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ABSTRACT.

The implications of assumintipat it iscommonly knowrthat players consider only admissible best responses
are investigated. Within states-of-the-world model where a state, for each player, determines a strategy set
rather than atrategy theoncept offully permissible sets defined. General existence is establiskaed), a

finite algorithm (eliminating strategy sets instead of strategies) is providddhe concept refines
rationalizability as well aghe Dekel-Fudenberg proceduasdcaptures a notion of forward induction. When
players consider all best responses, the same framework can be used to definedpieofationalizable sets

which characterizes rationalizability.
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1. INTRODUCTION

Bernheim(1984) and Pearce (19843sumehat it iscommonlyknown by theplayers
in a normal form game that each plaghooses a best response to a conjecture that does not
assign positive probability tetrategy vectors fohis opponents known by the player to be
impossible. This assumptiampliesthat playerschoose strategies thatirvive iteratedelimi-
nation of strongly dominated strategiesSuch strategies acalledrationalizable However,
a rationalizable strategy can Wweakly dominated bgnother (pure omixed)strategy. It may
seem natural to assuntieat players donot considerinadmissible i.e. weakly dominated,
strategies (see e.g. Luce Raiffa (1957; Chapter 13) ankohlberg & Mertens(1986) for
supporting arguments). What are implications of assumintipat it iscommonlyknown that
players consideonly admissiblebest responses? The present paper provides a new and, we
claim, appropriate framework in which this question can be resolved.

Without further reflection oneight be lead to concludilat a strategy isompatible
with common knowledge ofdmissibility iff it survives iteratedelimination of weakly
dominated strategies (where at each roahdinadmissiblestrategies areeliminated; this
procedurewill henceforth be referred to @erated admissibility To demonstratevhy this

conclusion is not obtained, and to motivate the subsequent discussion, consider two examples.

L R

uji 1| 1,1

M([O, 1| 2,0

D|1,0[0,1] G

In G,? iteratedadmissibility eliminate® in the first roundR in the second round, and

M in the third round, so thdtl survives for player 1 ant survives for player 2. The

1 This result holds iplayersareallowed to hold correlated conjectures concertirgchoices of other players;
seeTan & Werlang (1988). No independence restriction is imposeithénpresent paper. Wellow e.g.
Osborne & Rubinstein (1994) in using the teationalizableeven though correlated conjectures are allowed.
2 This game is derived from an extensive game due to Battigalli (1989) and Borgers (1991).



procedureseems to force 2 intioelievingthatD is less 'reasonable’ thighfor the sole reason
thatD is eliminatedbeforeM, even though botM andD areeventually judged to be 'unrea-
sonable' choice®r 1. This observation can be made precise by endowing each player with a
lexicographic probability systehPS; due to Blume, Brandenburger & DekE91))being a
hierarchy of conjectures concerning the choicdgssapponents. The playeptimizes lexico-
graphically given this hierarchy the senséhat hefirst optimizes athe highestevel using the
first-order conjecture and resolvasyties by usinghe second-order conjecture, etc.every
vector of strategies for the opponentgjiigen positive probability by some conjecture in this
hierarchy(i.e., the LPS hatull support),such lexicographic optimizationelds an admissible
best response. Stahl (1993) requilest eaclplayer'sLPS satisfythat, foreach round, any
strategyeliminated byround k appears at a lowdevel in the hierarchy (hence, is deemed
infinitely less likely)thanany strategynot yet eliminated. Heshows that a strateggurvives
iteratedadmissibility iff it is anadmissiblebest response to a LR&tisfying this requiremet.
This characterization means that iterated admissibility forces 2 to belieizeishafinitely less
likely thaneither of U andM based on theremisethat D is 1'sonly inadmissiblestrategy in
G,. On the basis of this premise such an inference seems at best to be questionable.
Brandenburger (1992nposes a weaker restriction on egtdyer'sLPS, namely, for
each roundk, any strategyeliminated byround k appears at a lowdevel in the kerarchy
(hence, is deemadfinitely less likely)thansomestrategynot yet eliminated. This meatisat
2 — based on thpremisethatonly D is inadmissible —makesthe unquestionabiaference
thatD is infinitely less likely thamneof U andM. Brandenburger assumes that gasxmonly
known thateach player chooses admissiblebest response tofall support LPSwith a first-
order conjecture that doest assign positive probability to strateggctors forhis opponents
known by the player to benpossible. Heshows thatthis assumptionmplies that players

choose strategies thaurvivethe Dekel-Fudenberg procedtvehere one round adlimination

3 A related result is established by Battigalli (1994). See also Rajan (1993) and Veronesi (1995).

4 See Dekel & Fudenber(l991). Borgers (1994) presentssimilar foundationfor the Dekel-Fudenberg
procedure without using LPSs. While Brandenburger considers coffinsisorder knowledge inthe sense
that each player in a lexicographmannertakes into accourdll strategy vectors fathe opponentBorgers
considersapproximatecommon knowledge ithe sens¢hat each player assigns positive probability to all
strategy vectors for the opponents. See also Ben-Porath (1994) and Gul (1995).



of weakly dominatedstrategies is followed by iterateglimination of strongly dominated
strategies. Brandenburgeallssuch strategiegermissible Thisprocedureonly eliminatesD

in the first round so that the permissible strategieb aedM for 1 andL andR for 2.

L R

uji 1| 1,1

M|1,1| 1,0

D(0,0[{0,1| G

While the Dekel-Fudenberg procedweems toyield more reasonablenplications
than does iteratecdmissibility in G,, this conclusion is reversed @, Here iterated
admissibility eliminate® in the first round an® in the second round (so tHatandM survive
for player 1 and. survives for playeR), while the Dekel-Fudenberg procedurdy eliminates
D in the first roundso thatU andM survivefor player 1 and. andR survivefor player 2).
Usingthe characterizations discussed above, the former prodeddse? to believéhatD is
infinitely less likelythaneither of U andM, while the latter procedureads 2 to believihatD
is infinitely less likelythanone of U andM. In G,, it seems natural targue that 2should’
believethat D is infinitely lesslikely than either of U and M. How can this intuition be
captured withoumakingthe questionablmferencethatD is infinitely less likelythaneither of
U andM because is 1's only inadmissible strategy®)?

To address this issuenote that {U,M} is 1's set ofadmissible best responses
independently oWvhat set of LPSs fnayhold concerning the choices of 2. Ib&lievesthat
any strategy outside 1's set of admissible best respomsistaly lesslikely thanany strategy
contained in 1's set of admissible best responses, then 2 is lead to beligvie thiatitely less
likely than either of U and M. This inturn implies that {L} is 2's set ofadmissiblebest
responses. The procedure just descrddeanatesstrategysets In the first roundall strategy
sets but U,M} are eliminated as 1'set ofadmissiblebest responses. In the second round, all

strategy sets but{} are eliminated as 2's set of admissible best responses.



The present papdormalizes such @rocedure — where strategy sets aeeatively
eliminated — interms of an increasimyder ofmutual knowledge. The paper's main contribu-
tion is to offer a consistent frameworkwihich players can havaowledge of strategy sets
for the opponents sudhat, for each opponent, tlohoice ofany strategy outside her set is
deemednfinitely lesslikely than the choice cdny strategy contained in her set. The concept
of a permissiblstrategy doesot allow the players to have such knowledge.miaytherefore,
as illustrated byG,, admit incautious behavior. Tharocedure of iteratecdidmissibility
effectively imposes such knowledge, but does not adequately explain how this is a consequence
of an increasingrder ofmutual knowledge.G, illustrates howthis can be problematic. The
following framework is, thus, intended as a vehicle for amending these shortcomings.

Section 2 introduces a states-of-the-world model, with a partition stateespace for
each player, and a function for each plassigning aubset of that player&rategies to each
state. In Section 3 wassumehat it iscommonlyknown that eaclplayer's streegy set is the
set ofadmissiblebest responsegven a probability distributiothat does noassign positive
probability tovectors of strategy sets fars opponents known by the player to ibgossible.

If, in a two-player game, tharobability distribution assigral probability to a singlstrategy

set for the opponent, then tipdayer'sset ofadmissiblebest responses is determined by
considering onlyfull support LPSs thagatisfythe requiremerthat any stréegy outside the
opponent's set deemednfinitely lesslikely thanany stragégy contained in the opponent's set.
The set ofadmissiblebest responses is appropriately determined alsowgthyers inthe case

of a non-degeneraf@obability distributiorover vectors of strategy sets for the opponents. In
this frameworkthe assumption of common knowledge correspondspimaedure where
strategy sets ariéeratively eliminated. Astrategy set thadurvivesthe iterativeelimination is
called afully permissible sét Forthis concept,general existence is established, a characteri-

zation is offered, and a finite algorithm (that eliminates strategy sets) is provided.

5 The term 'permissibleeflects — inline with Brandenburger's (1992%e —that it iscommonly knowrthat
players perform lexicographic optimization (see our Definitign The ternifully’ reflectsthat afull support
restriction is imposed, relative to subsetsta opponents' strategiésee our Definition3). Note that the
collection of sets that survive the elimination is independent of the order of elimination.



Section 4 presents propertiesfolly permissible setand contains furthexxamples.
First, it is establishethat any strategy in afully permissibleset is bothrationalizable and
permissiblgi.e., survivegshe Dekel-Fudenberg procedure). The converse matd®ld since,
in G,, R is both arationalizable angbermissiblestrategy for 2while {L} is 2's uniquefully
permissibleset inline with the abovaliscussiorf. Then, the "Battle-of-the-sexes-with-outside-
option" and "Burning Money" gamese used to show how the forward inductancome
results from an assumption oftiéing commonhknown that eaclplayer's streegy set is the
set ofadmissiblebest responses. In the lateetample, burning neeabt beinterpreted as a
signal, implying that ouranalysis isrobust against a critiqueommonly leveled athe usual
forward inductionargumentin this game.Finally, anew perspective on the backwanduc-
tion paradox is discussed in the context of the "Take-it-or-leave-it" gamvbidnthere is for
each player a fully permissible set that contains more than the backward induction strategy.

With reference tdheseexamples it should bpointedout that ouinterpretation of
normal form games differs frofearce's (1984, p. 1031) wh@ws these as "a convenient
representation of a perfectly simultaneous gamehich noone can observany move of any
other player beforenoving himself'. Incontrast, we take aormal form game to represent
any underlying extensive gamduilding onrecent results by Mailath, SamuelsorS&inkels
(1993) we show that, once wesist on lexicographic optimization, sequential rationality is
nevertheless adequatalgptured. Hence, the conceptfolfy permissible sets deals directly
with both types of "imperfect" behavior discussed by Pearce: implausible behavior at unreached
information sets as well as incautious optimization.

In Section 5 it is establishedow the present framework can, under alternative
assumptions, be used to characterize rationalizablepamdissiblestrategies through the

concepts ofationalizableandpermissible setsThe framework is also used to connect to the

6 In G, {U,M} is 1's uniquefully permissible set. IrG, all strategy sets butU}, { M} and {U,M} are
eliminated for 1 irthe first round, R} is eliminated for 2 inthe second round, and/} is eliminated for 1 in
the third round.Hence, both {} and {U,M} are fully permissible sets for &andboth {L} and {L,R} are fully
permissible sets for Zhe existence of multiplilly permissible setsneans thatommon knowledge of each
player's strategy set being the set of admisdibl responses doast alone implythat each player gains
knowledge ofthe strategy set d¢fis opponent. Note that in G, — where one is lead to question the
appropriateness of iterated admissibility — there is for each plaftélygpermissible sethat containsnore
than the strategy surviving iterated admissibility.



analyses of Samuels¢h992) and Borgers &amuelsor{1992). However, we argue that, of
the concepts considered, the concefdulbf permissible setesaptures common knowledge of
admissibility inthe most reasonable way. Section 6 presents an interpretaligroofs are

relegated to Appendix A, while Appendix B contains derivations for the examples.

2. THE FRAMEWORK

With N={1, ... ,n} asthe set of players, I&& denote players finiteset of pure strategies,
and letu: S- O bei's payoff function, wher8=S§ x ...x§ =§ xS,, and where-i denotes
N\{i}. ThenG = (S u) is a normal form gameLet ¥ :=2%\{(}} denote the collection of
non-empty subsets &, and write> =% x..x % =3 x . We writep, r ands (I S for
strategy vector®?, RandX (0 S for subsets of strategy vectors;p ando (O ) for vectors
of strategy sets; arfd, P and= (O %) for subcollections of vectors of strateggts. Note that
if o=(0,..,0)0%, thenO#zo,x..x0, 0SS If O0#X, 0S8, let AX)) @Q°X))
denote the set gfrobability distributions oi%., with supportincluded in (equalo) X_, (with
A(D) andA%(D) laterbeingusedlikewise for otherfinite sets). If m, 0 A(S,) isi's conjecture
(subjective probability distribution) concernittige strategy choices ef, abuse notation
slightly by writing u(s, m,([) fori's expected payoff giveg and m..

A statew determines, for each player, a partition ofdtede space asgell as asubset
of that player'sstrategies. A state doe®t determine strategy choiced-ormally, with Q

denoting thestate spaceeach stateo [1 Q specifies for each player

. i's set ofpossiblestatesgiven w: I,(w) O Q. The information functionl,(l} is

partitional in the senséhat there is a partition & suchthat, Jw O Q, I.(w) is theelement
of the partition that containe. WriteKE = {w' U Q| I (w') U E}. Saythati knowsthe event
EUQgivenwif w O KE. Sincew [ I,(w), it follows that an event isue @ [ E) if i knows

it.



. a non-empty subset aofs strategies: o(w) O 2. Since Dw 0O I(w) are

indistinguishable for, we have that[Jw' O I.(w), 0,(w) = 0,(w).

It follows thati knowsgivenw that the vector of the opponents' strategy sets is in
= (w):={o,(w)0Z,|w Ol(w)}. NotethatDw 0Q, 0 (w) 0= (w) sincew O I (w).
Furthermore,=' (@) =Z=" (w) if & OI(w) sincew O1(w) implies | (w) =1(w).

Write KE :=K,E n ... n K.E. Saythat the evenE O Q is mutuallyknowngivenw
if w OKE. Write CKE := KE n KKE n KKKE ... . Saythat the evenE [] Q is commonly

knowngivenw if w [0 CKE.

3. FULLY PERMISSIBLE SETS

The purpose of the present section is to introducedh@ssiblebest response correspondence
in the framework of Section 2 in order to model common knowledgdmoissibility. The con-
cept of dexicographic probability syste(@.PS) is due to Blume et al. (1991). Ik O {1, ...
LK}, mE OA(X,), andJg, supptl) =X, then @7, ,...nf )is a LPS withull support
on X_.. Following Veronesi (1995), I&tA%(X_) denote the set of LPSs with full supportXn

DEFINITION 1. p, is anadmissible best response (o, ,...,nf ) O LAYS,) if, Os O S,
(R, @i 2 (s m O,

The following proposition establishes existence and provides characterizations.

PrROPOSITIONL. (i) For any (m'.

to (mt,,...,nt" ). (ii) There exists(nt,

,m ) OLA%S,) there exists an admissible best response
nis ) OLA%S,) such that pis an admissible best

response to(m’,,.

.,m) iff p is notweakly dominated (by a pure or mixed strategy). (iii)
Let be an extensive game without nature, with G being the corresponding pure strategy

reduced normal forrB. If p is an admissible best response(at,,...,nt ) O LA%S,), then

7 For two vectory andw, v w iff wheneverw, >v,, there exist§ <k such thatv, >w,.
8 See Mailath et al. (1993, Def. 1).



(m,

nii) generates inl  a system of conjectures satisfying Bayas' such that p

maximizes expected payoff at all of i's information sets that can be reached given p

Givenw U Q, endowi with a subjective probability distributiqn ; over the vectors of
opponents' strategy sets#, (w). To determiné's set ofadmissiblebest responsegiven i
. Itis necessary tspecifyhow p_ , restricts the set of LPSs thatan hold. For simplicity and
to enable comparison with existing literature, we choose a formulation pvheneposes a re-
guirement on first-order conjectures only. Definition 2 below is a necessary requirghient,
— being insufficient for our purposes — is subsequently strengthened through Definition 3.
If i knows that the opponents’ vectords ; = (o), —i.e., =' (w) ={o_}— so that
W, is degenerate, them( ,nf} ) LA%S,) mustnotassign positivéirst-orderprobability
to anystrategy vector outside_o;; i.e. m, OA(%,50,). Whenp_, is not degeneratéhis

translates into the requirement that the first-order conjecture be consistgnt with

DEFINITION 2. m_; 00 A(S ) isconsistentwith p_; O A(Z_) if, Oo_, = (o), U Z.

O OA(x,,0,) suchthats 0S ;, m,(s;)= Za_imz_i Mo(o)n(s).®

Returning to the case of a degenegate a next step is to require that'( ,nf, 0)
LA%S,) assigns positive first-ordprobability to any strategyector contained inx_0;; i.e.
m,, OA°(x,,0,) or, equivalently, (t; YILA° &€,,0, ) This is in linewith Pearce's (1984)

o. is deemednfi-

formulation of cautiousness and ensutes any straggy vector outside,, o,
nitely less likelythanany strategy vector contained #),0,. Whenp._; is not degeneratéhis

translates into the requirement that the first-order conjecture be fully consistgmt with

DeFINITION 3. m_; O A(S. ) isfully consistenwith p_; ODA(Z_)) if, Uo_ ;= (o), UZ.

[t OA°(x;40;) suchthatds [0S , mi(s) =Y, 5 Hi(0;)n"(s).

Whenyp_ ; is degenerate, it appears more general to allomédtiple levels of conjec-

tures inside<,,0 ; by having ¢, ,...nf JLA® %0, )forsomek 0 {1, ... ,K}. By Pearce

9 Let @, be definedvy, forallo, 0%, ¢@,(0,)= zmz_i no_ Mo (). In the terminology of Hendon et al.
(1994), u; is amassfunction, @ is abelieffunction, and Definition 2 requiresn; to be in thecoreof @ .



(1984, Lemmat), imposingk = 1 isnot too restrictive since — ithe game derived fron® by
restricting the opponents' set of strategy vectors,tm — a first-orderfull support constraint
precludes a strategy fariff it is weakly dominated. Irorder to precludeany weakly
dominated strategy in the unrestric&d must, however, perform lexicographic optimization.
Since the first-order conjecture satisfies the relevant full support constraint, no restriction other
than U,f:l suppt) =S, need be imposed on lowewel conjectures. This holds independ-

ently of whetherp_ | is degenerate or not. Therefosay that r@t, ,..nft X LAXS,)) is

fully first-order consistenwith p_. O A(Z_ ) if m is fully consistentwith p_ .. Full first-
orderconsistency impliesyith n = 2, thatany strategynot in an opponent set thatassigned
positive probability byt_ ,, is deemed infinitely less likely than any strategy in such a set.

If po OA(Z. ), let
a’(u.):={p 0S| O(nm,...,nd" ) fully first-order consistent witf_
such thap, is an admissible best responserd. ( nf.,}. )
By Proposition 1(i)a’(i_,) is a non-empty strategy set forlf 0 #=_. 0%, let
o) (=) ={a’ (1) | 1y DAL}
denote the collectiothatcontains a strategy s#tit is the set ofadmissiblebest responses to
LPSs that ardully first-order consistent with sonpgobability distribution ilA(=_,). If O #

=r =~
= =

03, then O #a(Z,)0a’E")0%. If O#2=Z== x.xZ 0%, wrte
a’(Z):=a(Z )x.xal(=_). Let A% ={w 0 Q| o(w) Da(Z (w))}, with A° :=A’n ...

n A, If wOA° then,Di O N, o(w) is the set ohdmissiblebest responses to LPSs that are
fully first-order consistent with probability distributionthat does noassign positive prob-
ability to vectors of opponents' sets knownibgivenw, to be impossible.The concept of

fully permissible sets can now be defined and characterized.

DEFINITION 4. A non-empty strategset 1t is afully permissible sefor i if there existsw [

CKA’ with o,(w) =TI



PROPOSITIONZ. A non-empty strategy set ; is a fully permissible set for i iff there exists

== x.x=_with t 0= such that= 0 a%Z).

-1 n i

The following proposition establishes general existence and provides an algorithm.

PROPOSITION3. Let M° =M7x..xM? denote the collection of vectors of fully permissible sets.
() DiON, N?#0. (i) 0°=a%MN°. (i) The sequence defined B0) =% and, Ok >

1, =(k) = a%=(k-1)) converges td1° in a finite number of iterations.

Note that N° = a®(M° meanghatN® is a fixedpoint in terms of a collection of vectors of
strategy sets. By Proposition 2 it is the largest $xeld point. The algorithm of Proposition

3(iii) has the usual interpretation in terms of an increasing order of mutual knowledge.

4. FROPERTIES AND EXAMPLES

By the following proposition, the concept ofully permissible sets refines
rationalizability (as defined by Bernhein(1984) and Pearce (1994) excdaptat we here
consider pure strategies only and allow conjectures to be correl@gal the introduction as

well asG; andG, below illustrate that this refinement can be strict.

ProPosITION4. Let R=R, x ... x R denote the set of rationalizable strategy vectors; i.e.
strategy vectors surviving iterated elimination of strongly dominated strategresn,[JiCIN,

r, 0 R if there exists a fully permissible sgt for i such that 1O m.

The following proposition establishesdtany strategy in a fullpermissibleset survives the
Dekel-Fudenberg (1991) procedurédgain, G, as well asG, and G, illustrate that not all

strategies surviving the Dekel-Fudenberg procedure are elements of some fully permissible set.

PrOPOSITIONS. Let P=P, x ... x P, denote the set of permissible strategy vectors; i.e.

strategy vectors surviving one round of elimination of weakly dominated strategies and then



iterated elimination of strongly dominated strategies. Thern) N, g O P, if there exists a

fully permissible sett for i such that pl .

Below G, and G, illustrate a notion of forward inductiomvhile G, is included to
discuss backward induction. Each of these games is interpreteel psre strategy reduced
normal form (PRNF) of an extensive game. The foundatioarfalyzingthese games in the
PRNF is given in Proposition 1(iii), which in turn is based on results by Mailath et al. (1993).

G3 is the PRNF of a "Battle-of-the-Sexes-with-an-outside-option" game, where 1 and 2
move in sequence, withiizingasked toplay only if 1does not choose thautside optiorJ.

Such a game, first introduced by Kreps & Wilson (1982) (who credit Elon Kohlbesgheen
widely used to illustratéorward induction Pearce (1984) uses it to promdis extensive
form rationalizability. Kohlberg &ertens (1986) argue that tirdormation contained in the

PRNFG3 should suffice to analyze any underlying extensive game.

L R

ulz 2|22

M([3,1] 0,0

D|[0,0(1,3 G3

Within the states-of-the-worlchodel of Section 2, assume —specified inSection 3
— that it iscommonly known thateach player's strategset is the set aidmissiblebest
responses to LPSs that dodly consistent with some probability distributitmat does not
assign positive probability tstrategy sets fohis opponenknown by the player to be
impossible. Sinc® is a strongly dominated stratedy,cannot be arlement of 1'set of
admissiblebest responsesThis does noimply — as is implicitlythe case in the procedure of
iteratedadmissibility(see Stahl (1993)) —that 2 knows thab is infinitely less likelythanM.
However, 2 knows thainly {U}, { M} and {U,M} are possible candidatder 1's strategget.
This excludes R} as 2's strategget,since {} is 2's set ofadmissiblebest responsemly if 2
assigns positive probability td} or { U,D} being 1'sstrategy set.This inturn meanghat 1

knows thatonly {L} and {L,R} are possible candidatder 2's strategget,implying that {U}



cannot be 1'set ofadmissiblebest responses. Knowitigat only {M} or {U,M} are candi-
dates for 1's strategy stbesimply that 2knows thaD is infinitely less likelythanM. Hence,
2's set of admissible best responsegjsdnd, therefore, 1's set of admissible best responses is
{M}. The argument above shows that\f{{ L}) is the uniquevector offully permissible sets.
The strategy profilemplied bythis vectorentailsthat 1can signal — by asking 2 fgday —
that he seeks payoff of at least 2, leading theimplementation of 1's preferred outcome. In
the procedure of iteratealdmissibility such signaling hinges solely othe fact thaM is an
admissiblestrategy for 1while D is not. In contrast, ihere relies orthe properties of the
entire game. This difference is reflectedloy fact thatwhile iteratedadmissibilityconverges
afteronly threerounds ofelimination ofstrategies, the present procedure ndéedsounds of
elimination of strategy sets; i.e. at least 4th order of mutual knowledge is required.

Turn now to the "Burning Moneyjame due tovan Damme (1989, Fig. 5) and Ben-
Porath &Dekel (1992, Figl.2). G, is the PRNF of a "Battle-of-the-Sexes" (B-og&éme
with theadditional featur¢hat 1canpublicly destroy 1 unit opayoff beforethe B-0-Sgame
starts. BU (NU) is the strategy where 1 burns (dows burn), and themplaysU, etc., while
LRis the strategy where 2 responds wittonditional on 1 not burning afdconditional on 1
burning, etc. The forward inducti@utcome (supported e.g. by iteratatimissibility) involves
implementation of 1's preferrd®to-S outcomewith no payoff being burnt One might be
skeptical to the use of iterated admissibility in the "Burning Money" game becatfsetively
requires 2 tdoelievethat BD is infinitely lesslikely than BU althoughall strategiesnvolving
burning (i.e. botBBD andBU) areeventually eliminated bthe procedure. As demonstrated in
Appendix B, common knowledge of admissibility in the sense of Definition 4 corresponds to an
iterative procedure, where at no stage of the iteration ndetie¥ethat BD is infinitely less
likely thanBU since {NU} is always included as a possible st set for 1. The procedure
uniquely determinesNU} as 1's fully permissible set antl{,LR} as 2's fully permissibleet10

Even though the forward inductiavutcomeis obtained, 2 is free to hawmy conjecture

10 Also Battigalli (1989), Asheim (1994), and Dufwenberg (1994) argue KMALR) in addition to NU,LL) is
a viable strategy vector in "Burning Money".



conditional on burning; hence, she neext interpret burning as a signahat 1 will play

according to his preferred B-0-S outcome.

LL LR RL RR

NU|3,1|3,1{0,0({0,0

ND|0,0/0,0]1,3[1,3

BU|2 1|-1,0| 2,1|-1,0

BD |-1,0| 0, 3[-1,0| 0,3 G

It is noteworthy thatommon knowledge addmissibility inthe sense dDefinition 4
yieldsthe forward induction outcomes @ andG,4. In addition to iterateddmissibility and
the equivalent procedure suggested by Stahl (1993), Pearce's (168#nhsive form
rationalizability — both as originally defined and as characterized by Battizdlb) —yields
the forward induction outcomes B3 and G4. In contrast to the preseanalysis,these
procedures have ndormally been given @ommon knowledge basis, unless a vsinpng
primitive assumption like Stahl's (1993) 'iterated lexicographic coherence' is accepted.

In a perfect information extensive game with generic paybif) procedures of the
previous paragraph lead tbe backward induction outcome. During the fest years, a
number of papers have discussed whether backward induction follows from an assiinaiption
it is commonlyknown that playerare rational in the sense mbximizingexpectedpayoff at
all decision nodes. The background for this interesttige following paradoxicakspect of
backward induction:Why should a playebelievethat an opponent's futuggay will satisfy
backward induction if the opponent's previous play is incompatible with backward induction?

Reny(1993) studies the "Take-it-Or-Leave-game withk stages (TOLK)), where at
the /th stage of the game, the topadt is/ dollars. If/ is odd(even), player 1 (2naytake

the 7 dollars and end the game, leaveit, in which case theot increases with one dollar.

11 These papers include Aumann (19983su (1990), Ben-Porath (1994), Bicchieri (1989), Binmore (1987,
1995), Gul (1995), and Reny (1993).



Should thegame continue untthe kth stage and the player whose turn itezides to leave

thek dollars, it is given to the other player. We analyze TOL(3) in detail.

1 2 1 0 L R
R U 3
5 . " ulo2|o3
. 0 3 M| o0, 2] 3 0
0 2 O ToL®3) D|1,0]1,0] G

Gg is the PRNF of TOL(3).SinceU is a strongly dominated stratedy,cannot be an
element of 1'set ofadmissiblebest responses. Hence, 2 knows thdy {M}, { D} and
{M,D} are possible candidatder 1's strategget. This excludes R} as 2's strategget,since
{R} is 2's set ofadmissiblebest responsesnly if 2 assigns positive probability tdJ} or
{U,D}. This inturn meanghat 1 knows thaonly {L} and {L,R} are possible candidates for
2's strategyset,implying that {M} cannot be 1'set ofadmissiblebest responses. No further
elimination ofstrategy sets is possible. Hence, 1's collectidollgf permissible sets is {3},
{M,D}}, and 2's collection dtlly permissible sets is {{}, {L,R}}. For each player, the
smallerset containenly the backward induction strategvhile the larger setoincides with
the set of strategiesurvivingthe Dekel-Fudenberg procedure. Befdiszussing, inthe con-
text of TOL(3), the perspectiveffered by the concept dully permissible sets on the

backward induction paradox, note that the fully permissible sets justify each other as follows:

a®(k)={D it pL(L) 22, and p{LRY = 1- L)
ad(io)={M, D} if u,(LY) <%, and p,(LRY) = 1- (LY
ad(k,) ={1} it p,({D}) <1 andpu,({MD}) =1-p (D))

aj(M,)={LR if p,({D} =1.

With common knowledge afdmissibility inthe sense dDefinition 4, 2knows that all
sets for 1 but B} and {M,D} are impossible. This implies thatrBust deenthe choice ot
infinitely lesslikely than the choice dD; it doesnot imply that 2 knows thasome strategy

choice — not eveld — is impossible. Hence, 2 cannot observe an impossible strategy choice.



Consider 2's conjecture concerning 1's strategy choice conditiongb@ngasked to
play,i.e., conditional on 1 choosing or M. If 2 assigns positive probability td§D}, then
2's first-order conjecture assignsro probability toU and positive probability té1. Hence,
2's conditional conjecture assigpobability 1 to 1 choosingyl, implying thatonly L is an
admissiblebest response. If 2 assigpsbability 1 to P}, then 2's first-order conjecture
assigngeroprobability tobothU andM. Since beingisked toplay is azero probability (but
not impossible!)event thatcan be caused by 1 choosing outs$idestrategy set, there are no
restrictions on 2's conditional conjecture. Therefomag —conditional on 1 choosing or
M — assign positive probability to 1 choosing the strongly dominated sttatégylying that
R in addition toL is an admissible best response given that 2 assigns probabiliti} to {

Ben-Porath (1994) agrees with the presamdlysis bynot having playerknow that
particular strategy choices arapossible. Rather,players can beertain (in the sense of
believingwith probability 1) atthe beginning ofthe gamethat particular strategies willot be
chosen. He assum#sat theres, atthe beginning ofthe game, common certairttyat each
player is rational in the sensernfximizingexpectedpayoff at allthe player's decisiomodes.
This entailsthat a player cannatssign positive unconditional probability testaategy vector
for the opponentsvhich contradicts common certainty of rationality. However, faiwen
unconditional conjecture Ben-Porath imposes only Bayes' law on condittomattures.This
is analogous to Brandenburger's (199@pport restriction on first-order conjecturesly.
Indeed, Ben-Porath shows that common certainty of rationality corresponds to strategy vectors
surviving the Dekel-Fudenberg procedure. In TOL{®) approachmpliesthat if 2 assigns
probability 1 to 1 choosind@, then 2, if asked tplay, is free to haveny conditional
conjecture concerning 1's strategy chaicee Bayes' lawloes notapply. Hence, Znaycon-
ditionally assign positive probability td, thereby allowindR to maximize expected payoff.

Aumann's(1995) analysis ofcommon knowledge of rationality in perfanformation
games requirelllly specifiedstrategies; i.e., for each player, actions must alspéefied at
nodes that thelayer'sown strategy precludes frobeing reached. Hence, the PRNF —
implying that in the extensive form orpyans of actiongRubinstein (1991)) are determined —

is not sufficient. With Aumann's assumptions, comnkmowledge of rationalitymplies in



TOL(3) thatall strategies for 1 but the one where he takes the 1 dollas fitst node and
takes the 3 dollars &is last node ar@npossible. Hence, it igmpossiblefor 2 to be asked to
play. However, in thecounterfactualevent that 2 is asked f#ay, sheacts as if 1 ahis last
node follows his only possib&rategyjmplying that it isimpossiblefor 2 to choosd&R. Thus,

in Aumann's analysis, if commdmowledge of rationality obtains, then each player chooses
the backward induction strategy. The present analysis is based on the atgaboaht plans

of actions matter in a context whegkayers danot make mistakes and conjectures concerning
the choices of opponents amgplicitly specified. That 2 is asked tplay isseen to be incom-
patible with 1 having planned to take to the 1 dollar at his first node.

In summary, Aumanif1995) assumeshat playersknow that particular strategies are
impossible. This allowkr a common knowledge formulatisince actuaplay not in accor-
dance with common knowledge of rationality canmatur. Ben-Porath (1994) does not let
playersknow that particular strategies angpossibleknowledge must therefore be weakened
to certainty. Since actuglay not inaccordance with common certainty of rationality can
occur, in general, common certainty of rationality holds only at the beginning of the game. The
presentanalysis allowdor a common knowledge formulation by lettipigyers haveknow-
ledge of strategy set$?layers danot know thaparticular strategies anmpossible; stillcom-

mon knowledge of admissibility cannot be contradicted by actual play.

5. ALTERNATIVE FORMULATIONS

The concept ofully permissible sets (Definition 4) relies orfiull support restriction ofirst-
order conjecturefefinition 3) and on lexicographic optimization (Definitibp The present
section demonstrates that the chosemulation is tight in the sengkatincautious behavior
cannot be ruleadut if the full support restriction iselaxed, or if theplayers donot perform
lexicographic optimization. As a byproduct, this exercise allows establish important

connections to earlier contributions.



First, consider the consequencegathxingthe full support restriction on first-order
conjectures. Therefore return Befinition 2, and saghat @, ,...nd" )0 LAYS,) isfirst-
order consistentwith p_, O A(Z_,) if nt, is consistentwith u_,. First-orderconsistency
implies, withn = 2, that the support of the first-order conjecturmatuded inthe union of sets
that areassigned positive probability py .. If p_, OAZ. ), let a(p,):={p O Sl U
(...

(m,

ni; ) first-order consistent witlu, suchthat p, is an admissibldest response to
)}, andif 0#=_,0%_,, let o,(Z):={a(u,)| v, OA(Z,)} LetA ={w
0Q|o(w) Oa, (=, (w))}, with A:=A n ...n A. The concept gbermissible sets can now

be defined. The analogues of Propositions 2 and 3 are available.

DEFINITION 5. A non-empty strategsetTs is apermissible setfor i if there existsw [ CKA

with o;(w) = Tt.

ProPOSITIONG. Let P= P, x ... x P, denote the set of permissible strategy vectors; i.e.
strategy vectors surviving one round of elimination of weakly dominated strategies and then
iterated elimination of strongly dominated strategies. Th&n) N, p O P, iff there exists a

permissible set for i such that plJ Tt.

Hence, the set afs permissiblestrategies equals thmion ofi's permissiblesets. This means
that permissiblestrategies — adefined by Brandenburg€t992) so that a strategy is permis-
sibleiff it survivesthe Dekel-Fudenberg procedure — can be characterized by the states-of-
the-world model of Section 2 evémough a state, for eagitayer, determines a strategy set
rather than a strategy. @, of the introduction, a choice of tipermissiblestrategyR seems
to entail incautious behavior. Thagategy isot contained irany fully permissibleset, but is
— according to Proposition 6 — contained in some permissible set.

Secondly, consider the consequencerelaixingthe assumptiothat players perform

lexicographic optimization. Instead, assume ordinary optimization.
DEFINITION 6. 1, is abest responsto m_, OA(S ) if, s O S, u(r, m,(Q) = u(s, m,(D).

By the finiteness o, it follows that, for anyn_;, JA(S. ), there exists a best responsentq.



We first combine the best response correspondence with Definitiomu2, OfA(Z_ ),
let b (p_):={r, 0S| On_, consistent withu_, suchthatr, is a best response to ,}, and if
Oz= . 0%, letB,E):={blE)|n,, O0AEZ,)} LetB ={w 0 Q| o(w) O
B.(Z. (w))}, with B:=B, n ... n B,. The concept ofationalizable sets carow bedefined.

The analogues of Propositions 2 and 3 are available.

DEFINITION 7. A non-empty strategy sgtis arationalizable sefor i if there existsw 1 CKB

with o,(w) = p..

ProPOSITION7. Let R=R, x ... x R denote the set of rationalizable strategy vectors; i.e.
strategy vectors surviving iterated elimination of strongly dominated strategies. [Tihen,

N, r OR iff there exists a rationalizable sef for i such that 0 p..

Hence, the set afs rationalizable strategies equ#is union ofi's rationalizablesets. This
meanghat rationalizability — as defined by Bernhe{{1©984) and Pearce (1984) albbwing
for correlated conjectures so that a strategyai®nalizableiff it survives iteratedstrong
dominance — can be characterizedhsy states-of-the-worlchodel of Section 2 even though
a state, foreach player, determines a stratesgy rather than a strategy. Tharay exist
multiple rationalizable sets for each player; games with mustipts Nashequilibria illustrates
this since any strict Nash equilibrium constitutes a vector of rationalizable sets.

We then combinghe best response correspondence Réfnition 3, thusimposing a
full support constraint of thand considered by Samuels(i992) and Borgers &amuelson
(1992). Ifu_, OA(Z. ), leth’(p_):={r, 0S| On_, fully consistent withu_, suchthatr, is a
best response o }, andif 0 #= 0% , letB>(=,)={b°(u ) |u OA(Z,)} Let
B°= {w O Q| o(w) OBRYZ. (w))}, with B° :=B’n ... nB’. The concept ofully

rationalizable sets can now be defined. The analogues of Propositions 2 and 3 are available.

DEFINITION 8. A non-empty strategy sgtis afully rationalizable sefor i if there existsw [

CKB® with g,(w) = p..



In order to show thatationalizable andully rationalizable setsay admit incautious
behavior, consideG, due to Samuelson (1998x. 8) and Borgers &amuelson (1992, Ex.
3). Here, the idmissiblestrategyD is contained in somilly rationalizableset since the
collection of vectors diully permissible sets is {§}, { U,D}} x{{ L}, {L,R}}. It is straightfor-
ward to show thaany strategy in dully rationalizableset isrationalizable; hence, it follows
thatD is also rationalizable. A strategy irfiudly rationalizableset need not begermissible G,
illustrates this since only and L are permissiblestrategies. By Proposition 3(i) and

Proposition 5, {{U}} x{{ L}} is the collection of vectors of fully permissible sets.

L R

u|1,1| 1,0

D(1,0[0,1 G

Our terminology and results are summarized in the following table.

Optimization Lexicographic optimization
Support restriction on rationalizable sets permissible sets
characterizes refines rationalizable strat.

first-order conjectures rationalizable strategies| charact. permissible straf.

fully rationalizable sets fully permissible sets

refines _ refines rationalizable stra.
rationalizable strategies| refines permissible strat

Full support restriction gn
first-order conjectures

TABLE 1

We have argued that — of the concepts included in Table 1 — the confidigt pdrmissible

sets captures common knowledge of admissibility in the most reasonable way.



6. A COMMENT ON INTERPRETATION

We conclude by suggesting a possible intuitnterpretation of the states-of-the-worftbdel

of Section 2 as specified in Section 3. Consider a structure where

. the players receive private recommendations feaparate analysts, whehe analysts
may coincide with the players themselves,

. each analyst's recommendation is given in the form of a strategy set,

. for each player, the choice afiy stragégy outsidenis set ofrecommendation is deemed
infinitely less likely than the choice of any strategy contained in his set of recommendation,
. each analyst offers a recommendatiuat is the set chdmissiblebest responsagiven

the analyst's subjective probability distributiower vectors of strategy sets that the analyst

thinks are possible sets of recommendation for the opponents.

A fully permissibleset is gpossibleset ofrecommendation when thggructure iscommonly

known by theanalysts. In line witlihe discussion in Aumann &randenburger (1995, pp.
1174-1175), the states-of-the-worttbdel isdescriptivewhen referring tahe recommenda-
tions of theanalysts. Howevegiventhe suggested interpretatiorsiemsappropriate to say

that the modeprescriptivewhen referring to the strategy choices of the players.

APPENDIXA: PROOFS

Proof of Prop. 1. Given @, ,...nd; ) write Z°:=S and definez', z?, ... inductively by
Z“:=arg max . U (S, nf () for kO{1,...K}. Then p is an admissiblbest response to
(m,...,nd5) iff p 0Z°. (i) By thefiniteness ofG, z* #0. (ii) (If) By Pearce (1984,
Lemmad4), ifp, is notweakly dominated by pure ormixedstrategy, there exista_ [ A%S,)
suchthat,0s O S, u(p, m;(Q) = u(s, m,(Q). Note thatifr,) O LAYS)). (Only ify Assume
thatp, is weakly dominated by a (possilllggenerateixed straegym U A(S). It suffices to
show that[J(m,,...,nd ) OLA%S,), p, 0Z*. Note that f} Osuppfm) 0Z°. Furthermore,



OkO{1,...,K}, {p}Osuppm) OZ*" implies @ 0Z* only if suppMm) 0Z*). To see this,
observe thati(p, m () < Y «M(s) u(s (D)) sincem weakly dominatep. Also, if p,
Oz, Or, 0Z<", u(p,m @) = u(r,m (). Hencep OZ* implies, Os O suppMm) O
z<t, Or, 0Z<", u(p, mE () = u(s, m (D) = u(r, pk (0). However, p}Osuppm) OZ*
contradicts tham weakly dominateg.. (iii) For eachinformationset h fori in I, there
exists a correspondirget Sh) O S in G; see Mailath et al. (199%ection 2). Byperfect
recall, §h) = §(h)xS,(h). Write H, = {Sh) O § h is an informatiorset fori in '} and
H(s) = {XOH|sOX} If XxX, OH, letmi"0 A(X,) be defined by[s, O X,
M (s)= M (s)/S, o M), where suppff) n X, # 0 and, O¢O{L,...k-1},
supp(;) n X, =0. Then {m{| XxX_, O H}is a system of conjecturestisfying Bayes
law. It remains to be showthat OXxX_ O H(p), Os O X, u(p, m; (Q) = u(s, m’ ().
Suppose to the contrary that thesést Y xY_ 0 H(p) and r,0Y, suchthat u(p, m7 (}I) <
u(r,m> (Q)), where suppf) n Y, # 0 and,0/0{1,...k-1}, supp(m,) n Y, = 0. It
follows from Mailath et al. (1993, Def. 2, Def. 3 & Thm. that Y,xY, is astrategic
independencéor playeri in the senséhat,Up, s O Y;, [, O Y, suchthat,Os, O Y., u(r;, s,)
=u(s,s;) and,Us, OS\Y,, u(r,s,) =u(p,s;). Hence,r, can be chosen suthat [s, [

S\Y,, u(r,s,) =u(p,s,). By construction o’ andr,, either (a) botlp, andr, are inZ*™,
in which case it followsthat p 0Z 0 Z¢ (sinceu(p, m% ()0) < u(r,m% ())) and,Os, O
supp@)\Y,, u(r,s,) = u(p,s.) imply that u(p, M (0) < u(r, M (), or (b) bothp, andr,

are not inZ**, in which casep 0Z* 0 Z<. -

Proofs of Propositions 2 and 3Giventhe monotonicity ofxr®, Propositions 2 and 3 are
straightforward consequences of the states-of-the-wooldel of Section 2. Thegre there-

fore provided without proof. Proofs are available on request from the authors.

If O#X ,0S , let a(X,):={p 08 0OM,...,n) 0 LAYS,) with m, OA(X,) such
thatp, is an admissibleest response tan{, ,.nf })If Oz X, 0X4 OS,, thenO #
a(XH)a( X)) OSsS. If OzX=Xx.xX 0§ writea(X):=a(X_)x..x3a (X,). By

Brandenburger (1992)p, is a permissible stratedfy there existsX = X, x..x X with p,



X suchthat X O a(X). If P=P, x.x P, denotes the set glermissiblestrategy vectors,
then P=a(P).

Proof of Prop. 5.Using Proposition 3(ii), Definitions 1 andrBply, OiCIN, P° := Uaimiooi
= Us e, 0 0 @(PY). Since P°Oa(P’) implies P° O P, it follows that, iON,
U, ;o0 OP. ¢

Proof of Prop. 6. Write I, := {mt , O Z| it , is a permissibleset fori}. (If) Using the
analogue to Proposition 3(iDefiniions 1 and 2imply, OiON, P = Uaimioi =
Us,w )0 O &(P;). Since POa(P)  implies P O P, it follows that, Oi0N,
Us,on, 61 O P, (Only if) N ={(P, ... ,P)} satisfiesn =a (M) since P=a(P). By the
analogue to Proposition 2N, P, is a permissible set far HenceJiON, J, ,, o, OP.

If 02X ,0S , let b(X,):={r,0S|0Om , 0A(X_),) suchthatr, is a best response 1o
L OzX,0X"0S, thenO#b(X,)Ob(X!) OS. If O#X=Xx.xX OS
write b(X):=b,(X_)x..xQ (X ). By Bernheim(1984) and Pearce (1984) (Ingte that we
here consider pure strategies only and allow conjectures to be correlated), rationaliable
strategyiff there existsX = X, x...x X with r, O X suchthat X [ b(X). Pearce (1984)
saysthat X satisfieshe best response properify X O b(X). If R= R, x..x R denotes the

set of rationalizable strategy vectors, thBrE b(R .

Proof of Prop. 4. Using Proposition 3(ii),Definitions 1, 3 and @mply, OiON, P° :=

Us 001 = Us moe, 05 0 B(PY). Since P°Ob(P°) implies P° O R, it followsthat,
OiON, U, ,00, OR.

Proof of Prop. 7. Write P, := {p, [0 Z| p, is a rationalizablset fori}. (If) Usingthe analogue
to Proposition 3(ii),Definitions 2 and @mply, Di0ON, R = Uai[Pioi = UaiDBi(P_i)Gi O

b(R,). Since RO b(R implies R OR, it followsthat, JiCIN, U,z 01 OR. (Only if)
P ={(R, ... ,R)} satisfiesP =B(P) since R=Db(R. By the analogue to Proposition(2,

iON, R is arationalizable set far HenceJiON, |J, .0, OR.



APPENDIXB: DERIVATIONS FOR THE EXAMPLES

The algorithm of Propositio(iii) is used to determine the collection of vectorsudy per-

missible sets iB, —G,.

G

Z0)=x= 3,x3,

=)= {Up{ML{UM}} x2Z,

=(2)= {{ UL{M}{UM}} x {{L}L{L.R}
N°==@) ={{UL{UM}} x{{L}L{LR}

G,

Z(0)=s= 5,x3,
=(1)={UM}} x2,
M°==2)={ump x{L}

G;:

Z0)=x= 3,x3,

=)= { UL{M}{UM}} x3,

=(2) = { UL {ML{UM}} x {L}{L.R}}
=(3) = { M {UM}} x{{L}{ LR}
=(4) = { M {UM}} x{{L}}
M°==(5)={ M} x{{L}

G,

Z(0)=s= 5,x3,

=(1) = {{ NU},{ ND},{ BU}.,{ NU,ND},{ ND,BU},{ NU,BU},{ NU,ND,BU}} x %,

=(2) = {{ NU},{ ND},{ BU},{ NU,ND},{ ND,BU},{ NU,BU},{ NU,ND,BU}} x
{LL}{ RL{LL,LR}{ RLRR{ LL,RL}{ LL,LRRLRR}

=(3) = {{ NU}{ BU}L{ ND,BU},{ NU,BU}{ NU,ND,BU}} x



{ LLL{ RU,{ LLLR { RLRR{ LL,R} { LLLLRRLRR}
=(4) = {{ NU},{ BU}{ ND,BU},{ NU,BU}.,{ NU,ND,BU}} x
{ LLL{ RU,{ LL.LR}{ LL,RL}}
=(5) = {{ NUL{ BU}{ NU,BU}} x{{LL}{RL}{LL,LR}{LLRL}
=(6) = {{ NU}L,{ BU}L{ NU,BU} x {{LL}{LL,LR}{LLRL}
=(7)= {{ NUL{NU,BU}} x {{ LL}{ LL,LR}{ LL,RL}}
=(8)= {{ NUL{NUBU}} x{{LL}{LLLR}}
=(9)= {NU}} x{{LL}{LLLR}}
M°==(10)= { NU}} x{{ LL,LR}

G

Z0)=x= 3,x3,

=(1) = {M}{D}{M,D}} x3,

=(2) = { M}{D}L{M,D}} x{{L}{L.R}
M°==@3)={ D}{M.D}} x{{L}{L.R}

G

Z(0)=s= 5,x3,
=) ={Uu} x2,
N°==2)={ U} x{L}
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