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The Nadaraya-Watson nonparametric estimator of regression is known to be highly sensitive to the presence of outliers in

data. This sensitivity can be reduced, for example, by using local L-estimates of regression. Whereas the local L-estimation

is traditionally done using an empirical conditional distribution function, we propose to use instead a smoothed conditional

distribution function. The asymptotic distribution of the proposed estimator is derived under mild β-mixing conditions, and

additionally, we show that the smoothed L-estimation approach provides computational as well as statistical finite-sample

improvements. Finally, the proposed method is applied to the modelling of implied volatility.
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1 Introduction

The nonparametric estimation of regression functions has been receiving much attention in

the literature (see Härdle, 1990, and Pagan and Ullah, 1999, for an overview) and one of the

most widely used estimator is, without any doubt, the Nadaraya-Watson (NW) estimator by

Nadaraya (1964) and Watson (1964). This estimator, being a local average of the response

variable, is highly sensitive to the presence of outliers in data (see Barnett and Lewis, 1994,

for a general discussion of the concept of an outlier). Possible outliers do not only increase the

variance of the estimator, but can also create fictitious peaks and therefore structure in the
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∗ Corresponding author. Email: P.Cizek@uvt.nl.
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estimation. In order to robustify the NW estimator, Boente and Fraiman (1994) used a local

L-estimate such as local α-trimmed means instead of a locally weighted average. Their procedure

consists in using an empirical conditional distribution function (cdf) that allows us to estimate

the amount of data to be discarded. We demonstrate that the empirical cdf is not an optimal

choice and that the use of a smoothed cdf, which is shown to be a generalization of the empirical

one, has substantial advantages. First, following theoretical arguments of Fernholz (1997) for

unconditional L-estimates, we expect estimates based on a smoothed cdf to have better finite

sample properties. Second, the proposed procedure does not require estimating of the local cdf

at every point of the sample but only on an integration grid, and consequently, it will be shown

to be less computationally intensive with an increasing sample size.

The paper is organized as follows. In Section 2, we describe both the empirical and smoothed

estimators of cdf and explain how they can be used to estimate the conditional L-estimator of

regression. In Section 3, asymptotic bounds for the smoothed cdf are given and the asymptotic

distribution of the smoothed L-estimator is derived under mild β-mixing conditions. This allows

for time-series applications, where outliers are particularly likely to appear as pointed out by

Lucas (1995) and Sakata and White (1998), for instance. In Section 4, we show why the smoothed

estimator is computationally less time-consuming than the empirical one. In Section 5, we briefly

recall the arguments given by Fernholz (1997) in favor of smoothing (in the case of unconditional

L-estimates) and perform a Monte Carlo study that demonstrates the superiority of the smoothed

estimator in finite samples. Finally in Section 6, we give an example of an application that

significantly benefits from the use of a robust nonparametric L-estimation. The proofs of the

asymptotic results are given in Appendix A.

2 Robust L-estimates of regression

Here, the conditional L-estimator of regression is introduced in Section 2.1. As it depends on

a generally unknown cdf, possible estimators are presented in Section 2.2 and plugged in the

conditional L-estimator in Section 2.3. As the proposed procedure depends on bandwidths chosen

by cross validation (CV), the choice of a CV criterion with respect to its robustness is discussed

in Section 2.4.
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2.1 Model definition

Let (X, Y ) be a (d + 1)-dimensional random vector. Following Boente and Fraiman (1994), we

define the conditional L-estimate of regression by

mL (x) =
∫

yJ {Fx(y)} dFx(y), (1)

where Fx denotes the cumulative distribution function of the random variable Y conditional on

the event {X = x} and J is an L-score function assumed to be continuously differentiable with

compact support 〈a, b〉 ⊂ (0, 1).

Definition (1) nests several useful statistical parameters. For example, if we consider Fx(y)

symmetric around the conditional expectation m(x) = E (Y |X = x) and the α-trimming score

function Jα(u) = I〈α,1−α〉(u)/(1− 2α), α ∈ 〈0, 1/2), the equality mL(x) = m(x) holds. In such

a case, the α-trimmed conditional expectation mL(x) can be used to remove outliers and to

estimate conditional expectation in a robust way. In the limit case α → 1/2, mL(x) is equal to

the conditional median.

As will be described in Section 2.3, a natural way of estimating mL(x) consists of plugging an

estimator of cdf Fx(y) in expression (1).

2.2 Estimation of conditional cumulative distribution function

Let f(x, y) be the joint density of the random vector (X, Y ) and f(x) be the marginal density

of the d-dimensional random vector X. The cdf of the random variable Y conditional on the

event {X = x} is defined by

Fx(y) =

y∫

−∞

f(x, v)
f(x)

dv.

The common practice in literature (Härdle, 1990) consists in estimating this function using an

empirical cdf defined by

F̃x(y) =
n∑

i=1

Kx

(
x−Xi

hx

)

n∑
j=1

Kx

(
x−Xj

hx

)I(Yi ≤ y), (2)

where I denotes the indicator function and Kx is a d-dimensional product kernel. Further to

avoid cumbersome notation, the same bandwith hx is used in each X direction in the theoretical
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part of the paper; thus, Kx(x) =
∏d

i=1 Kx(xi/hx).

The empirical cdf F̃x is a step function. As pointed out by Fernholz (1997) in the case of

unconditional cumulative distribution function, using an empirical cdf may not be the best

choice for estimating quantiles, and more generally, computing L-estimates. Furthermore, the

step structure of the empirical cdf and its weak regularity properties can be difficult to handle

in a theoretical framework.

Therefore, we propose to apply an additional smoothing to the variable Y and to estimate

Fx(y) by a smoothed cdf

F̂x(y) =
n∑

i=1

Kx

(
x−Xi

hx

)

n∑
j=1

Kx

(
x−Xj

hx

)
∫ y

−∞

1
hy

K

(
u− Yi

hy

)
du, (3)

where hy is an additional smoothing parameter, bandwidth in the Y direction. Estimator (3)

inherits the regularity properties of the univariate kernel K and may thus be used, for instance,

for estimating the derivatives of Fx (y).

Note that F̂x(y) is a generalization of the empirical cdf F̃x(y). Under assumptions on kernel K

given in Section 3,
∫ y
−∞K {(u− Yi)/hy} /hydu → I(Yi ≤ y) for hy → 0. Hence, F̃x(y) is the limit

case of F̂x(y). As the asymptotic analysis of F̂x will classically assume that the bandwith hy

converges to zero with an increasing sample size n, one can “feel” that the asymptotic properties

of F̂x(y) and F̃x(y) will be identical (see Section 3 for details). Nevertheless, and this is the core

of this work, their finite sample behavior and computational properties appear to be significantly

different.

2.3 The empirical and smoothed L-estimators

In order to estimate mL (x), one can plug estimators (2) and (3) of Fx (y) in expression (1). If

one plugs in the empirical cdf (2) as proposed by Boente and Fraiman (1994), mL(x) is estimated

by the local empirical L-estimator

m̃L (x) =
n∑

i=1

YiKx

(
x−Xi

hx

)

n∑
j=1

Kx

(
x−Xj

hx

)J
{

F̃x (Yi)
}

. (4)
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Instead employing the empirical cdf, we propose to plug in the smoothed cdf (3). The function

mL(x) is then estimated by the local smoothed L-estimator

m̂L (x) =
∫

yJ
{

F̂x(y)
}

dF̂x(y), (5)

where the integral is approximated using classical numerical integration routines (Davis and

Rabinowitz, 1984).

As will be shown in Section 3, both the local empirical and the local smoothed L-estimators

have the same first-order asymptotic properties. However, we demonstrate that estimator (5)

has superior computational and finite-sample statistical properties to (4); see Sections 4 and 5,

respectively.

2.4 Cross validation

On the one hand, we study nonparametric regression estimators that are robust to outliers,

contrary to the least-square based methods such as the NW estimator. On the other hand,

nonparametric smoothing depends on the choice of smoothing parameters, primarily bandwidth,

which are typically chosen by cross-validating some squared error (Park and Marron, 1990). By

the same argument as in the case of NW, the standard CV based on squared-errors appears to

be sensitive to data contamination and outliers in particular (Leung at al., 1993).

As a remedy, Wang and Scott (1994) proposed to cross-validate the absolute value of the error,

the L1 cross-validation. This and more general CV criteria have been recently analyzed by Leung

(2005). Since we primarily use the α-trimming score Jα in this paper, we employ and compare

the standard squared-errors cross-validation (CV2) and the L1 cross-validation (CV1), which

corresponds to the most robust choice of α → 0.5 (the median minimizes the least absolute

deviation criterion). The CV1 criterion is not only simple to evaluate, but also proved its robust

properties in the recent study by Č́ıžek and Härdle (2006).

3 Asymptotic analysis

In order to establish asymptotic bounds on the smoothed cdf (3) and to derive the asymptotic

distribution of m̂L(x), the following assumptions are used. They are not the most general ones,

but allow for an easy presentation of the main results and proofs.
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A1: Random vectors {(Xi, Yi)}n
i=1 form a sequence of strictly stationary and β-mixing realizations

of (X, Y ) (see Davidson, 1994, for the concept of β-mixing).

A2: The density f(x, y) is compactly supported and admits continuous derivatives up to order r.

A3: The marginal density f(x) admits a strictly positive lower bound b.

A4: The univariate kernel function K is a symmetric compactly supported kernel of order ry (see

Härdle, 1990) such that the integral KI (y) =
∫ y
−∞K (u) du is defined for all y.

A5: The multivariate kernel function Kx is a product kernel, Kx(x) =
∏d

i=1 Kx(xi/hx), where Kx

is a symmetric compactly supported kernel of order rx, and r = min{rx, ry} ≥ 2.

A6: The bandwidths hx and hy satisfy lim
n→∞hx = 0 and lim

n→∞hy = 0 in such a way that lim
n→∞

n1/2h
3d/2
x → ∞ and lim

n→∞n1/2h
d/2
x (max{hx, hy})r → 0 (the dependence of hx and hy on n is

left implicit for the simplicity of notation).

A7: The L-score function J : 〈0, 1〉 → R is assumed to be non-negative, bounded, and having a

bounded derivative almost everywhere.

First, the asymptotic bounds on the smoothed cumulative distribution function (3) are given.

Lemma 3.1 Under Assumptions A1 to A6, the following uniform bound holds for F̂x(y)

sup
x,y

∣∣∣F̂x(y)− Fx(y)
∣∣∣ = Op

[
n−1/2h−d

x + (max {hx, hy})r
]
.

Proof: See Appendix A.1.

We can now derive the asymptotic distribution of the smoothed L-estimator (5).

Theorem 3.2 Under Assumptions A1 to A7, the asymptotic distribution of m̂L(x) is

n1/2h
d/2
x {m̂L(x)−mL(x)} L→ N (0, V )

for n →∞, where

V =
∫ 


+∞∫

−∞

J{Fx(y)}
f(x)

{
I(−∞,y〉(w)− Fx(y)

}
dy




2

f(x, w)dw ·
∫

K2
hx

(ξ)dξ.

Proof: See Appendix A.2.

It is interesting to note that the asymptotic distribution of the smoothed L-estimator (5) is

equivalent to that of the empirical L-estimator (4), and therefore, the choice of bandwidth hy

does not asymptotically play any role (provided that Assumption A6 holds). This follows from



Smoothed L-estimation of regression function 7

the fact that the bandwidth hy does not influence the number of observations used in (local)

estimation: it is used to estimate a distribution function, which takes always into account all

observations, rather then a density function, which is estimated locally.

4 Computational comparison

The asymptotic distribution of the smoothed L-estimator m̂L (x) is identical to that of the

empirical L-estimator m̃L (x) given by Boente and Fraiman (1994). On the other hand, the

computational burden for its computation is much smaller than for the empirical L-estimator

as the sample size increases. To show this, we will compare the computational costs for the

empirical and smoothed L-estimators, both from a theoretical and an empirical points of view.

We assume that the computation of Kx {(x−Xi)/hx} requires Cx(d) operations, the com-

putation of KI {(y − Yi)/hy} requires CI operations, and the computation of the score function

J(u) requires CJ operations. Although the cost of computing Kx {(x−Xi)/hx} depends on the

dimension d, we consider d to be fixed and thus Cx(d) to be a constant since d is determined

only by the number of employed explanatory variables. Finally to determine the bandwidth pa-

rameters, we assume that CV is used on a finite grid of Cc points (for the sake of simplicity,

identical for all variables).

Empirical estimation. The calculation of the empirical cdf F̃x (·) at one point y using (2) needs

n (Cx(d) + 3) operations. Since the computation of m̃L (x) requires the computation of F̃x (·) at

every point Yi, we get for the empirical L-smoother m̃L (x)

n2 {Cx(d) + 3}+ n {CJ + Cx(d) + 3} = O
(
n2

)
(6)

as the cost of operations. This is eventually multiplied by a constant, Cc or Cd
c , if bandwidth(s)

hx is determined by CV.

Smoothed estimation. Analogously, the computation of the smoothed cdf F̂x (·) at one point y

requires n (Cx(d) + CI + 2). We assume that the integral in expression (5) is approximated on a

grid of k points by a numerical integration method of order m ≥ 2, that is, with the integration
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Table 1. Relative computational times of the empirical and smoothed L-estimators for sample size n and an integration grid of

size k.

Sample size n 50 100 200 500 1000 2000

Method (k)

Empirical 0.4 0.8 1.4 3.5 7.0 14.0

Smoothed (25) 0.3 0.2 0.2 0.3 0.3 0.3

Smoothed (50) 0.5 0.4 0.5 0.5 0.5 0.5

Smoothed (100) 1.0 1.0 1.0 1.0 1.0 1.0

Smoothed (150) 2.0 1.4 1.5 1.5 1.5 1.5

Smoothed (250) 3.0 2.5 2.4 2.5 2.5 2.5

Smoothed (500) 5.5 4.9 4.9 5.0 5.0 5.0

error is proportional to k−m.1 Thus, its computation needs O (k) operations. Consequently, the

computation of m̂L (x) requires

n {Cx(d) + CI + 2}O (k) = O (nk) (7)

operations. This is again multiplied by a constant, C2
c or C

(d+1)
c , if bandwidths hx and hy are

determined by CV.

Thus, the crucial factor for the computational speed is how quickly k should grow with n. Since

the errors made due to the numerical integration should not be larger than the errors (biases

and variance) of nonparametric estimation, k−m < (nhd
x)−1/2 and hence k > (nhd

x)1/(2m). As

hd
x < n1/3 by Assumption A6, it follows that k > n2/(3m) in the worst case. For the simplest and

least precise methods with m = 2, we should choose k ∼ n1/3. Consequently, the computational

complexity of the smoothed L-estimator is at most O(n4/3) and further decreases when the

optimal or a smaller bandwidth is employed and when better integration methods are used.

Computation time results. For a large n, the smoothed L-estimator requires substantially

smaller computational time than the empirical L-estimator. To corroborate this theoretical re-

sult, we performed a set of simulations in the univariate case and measure the computational

1For example, the well-known trapezoidal and Simpson rules have precisions of orders m = 2 and m = 4, respectively,

see Davis and Rabinowitz (1984).
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times of both methods. We used the data generating process

Y = m (X) + ε, (8)

where the regressor X is univariate and uniformly distributed on the interval 〈0, 1〉, X ∼ U(0, 1)

and the regression function is given by m (x) = −1+
√

x−x2. The error term ε has a symmetric

distribution so that the regression function m(x) and the α-trimmed expectation mL(x) are

equal. The estimations are performed using the α-trimming L-score Jα with α = 0.25.

Table 1 contains the relative time necessary for the estimation of the empirical L-estimator

(4) and of the smoothed one (5) for different sample sizes n and different numbers k of points on

the numerical integration grid. Increasing the number of integration points decreases the error

of approximation in the integral (4) . In our opinion, choosing 250–500 points is a good choice

for applications with samples with up to several thousand observations. Table 1 presents times

relative to the smoothed L-estimation using k = 100 points integration grid. Results in Table 1

confirm our theoretical findings that the smoothed estimator will be faster to compute for large

samples. Already when sample size n is twice the size k of the integration grid, n > 2k, the

smoothed L-estimator is faster to compute.

5 Finite sample comparison

As noticed in Section 3, the empirical L-estimator and its smoothed counterpart need not be

compared from an asymptotic point of view since they share the same asymptotic distribution.

However, relying on arguments established by Fernholz (1997) in an unconditional setting, we

can hypothesize that the smoothed L-estimator has better finite sample properties than the

empirical one. This might seem surprising since the additional smoothing involved in estimating

the smoothed cdf F̂x(·) may cause an additional bias (asymptotically negligible but sensible in

finite sample). Nevertheless, as demonstrated by Fernholz (1997), this additional bias goes along

with a decrease of the variance of the estimator. Because this decrease surpasses the additional

bias, the smoothing will result in a gain in terms of the mean squared error of the smoothed

conditional L-estimator.

To verify this claim, we perform a set of Monte Carlo simulations and compare the Nadaraya-

Watson (NW), the empirical and smoothed L-estimators, where the α-trimming score function
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Figure 1. The mean absolute errors of the Nadaraya-Watson (solid line), empirical L-estimator (dotted line), and

smoothed L-estimator (dashed line) for the L-score Jα with α = 0.50 and different cross-validation rules. The left panel

corresponds to CV1 and the right panel to CV2.

Jα is used for α = 0.25 and α = 0.50 (the choice α = 0 would correspond to NW). We use

again the data generating process (8), that is Y = −1 +
√

X −X2 + ε, where X ∼ U(0, 1), and

study performance of all methods at different error distributions and sample sizes. The presented

results are based on 500 replications. All estimates are computed using the quartic kernel and

both bandwidths hx and hy are chosen by L1 cross validation (CV1) on interval (0, 0.2). Hence to

match the use of CV1, the estimation results are compared by means of the mean absolute errors

(MAE). One can of course argue that CV1, used to guarantee robust bandwidth choice, could

possibly lead to worse performance of all methods, and NW in particular, for Gaussian data. To

address this issue, results for the standard squared-error cross validation (CV2) and CV1 are

compared in Gausian samples ε ∼ N(0, 0.1) of size n = 100, see Figure 1. Even though CV1

is slightly worse than CV2, the differences are negligible for the comparison of the estimation

methods.

In the rest of this section, we attempt to compare the finite sample properties of the empir-

ical and smoothed L-estimators for different sample sizes (Section 5.1), for different error-term

distributions (Section 5.2), and for data contaminated by outliers (Section 5.3).

5.1 Influence of sample size

Let us now compare the empirical and smoothed L-estimators for Gaussian data, ε ∼ N(0, 0.1),

at various sample sizes: n = 50, 100, 200. The results for Jα with α = 0.25 and α = 0.50 are
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Figure 2. The mean absolute errors of the Nadaraya-Watson (solid line), empirical L-estimator (dotted line), and

smoothed L-estimator (dashed line) for different sample sizes n and the L-score Jα. The left panels contain estimators for

α = 0.25 and the right panels contain estimators for α = 0.50.
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summarized in Figure 2. The first observation is that the smoothed L-estimator performs in all

cases better than the empirical L-estimator and is generally very close to the NW estimator.

The relative difference between the empirical and smoothed L-estimators seems to be roughly

the same at various sample sizes, but, since the estimation errors are decreasing as n increases,

the difference decreases in absolute terms. Moreover, it seems that the difference is smaller for

α = 0.25 than for α = 0.50. This indicates that the smoothed cdf helps more if there are more

observations close the discontinuity of the L-score function Jα.

5.2 Effect of distributional model

Next, we look at the performance of all methods under various distributional models: for Gaus-

sian ε ∼ N(0, 0.1), Student ε ∼ σtt3, and double exponential ε ∼ DExp(σe) errors, where

σt
.= 0.057 and σe

.= 0.071 are chosen so that the standard deviation of errors is always equal

to 0.1. Results for all error distributions and n = 100 are summarized in Figure 3. We can

again observe that the smoothed L-estimator generally outperforms the empirical L-estimator,

although the difference is pronounced only for α = 0.50 and is largest for the Gaussian data.

Looking at the results for the Student and double-exponential errors, both the empirical and

smoothed L-estimators are preferable to the NW estimator.

5.3 Sensitivity to outliers

Finally, let us compare all methods for Gaussian samples, ε ∼ N(0, 0.1), of n = 100 observations

contaminated by three (relatively small) outliers at x = 0.25, 0.50, and 0.75 with the values

of the dependent variable y uniformly distributed on (−1.5, 1.5), y ∼ U(−1.5, 1.5). The results

using CV1 are in the upper row of Figure 4. Obviously, NW is heavily influenced by the outliers,

but this is not the case of the L-estimators. The smoothed L-estimator again performs better

than the empirical L-estimator, but due to the smoothing in the y-direction and its dependence

on bandwidth hy, the smoothed L-estimator exhibits a limited sensitivity to the outliers. For

comparison, the bottom row of Figure 4 presents results when CV2 is used. One can observe that,

in spite of using locally robust α-trimmed means, a non-robust CV criterion can significantly

worsen the estimation results. The only, although unexplained exception in this respect is the

empirical L-estimator for α = 0.25.
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Figure 3. The mean absolute errors of the Nadaraya-Watson (solid line), empirical L-estimator (dotted line), and

smoothed L-estimator (dashed line) for sample size n = 100, the L-score Jα, and various error distributions. The left

panels contain estimators for α = 0.25 and the right panels contain estimators for α = 0.50.
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Figure 4. The mean absolute errors of the Nadaraya-Watson (solid line), empirical L-estimator (dotted line), and

smoothed L-estimator (dashed line) for sample size n = 100 for the L-score Jα under contamination by 3 outliers The left

panels contain estimators for α = 0.25 and the right panels contain estimators for α = 0.50. The upper panels corresponds

to CV1 and the bottom panels to CV2.

All presented simulations support two important observations. First, the smoothed L-estimator

performs in all simulations better than the empirical one, although the difference does not have

to be very large in some cases. Second, the performance of the smoothed L-estimator seems

to be robust with respect to the error distribution and its contamination in the sense that the

corresponding mean absolute errors are more or less similar under all tested distribution models.

Additionally, since the smoothed L-estimator performs as well as the least-squares based NW

under Gaussian errors, using the smoothed L-estimator estimator seems to be a good strategy for

nonparametric regression estimation even if the presence of outliers in the data or heavier-tailed

error distribution are only hypothetical. The only advantage of the classical NW estimator lies

in the speed of computation, which the discussed L-estimators cannot match.
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Figure 5. Example of an implied volatility surface of the DAX index from January 4, 1999, (left panel) and the first three

common principle components of DAX implied volatility surfaces (March 2001, to May, 2001).

6 Application

An important application of robust smoothing, such as the local L-estimators, could be in the

analysis of volatility, that is, the conditional variance of financial time series (e.g., exchange

rates or stock prices). One of approaches, the so-called implied volatility (IV) approach, derives

the implied volatility of a stock or a stock index from the currently observed prices of related

financial instruments (options) on the market. Having data on individual transactions concerning

options, one can estimate IV as a function of their maturity (time to expiry) and their strike

price, which results in the so-called implied volatility surface (see Härdle, Kleinow, and Stahl,

2002, Chapter 6). The series of such surfaces are then usually analyzed in time to reveal the

dynamics of IV and to predict future development (e.g., Fengler, Härdle, and Villa, 2003; Kim

and Kim, 2003). Thus, the nonparametric estimators of IV surfaces form an important input of

further statistical analysis.

An IV surface on a specified grid is typically estimated by a nonparametric smoothing method;

often, the NW estimator is employed (Aı̈t-Sahalia and Lo, 1998, 2000). An example of an IV

surface estimated by NW is on Figure 5. Such estimation could greatly benefit from using a

robust nonparametric estimator such as the smoothed L-estimator. There are several reasons:

data used to estimate IV are often scarce or of low quality for some combinations of maturities

and strike prices (data concern individual transactions on the market); the structure of data
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often enforces oversmoothing (see Fengler, Härdle, and Villa, 2002), which further increases the

impact area of wrong observations (outliers); and transaction data are difficult to check and

clear, especially because of their size.

To demonstrate the impact of replacing the NW estimator by the smoothed L-estimator, we

estimate the IV surfaces of DAX (a German stock index) from January 1999 to May 2001 both

by NW and the smoothed L-estimator with the L-score Jα, α = 0.25 (the quartic kernel is used

in both cases). Instead of plainly comparing them as in Č́ıžek (2004), we use them in further

analysis. More specifically, to reduce the dimension of IV surfaces, several authors analyzed the

IV surfaces cut at several maturities as a set of vectors (functions) and tried to find their common

principle components (CPC); see Fengler, Härdle, and Villa (2003) and Benko and Härdle (2005),

for instance. The shapes of the first three CPC are well established and correspond to the main

stylized facts concerning IV; see the right panel of Figure 5. These shapes represent level (solid

flat line), skew (dashed sloped line), and turn (U-shaped finely dashed line) of the IV surface.

Now, we replicate the analysis of Fengler, Härdle, and Villa (2003) and estimate the CPC of

the IV surfaces produced by the NW and smoothed L-estimator for different periods in years

1999 and 2000. Results based on both nonparametric estimator are presented in Figure 6. The

three estimated CPC based the IV surfaces obtained by the smoothed L-estimator are stable:

they are similar irrespective of the time period considered. On the other hand, the estimated

CPC based on the NW estimation are somewhat similar to those on Figure 5 and those based on

the L-smoothing when the whole period of two years is considered, but greatly differ for various

one-year subperiods. This documents a high sensitivity of NW to various data errors.

7 Conclusion

Our theoretical and empirical results clearly point out the superiority of the smothed L-estimator

over the empirical L-estimator both for computational and finite-sample properties. Although

one might argue that, with an increasing sample size, the difference between the two estimators

disappears as suggested by the asymptotic results, it is necessary to keep in mind that this

is implied by the first-order asymptotics. Additionally, the computational burden of using the

empirical L-estimator becomes very pronounced in large samples. This is where one can benefit

from the lower computational demands of the smoothed L-estimator, growing much slower with



Smoothed L-estimation of regression function 17

0.95 1 1.05

Moneyness

-0
.5

0
0.

5

 

0.95 1 1.05

Moneyness

-0
.4

-0
.2

0
0.

2
0.

4

 

January 1999 – December 1999

0.95 1 1.05

Moneyness

-0
.5

0
0.

5

 

0.95 1 1.05

Moneyness

-0
.4

-0
.2

0
0.

2
0.

4

 

July 1999 – June 2000

0.95 1 1.05

Moneyness

-0
.5

0
0.

5

 

0.95 1 1.05

Moneyness

-0
.4

-0
.2

0
0.

2
0.

4

 

January 2000 – December 2000

0.95 1 1.05

Moneyness

-0
.4

-0
.2

0
0.

2
0.

4

 

0.95 1 1.05

Moneyness

-0
.4

-0
.2

0
0.

2
0.

4

 

January 1999 – December 2000

Figure 6. The first three common principle components of implied volatility surfaces for the DAX index estimated by the

Nadaraya-Watson (left panels) and smoothed local L-estimators (right panels) in different (overlapping) time periods.



18 J. TAMINE, P. ČÍŽEK, and W. HÄRDLE

an increasing sample size than in the case of the empirical L-estimator. The use of the smoothed

L-estimator is thus indicated in all cases.

Appendix A: Proofs

A.1 Proof of Lemma 3.1

Let f̂(x, y) denote the Parzen-Rosenblatt density estimator of the density f(x, y),

f̂(x, v) =
1
n

n∑

i=1

Khx
(x−Xi) Khy

(y − Yi) , (A1)

and f̂(x) denote the Parzen-Rosenblatt density estimator of the density f(x),

f̂(x) =
1
n

n∑

i=1

Khx
(x−Xi) , (A2)

where Khx
(x) =

d∏
i=1

1
hx

Kx

(
xi

hx

)
and Khy

(y) = 1
hy

K
(

y
hy

)
. Given Assumption A4, F̂x(y) can be

written as F̂x(y) =
∫ y

−∞
f̂(x, v)/f̂(x)dv. Then

∣∣∣F̂x(y)− Fx(y)
∣∣∣ =

∣∣∣∣∣∣

y∫

−∞

f̂(x, v)

f̂(x)
dv −

y∫

−∞

f(x, v)
f(x)

dv

∣∣∣∣∣∣

≤
∣∣∣∣∣

1

f̂(x)

∣∣∣∣∣

∣∣∣∣∣∣

y∫

−∞
f̂(x, v)dv −

y∫

−∞
f(x, v)dv

∣∣∣∣∣∣
+

∣∣∣∣∣∣

y∫

−∞

f(x, v)

f̂(x)
dv −

y∫

−∞

f(x, v)
f(x)

dv

∣∣∣∣∣∣

For n large enough, we have almost surely infx
∣∣∣f̂(x)

∣∣∣ ≥ b

2
(which comes from the almost sure

uniform convergence of f̂(x) towards f(x) under Assumptions A1 to A6 and infx |f(x)| ≥ b,

Assumption A3). Hence, we obtain first

sup
x,y

∣∣∣∣∣
1

f̂(x)

∣∣∣∣∣

∣∣∣∣∣∣

y∫

−∞
f̂(x, v)dv −

y∫

−∞
f(x, v)dv

∣∣∣∣∣∣
≤ 2b−1 sup

x,y

∣∣∣∣∣∣

y∫

−∞
f̂(x, v)dv −

y∫

−∞
f(x, v)dv

∣∣∣∣∣∣
.

Using the expression

sup
x,y

∣∣∣∣∣∣

y∫

−∞

f(x, v)

f̂(x)
dv −

y∫

−∞

f(x, v)
f(x)

dv

∣∣∣∣∣∣
≤ sup

x,y





∣∣∣∣∣
f (x)− f̂ (x)

f̂(x)f (x)

∣∣∣∣∣

∣∣∣∣∣∣

y∫

−∞
f(x, v)dv

∣∣∣∣∣∣




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and Assumption A3, we also obtain

sup
x,y

∣∣∣∣∣∣

y∫

−∞

f(x, v)

f̂(x)
dv −

y∫

−∞

f(x, v)
f(x)

dv

∣∣∣∣∣∣
≤ 2b−2 sup

x,v
|f(x, v)| sup

x

∣∣∣f̂(x)− f(x)
∣∣∣ .

Combining these two results, we can finally write

sup
x,y

∣∣∣F̂x(y)− Fx(y)
∣∣∣ ≤ 2b−1 sup

x,y

∣∣∣∣∣∣

y∫

−∞
f̂(x, v)dv −

y∫

−∞
f(x, v)dv

∣∣∣∣∣∣

+ 2b−2 sup
x,v

|f(x, v)| sup
x

∣∣∣f̂(x)− f(x)
∣∣∣ .

From Aı̈t-Sahalia (1995), we have under Assumptions A1 to A6

sup
x,y

∣∣∣∣∣∣

y∫

−∞
f̂(x, v)dv −

y∫

−∞
f(x, v)dv

∣∣∣∣∣∣
= Op

(
n−

1
2 h−d

x + (max {hx, hy})r
)

and

sup
x

∣∣∣f̂(x)− f(x)
∣∣∣ = Op

[
n−

1
2 h−d

x + hr
x

]
= Op

[
n−

1
2 h−d

x + (max {hx, hy})r
]

so that supx,y

∣∣∣F̂x(y)− Fx(y)
∣∣∣ = Op

[
n−

1
2 h−d

x + (max {hx, hy})r
]
.

A.2 Proof of Theorem 3.2

Let us denote by T the functional T (Fx) =
∫ +∞

−∞
yJ{Fx(y)}dFx(y) and by τ the function

τ(t) = T (Fx+tHx), where Hx : R → R is a continuously differentiable function with a compactly

supported derivative and satisfying supx,y |Hx(y)| < ∞.

It follows that

τ ′(t) =

+∞∫

−∞
yHx(y)J ′{Fx(y) + tHx(y)}d {Fx(y) + tHx(y)}+

+∞∫

−∞
yJ{Fx(y) + tHx(y)}dHx (y) .

An integration by parts gives us

+∞∫

−∞
yHx(y)J ′{Fx(y) + tHx(y)}d {Fx(y) + tHx(y)} = [yHx(y)J {Fx(y) + tHx(y)}]−∞+∞

−
+∞∫

−∞
Hx(y)J {Fx(y) + tHx(y)} dy −

+∞∫

−∞
yJ {Fx(y) + tHx(y)} dHx(y)
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so that

τ ′(t) = −
+∞∫

−∞
Hx(y)J {Fx(y) + tHx(y)} dy.

In particular for t = 0, we obtain τ ′(0) = −
∫ +∞

−∞
Hx(y)J{Fx(y)}dy. The second derivative of τ

is then

τ ′′(t) = −
+∞∫

−∞
H2

x(y)J ′ {Fx(y) + tHx(y)} dy.

Hence, Assumption A7 implies |τ ′′(t)| = O
(
supx,y |Hx(y)|2

)
for all t ∈ 〈0, 1〉. Now, the Taylor

expansion of τ between 0 and 1 gives us

T (Fx + Hx) = T (Fx)−
+∞∫

−∞
Hx(y)J{Fx(y)}dy + O

(
sup
x,y

|Hx(y)|2
)

(A3)

Taking Hx(y) = F̂x(y)− Fx(y) in expression (A3) and using Lemma 3.1, we obtain

m̂L(x)−mL(x) = −
+∞∫

−∞

[
F̂x(y)− Fx(y)

]
J {Fx(y)} dy + Op

[
n−1h−2d

x + (max {hx, hy})2r
]

Let us study the leading order term

Ln = −
+∞∫

−∞





y∫

−∞

f̂(x, v)

f̂(x)
− f(x, v)

f(x)
dv



 J{Fx(y)}dy

=

+∞∫

−∞




y∫

−∞

{
f̂(x, v)− f(x, v)

}
f(v)− f(x, v)

{
f̂(x)− f(x)

}

f̂(x)f(x)
dv


J{Fx(y)}dy.

Using supx

∣∣∣∣∣
f̂(x)− f(x)

f̂(x)

∣∣∣∣∣ = op(1) (which holds under Assumptions A1 to A6, see the proof of

Lemma 3.1), we get

Ln =





+∞∫

−∞




y∫

−∞

{
f̂(x, v)− f(x, v)

}
f(x)− f(x, v)

{
f̂(x)− f(x)

}

f2(x)
dv


 J{Fx(y)}dy



×

×{1 + op(1)} = L̃n{1 + op(1)}

Thus by the Slutsky lemma, we only have to study the asymptotic distribution of L̃n. Using
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expressions (A1) and (A2) for f̂(x, v) and f̂(x), we obtain

L̃n =
1
n

n∑

i=1

∫




+∞∫

−∞

J{Fx(y)}
f(x)




Khx
(x−Xi)

y∫
−∞

Khy
(v − Yi)dv−

−
y∫

−∞
f(x, v)dv − Fx(y) {Khx

(x−Xi)− f(x)}


 dy





.

Next, we are going to split the study of L̃n into analyzing a deterministic ‘bias’ term B̃n =

E(L̃n) and a stochastic ‘variance’ term Ṽn = L̃n −E(L̃n), where

B̃n =
∫ 




+∞∫

−∞


J{Fx(y)}

f(x)
Khx

(x− u)





y∫

−∞
Khy

(v − w)dv − Fx(y)






 dy



 f(u, w)dudw

−
+∞∫

−∞

[
J{Fx(y)}

f(x)

{∫ y

−∞
f(x, v)dv − Fx(y)f(x)

}]
dy = B̃1n − B̃2n

and B̃2n represents the latter, constant term. Changing variable ξ = (x− u)/hx in the integra-

tion with respect to u and ς = (y − w)/hy in the integration with respect to w, we obtain for

the non-constant term B̃1n

B̃1n =

+∞∫

−∞

J{Fx(y)}
f(x)




y∫

−∞

∫ ∫
Kx(ξ) {K(ς)− Fx (y)} f(x− hxξ, v − hς)dξdςdv


 dy.

Using the Taylor expansion of f(x−hxξ, v−hyς) at f(x, v) up to order r (see Assumptions A2,

A4, and A5), we obtain that B̃n = B̃1n− B̃2n = O [(max {hx, hy})r] . Finally, under Assumption

A6, we have n1/2h
d/2
x B̃n = op(1).

We now have to study the ‘variance’ term normalized at rate n1/2h
d/2
x

n1/2h
d/2
x Ṽn =

n∑

i=1

√
hd

x

n




+∞∫

−∞

J{Fx(y)}
f(x)

Khx
(x−Xi)





y∫

−∞
Khy

(v − Yi)dv − Fx(y)



 dy − B̃n




Let us define the σ-field Fn,i generated by {Xj , Yj}j=1,...i and let us define the random variable

Zn,i =

√
hd

x

n




+∞∫

−∞

J{Fx(y)}
f(x)

Khx
(x−Xi)





y∫

−∞
Khy

(v − Yi)dv − Fx(y)



 dy − B̃n




so that n1/2h
d/2
x Ṽn =

∑n
j=1 Zn,j . The array

{∑i
j=1 Zn,j ,Fn,i; 1 ≤ i ≤ n, n ≥ 1

}
is a zero-mean,
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square integrable martingale array. For k ≤ n, we have

k∑

j=1

E(Z2
n,j) = hd

x

∫ ∫ 



+∞∫

−∞

J{Fx(y)}
f(x)

Khx
(x− u)




y∫

−∞
Khy

(v − w)dv − Fx(y)


 dy





2

×

×f(u, w)dudw − hd
xB̃2

n.

With the change of variable ξ = (x− u)/hx in the integration with respect to u, we obtain

k∑

j=1

E(Z2
n,j) =

∫



{∫ +∞

−∞

J{Fx(y)}
f(x)

[
y∫

−∞
Khy

(v − w)dv − Fx(y)

]
dy

}2

×

×
∫

K2
hx

(ξ)f(ξ − hxξ, w)dξ


 dw − hd

xB̃2
n

Obviously, limn→∞
∫ y
−∞Khy

(v − w)dv = 1 if y ≥ w and 0 otherwise. Recalling that B̃n =

O [(max {hx, hy})r] , the Taylor expansion of f(x − hxξ, w) implies that the only term that is

not asymptotically negligible in probability, n →∞, is

lim
n→∞E




n∑

j=1

Z2
n,j


 =

∫ 


+∞∫

−∞

J{Fx(y)}
f(x)

{
I(−∞,y〉(w)− Fx(y)

}
dy




2

f(x, w)dw ·
∫

K2
hx

(ξ)dξ

so that

n∑

j=1

E
(
Z2

n,j |Fn,j−1

) P→
∫ 


+∞∫

−∞

J{Fx(y)}
f(x)

{
I(−∞,y〉(w)− Fx(y)

}
dy




2

f(x, w)dw ·
∫

K2
hx

(ξ)dξ.

Under Assumptions A1 to A4, conditions 3.19 and 3.20 of Corollary 3.1 of Hall and Heyde (1981,

pp. 58) are satisfied, so that we obtain n1/2h
d/2
x Ṽn → N (0, V ), where

V =
∫ 


+∞∫

−∞

J{Fx(y)}
f(x)

{
I(−∞,y〉(w)− Fx(y)

}
dy




2

f(x, w)dw ·
∫

K2
hx

(ξ)dξ.
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