one gets a unique equilibrium (without spreads).

5 Conclusion

Asset pricing with transaction costs or bid-ask spreads has been widely de-

veloped recently (see for example Boyle and Vorst (1992) and Bensaid et al.

(1992)). However, the link between asset pricing and equilibrium on mar-

kets with frictions has not been given much attention. This paper provides

such a link. It is shown that a non-linear pricing rule, Choquet pricing, can
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be used to price redundant assets in a way consistent with equilibrium. The

rule essentially amounts to replacing the risk-neutral probability distribution

appearing in no-arbitrage pricing by a concave signed capacity. It is shown

that ”equilibrium” signed capacities exist, and that the equilibrium alloca-

tions satisfy a notion of Pareto optimality that is very similar to notions of

Pareto optimality appearing in the taxation literature.
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