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Abstract

This paper gives a new approach to diffuse filtering and smoothing
for multivariate state space models. The standard approach treats the
observations as vectors while our approach treats each element of the
observational vector individually. This strategy leads to computation-
ally efficient methods for multivariate filtering and smoothing. Also,
the treatment of the diffuse initial state vector in multivariate models
is much simpler than existing methods. The paper presents details
of relevant algorithms for filtering, prediction and smoothing. Proofs
are provided. Three examples of multivariate models in statistics and
economics are presented for which the new approach is particularly
relevant.
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1 Introduction

In the standard multivariate linear state space model, the observation vector
yt depends linearly on an unobserved state vector αt which develops over
time as a first order vector autoregression for t = 1, . . . , n. In this paper
we consider filtering and smoothing for this model. The object of filtering is
to calculate the mean and error variance matrix of αt given y1, . . . , yt−1 and
the object of smoothing is to calculate the mean and error variance matrix
of αt given y1, . . . , yn. Analysis based on these models is important in many
areas and particularly in applied time series analysis. For a general treatment
of state space models for time series analysis see Harvey (1989) and for an
application to a particular problem of public importance together with a
published discussion of the merits of these models see Harvey and Durbin
(1986).

The conventional approach to filtering and smoothing for these models
is based on considering the contribution of the entire observational vector
at each successive time point. The basic idea of this paper is to introduce
the elements of the observational vectors one at a time into the filtering and
smoothing processes. In effect, we convert the original multivariate series
into a univariate series and analyse the data in univariate form. Although the
concept is simple, the improvement in computational efficiency is dramatic
for models of more than a modest degree of complexity. The advantage is
particularly strong for the treatment of initialisation by diffuse priors.

The idea of decomposing the observational vectors into sub-vectors for the
improvement of computational efficiency in Kalman filtering was suggested
by Anderson and Moore (1979, section 6.4) under the name sequential pro-
cessing. Fahrmeir and Tutz (1994, section 8.4) discuss a similar strategy for
longitudinal models. However, both contributions assume that the initial
conditions are known and they do not deal with diffuse initialisation and
parameter estimation which are major concerns in this paper.

Section 2 presents the multivariate linear Gaussian state space model
and sets out the standard Kalman filter recursions in a form that is suitable
for later work in the paper. A general form of the partially diffuse initial
state vector is considered in which some elements of the state vector at the
initial time point have finite variances while others have infinite variances.
In section 3 the model is written in univariate form, first for the case where
the observation error matrix is diagonal and secondly for the case where the
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matrix is an arbitrary positive semi-definite matrix. Section 4 begins by
deriving the Kalman filtering recursion for the main part of the univariate
series and goes on to consider the special features of the recursions that are
needed to handle the time points at the beginning of the series that are
directly affected by the diffuse initialisation. In section 5, recursions are
given for state and disturbance smoothing, first for the main part of the
series and then for the part at the beginning that is affected by the diffuse
initialisation. Maximum likelihood estimation of parameters is considered in
section 6. Three examples of multivariate models in state space form are
given in section 7; the saving in computing can be dramatic in some cases as
is shown. Section 8 concludes.

2 Review of standard state space methods

2.1 State space model

The multivariate Gaussian linear state space model is given by

yt = Ztαt + εt, εt ∼ N(0, Ht),
αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt), t = 1, . . . , n,

(1)

where yt is the pt× 1 vector of observations, αt is the m× 1 state vector and
εt is the pt × 1 vector of disturbances. The state vector follows a Markov
process with q × 1 disturbance vector ηt. The equation for yt is called the
observation equation and the equation for αt+1 is referred to as the state
equation. The normally and independently distributed disturbance vectors
εt and ηt are mutually uncorrelated. The initial state vector is assumed to
be normally distributed with mean vector a and variance matrix P , that is
α1 ∼ N(a, P ). The system matrices Zt, Ht, Tt, Rt and Qt, with appropriate
dimensions, are fixed matrices. The state space model (1) is said to be time-
invariant when the system matrices are constant over time index t. In many
practical situations, the state space model can be set up as time-invariant.

When the state vector contains nonstationary components or regression
effects, elements of the initial state vector α1 may require a diffuse prior. We
therefore assume that the distribution of α1 has the general form

α1 ∼ N(a, P ), P = κP∞ + P∗, κ > 0, (2)
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where vector a and matrices P∞ and P∗ are fixed and known and where we
shall in due course let κ→∞. The matrix P∞ is typically diagonal and when
a diagonal element of P∞ is nonzero the corresponding row and column of
P∗ are not relevant.

2.2 Kalman filter

The Kalman filter recursions evaluate the mean of the state vector αt+1 con-
ditional on the observations Yt = {y1, . . . , yt} and its error variance matrix,
that is at+1 = E(αt+1|Yt) and Pt+1 = var(αt+1 − at+1|Yt), for t = 1, . . . , n.
The Kalman filter for the state space model (1) and (2) with κ given can be
written in the form

vt = yt − Ztat,

at+1 = Tt
(
at +KtF

−1
t vt

)
,

Ft = ZtPtZ
′
t +Ht,

Kt = PtZ
′
t,

Pt+1 = Tt
(
Pt −KtF

−1
t K ′t

)
T ′t +RtQtR

′
t,

(3)
for t = 1, . . . , n. The one-step ahead prediction error is vt = yt − E(yt|Yt−1)
with variance matrix Ft = var(yt|Yt−1) = var (vt). The matrix Kt is the
covariance matrix cov (αt, yt|Yt−1). The proof of the Kalman filter can be
obtained by applying some basic results on the multivariate normal distribu-
tion or by applying linear prediction results; see, for example, Duncan and
Horn (1972), Anderson and Moore (1979) and Harvey (1989).

The Kalman filter recursions for given κ are initialised by

a1 = E (α1|Y0) = E (α1) = a, P1 = var (α1|Y0) = var (α1) = P, (4)

where a and P are the unconditional mean and variance matrix of the initial
state vector, respectively. The diffuse case of κ → ∞ is discussed when we
consider the univariate form of the filter in section 4.2.

2.3 Smoothing

Estimators of the state and disturbance vectors, conditional on the full set of
observations Yn = {y1, . . . , yn}, are referred to as smoothed estimators and
they are evaluated by backwards smoothing algorithms. The work of de Jong
(1988), Kohn and Ansley (1989) and Koopman (1993) leads to the following
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basic smoothing recursions for model (1),

rt−1 = Z ′tF
−1
t vt + L′tT

′
trt, Nt−1 = Z ′tF

−1
t Zt + L′tT

′
tNtTtLt, (5)

for t = n, . . . , 1 with Lt = I −KtF
−1
t Zt. The backwards recursions (5) are

initialized by rn = 0 and Nn = 0. Storage of the Kalman filter output vt,
F−1
t and Kt is required for t = 1, . . . , n.

The output of recursions (5) can be used to construct the smoothed es-
timators of the disturbance vectors εt and ηt conditional on the full data-set
Yn, that is ε̂t = E (εt|Yn) and η̂t = E (ηt|Yn), together with their variance
matrices. These smoothed estimators are computed by

ε̂t = HtF
−1
t (vt −K ′trt) , var (ε̂t) = HtF

−1
t (Ft +K ′tNtKt)F

−1
t Ht,

η̂t = QtR
′
trt, var (η̂t) = QtR

′
tNtRtQt,

(6)
for t = n, . . . , 1. The proofs and more general results for smoothed distur-
bances are given by Koopman (1993).

The smoothed state vector α̂t = E (αt|Yn) and variance matrix Vt =
var (αt|Yn) also use (5) and can be evaluated by

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt, (7)

for t = n, . . . , 1. A substantial amount of additional memory space is required
for the storage of at and Pt. Proofs of (5) and (7) are given by de Jong (1988)
and Kohn and Ansley (1989). The state smoother (5) and (7) can also be
obtained by re-formulating the classical Anderson and Moore (1979) fixed
interval smoothing algorithm; see Koopman (1997b).

A more efficient algorithm for calculating the smoothed estimator of the
state vector only is given by

α̂t+1 = Ttα̂t +Rtη̂t, t = 1, . . . , n, (8)

with α̂1 = a + Pr0 and η̂t is given by (6). The forwards recursion (8) can
be applied after the smoothing algorithm (5) has stored the vector rt using
the storage space of the Kalman filter, for t = 1, . . . , n. The substantial
storage space for the state smoother (7) is not required. Also, the recursion
(8) is computationally more efficient than the first equation of (7) because
the matrices Tt and Rt in (8) are usually sparse; see Koopman (1993) for a
discussion.
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3 Univariate approach to multivariate case

Assuming first that variance matrix Ht is diagonal, write the observation and
observation disturbance vectors as

yt =


yt,1
...

yt,pt

 , εt =


εt,1
...

εt,pt

 ,
with the observation system matrices

Zt =


Zt,1

...
Zt,pt

 , Ht =


σ2
t,1 0 0

0
. . . 0

0 0 σ2
t,pt

 ,
where yt,i, εt,i and σ2

t,i are scalars and Zt,i is a (1 ×m) row vector, for i =
1, . . . , pt. The observation equation for the univariate representation of the
model is

yt,i = Zt,iαt,i + εt,i, t = 1, . . . , n, i = 1, . . . , pt, (9)

where αt,i = αt. The state equation corresponding to (9) is

αt,i+1 = αt,i, i = 1, . . . , pt − 1,
αt+1,1 = Ttαt,pt +Rtηt, t = 1, . . . , n,

(10)

with initial state vector α1,1 = α1 given by (2).
When Ht is not diagonal, we put the disturbance vector εt into the state

vector. For the observation equation of (1) define

ᾱt =

(
αt
εt

)
, Z̄t =

(
Zt Imt

)
,

and for the state equation define

η̄t =

(
ηt
εt

)
, T̄t =

(
Tt 0
0 0

)
, R̄t =

(
Rt 0
0 Imt

)
, Q̄t =

(
Qt 0
0 Ht

)
,

leading to

yt = Z̄tᾱt, ᾱt+1 = T̄tᾱt + R̄tη̄t, η̄t ∼ N(0, Q̄t),

for t = 1, . . . , n. We then proceed with the same strategy as for the case where
Ht is diagonal by treating each element of the observation vector individually.
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4 Univariate filtering

4.1 The basic algorithm

Define at,1 = E (αt,1|Yt−1) and at,i = E (αt,i|Yt−1, yt,1, . . . , yt,i−1) with Pt,1 =
var (αt,1|Yt−1) and Pt,i = var (αt,i|Yt−1, yt,1, . . . , yt,i−1), for i = 2, . . . , pt. By
treating the vector series y1, . . . , yn as the scalar series

y1,1, . . . , y1,pt, y2,1, . . . , yn,pn,

the filtering equations where Ht is diagonal can be written as

at,i+1 = at,i +Kt,iF
−1
t,i vt,i, Pt,i+1 = Pt,i −Kt,iF

−1
t,i K

′
t,i, (11)

where

vt,i = yt,i − Zt,iat,i, Ft,i = Zt,iPt,iZ
′
t,i + σ2

t,i, Kt,i = Pt,iZ
′
t,i, (12)

for i = 1, . . . , pt and t = 1, . . . , n. This formulation has vt,i and Ft,i as scalars
and Kt,i as a column vector. The transition from time t to time t + 1 is
achieved by the relations

at+1,1 = Ttat,pt+1, Pt+1,1 = TtPt,pt+1T
′
t +RtQtR

′
t. (13)

These values at+1,1 and Pt+1,1 are the same as the values at+1 and Pt+1 given
by the standard Kalman filter (3).

It is important to note that the elements of the innovation vector vt of (3)
are not the same as vt,i, for i = 1, . . . , pt; only the first element of vt is equal
to vt,1. The same applies to the diagonal elements of the variance matrix Ft
and the variances Ft,i, for i = 1, . . . , pt; only the first diagonal element of Ft
is equal to Ft,1. It is reasonable to assume that the full matrix Ft is not zero
since this would indicate a model that had not been properly formulated.
However, there are models for which Ft,i can be zero, for example the case
where yt is a multinomial observation. This indicates that yt,i is linearly
dependent on previous observations. Thus

at,i+1 = E (αt,i+1|Yt−1, yt,1, . . . , yt,i) = E (αt,i+1|Yt−1, yt,1, . . . , yt,i−1) = at,i,

and similarly Pt,i+1 = Pt,i. The contingency is therefore easily dealt with.
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The main motivation of this ‘univariate’ approach to filtering for multi-
variate state space models is computational efficiency. This approach avoids
the inversion of matrix Ft and two matrix multiplications. Also, the actu-
al implementation of the recursions is more straightforward. Table 1 shows
that the percentage savings in the number multiplications for the univariate
approach compared to the standard approach are considerable. The calcula-
tions concerning the transition (13) are not considered because matrix Tt is
usually sparse with most elements equal to zero and unity.

4.2 Diffuse filtering

The filtering recursions (11) to (13) are valid for initial condition (2) with
any fixed κ > 0. The diffuse case of κ → ∞ requires some adjustments
for a limited number of filtering steps until the dependence of Pt,i on κ has
vanished. The method of diffuse initialisation is based on the treatment of
Koopman (1997a).

The definition P = P∗ + κP∞ in (2) implies that the matrix Pt,i, the
vector Kt,i and the scalar Ft,i, can be decomposed as

Pt,i = P∗,t,i + κP∞,t,i,

Kt,i = K∗,t,i + κK∞,t,i, (14)

Ft,i = F∗,t,i + κF∞,t,i,

where

F∗,t,i = Zt,iP∗,t,iZ
′
t,i + σ2

t,i, F∞,t,i = Zt,iP∞,t,iZ
′
t,i,

K∗,t,i = P∗,t,iZ
′
t,i, K∞,t,i = P∞,t,iZ

′
t,i.

(15)

To obtain the diffuse filtering recursions, we expand F−1
t,i as a power series in

κ−1 giving

F−1
t,i = κ−1F−1

∞,t,i − κ
−2F∗,t,iF

−2
∞,t,i +O

(
κ−3

)
, for F∞,t,i > 0.

This is easily obtained from the identity F−1
t,i (F∗,t,i + κF∞,t,i) = 1; see Koop-

man (1997a). From (11) the diffuse filtering recursions are therefore given
by

at,i+1 = at,i +K∞,t,iF
−1
∞,t,ivt,i,
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P∗,t,i+1 = P∗,t,i +K∞,t,iK
′
∞,t,iF∗,t,iF

−2
∞,t,i − (16)(

K∗,t,iK
′
∞,t,i +K∞,t,iK

′
∗,t,i

)
F−1
∞,t,i,

P∞,t,i+1 = P∞,t,i −K∞,t,iK
′
∞,t,iF

−1
∞,t,i,

for i = 1, . . . , pt. In the case where F∞,t,i = 0, the usual filtering equations
apply, that is

at,i+1 = at,i +K∗,t,iF
−1
∗,t,ivt,i,

P∗,t,i+1 = P∗,t,i −K∗,t,iK
′
∗,t,iF

−1
∗,t,i, (17)

P∞,t,i+1 = P∞,t,i,

for i = 1, . . . , pt. For the transition from time t to time t+ 1 we have

at+1,1 = Ttat,pt+1,

P∗,t+1,1 = TtP∗,t,pt+1T
′
t +RtQtR

′
t, (18)

P∞,t+1,1 = TtP∞,t,pt+1T
′
t ,

for t = 1, . . . , n.
Although it is not a restriction for a properly defined model, we require

that
r (P∞,t+1,1) = r (P∞,t,pt+1) , (19)

which implies that matrix Tt does not influence the rank of P∞,t,i. It can be
shown that, when F∞,t,i > 0,

r (P∞,t,i+1) = r (P∞,t,i)− 1; (20)

see Koopman (1997a). The diffuse recursions (16) to (18) are continued until
matrix P∞,t,i+1 becomes zero at t, i = t∗, i∗. From then on the usual Kalman
filter is used with Pt,i+1 = P∗,t,i+1. The univariate series

y1,1, . . . , y1,pt, y2,1, . . . , yt∗,i∗

will be referred to as the initial series.
It can be shown that, when F∞,t,i > 0, the filtering recursion (16) for

P †t,i = (P∗,t,i, P∞,t,i) can be written compactly as

P †t,i+1 = L†tP
†
t,i, with L†t =

(
L∞,t,i Lo,t,i
0 L∞,t,i

)
, i = 1, . . . , pt, (21)
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where

L∞,t,i = I −K∞,t,iZt,iF
−1
∞,t,i,

Lo,t,i =
(
K∞,t,iF∗,t,iF

−1
∞,t,i −K∗,t,i

)
Zt,iF

−1
∞,t,i; (22)

see Koopman and Durbin (1998, section 4).
The diffuse filtering equations imply a limited number of additional multi-

plications compared to the usual Kalman filter. The computational implica-
tions are discussed in Koopman (1997a) where it is argued that this method
outperforms existing methods for univariate cases. It should be stressed that
our approach of diffuse multivariate filtering is simpler and computationally
more efficient than the methods proposed by Ansley and Kohn (1985) and
Koopman (1997a) which require intricate Cholesky transformations on vari-
ance matrices such as Pt and Ft. Our approach also outperforms the diffuse
initialisation methods of de Jong (1991) and Snyder and Saligari (1996) for
univariate and multivariate cases.

5 Univariate smoothing

5.1 The basic algorithm

The basic smoothing recursions (5) for the model (1) can be reformulated for
the univariate series

y1,1, . . . , y1,pt, y2,1, . . . , yn,pn,

as

rt,i−1 = Z ′t,iF
−1
t,i vt,i + L′t,irt,i, Nt,i−1 = Z ′t,iF

−1
t,i Zt,i + L′t,iNt,iLt,i,

rt−1,pt = T ′t−1rt,0, Nt−1,pt = T ′t−1Nt,0Tt−1,
(23)

where Lt,i = I −Kt,iZt,iF
−1
t,i , for i = pt, . . . , 1 and t = n, . . . , 1. The initiali-

sations are rn,pn = 0 and Nn,pn = 0. The equations for rt−1,pt and Nt−1,pt do
not apply for t = 1. The values for rt,0 and Nt,0 are the same as the values
for the smoothing quantities rt−1 and Nt−1 of (5), respectively.

The univariate smoothing approach avoids two matrix multiplications and
the implementation is more straightforward. Table 2 presents the consider-
able percentage savings in the number of multiplications for the univariate
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approach compared to the standard multivariate approach. The computa-
tions involving the usually sparse transition matrix Tt are not considered.

5.2 State and disturbance smoothing

The state smoothing equations for our ‘univariate’ approach provide the same
results as equations (7) since at = at,1, Pt = Pt,1, rt−1 = rt,0 and Nt−1 = Nt,0.
Similar considerations apply for the smoothed disturbances η̂t and var (η̂t) in
(6) and the state smoother (8). The smoothed estimators for the observation
disturbances εt,i of (9) follow directly from our approach and are given by

ε̂t,i = σ2
t,iF

−1
t,i

(
vt,i −K ′t,irt,i

)
, var (ε̂t,i) = σ4

t,iF
−2
t,i

(
Ft,i +K ′t,iNt,iKt,i

)
.

5.3 Diffuse smoothing

In this section we present the diffuse smoothing recursions for the initial
series with indices

(t, i) = (t∗, i∗) , (t∗, i∗ − 1) , . . . , (t∗, 1) , (t∗ − 1, pt∗−1) , . . . , (1, 1) .

The treatment is based on Koopman and Durbin’s (1998) results for the
vector observation case.

To obtain smoothed estimators as κ→∞, we expand rt,i and Nt,i of (23)
in terms of reciprocals of κ in the same way as for F−1

t,i , that is

rt,i = r
(0)
t,i + κ−1r

(1)
t,i +O

(
κ−2

)
,

Nt,i = N
(0)
t,i + κ−1N

(1)
t,i + κ−2N

(2)
t,i +O

(
κ−3

)
, (24)

with r
(0)
t∗,i∗ = rt∗,i∗, r

(1)
t∗,i∗ = 0, N

(0)
t∗,i∗ = Nt∗,i∗ and N

(1)
t∗,i∗ = N

(2)
t∗,i∗ = 0. We need

three terms in the series for Nt,i compared with two in the series for rt,i to
allow for the contribution of terms in κ and κ2 from the multiplications of
Pt = P∗,t + κP∞,t required for state smoothing as given by (7). Note that
rt∗,i∗ and Nt∗,i∗ are obtained from (23) at t, i = t∗, i∗. By defining

r†t,i =

(
r

(0)
t,i

r
(1)
t,i

)
, N †t,i =

(
N

(0)
t,i N

(1)
t,i

N
(1)
t,i N

(2)
t,i

)
,
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it can be shown using (23) that the diffuse basic smoothing equations, when
F∞,t,i > 0, are given by

r†t,i−1 =

(
0

Z ′t,iF
−1
∞,t,ivt,i

)
+ L†′t,ir

†
t,i,

N †t,i−1 =

(
0 Z ′t,iF

−1
∞,t,iZt,i

Z ′t,iF
−1
∞,t,iZt,i Z ′t,iF

−2
∞,t,iZt,iF∗,t,i

)
+ L†′t,iN

†
t,iL
†
t,i, (25)

where L†t,i is defined as in (21) for the initial series and with

r†t−1,pt =

(
Tt−1 0
0 Tt−1

)′
r†t,0,

N †t−1,pt =

(
Tt−1 0
0 Tt−1

)′
N †t,0

(
Tt−1 0
0 Tt−1

)
,

for t = t∗, . . . , 1; see section 4 of Koopman and Durbin (1998) for details.
The diffuse state smoothing equations are given by

α̂t = at,1 + P †t,1r
†
t,0, Vt = P∗,t,1 − P

†
t,1N

†
t,0P

†′
t,1, (26)

for t = t∗, . . . , 1. The diffuse smoothed disturbances for the initial series are
given by

ε̂t,i = −σ2
t,iF

−1
∞,tK

′
∞,tr

(0)
t,i , var (ε̂t,i) = σ4

t,iF
−2
∞,tK

′
∞,tN

(0)
t,i K∞,t,

η̂t = QtR
′
tr

(0)
t,0 , var (η̂t) = QtR

′
tN

(0)
t,0 RtQt,

(27)

where it should be noted that the smoothed disturbance equations (27) do

not need the quantities r(1)
t,i , N (1)

t,i and N
(2)
t,i which simplify the calculations

considerably.

6 Parameter estimation

The system matrices Zt, Ht, Tt, Rt and Qt of model (1) may contain unknown
elements which can be estimated by maximum likelihood. Let us denote the
vector of these parameters by ψ. The output of the Kalman filter allows
likelihood evaluation via the prediction error decomposition for given ψ and
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the score vector for ψ can be constructed using the basic smoothing equations
for given ψ. Numerical optimization routines can be used to maximize the
log-likelihood function with respect to ψ.

The Gaussian log-likelihood function for model (9) and (10) is given by

logL = constant− 0.5
n∑
t=1

pt∑
i=1

logFt,i + v2
t,iF

−1
t,i , (28)

where vt,i and Ft,i are defined in section 4.1. The log-likelihood function (28)
is obtained by treating the series of vector observations as a univariate series
and applying the prediction error decomposition; see Harvey (1989, section
3.4). The conventional method of likelihood evaluation is based on the usual
Kalman filter (3) and is given by

logL = constant− 0.5
n∑
t=1

log |Ft|+ v′tF
−1
t vt. (29)

Equation (28) is computationally more efficient to compute than (29) because
the ‘univariate’ Kalman filter is more efficient and (28) avoids calculating the
determinant of Ft.

The score vector for ψ can be obtained via the basic smoothing recur-
sions (5) which may lead to dramatic computational efficiencies compared to
numerical score evaluation; see Koopman and Shephard (1992). For exam-
ple, let the i-th element of ψ represents some unknown value of the system
matrices Rt, for t = 1, . . . , n. Its score value evaluated at ψ = ψ∗ is given by

∂ logL

∂ψi

∣∣∣∣∣
ψ=ψ∗

=
n∑
t=1

tr
∂Rt

∂ψi
QtR

′
t

(
rt,0r

′
t,0 −Nt,0

)
,

where rt,0 and Nt,0 are defined in section 5.1. Similar expressions exist for
elements of ψ which are associated with system matrices Ht and Qt. The
equation for the score of a parameter which is associated with the system
matrices Zt and/or Tt is intricate and it requires state smoothing. Koop-
man and Shephard (1992) argue that in this case it is computationally more
efficient to compute the score numerically.

The likelihood and score for the diffuse case are given by

logL = constant− 0.5
t∗∑
t=1

i∗∑
i=1

logF∞,t,i − 0.5
n∑

t=t∗

pt∑
i=i∗+1

logFt,i + v2
t,iF

−1
t,i ,
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and the score for the example given is

∂ logL

∂ψi

∣∣∣∣∣
ψ=ψ∗

=
n∑
t=1

tr
∂Rt

∂ψi
QtR

′
t

(
r

(0)
t,0 r

(0)′
t,0 −N

(0)
t,0

)
,

see Koopman (1997a). Parameter estimation requires many likelihood and
score evaluations within the numerical optimization routine. It is fortunate
that the auxiliary part of diffuse filtering, which consists of the equations for
F∞,t,i, K∞,t,i and P∞,t,i, does not depend on the system matrices Ht, Rt and
Qt. This follows immediately from a close examination of equations (14) to
(18). Therefore, the computations for F∞,t,i, K∞,t,i and P∞,t,i do not have
to be repeated each time when a new likelihood evaluation is required for a
new parameter vector ψ. This leads to considerable computational savings
during the process of parameter estimation which can not be achieved when
the initialization strategy of de Jong (1991) or the one of Snyder and Saligari
(1996) is adopted. By further examining the diffuse recursions and taking
into account that most parameters associated with nonstationary or fixed
unknown elements of the state vector do not affect the stationary part of the
state vector, the computational efficiency also applies to parameters within
ψ which are associated with Tt and Zt.

7 Applications

In this section we discuss three different applications in statistics and eco-
nomics for which our results particularly are relevant. We do not give full
numerical details, we only discuss the models and indicate why our approach
is superior to the standard approach.

7.1 Multivariate time series models

The state space model can be used for a variety of time series models such as
the autoregressive moving average (ARMA) model, the unobserved compo-
nents time series model and the dynamic regression model. The vector au-
toregressive (VAR) model and the multivariate structural time series model
are further examples. State space representations of these models are dis-
cussed by Harvey (1989). The computational savings for these models are
the same as for the general state space model and given by tables 1 and
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2. The computations involving the transition matrix Tt are not considered
because the sparse nature of this matrix for most models.

7.2 Vector splines

The generalization of smoothing splines, see Hastie and Tibshirani (1990),
to the multivariate case are considered by Fessler (1991) and Yee and Wild
(1996). The vector spline model is given by

yi = θ (xi) + εi, E (εi) = 0, var (εi) = Σi, i = 1, . . . , n,

where yi is a p× 1 vector response at scalar xi, an arbitrary smooth vector
function is θ (·) and error εi is mutually uncorrelated. The variance matrix Σi

is assumed known and is usually constant for varying i. The standard method
of estimating the smooth vector function is by minimising the generalized
least squares criterion

n∑
i=1

{yi − θ (xi)}Σ−1
i {yi − θ (xi)}+

p∑
j=1

λj

∫
θ′′j (x)2 dx,

where the non-negative smoothing parameter λj determines the smoothness
of the j-th smooth function θj (·) of vector θ (·) for j = 1, . . . , p. Note that
xi+1 > xi for i = 1, . . . , n − 1 and θ′′j (x) denotes the second derivative of
θj (x) with respect to x. In the same way as Wecker and Ansley (1983) put
smoothing splines into state space form, vector splines can be parameterised
as

yi = µi + εi,

µi+1 = µi + βi + ηi, var (ηi) =
δ3
i

3
Λ,

βi+1 = βi + ζi, var (ζi) = Λ, cov (ηi, ζi) =
δ2
i

2
Λ,

with µi = θ (xi), δi = xi+1 − xi and Λ = diag (λ1, . . . , λp). Note that Schur’s
decomposition implies that MiΣiM

′
i = Di with orthogonal matrix Mi such

that M ′iMi = I and diagonal matrix Di; see Magnus and Neudecker (1988,
Chapter 1, Theorem 13). In the case of Σi = Σ and diagonalization MΣM ′ =
D, we obtain the transformed model

y∗i = µ∗i + ε∗i ,

µ∗i+1 = µ∗i + β∗i + η∗i , var (ηi) =
δ3
i

3
Q,

β∗i+1 = β∗i + ζ∗i , var (ζi) = Q, cov (ηi, ζi) =
δ2
i

2
Q,
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with y∗i = Myi and var (ε∗i ) = D. Furthermore, we have Q = MΛM ′. The
Kalman filter smoother algorithm provides the fitted smoothing spline. The
untransformed model and the transformed model can both be handled by
the ‘univariate’ strategy of filtering and smoothing. The advantage of the
transformed model is that ε∗i can be excluded from the state vector which
is not possible for the untransformed model because var (εi) = Σi is not
necessarily diagonal.

The percentage computational saving of the ‘univariate’ approach for s-
pline smoothing depends on the size p. The state vector dimension for the
transformed model is m = 2p so that the percentage saving in computing for
filtering is 30 if p = 5 and it is 35 if p = 10; see table 1. The percentages for
smoothing are 28 and 33, respectively; see table 2.

7.3 Modelling bid-ask spreads

Competitive dealership markets, such as the London Stock Exchange and
the Chicago Mercantile Exchange, have typically several dealers negotiating
and completing multiple trades at the same time. Different market prices
of the same equity float within the market at the same period of, say, a
minute. The sequential order of market prices in the same period is unknown.
Moreover, the number of trades vary for different periods. Therefore, the
standard approach of disentangling the bid-ask spread from trade prices using
the autocovariance structure of differenced market prices is not possible; see
Huang and Stoll (1997) for an overview of the standard approach. Koopman
and Lai (1998) offer an alternative approach by modelling the price data
using a simple state space framework which deals with the specific features of
competitive dealership markets. They apply their model using equity prices
of Shell, Glaxo and British Telecom traded at the London Stock Exchange.

The basic specification of the Koopman and Lai (1998) model is

yt,i = µt + dt,iα + εt,i, εt,i ∼ N (0, σ2
ε) , i = 1, . . . , pt,

µt+1 = µt + ηt, ηt ∼ N
(
0, σ2

η

)
, t = 1, . . . , n,

(30)

where yt,i is a univariate series of equity prices and dt,i is zero or unity de-
pending on whether the i-th trade at time t is a buy or a sell. The spread is
the constant α and the disturbances εt,i are mutually independent and uncor-
related with the disturbances ηt. The number of trades within time period
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t, pt, typically ranges from 0 to 100. The time index t is usually measured in
seconds, minutes or quarters of hours. For example, the London Stock Ex-
change can provide trade information each minute. Various generalisations
may be applied to this model. For example, the spread α can be a random
walk with regression spline effects for time and trade size and the underlying
‘true’ price µt may be corrected for adverse selection effects; see Koopman
and Lai (1998).

The univariate strategy of Kalman filtering and smoothing will dramat-
ically decrease the number of computations for model (30) compared to the
standard approach for this model. The tables 1 and 2 give the percentage
savings for values of pt up to 20 (and with m = 1 as for this model) but in this
application pt repeatedly take values of 70 and more leading to even more
dramatic savings such as 99.96%. The size of n is typically in thousands so
the computational savings are important in such applications.

8 Conclusions

In this paper we consider filtering, smoothing and log-likelihood estimation
for multivariate linear state space models. We show that by bringing in
elements of the observational vectors one by one instead of together as vectors
considerable, and in some cases spectacular, computational savings can be
made. The exact treatment of diffuse priors in multivariate cases is simplified
considerably by this ‘univariate’ approach.
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Table 1. Percentage computing savings for filtering.

p 1 2 3 5 10 20
m
1 0 39 61 81 94 98
2 0 27 47 69 89 97
3 0 21 38 60 83 95
5 0 15 27 47 73 90
10 0 8 16 30 54 78
20 0 5 9 17 35 58

Table 2. Percentage computing savings for smoothing.

p 1 2 3 5 10 20
m
1 0 27 43 60 77 87
2 0 22 36 53 72 84
3 0 19 32 48 68 81
5 0 14 25 40 60 76
10 0 9 16 28 47 65
20 0 5 10 18 33 51

Percentages are calculated as 100(x − y)/x where x is number of multipli-
cations for standard approach and y is number of multiplications for new
‘univariate’ approach.
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