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Abstract

The aim of the present study is to construct a state feedback controller for a given

linear system that minimizes the worst-case e�ect of an L2-bounded disturbance.
Our setting is di�erent from the usual framework of H1-theory in that we consider

nonzero initial conditions. The situation is modeled in a game theoretical framework,
in which the controller designer acts as a minimizing player, and the uncertainty as

a maximizing player. We show that a saddle-point equilibrium exists and �nd an
optimal controller.
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1 Introduction

Consider a linear time invariant system, described by the equations

_x = Ax +Bu +Ew; x(0) = x0; z = Cx+Du;

where x denotes the state variable with initial value x0, u the control variable, w
the unknown disturbance, and z the output variable. The central problem of the

present paper is to determine a linear stabilizing state feedback law that minimizes
the supremum of the L2-norm of the output, where the supremum is taken over all

L2-disturbances with norm bounded by ", for a given positive number ". For x0 = 0,
this problem reduces to the state feedback H1 control problem, which has been
extensively studied in the literature, see for instance [1], [5], or [10]. For x0 6= 0, the

corresponding maximin problem has been studied by Chen [4]. Following the lines of
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2 ASSUMPTIONS, NOTATIONS, AND PRELIMINARIES 2

H1 theory, it seems more natural to study the minimax problem. This is the main
motivation for the present paper.

It is not surprising that a state feedback law which solves the problem will depend
on x0. Especially in applications where initial states may deviate substantially from

zero, such feedback controllers could be interesting, since they speci�cally take this
initial state into account. One could also replace the parameter x0 in the feedback

law by the current state x(t), which gives a nonlinear state feedback controler with
certain robustness properties.

The problem allows for a convenient description in terms of a two-person zero-sum
di�erential game. The two players involved are the controller designer and the un-

certainty. The designers goal is to minimize the L2-norm of the output by choosing
a suitable stabilizing linear state feedback law, whereas the uncertainty tries to max-
imize this norm by choosing a suitable disturbance, both taking each others' action

into account. One usually looks for saddle-point equilibria in these games. It is
well-known that if such a game has a saddle-point equilibrium, its lower and upper

value are equal (see for instance [9]). Hence a saddle point equilibrium immediately
gives a solution of both the minimax and the maximin problem. We refer to [2] for

a general treatment of dynamic game theory, and more speci�cally to [1], where the
H1 problem is treated using a game theoretic approach.

The organization of the paper is as follows. In Section 2 some notations are intro-
duced, and a couple of standing assumptions are made. Furthermore, the central

problem will be rephrased in a mathematical framework. In Section 3, the \inner
optimization problem" of the minimax problem will be studied. This is the problem
of maximizing the norm of the output over all "-bounded disturbances for a �xed

control law. The main part of the paper is Section 4, in which it will be shown that
there exists a saddle-point equilibrium.

2 Assumptions, Notations, and Preliminaries

Concerning the matrix-quintuple (A;B;C;D;E), we assume that A 2 IRn�n , B 2
IRn�m, C 2 IRp�n, D 2 IRp�m, and E 2 IRn�q , with (A;B) stabilizable, and D

injective. We also assume that the quadruple (A;B;C;D) has no invariant zeros on

the imaginary axis. Next, de�ne the set

F := fF jA+ BF is stableg:
Note that the stabilizability of (A;B) ensures that F 6= ;. For each F 2 F , we shall
write AF = A+ BF , and CF = C +DF .

The Hilbert space consisting of L2-functions on (0;1) with k components will be de-
noted by Lk2. This space is supplied with the inner product hf; gi := R1

0
f(t)T g(t)dt,

and corresponding norm kfk := hf; fi12 . For each � > 0, we introduce the sets

Bk
� :=

n
f 2 Lk2

��� kfk � �
o
; @Bk

� :=
n
f 2 Lk2

��� kfk = �
o
:
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2 ASSUMPTIONS, NOTATIONS, AND PRELIMINARIES 3

If F 2 F , then z 2 Lp2, and we have z(t) = CFe
tAF x0+CF

R t
0
e(t��)AFEw(�)d� , with

w 2 Lq2. The output can be interpreted as the image of an a�ne operator from L
q
2 to

L
p
2. Indeed, de�ne for F 2 F , and for x0 2 IRn, the function zF;x0 2 Lp2 by zF;x0(t) :=

CF e
tAF x0 and the linear operator GF : Lq2 ! L

p
2 by (GFw)(t) =

R t
0
TF (t� �)w(�)d� ,

where TF (t) = CF e
tAFE is the closed-loop impulse response between disturbance

and output, then we have z = zF;x0 +GFw. The performance criterion is now de�ned

as the map ' : F � L
q
2 � IRn ! IR given by

'(F;w; x0) = kzF;x0 + GFwk2: (1)

We shall also be concerned with the L2-induced operator norm of GF , usually denoted
by kGF k1 (and often called the H1-norm), which is de�ned by

kGF k1 = sup
w2L

q
2
; w 6=0

kGFwk
kwk : (2)

The central problem of the paper can now be formulated as follows.

Problem 2.1 Let " > 0, and x0 2 IRn. Find

F̂ (x0; ") := argmin
F2F

sup
w2B

q
"

'(F;w; x0):

As explained in the introduction, the game theoretical approach suggests looking for
saddle-point equilibria. Such an equilibrium is formally de�ned as a pair (F̂ ; ŵ) 2
F � B

q
" such that

'(F̂ ; w; x0) � '(F̂ ; ŵ; x0) � '(F; ŵ; x0)

for each F and w, and for given " and x0. One can easily verify that an F̂ corre-
sponding to a saddle-point equilibrium indeed solves Problem 2.1.

If there exists an F 2 F such that CF = 0, the problem is solved immediately,
since F = �(DTD)�1DTC yields ' = 0 in that case. In order to exclude this

trivial case, we shall use the nonminimum phase assumption, i.e. we assume that
A� B(DTD)�1DTC has at least one eigenvalue in the open right-half plane.

We shall use the following two well-known results from H1 theory. The �rst theorem
is sometimes called the bounded real lemma. The second theorem gives a complete

solution of the in�nite horizon state feedback H1 control problem.

Theorem 2.2 (See for instance [10], pp. 360-361) Let  > 0, and F 2 F . Then

kGF k1 <  if and only if there exists a solution X of the algebraic Riccati equation

CT
FCF +AT

FX +XAF + �2XEETX = 0 (3)

such that AF + �2EETX is stable.

A Game Theoretic Approach to Linear Systems with L2-Bounded Disturbances
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Theorem 2.3 (See for instance [3], pp. 239-240) Let  > 0. The following state-

ments are equivalent:

(i) There exists an F 2 F such that kGF k1 < .

(ii) There exists a positive semi-de�nite solution P of the algebraic Riccati equation

CTC + ATP + PA +

+ �2PEETP � (PB + CTD)(DTD)�1(BTP +DTC) = 0 (4)

such that A�B(DTD)�1(BTP +DTC) + �2EETP is stable.

If the latter condition holds, a suitable F is given by F = �(DTD)�1(BTP +DTC).

3 Maximization of the Criterion with a Fixed

Control Variable

In the present section we study Problem 2.1 for a �xed F 2 F . This problem reduces
then to maximizing the map w 7! '(F;w; x0), restricted to the set Bq

" , for given

x0 and ". The �rst part of the analysis in this section (until Remark 3.3) is meant
to develop some intuition concerning this problem, but will not be used to derive a

solution in terms of the system data. This will be done in the second part.

Consider the system _x = AFx+Ew, x(0) = x0, and z = CFx, and recall that we have

introduced the notation '(F;w; x0) = kzk2. Hence, the supremum from Problem 2.1
can be written as

'(F; x0) := sup
w2B

q
"

'(F;w; x0): (5)

If " = 1, and x0 = 0, so that the map w 7! z is linear, this supremum is actually the
H1-norm of the system under consideration, and is, by de�nition, equal to kGF k1.
In order to �nd this norm, one usually looks for the in�mum of all 's, for which
there exists a solution X of the algebraic Riccati equation

CT
FCF +AT

FX +XAF + �2XEETX = 0 (6)

such that AF + �2EETX is stable. It is well-known that this in�mum is equal to
kGF k1. See also Theorem 2.2.

Now, let x0 6= 0. Obviously, the situation becomes di�erent, although, as we will see,
the same algebraic Riccati equation will appear. The dependence of z on w becomes
a�ne, instead of linear. Indeed, we have z = zF;x0 + GFw, with zF;x0 6= 0. Since we

are maximizing over a compact set, the supremum in (5) is actually a maximum. It
is also clear that this maximum is attained at the boundary. So, we do in fact have

'(F; x0) = maxw2@Bq
"
'(F;w; x0), which transforms the problem into a maximization

A Game Theoretic Approach to Linear Systems with L2-Bounded Disturbances



3 MAXIMIZATION OF THE CRITERION WITH A FIXED CONTROL VARIABLE 5

problem with an equality constraint. It is clear that this problem is equivalent to
maximizing the criterion

'�(F;w; x0) := kzF;x0 + GFwk2 � �kwk2;

where the parameter � is chosen such as to make the norm of unconstrained max-
imizers of this criterion equal to ". Now, if � > kG�FGF k = kGF k21 =: �F , the
operator ��G�FGF is positive de�nite, and '� can then by a standard completion of

the squares be rewritten as

'�(F;w; x0) = � h(�� G�FGF ) (w � wF;�); w� wF;�i+
+ hwF;�;G�F zF;x0i+ hzF;x0 ; zF;x0i ;

where we introduced the notation

wF;� := (�� G�FGF )�1G�F zF;x0 : (7)

Clearly, if � > �F , then '� is maximized at wF;�. Hence, if we can �nd a � > �F
such that kwF;�k = ", the maximum of '(F;w; x0) is attained by wF;�. The existence
of such a � is partly answered by the following lemma.

Lemma 3.1 The function f : � 7! kwF;�k2, for � > �F , is strictly decreasing and

approaches zero for �!1.

Proof: Since � > �F , we can write

(�� G�FGF )�1 = ��1
�I � ��1G�FGF

��1
= ��1

1X
i=0

�
��1G�FGF

�i
:

Consequently,

f(�) =


(�� G�FGF )�1v; (�� G�FGF )�1v

�
=

= ��2

*
1X
i=0

�
��1G�FGF

�i
v;

1X
i=0

�
��1G�FGF

�i
v

+
=

= ��2kvk2+ 2��3kGF vk2 + 3��4kG�FGF vk2 + � � � :

with v = G�F zF;x0 . We see that f is a positive linear combination of decreasing

functions. Hence, f is strictly decreasing. Furthermore, it is obvious that f(�) # 0,
for �!1. �

Remark 3.2 If f(�) is unbounded for � # �F , there clearly exists a unique � > �F
such that kwF;�k = ", for each " > 0. However, if f(�) is bounded, for � # �F , we
have to analyse the situation further. This case occurs when

G�F zF;x0 2 Im(�F � G�FGF );

A Game Theoretic Approach to Linear Systems with L2-Bounded Disturbances
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or, since ImT = (KerT )? for any self-adjoint operator T ,

G�F zF;x0 ? Ker(�F � G�FGF ): (8)

Hence, if x0 is such that (8) holds, then f(�) is bounded for � # �F , and if " is larger

than this bound, the equation kwF;�k = " has no solution. In the rest of the paper
we shall assume that we are not in this special situation; i.e. we assume that x0 is
such that one can �nd a � > �F such that kwF;�k = ". The case in which (8) holds

is left for further research.

Remark 3.3 At this point in the analysis, one could proceed from (7) with comput-

ing a maximizer by determining an expression for wF;� in terms of the system data.
For this, one has to invert the operator � � G�FGF , which boils down to inverting a

Wiener-Hopf operator. The theory from Gohberg et al. [6], is particularly useful for
this. We shall however proceed in a di�erent way.

Replace  in (6) by
p
�. Denote the in�mum of all the �'s for which there exists a

solutionX of (6) such thatAF+�
�1EETX is stable by �F . Of course, this is the same

�F that we introduced earlier in the present section. It will be convenient to display

the dependence of X on � explicitly. Therefore, we shall write X�. An important
conclusion from the analysis so far is that we are looking for a speci�c � > �F ,

that corresponds uniquely to a disturbance that maximizes the criterion, unlike H1
theory, where one usually looks for �F . There is a reasonably simple method to

�nd an expression for this maximizer. This method is based on a completion of the
squares. The next lemma states the result.

Lemma 3.4 For each � > �F , and w 2 Lq2 with kwk = ", we have

'(F;w; x0) = xT0X�x0 + �"2 � �

1Z
0

��w(t)� ��1ETX�x(t)
��2 dt; (9)

where x is generated by the system _x = AFx+ Ew, x(0) = x0.

Proof: By de�nition, we have '(F;w; x0) =
R1
0
xTCT

FCFxdt. Adding and substract-

ing the expression
R1
0

d
dt
xTX�xdt from the right hand side yields

'(F;w; x0) = xT0X�x0 +

+

1Z
0

�
xT (CT

FCF + AT
FX� +X�AF )x+ 2wTETX�x

�
dt =

= xT0X�x0 + �"2 � �

1Z
0

��w � ��1ETX�x
��2 dt:

A Game Theoretic Approach to Linear Systems with L2-Bounded Disturbances



4 THE SADDLE-POINT EQUILIBRIUM 7

In the latter equality we used the algebraic Riccati equation (6), and the fact that
w 2 @Bq

" . �

Let wF;� := ��1ETX�x. It can be shown that this agrees with the expression by
which wF;� is de�ned in (7). Formula (9) clearly reveals that if we can �nd a � > �F
such that kwF;�k = ", then wF;� is a maximizer. Generically, one can �nd such
a �, at least if x0 6= 0 (see Remark 3.2). Now, in order to compute the right �,

note that kwF;�k2 = ��2xT0 Sx0, where S is the solution of the Lyapunov equation
(A+��1EETX�)

TS+S(A+��1EETX�) = �X�EE
TX�. Hence, the � that makes

the norm of wF;� equal to " is a solution of ��2xT0 Sx0 = "2. We arrive at the following
result.

Theorem 3.5 Let F 2 F , and " > 0. Let X� be the solution of the algebraic Riccati

equation

CT
FCF +AT

FX +XAF + ��1XEETX = 0: (10)

such that AF + ��1EETX is stable. Denote the in�mum of all �'s for which there

exists such an X by �F . Let S� be the solution of the Lyapunov equation

(AF + ��1EETX)TS + S(AF + ��1EETX) = �XEETX (11)

Furthermore, let x0 be such that there exists a � > �F that satis�es ��2xT0 S�x0 = "2.

Then we have

sup
w2B

q
"

'(F;w; x0) = max
w2@B

q
"

'(F;w; x0) = xT0X�x0 + �"2: (12)

This maximum is attained by w := ��1ETX�x, where x is generated by the system

_x = (AF + ��1EETX�)x, x(0) = x0.

Remark 3.6 The matrix ��1S� is the observability grammian of the system _x =

(AF + ��1EETX�)x, x(0) = x0, y = ��1ETX�x, which is exactly the system that
generates wF;�, i.e. y = wF;�. It is well-known that the quantity ��2xT0 S�x0 equals

the observation energy of the same system, and this energy is equal to "2 if � = �.

4 The Saddle-Point Equilibrium

The analysis of the present section starts by de�ning a pair (F̂ ; ŵ) 2 F �@Bq
" , which

will turn out to be a saddle-point equilibrium.

In order to de�ne the pair (F̂ ; ŵ), consider the algebraic Riccati equation

CTC +ATP + PA +

+ ��1PEETP � (PB + CTD)(DTD)�1(BTP +DTC) = 0 (13)

A Game Theoretic Approach to Linear Systems with L2-Bounded Disturbances
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which also appeared in Theorem 2.3 (with  replaced by
p
�). From H1 the-

ory, it is well-known that for � large enough, there exists a unique positive semi-

de�nite solution of this equation, such that AFP + ��1EETP is stable, where FP :=
�(DTD)�1(BTP + DTC), which is in F , according to Theorem 2.3. Denote the

in�mum of all such �'s by ��. It is obvious that �� > 0. For each � > ��, we shall
denote the solution of (13) by P�, and de�ne w� 2 L

q
2 by w� = ��1ETP�x�, where

x� is generated by the system _x� = (AFP + ��1EETP�)x�, x�(0) = x0. It is easily
seen and in fact well-known from the theory of algebraic Riccati equations that P� is
equal to X�, as de�ned in Theorem 3.5, with F = FP� . Hence, generically (typically

depending on x0, see Remark 3.2) there exists a � > ��, such that kw�k = ", for
each " > 0. Denote it by �̂. Now, the pair that will turn out to be a saddle-point

equilibrium is de�ned by

(F̂ ; ŵ) := (F
P̂
; w�̂); where P̂ := P�̂: (14)

We want to show that '(F̂ ; ŵ; x0) < '(F; ŵ; x0), for all F 6= F̂ . Note that this
statement implies that F 7! '(F; ŵ; x0) is uniquely minimized at F = F̂ . The next

lemma forms the basis for this property and can easily be obtained, again by a
completion of the squares. We omit the proof.

Lemma 4.1 For each F 2 F , w 2 Lq2 with kwk = ", and x0 6= 0, we have

'(F;w; x0) = xT0 P̂ x0 + �̂"2 +

+

1Z
0

���D(F � F̂ )x(t)
���2 dt � �̂

1Z
0

���w(t)� �̂�1ET P̂ x(t)
���2 dt; (15)

where x is generated by the system _x = AFx+ Ew, x(0) = x0.

Motivated by formula (15), we de�ne for each F 2 F , w 2 B
q
" , and x0 6= 0, the

expression  (F;w; x0) by

 (F;w; x0) :=

1Z
0

���D(F � F̂ )x(t)
���2 dt� �̂

1Z
0

���w(t)� �̂�1ET P̂ x(t)
���2 dt; (16)

where x is generated by the system _x = AF x+ Ew, x(0) = x0. Our next goal is to
prove that if w = ŵ, this expression is positive for each F 6= F̂ . This will complete

the proof of the minimizing property.

Lemma 4.2 For each F 2 F , and x0 6= 0, we have

 (F; ŵ; x0) > 0; if F 6= F̂ , and  (F̂ ; ŵ; x0) = 0:

Proof: De�ne v := D(F̂ � F )x, and � := ŵ � �̂�1ET P̂ x, where x is generated by

the system _x = AFx + Eŵ, x(0) = x0. We then have  (F; ŵ; x0) =
R1
0
jvj2dt �

A Game Theoretic Approach to Linear Systems with L2-Bounded Disturbances



4 THE SADDLE-POINT EQUILIBRIUM 9

�̂
R1
0
j�j2dt. De�ne moreover � := x�̂ � x. It can easily be seen that _� = A

F̂
� +

B(DTD)�1DTv, �(0) = 0, and � = �̂�1ET P̂ �. Now, since
R1
0

d
dt
�T P̂ �dt = 0, it

follows that

 (F; ŵ; x0) =

1Z
0

�
vTv � �̂�1�T P̂EET P̂ � � d

dt
�T P̂ �

�
dt =

=

1Z
0

�
jv �D(DTD)�1BT P̂ �j2+

��T (AT

F̂
P̂ + P̂A

F̂
+ P̂ (B(DTD)�1BT + �̂�1EET)P̂ )�

�
dt:

The Riccati equation (13), with � = �̂, can be rewritten as

CT (I �D(DTD)�1DT )C+

+ AT

F̂
P̂ + P̂A

F̂
+ P̂

�
B(DTD)�1BT + �̂�1EET

�
P̂ = 0:

Hence,

 (F; ŵ; x0) =

1Z
0

�
jv �D(DTD)�1BT P̂ �j2 + �TCT (I �D(DTD)�1DT )C�

�
dt:

Since I �D(DTD)�1DT is positive semi-de�nite, we conclude that  (F; ŵ; x0) � 0

for all F . Moreover, if  (F; ŵ; x0) = 0, it follows that v = D(DTD)�1BT P̂ �, which
implies that � is generated by _� = (A

F̂
+ B(DTD)�1BT P̂ )�, �(0) = 0. Obviously,

this gives us � = 0, and thus v = 0, or, equivalently, F = F̂ . This completes the
proof. �

This lemma completes the proof of the minimizing property of the saddle-point equi-
librium. Formula (15) displays the minimal value, i.e.

'(F̂ ; ŵ; x0) = xT0 P̂ x0 + �̂"2: (17)

We have also shown that this minimal value is uniquely attained by F = F̂ . We

proceed by proving the maximizing part of the saddle-point equilibrium. This is
basically a consequence of the previous section. Indeed, by applying Theorem 3.5 to

F = F̂ , one gets �̂ = �, immediately implying that '(F̂ ; w; x0) < '(F̂ ; ŵ; x0), for
each w 2 B

q
" . Again, we conclude that the maximal value of w 7! '(F̂ ; w; x0), i.e.

xT0 P̂ x0 + �̂"2, is uniquely attained by ŵ. We summarize the results of the present
section in the following theorem, which is the main result of our study.

Theorem 4.3 Let " > 0. Let P� be the solution of the algebraic Riccati equation

CTC +ATP + PA +

+ ��1PEETP � (PB + CTD)(DTD)�1(BTP +DTC) = 0

A Game Theoretic Approach to Linear Systems with L2-Bounded Disturbances
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such that AF�+�
�1EETP� is stable, where F� := �(DTD)�1(BTP�+D

TC). Denote
the in�mum of all �'s for which there exists such a P by ��. Let S� be the solution

of the Lyapunov equation

�
AF� + ��1EETP�

�T
S + S

�
AF� + ��1EETP�

�
= �PEETP:

Furthermore, let x0 be such that there exists a �̂ > �� that satis�es �̂�2xT0 S�̂x0 = "2.

Let F̂ = F�̂, and ŵ = �̂�1ETP�̂x, where x is generated by the system _x = (AF�̂ +
�̂�1EETP�̂)x, x(0) = x0. Then we have

'(F�̂; w; x0) < '(F�̂; ŵ; x0) < '(F; ŵ; x0);

and a solution of Problem 2.1 is given by F̂ .

5 Concluding Remarks

The most important conclusion of our research is that there exists a saddle-point equi-
librium of the two person zero-sum game with the controller designer as minimizing

player and the uncertainty as maximizing player. The controller corresponding to
the saddle point equilibrium also solves the minimax problem, and the disturbance

corresponding to this equilibrium solves the maximin problem, in agreement with
the result of Chen [4].

We have solved the problem here under a certain (generic) assumption on the initial
state. The situation in which this assumption is not satis�ed calls for further inves-
tigation. Another topic for further research could be the analysis of the properties

of the nonlinear feedback controller F̂ (x(t); ") for given ".
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