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1. INTRODUCTION

Bernheim (1984) and Pearce (1984) assume that it is commonly known by the players

in a normal form game that each player chooses a best response to a conjecture that does not

assign positive probability to strategy vectors for his opponents known by the player to be

impossible.  This assumption implies that players choose strategies that survive iterated elimi-

nation of strongly dominated strategies.1  Such strategies are called rationalizable.  However,

a rationalizable strategy can be weakly dominated by another (pure or mixed) strategy.  It may

seem natural to assume that players do not consider inadmissible, i.e. weakly dominated,

strategies (see e.g. Luce & Raiffa (1957; Chapter 13) and Kohlberg & Mertens (1986) for

supporting arguments).  What are the implications of assuming that it is commonly known that

players consider only admissible best responses?  The present paper provides a new and, we

claim, appropriate framework in which this question can be resolved.

Without further reflection one might be lead to conclude that a strategy is compatible

with common knowledge of admissibility iff it survives iterated elimination of weakly

dominated strategies (where at each round all inadmissible strategies are eliminated; this

procedure will henceforth be referred to as iterated admissibility).  To demonstrate why this

conclusion is not obtained, and to motivate the subsequent discussion, consider two examples.

L R

U

D

1, 1 1, 1

0, 1 2, 0

1G

M

0, 11, 0

In G1,2 iterated admissibility eliminates D in the first round, R in the second round, and

M in the third round, so that U survives for player 1 and L survives for player 2.  The

                                               
1 This result holds if players are allowed to hold correlated conjectures concerning the choices of other players;
see Tan & Werlang (1988).  No independence restriction is imposed in the present paper.  We follow e.g.
Osborne & Rubinstein (1994) in using the term rationalizable even though correlated conjectures are allowed.
2 This game is derived from an extensive game due to Battigalli (1989) and Börgers (1991).
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procedure seems to force 2 into believing that D is less 'reasonable' than M for the sole reason

that D is eliminated before M, even though both M and D are eventually judged to be 'unrea-

sonable' choices for 1.  This observation can be made precise by endowing each player with a

lexicographic probability system (LPS; due to Blume, Brandenburger & Dekel (1991)) being a

hierarchy of conjectures concerning the choices of his opponents.  The player optimizes lexico-

graphically given this hierarchy in the sense that he first optimizes at the highest level using the

first-order conjecture and resolves any ties by using the second-order conjecture, etc.  If every

vector of strategies for the opponents is given positive probability by some conjecture in this

hierarchy (i.e., the LPS has full support), such lexicographic optimization yields an admissible

best response.  Stahl (1993) requires that each player's LPS satisfy that, for each round k, any

strategy eliminated by round k appears at a lower level in the hierarchy (hence, is deemed

infinitely less likely) than any strategy not yet eliminated.  He shows that a strategy survives

iterated admissibility iff it is an admissible best response to a LPS satisfying this requirement.3

This characterization means that iterated admissibility forces 2 to believe that D is infinitely less

likely than either of U and M based on the premise that D is 1's only inadmissible strategy in

G1.  On the basis of this premise such an inference seems at best to be questionable.

Brandenburger (1992) imposes a weaker restriction on each player's LPS, namely, for

each round k, any strategy eliminated by round k appears at a lower level in the hierarchy

(hence, is deemed infinitely less likely) than some strategy not yet eliminated.  This means that

2 — based on the premise that only D is inadmissible — makes the unquestionable inference

that D is infinitely less likely than one of U and M.  Brandenburger assumes that it is commonly

known that each player chooses an admissible best response to a full support LPS with a first-

order conjecture that does not assign positive probability to strategy vectors for his opponents

known by the player to be impossible. He shows that this assumption implies that players

choose strategies that survive the Dekel-Fudenberg procedure4 where one round of elimination

                                               
3 A related result is established by Battigalli (1994).  See also Rajan (1993) and Veronesi (1995).
4 See Dekel & Fudenberg (1991).  Börgers (1994) presents a similar foundation for the Dekel-Fudenberg
procedure without using LPSs.  While Brandenburger considers common first-order knowledge in the sense
that each player in a lexicographic manner takes into account all strategy vectors for the opponents, Börgers
considers approximate common knowledge in the sense that each player assigns positive probability to all
strategy vectors for the opponents.  See also Ben-Porath (1994) and Gul (1995).
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of weakly dominated strategies is followed by iterated elimination of strongly dominated

strategies.  Brandenburger calls such strategies permissible.  This procedure only eliminates D

in the first round so that the permissible strategies are U and M for 1 and L and R for 2.

L R

U

D

1, 1 1, 1

1, 1 1, 0

2G

M

0, 10, 0

While the Dekel-Fudenberg procedure seems to yield more reasonable implications

than does iterated admissibility in G1, this conclusion is reversed in G2.  Here iterated

admissibility eliminates D in the first round and R in the second round (so that U and M survive

for player 1 and L survives for player 2), while the Dekel-Fudenberg procedure only eliminates

D in the first round (so that U and M survive for player 1 and L and R survive for player 2).

Using the characterizations discussed above, the former procedure leads 2 to believe that D is

infinitely less likely than either of U and M, while the latter procedure leads 2 to believe that D

is infinitely less likely than one of U and M.  In G2, it seems natural to argue that 2 'should'

believe that D is infinitely less likely than either of U and M.  How can this intuition be

captured without making the questionable inference that D is infinitely less likely than either of

U and M because D is 1's only inadmissible strategy in G2?

To address this issue, note that {U,M} is 1's set of admissible best responses

independently of what set of LPSs 1 may hold concerning the choices of 2.  If 2 believes that

any strategy outside 1's set of admissible best responses is infinitely less likely than any strategy

contained in 1's set of admissible best responses, then 2 is lead to believe that D is infinitely less

likely than either of U and M.  This in turn implies that {L} is 2's set of admissible best

responses.  The procedure just described eliminates strategy sets: In the first round, all strategy

sets but {U,M} are eliminated as 1's set of admissible best responses.  In the second round, all

strategy sets but {L} are eliminated as 2's set of admissible best responses.
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The present paper formalizes such a procedure — where strategy sets are iteratively

eliminated — in terms of an increasing order of mutual knowledge. The paper's main contribu-

tion is to offer a consistent framework in which players can have knowledge of strategy sets

for the opponents such that, for each opponent, the choice of any strategy outside her set is

deemed infinitely less likely than the choice of any strategy contained in her set.  The concept

of a permissible strategy does not allow the players to have such knowledge.  It may therefore,

as illustrated by G2, admit incautious behavior.  The procedure of iterated admissibility

effectively imposes such knowledge, but does not adequately explain how this is a consequence

of an increasing order of mutual knowledge.  G1 illustrates how this can be problematic.  The

following framework is, thus, intended as a vehicle for amending these shortcomings.

Section 2 introduces a states-of-the-world model, with a partition of the state space for

each player, and a function for each player assigning a subset of that player's strategies to each

state.  In Section 3 we assume that it is commonly known that each player's strategy set is the

set of admissible best responses given a probability distribution that does not assign positive

probability to vectors of strategy sets for his opponents known by the player to be impossible.

If, in a two-player game, the probability distribution assigns all probability to a single strategy

set for the opponent, then the player's set of admissible best responses is determined by

considering only full support LPSs that satisfy the requirement that any strategy outside the

opponent's set is deemed infinitely less likely than any strategy contained in the opponent's set.

The set of admissible best responses is appropriately determined also with n players in the case

of a non-degenerate probability distribution over vectors of strategy sets for the opponents.  In

this framework the assumption of common knowledge corresponds to a procedure where

strategy sets are iteratively eliminated.  A strategy set that survives the iterative elimination is

called a fully permissible set.5  For this concept, general existence is established, a characteri-

zation is offered, and a finite algorithm (that eliminates strategy sets) is provided.

                                               
5 The term 'permissible' reflects — in line with Brandenburger's (1992) use — that it is commonly known that
players perform lexicographic optimization (see our Definition 1).  The term 'fully' reflects that a full support
restriction is imposed, relative to subsets of the opponents' strategies (see our Definition 3).  Note that the
collection of sets that survive the elimination is independent of the order of elimination.
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Section 4 presents properties of fully permissible sets and contains further examples.

First, it is established that any strategy in a fully permissible set is both rationalizable and

permissible (i.e., survives the Dekel-Fudenberg procedure).  The converse does not hold since,

in G2, R is both a rationalizable and permissible strategy for 2, while {L} is 2's unique fully

permissible set in line with the above discussion.6  Then, the "Battle-of-the-sexes-with-outside-

option" and "Burning Money" games are used to show how the forward induction outcome

results from an assumption of it being commonly known that each player's strategy set is the

set of admissible best responses.  In the latter example, burning need not be interpreted as a

signal, implying that our analysis is robust against a critique commonly leveled at the usual

forward induction argument in this game.  Finally, a new perspective on the backward induc-

tion paradox is discussed in the context of the "Take-it-or-leave-it" game, in which there is for

each player a fully permissible set that contains more than the backward induction strategy.

With reference to these examples it should be pointed out that our interpretation of

normal form games differs from Pearce's (1984, p. 1031) who views these as "a convenient

representation of a perfectly simultaneous game, in which no one can observe any move of any

other player before moving himself".  In contrast, we take a normal form game to represent

any underlying extensive game.  Building on recent results by Mailath, Samuelson & Swinkels

(1993) we show that, once we insist on lexicographic optimization, sequential rationality is

nevertheless adequately captured.  Hence, the concept of fully permissible sets deals directly

with both types of "imperfect" behavior discussed by Pearce: implausible behavior at unreached

information sets as well as incautious optimization.

In Section 5 it is established how the present framework can, under alternative

assumptions, be used to characterize rationalizable and permissible strategies through the

concepts of rationalizable and permissible sets.  The framework is also used to connect to the

                                               
6 In G2 {U,M} is 1's unique fully permissible set.  In G1 all strategy sets but {U}, { M} and {U,M} are
eliminated for 1 in the first round, {R} is eliminated for 2 in the second round, and {M} is eliminated for 1 in
the third round.  Hence, both {U} and {U,M} are fully permissible sets for 1 and both {L} and {L,R} are fully
permissible sets for 2. The existence of multiple fully permissible sets means that common knowledge of each
player's strategy set being the set of admissible best responses does not alone imply that each player gains
knowledge of the strategy set of his opponent.  Note that in G1 — where one is lead to question the
appropriateness of iterated admissibility — there is for each player a fully permissible set that contains more
than the strategy surviving iterated admissibility.
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analyses of Samuelson (1992) and Börgers & Samuelson (1992).  However, we argue that, of

the concepts considered, the concept of fully permissible sets captures common knowledge of

admissibility in the most reasonable way.  Section 6 presents an interpretation.  All proofs are

relegated to Appendix A, while Appendix B contains derivations for the examples.

2. THE FRAMEWORK

With  N = {1, ... , n}  as the set of  players, let  Si  denote player i 's finite set of pure strategies,

and let  ui: S→ℜ  be i 's payoff function, where S = S1 × ... × Sn = Si × S−i,  and where −i denotes

N\{ i}.  Then G = (S, u) is a normal form game.  Let Σ i
Si: \ { }= ∅2  denote the collection of

non-empty subsets of Si,  and write  Σ = Σ1 × ... × Σn = Σi × Σ−i.  We write p, r and s (∈ S) for

strategy vectors; P, R and X (⊆ S) for subsets of strategy vectors; π, ρ and σ (∈ Σ) for vectors

of strategy sets; and Π, Ρ and Ξ (⊆ Σ) for subcollections of vectors of strategy sets.  Note that

if  σ = (σ1, ... , σn) ∈ Σ,  then  ∅ ≠ σ1 × ... × σn ⊆ S.  If  ∅ ≠ X−i ⊆ S−i,  let  ∆(X−i)  (∆
0(X−i))

denote the set of probability distributions on S−i with support included in (equal to) X−i,  (with 

∆(⋅) and ∆0(⋅) later being used likewise for other finite sets).  If  m−i ∈ ∆(S−i)  is i 's conjecture

(subjective probability distribution) concerning the strategy choices of −i,  abuse notation

slightly by writing  ui(si, m−i(⋅))  for i 's expected payoff given  si  and  m−i.

A state ω determines, for each player, a partition of the state space as well as a subset

of that player's strategies.  A state does not determine strategy choices.  Formally, with Ω

denoting the state space, each state ω ∈ Ω specifies for each player i

• i 's set of possible states given ω:  I i(ω) ⊆ Ω.  The information function I i(⋅) is

partitional in the sense that there is a partition of Ω such that, ∀ω ∈ Ω,  I i(ω)  is the element

of the partition that contains ω.  Write KiE := {ω′ ∈ Ω| I i(ω′) ⊆ E}.  Say that i knows the event

E ⊆ Ω given ω if ω ∈ KiE.  Since ω ∈ I i(ω), it follows that an event is true (ω ∈ E) if i knows

it.
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• a non-empty subset of i 's strategies:  σi(ω) ∈ Σi.  Since ∀ω′ ∈ I i(ω) are

indistinguishable for i, we have that,  ∀ω′ ∈ I i(ω),  σi(ω′) = σi(ω).

It follows that i knows given ω  that the vector of the opponents' strategy sets is in

Ξ−i
i ( )ω := {σ−i(ω′) ∈ Σ−i| ω′ ∈ I i(ω)}.  Note that, ∀ω  ∈ Ω,  σ−i(ω) ∈ Ξ−i

i ( )ω   since ω ∈ I i(ω).

Furthermore,  Ξ Ξ− −′ =i
i

i
i( ) ( )ω ω   if  ω′ ∈ I i(ω)  since  ω′ ∈ I i(ω)  implies  I i(ω′) = I i(ω).

Write  KE := K1E ∩ ... ∩ KnE.  Say that the event E ⊆ Ω is mutually known given ω

if ω  ∈ KE.  Write  CKE := KE ∩ KKE ∩ KKKE ... .  Say that the event E ⊆ Ω is commonly

known given ω if ω ∈ CKE.

3. FULLY PERMISSIBLE SETS

The purpose of the present section is to introduce the admissible best response correspondence

in the framework of Section 2 in order to model common knowledge of admissibility. The con-

cept of a lexicographic probability system (LPS) is due to Blume et al. (1991).  If  ∀k ∈ {1, ...

, K}, m Xi
k

i− −∈∆( ) ,  and supp(m i
k

k

K

−= )
1U  = X−i,  then ( ,..., )m mi i

K
− −
1  is a LPS with full support

on X−i. Following Veronesi (1995), let L∆0(X−i) denote the set of LPSs with full support on X−i.

DEFINITION 1.  pi  is an admissible best response to  ( ,..., )m mi i
K

− −
1  ∈ L∆0(S−i)  if, ∀si ∈ Si,

( ( , ( )))u p mi i i
k

k
K

− =⋅ 1  ≥L ( ( , ( )))u s mi i i
k

k
K

− =⋅ 1 .7

The following proposition establishes existence and provides characterizations.

PROPOSITION 1.  (i) For any  ( ,..., )m mi i
K

− −
1  ∈ L∆0(S−i)  there exists an admissible best response

to ( ,..., )m mi i
K

− −
1 .  (ii) There exists  ( ,..., )m mi i

K
− −
1  ∈ L∆0(S−i)  such that  pi  is an admissible best

response to  ( ,..., )m mi i
K

− −
1   iff  pi  is not weakly dominated (by a pure or mixed strategy).  (iii)

Let Γ be an extensive game without nature, with G being the corresponding pure strategy

reduced normal form.8  If  pi  is an admissible best response to  ( ,..., )m mi i
K

− −
1  ∈ L∆0(S−i),  then

                                               
7 For two vectors v and w,  v ≥L w  iff whenever  wk > vk,  there exists l < k such that  v

l
 > w

l
.

8 See Mailath et al. (1993, Def. 1).
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( ,..., )m mi i
K

− −
1   generates in  Γ  a system of conjectures satisfying Bayes' law such that  pi

maximizes expected payoff at all of i's information sets that can be reached given  pi.

Given ω ∈ Ω, endow i with a subjective probability distribution µ− i over the vectors of

opponents' strategy sets in Ξ−i
i ( )ω .  To determine i 's set of admissible best responses given µ−

i, it is necessary to specify how µ− i restricts the set of LPSs that i can hold.  For simplicity and

to enable comparison with existing literature, we choose a formulation where µ− i imposes a re-

quirement on first-order conjectures only. Definition 2 below is a necessary requirement, which

— being insufficient for our purposes — is subsequently strengthened through Definition 3.

If i knows that the opponents' vector is  σ− i = (σj)j≠i  — i.e., Ξ−i
i ( )ω  = {σ− i} — so that 

µ− i is degenerate, then ( ,..., )m mi i
K

− −
1  ∈ L∆0(S−i) must not assign positive first-order probability

to any strategy vector outside ×j≠iσj; i.e. m i j i j− ≠∈ ×1 ∆( )σ .  When µ− i is not degenerate, this

translates into the requirement that the first-order conjecture be consistent with µ− i.

DEFINITION 2.  m− i ∈ ∆(S− i)  is consistent with  µ− i ∈ ∆(Σ− i)  if,   ∀σ− i = (σj)j=i ∈ Σ− i,

∃ ∈ ×− ≠
−m i j i j

iσ σ∆( )   such that, ∀s− i∈S− i,  m s m si i i i i i
i

i i− − − − − −∈= −

− −
∑( ) ( ) ( )µ σ σ

σ Σ .9

Returning to the case of a degenerate µ− i, a next step is to require that ( ,..., )m mi i
K

− −
1  ∈

L∆0(S−i)  assigns positive first-order probability to any strategy vector contained in  ×j≠iσj;  i.e.

m i j i j− ≠∈ ×1 0∆ ( )σ  or, equivalently, ( ) ( )m i j i j− ≠∈ ×1 0L∆ σ .  This is in line with Pearce's (1984)

formulation of cautiousness and ensures that any strategy vector outside ×j≠iσj is deemed infi-

nitely less likely than any strategy vector contained in ×j≠iσj.  When µ− i is not degenerate, this

translates into the requirement that the first-order conjecture be fully consistent with µ− i.

DEFINITION 3.  m− i ∈ ∆(S− i)  is fully consistent with  µ− i ∈ ∆(Σ− i)  if,   ∀σ− i = (σj)j=i ∈ Σ− i,

∃ ∈ ×− ≠
−m i j i j

iσ σ∆0( )   such that, ∀s− i∈S− i,  m s m si i i i i i
i

i i− − − − − −∈= −

− −
∑( ) ( ) ( )µ σ σ

σ Σ .

When µ− i is degenerate, it appears more general to allow for multiple levels of conjec-

tures inside ×j≠iσ j by having ( ,..., ) ( )m mi i
k

j i j− − ≠∈ ×1 0L∆ σ  for some k ∈ {1, ... , K}.  By Pearce

                                               
9 Let  φ−i  be defined by, for all σ−i ∈ Σ−i,  φ−i(σ−i) = µ ξξ σ − −∅≠ − ⊆ −

∑ i ii i
( ) .  In the terminology of Hendon et al.

(1994),  µ−i  is a mass function,  φ−i  is a belief function, and Definition 2 requires  m−i  to be in the core of φ−i.
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(1984, Lemma 4), imposing k = 1 is not too restrictive since — in the game derived from G by

restricting the opponents' set of strategy vectors to ×j≠iσj — a first-order full support constraint

precludes a strategy for i iff it is weakly dominated.  In order to preclude any weakly

dominated strategy in the unrestricted G, i must, however, perform lexicographic optimization.

Since the first-order conjecture satisfies the relevant full support constraint, no restriction other

than supp(m i
k

k

K

−= )1U  = S−i  need be imposed on lower level conjectures.  This holds independ-

ently of whether µ− i is degenerate or not.  Therefore, say that  ( ,..., )m mi i
K

− −
1  ∈ L∆0(S−i)  is

fully first-order consistent with  µ− i ∈ ∆(Σ− i)  if m i−
1  is fully consistent with µ− i.  Full first-

order consistency implies, with n = 2, that any strategy not in an opponent set that is assigned

positive probability by µ− i, is deemed infinitely less likely than any strategy in such a set.

If  µ− i ∈ ∆(Σ− i),  let

ai i
0( )µ − := {pi ∈ Si| ∃ ( ,..., )m mi i

K
− −
1  fully first-order consistent with µ−i

such that pi is an admissible best response to ( ,..., )m mi i
K

− −
1 }.

By Proposition 1(i), ai i
0( )µ −  is a non-empty strategy set for i.  If  ∅ ≠ Ξ− i ⊆ Σ− i,  let

α i i
0( )Ξ− := { ai i

0( )µ − | µ − −∈i i∆ Ξ( ) }

denote the collection that contains a strategy set iff it is the set of admissible best responses to

LPSs that are fully first-order consistent with some probability distribution in ∆(Ξ− i).  If  ∅ ≠

′ ⊆ ′′− −Ξ Ξi i  ⊆ Σ−i,  then  ∅ ≠α i i
0( )′−Ξ ⊆α i i

0( )′′−Ξ ⊆ Σi.  If  ∅ ≠ Ξ = Ξ1 ×...× Ξn ⊆ Σ,  write

α 0( )Ξ :=α α1
0

1
0( ) ... ( )Ξ Ξ− −× × n n .  Let Ai

0 := {ω ∈ Ω| σi(ω) ∈α ωi i
i0( ( ))Ξ− }, with A0 := A1

0 ∩ ... 

∩ An
0 .  If ω ∈ A0, then, ∀i ∈ N, σi(ω) is the set of admissible best responses to LPSs that are

fully first-order consistent with a probability distribution that does not assign positive prob-

ability to vectors of opponents' sets known by i, given ω, to be impossible.  The concept of

fully permissible sets can now be defined and characterized.

DEFINITION 4.  A non-empty strategy set  πi  is a fully permissible set for i if there exists  ω ∈

CKA0  with  σi(ω) = πi.
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PROPOSITION 2.  A non-empty strategy set  π i  is a fully permissible set for i iff there exists  Ξ

= Ξ1 ×...× Ξn  with  πi ∈ Ξi  such that  Ξ ⊆ α0(Ξ).

The following proposition establishes general existence and provides an algorithm.

PROPOSITION 3. Let Π Π Π0
1
0 0= × ×... n  denote the collection of vectors of fully permissible sets.

(i)  ∀i ∈ N,  Πi
0  ≠ ∅.  (ii)  Π0 = α0(Π0).  (iii)  The sequence defined by  Ξ(0) = Σ  and,  ∀k ≥

1,  Ξ(k) = α0(Ξ(k−1))  converges to  Π0  in a finite number of iterations.

Note that  Π0 = α0(Π0)  means that Π0 is a fixed point in terms of a collection of vectors of

strategy sets. By Proposition 2 it is the largest such fixed point. The algorithm of Proposition

3(iii) has the usual interpretation in terms of an increasing order of mutual knowledge.

4. PROPERTIES AND EXAMPLES

By the following proposition, the concept of fully permissible sets refines

rationalizability (as defined by Bernheim (1984) and Pearce (1994) except that we here

consider pure strategies only and allow conjectures to be correlated).  G2 of the introduction as

well as G3 and G4 below illustrate that this refinement can be strict.

PROPOSITION 4.  Let  R = R1 × ... × Rn  denote the set of rationalizable strategy vectors; i.e.

strategy vectors surviving iterated elimination of strongly dominated strategies.  Then, ∀i∈N,

ri ∈ Ri  if there exists a fully permissible set  πi  for i such that  ri ∈ πi.

The following proposition establishes that any strategy in a fully permissible set survives the

Dekel-Fudenberg (1991) procedure.  Again, G2 as well as G3 and G4 illustrate that not all

strategies surviving the Dekel-Fudenberg procedure are elements of some fully permissible set.

PROPOSITION 5.  Let  P = P1 × ... × Pn  denote the set of permissible strategy vectors; i.e.

strategy vectors surviving one round of elimination of weakly dominated strategies and then
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iterated elimination of strongly dominated strategies.  Then, ∀i ∈ N,  pi ∈ Pi  if there exists a

fully permissible set  πi  for i such that  pi ∈ πi.

Below G3 and G4 illustrate a notion of forward induction, while G5 is included to

discuss backward induction.  Each of these games is interpreted as the pure strategy reduced

normal form (PRNF) of an extensive game.  The foundation for analyzing these games in the

PRNF is given in Proposition 1(iii), which in turn is based on results by Mailath et al. (1993).

G3 is the PRNF of a "Battle-of-the-Sexes-with-an-outside-option" game, where 1 and 2

move in sequence, with 2 being asked to play only if 1 does not choose the outside option U.

Such a game, first introduced by Kreps & Wilson (1982) (who credit Elon Kohlberg), has been

widely used to illustrate forward induction.  Pearce (1984) uses it to promote his extensive

form rationalizability.  Kohlberg & Mertens (1986) argue that the information contained in the

PRNF G3 should suffice to analyze any underlying extensive game.

L R

U

D

2, 2 2, 2

3, 1 0, 0

3G

M

1, 30, 0

Within the states-of-the-world model of Section 2, assume — as specified in Section 3

— that it is commonly known that each player's strategy set is the set of admissible best

responses to LPSs that are fully consistent with some probability distribution that does not

assign positive probability to strategy sets for his opponent known by the player to be

impossible.  Since D is a strongly dominated strategy, D cannot be an element of 1's set of

admissible best responses.  This does not imply — as is implicitly the case in the procedure of

iterated admissibility (see Stahl (1993)) — that 2 knows that D is infinitely less likely than M.

However, 2 knows that only {U}, { M} and {U,M} are possible candidates for 1's strategy set.

This excludes {R} as 2's strategy set, since {R} is 2's set of admissible best responses only if 2

assigns positive probability to {D} or { U,D} being 1's strategy set.  This in turn means that 1

knows that only {L} and {L,R} are possible candidates for 2's strategy set, implying that {U}
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cannot be 1's set of admissible best responses.  Knowing that only {M} or { U,M} are candi-

dates for 1's strategy set does imply that 2 knows that D is infinitely less likely than M.  Hence,

2's set of admissible best responses is {L}, and, therefore, 1's set of admissible best responses is

{ M}.  The argument above shows that ({M},{ L}) is the unique vector of fully permissible sets.

The strategy profile implied by this vector entails that 1 can signal — by asking 2 to play —

that he seeks a payoff of at least 2, leading to the implementation of 1's preferred outcome.  In

the procedure of iterated admissibility such signaling hinges solely on the fact that M is an

admissible strategy for 1 while D is not.  In contrast, it here relies on the properties of the

entire game.  This difference is reflected by the fact that, while iterated admissibility converges

after only three rounds of elimination of strategies, the present procedure needs five rounds of

elimination of strategy sets; i.e. at least 4th order of mutual knowledge is required.

Turn now to the "Burning Money" game due to van Damme (1989, Fig. 5) and Ben-

Porath & Dekel (1992, Fig. 1.2).  G4 is the PRNF of a "Battle-of-the-Sexes" (B-o-S) game

with the additional feature that 1 can publicly destroy 1 unit of payoff before the B-o-S game

starts.  BU (NU) is the strategy where 1 burns (does not burn), and then plays U, etc., while

LR is the strategy where 2 responds with L conditional on 1 not burning and R conditional on 1

burning, etc. The forward induction outcome (supported e.g. by iterated admissibility) involves

implementation of 1's preferred B-o-S outcome, with no payoff being burnt.  One might be

skeptical to the use of iterated admissibility in the "Burning Money" game because it effectively

requires 2 to believe that BD is infinitely less likely than BU although all strategies involving

burning (i.e. both BD and BU) are eventually eliminated by the procedure.  As demonstrated in

Appendix B, common knowledge of admissibility in the sense of Definition 4 corresponds to an

iterative procedure, where at no stage of the iteration need 2 believe that BD is infinitely less

likely than BU since {NU} is always included as a possible strategy set for 1.  The procedure

uniquely determines {NU} as 1's fully permissible set and {LL,LR} as 2's fully permissible set.10

Even though the forward induction outcome is obtained, 2 is free to have any conjecture

                                               
10 Also Battigalli (1989), Asheim (1994), and Dufwenberg (1994) argue that (NU,LR) in addition to (NU,LL) is
a viable strategy vector in "Burning Money".
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conditional on burning; hence, she need not interpret burning as a signal that 1 will play

according to his preferred B-o-S outcome.

LL

NU

-1, 0

3, 1

0, 0

4G

1, 3

0, 0

0, 0

3, 1

2, 1 2, 1

0, 0

1, 3

LR RL RR

ND

BU

BD

-1, 0-1, 0

-1, 0 0, 3 0, 3

It is noteworthy that common knowledge of admissibility in the sense of Definition 4

yields the forward induction outcomes in G3 and G4.  In addition to iterated admissibility and

the equivalent procedure suggested by Stahl (1993), Pearce's (1984) extensive form

rationalizability — both as originally defined and as characterized by Battigalli (1995) — yields

the forward induction outcomes in G3 and G4.  In contrast to the present analysis, these

procedures have not formally been given a common knowledge basis, unless a very strong

primitive assumption like Stahl's (1993) 'iterated lexicographic coherence' is accepted.

In a perfect information extensive game with generic payoffs, both procedures of the

previous paragraph lead to the backward induction outcome.  During the last few years, a

number of papers have discussed whether backward induction follows from an assumption that

it is commonly known that players are rational in the sense of maximizing expected payoff at

all decision nodes.11  The background for this interest is the following paradoxical aspect of

backward induction:  Why should a player believe that an opponent's future play will satisfy

backward induction if the opponent's previous play is incompatible with backward induction?

Reny (1993) studies the "Take-it-Or-Leave-it" game with k stages (TOL(k)), where at

the lth stage of the game, the total pot is l dollars.  If l is odd (even), player 1 (2) may take

the l dollars and end the game, or leave it, in which case the pot increases with one dollar.

                                               
11 These papers include Aumann (1995), Basu (1990), Ben-Porath (1994), Bicchieri (1989), Binmore (1987,
1995), Gul (1995), and Reny (1993).
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Should the game continue until the kth stage and the player whose turn it is decides to leave

the k dollars, it is given to the other player.  We analyze TOL(3) in detail.

L R

U

D

0, 2 0, 3

0, 2 3, 0

5G

M

1, 01, 0

1 12

L
R

D M
U

1
0

0
0

0

2
3

3

TOL(3)

G5 is the PRNF of TOL(3).  Since U is a strongly dominated strategy, U cannot be an

element of 1's set of admissible best responses.  Hence, 2 knows that only {M}, { D} and

{ M,D} are possible candidates for 1's strategy set.  This excludes {R} as 2's strategy set, since

{ R} is 2's set of admissible best responses only if 2 assigns positive probability to {U} or

{ U,D}.  This in turn means that 1 knows that only {L} and {L,R} are possible candidates for

2's strategy set, implying that {M} cannot be 1's set of admissible best responses.  No further

elimination of strategy sets is possible.  Hence, 1's collection of fully permissible sets is {{D},

{ M,D}}, and 2's collection of fully permissible sets is {{L}, { L,R}}.  For each player, the

smaller set contains only the backward induction strategy, while the larger set coincides with

the set of strategies surviving the Dekel-Fudenberg procedure.  Before discussing, in the con-

text of TOL(3), the perspective offered by the concept of fully permissible sets on the

backward induction paradox, note that the fully permissible sets justify each other as follows:

α µ1
0

1( ) { }− = D if  µ−1({ L}) ≥ 2/3  and  µ−1({ L,R}) = 1 − µ2({ L})

α µ1
0

1( ) { , }− = M D if  µ−1({ L}) < 2/3  and  µ−1({ L,R}) = 1 − µ2({ L})

α µ2
0

2( ) { }− = L if  µ−2({ D}) < 1  and  µ−2({ M,D}) = 1 − µ−2({ D})

α µ2
0

2( ) { , }− = L R if  µ−2({ D}) = 1.

With common knowledge of admissibility in the sense of Definition 4, 2 knows that all

sets for 1 but {D} and {M,D} are impossible.  This implies that 2 must deem the choice of U

infinitely less likely than the choice of D; it does not imply that 2 knows that some strategy

choice — not even U — is impossible.  Hence, 2 cannot observe an impossible strategy choice.
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Consider 2's conjecture concerning 1's strategy choice conditional on 2 being asked to

play, i.e., conditional on 1 choosing U or M.  If 2 assigns positive probability to {M,D}, then

2's first-order conjecture assigns zero probability to U and positive probability to M.  Hence,

2's conditional conjecture assigns probability 1 to 1 choosing M, implying that only L is an

admissible best response.  If 2 assigns probability 1 to {D}, then 2's first-order conjecture

assigns zero probability to both U and M.  Since being asked to play is a zero probability (but

not impossible!) event that can be caused by 1 choosing outside his strategy set, there are no

restrictions on 2's conditional conjecture.  Therefore, 2 may — conditional on 1 choosing U or

M — assign positive probability to 1 choosing the strongly dominated strategy U, implying that

R in addition to L is an admissible best response given that 2 assigns probability 1 to {D}.

Ben-Porath (1994) agrees with the present analysis by not having players know that

particular strategy choices are impossible.  Rather, players can be certain (in the sense of

believing with probability 1) at the beginning of the game that particular strategies will not be

chosen.  He assumes that there is, at the beginning of the game, common certainty that each

player is rational in the sense of maximizing expected payoff at all the player's decision nodes.

This entails that a player cannot assign positive unconditional probability to a strategy vector

for the opponents which contradicts common certainty of rationality.  However, for a given

unconditional conjecture Ben-Porath imposes only Bayes' law on conditional conjectures.  This

is analogous to Brandenburger's (1992) support restriction on first-order conjectures only.

Indeed, Ben-Porath shows that common certainty of rationality corresponds to strategy vectors

surviving the Dekel-Fudenberg procedure.  In TOL(3) his approach implies that if 2 assigns

probability 1 to 1 choosing D, then 2, if asked to play, is free to have any conditional

conjecture concerning 1's strategy choice since Bayes' law does not apply.  Hence, 2 may con-

ditionally assign positive probability to U, thereby allowing R to maximize expected payoff.

Aumann's (1995) analysis of common knowledge of rationality in perfect information

games requires fully specified strategies; i.e., for each player, actions must also be specified at

nodes that the player's own strategy precludes from being reached.  Hence, the PRNF —

implying that in the extensive form only plans of actions (Rubinstein (1991)) are determined —

is not sufficient.  With Aumann's assumptions, common knowledge of rationality implies in
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TOL(3) that all strategies for 1 but the one where he takes the 1 dollar at his first node and

takes the 3 dollars at his last node are impossible.  Hence, it is impossible for 2 to be asked to

play.  However, in the counterfactual event that 2 is asked to play, she acts as if 1 at his last

node follows his only possible strategy, implying that it is impossible for 2 to choose R.  Thus,

in Aumann's analysis, if common knowledge of rationality obtains, then each player chooses

the backward induction strategy.  The present analysis is based on the argument that only plans

of actions matter in a context where players do not make mistakes and conjectures concerning

the choices of opponents are explicitly specified.  That 2 is asked to play is seen to be incom-

patible with 1 having planned to take to the 1 dollar at his first node.

In summary, Aumann (1995) assumes that players know that particular strategies are

impossible.  This allows for a common knowledge formulation since actual play not in accor-

dance with common knowledge of rationality cannot occur.  Ben-Porath (1994) does not let

players know that particular strategies are impossible; knowledge must therefore be weakened

to certainty.  Since actual play not in accordance with common certainty of rationality can

occur, in general, common certainty of rationality holds only at the beginning of the game.  The

present analysis allows for a common knowledge formulation by letting players have know-

ledge of strategy sets.  Players do not know that particular strategies are impossible; still, com-

mon knowledge of admissibility cannot be contradicted by actual play.

5. ALTERNATIVE FORMULATIONS

The concept of fully permissible sets (Definition 4) relies on a full support restriction on first-

order conjectures (Definition 3) and on lexicographic optimization (Definition 1).  The present

section demonstrates that the chosen formulation is tight in the sense that incautious behavior

cannot be ruled out if the full support restriction is relaxed, or if the players do not perform

lexicographic optimization.  As a byproduct, this exercise allows us to establish important

connections to earlier contributions.
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First, consider the consequences of relaxing the full support restriction on first-order

conjectures.  Therefore return to Definition 2, and say that  ( ,..., )m mi i
K

− −
1  ∈ L∆0(S−i)  is first-

order consistent with  µ− i ∈ ∆(Σ− i)  if m i−
1  is consistent with µ− i.  First-order consistency

implies, with n = 2, that the support of the first-order conjecture is included in the union of sets

that are assigned positive probability by µ− i.  If  µ− i ∈ ∆(Σ− i),  let  ai i( )µ − := {pi ∈ Si| ∃

( ,..., )m mi i
K

− −
1  first-order consistent with µ−i such that pi is an admissible best response to

( ,..., )m mi i
K

− −
1 },  and if  ∅ ≠ Ξ− i ⊆ Σ− i,  let  α i i( )Ξ− := { ai i( )µ − | µ − −∈i i∆ Ξ( ) }.  Let Ai := {ω

∈ Ω| σi(ω) ∈α ωi i
i( ( ))Ξ− }, with A := A1 ∩ ... ∩ An.  The concept of permissible sets can now

be defined.  The analogues of Propositions 2 and 3 are available.

DEFINITION 5.  A non-empty strategy set πi is a permissible set for i if there exists  ω ∈ CKA

with  σi(ω) = πi.

PROPOSITION 6. Let  P = P1 × ... × Pn  denote the set of permissible strategy vectors; i.e.

strategy vectors surviving one round of elimination of weakly dominated strategies and then

iterated elimination of strongly dominated strategies.  Then, ∀i ∈ N,  pi ∈ Pi  iff there exists a

permissible set  πi  for i such that pi ∈ πi.

Hence, the set of i 's permissible strategies equals the union of i 's permissible sets.  This means

that permissible strategies — as defined by Brandenburger (1992) so that a strategy is permis-

sible iff it survives the Dekel-Fudenberg procedure — can be characterized by the states-of-

the-world model of Section 2 even though a state, for each player, determines a strategy set

rather than a strategy.  In G2 of the introduction, a choice of the permissible strategy R seems

to entail incautious behavior.  This strategy is not contained in any fully permissible set, but is

— according to Proposition 6 — contained in some permissible set.

Secondly, consider the consequences of relaxing the assumption that players perform

lexicographic optimization.  Instead, assume ordinary optimization.

DEFINITION 6.  ri  is a best response to  m− i ∈ ∆(S− i)  if, ∀si ∈ Si,  ui(ri, m−i(⋅)) ≥ ui(si, m−i(⋅)).

By the finiteness of G, it follows that, for any m− i ∈∆(S− i), there exists a best response to  m−i.
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We first combine the best response correspondence with Definition 2.  If µ− i ∈ ∆(Σ− i),

let bi i( )µ − := { ri ∈ Si| ∃m− i consistent with µ−i such that ri is a best response to m− i},  and if  

∅ ≠ Ξ− i ⊆ Σ− i,  let β i i( )Ξ− := { bi i( )µ − |µ − −∈i i∆ Ξ( ) }.  Let Bi := {ω ∈ Ω| σi(ω) ∈

β ωi i
i( ( ))Ξ− }, with B := B1 ∩ ... ∩ Bn.  The concept of rationalizable sets can now be defined.

The analogues of Propositions 2 and 3 are available.

DEFINITION 7.  A non-empty strategy set ρi is a rationalizable set for i if there exists  ω ∈ CKB

with  σi(ω) = ρi.

PROPOSITION 7. Let  R = R1 × ... × Rn  denote the set of rationalizable strategy vectors; i.e.

strategy vectors surviving iterated elimination of strongly dominated strategies.  Then, ∀i ∈

N,  ri ∈ Ri  iff there exists a rationalizable set  ρi  for i such that ri ∈ ρi.

Hence, the set of i 's rationalizable strategies equals the union of i 's rationalizable sets.  This

means that rationalizability — as defined by Bernheim (1984) and Pearce (1984) but allowing

for correlated conjectures so that a strategy is rationalizable iff it survives iterated strong

dominance — can be characterized by the states-of-the-world model of Section 2 even though

a state, for each player, determines a strategy set rather than a strategy.  There may exist

multiple rationalizable sets for each player; games with multiple strict Nash equilibria illustrates

this since any strict Nash equilibrium constitutes a vector of rationalizable sets.

We then combine the best response correspondence with Definition 3, thus imposing a

full support constraint of the kind considered by Samuelson (1992) and Börgers & Samuelson

(1992).  If µ− i ∈ ∆(Σ− i),  let bi i
0( )µ − := { ri ∈ Si| ∃m− i fully consistent with µ−i such that ri is a

best response to p− i},  and if  ∅ ≠ Ξ− i ⊆ Σ− i,  let β i i
0( )Ξ− := { bi i

0( )µ − |µ − −∈i i∆ Ξ( ) }.  Let

Bi
0 := {ω ∈ Ω| σi(ω) ∈ β ωi i

i0( ( ))Ξ− },  with B0 := B1
0 ∩ ... ∩ Bn

0 .  The concept of fully

rationalizable sets can now be defined.  The analogues of Propositions 2 and 3 are available.

DEFINITION 8.  A non-empty strategy set ρi is a fully rationalizable set for i if there exists  ω ∈

CKB0  with σi(ω) = ρi.
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In order to show that rationalizable and fully rationalizable sets may admit incautious

behavior, consider G6 due to Samuelson (1992, Ex. 8) and Börgers & Samuelson (1992, Ex.

3).  Here, the inadmissible strategy D is contained in some fully rationalizable set since the

collection of vectors of fully permissible sets is {{U}, { U,D}} ×{{ L}, { L,R}}.  It is straightfor-

ward to show that any strategy in a fully rationalizable set is rationalizable; hence, it follows

that D is also rationalizable.  A strategy in a fully rationalizable set need not be permissible; G6

illustrates this since only U and L are permissible strategies.  By Proposition 3(i) and

Proposition 5, {{U}} ×{{ L}} is the collection of vectors of fully permissible sets.

L R

U

D

1, 1 1, 0

1, 0 0, 1 6G

Our terminology and results are summarized in the following table.

Support restriction on

first-order conjectures

Full support restriction on

first-order conjectures

Optimization Lexicographic optimization

rationalizable sets permissible sets

characterizes
rationalizable strategies

fully rationalizable sets fully permissible sets

refines rationalizable strat.
charact. permissible strat.

refines
rationalizable strategies

refines rationalizable strat.
refines permissible strat.

TABLE 1

We have argued that — of the concepts included in Table 1 —  the concept of fully permissible

sets captures common knowledge of admissibility in the most reasonable way.
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6. A COMMENT ON INTERPRETATION

We conclude by suggesting a possible intuitive interpretation of the states-of-the-world model

of Section 2 as specified in Section 3.  Consider a structure where

• the players receive private recommendations from separate analysts, where the analysts

may coincide with the players themselves,

• each analyst's recommendation is given in the form of a strategy set,

• for each player, the choice of any strategy outside his set of recommendation is deemed

infinitely less likely than the choice of any strategy contained in his set of recommendation,

• each analyst offers a recommendation that is the set of admissible best responses given

the analyst's subjective probability distribution over vectors of strategy sets that the analyst

thinks are possible sets of recommendation for the opponents.

A fully permissible set is a possible set of recommendation when this structure is commonly

known by the analysts.  In line with the discussion in Aumann & Brandenburger (1995, pp.

1174–1175), the states-of-the-world model is descriptive when referring to the recommenda-

tions of the analysts.  However, given the suggested interpretation it seems appropriate to say

that the model prescriptive when referring to the strategy choices of the players.

APPENDIX A: PROOFS

Proof of Prop. 1.  Given ( ,..., )m mi i
K

− −
1 , write Z Si i

0:=  and define Zi
1 , Zi

2 , ... inductively by

Zi
k

s Zi i
k: arg max=

∈ −1 u s mi i i
k( , ( ))− ⋅   for  k∈{1,...,K}.  Then  pi  is an admissible best response to

( ,..., )m mi i
K

− −
1   iff  pi ∈ Zi

K .  (i) By the finiteness of G, Zi
K ≠ ∅ .  (ii)   (If) By Pearce (1984,

Lemma 4), if pi is not weakly dominated by a pure or mixed strategy, there exists m−i ∈ ∆0(S−i)

such that, ∀si ∈ Si, ui(pi, m−i(⋅)) ≥ ui(si, m−i(⋅)).  Note that (m−i) ∈ L∆0(S−i).  (Only if) Assume

that pi is weakly dominated by a (possibly degenerate) mixed strategy mi ∈ ∆(Si).  It suffices to

show that, ∀ ( ,..., )m mi i
K

− −
1  ∈ L∆0(S−i),  pi ∉ Zi

K .  Note that {pi} ∪supp(mi) ⊆ Zi
0 .  Furthermore, 
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∀k∈{1,...,K},  { pi} ∪supp(mi) ⊆ Zi
k−1 implies  (pi ∈ Zi

k  only if supp(mi) ⊆ Zi
k ).  To see this,

observe that ui(pi,m i
k
− ⋅( ) ) ≤ m s u s mi i i i i

k
s Si i

( ) ( , ( ))−∈ ⋅∑  since mi weakly dominates pi.  Also, if  pi

∈ Zi
k ,  ∀ri ∈ Zi

k−1,  ui(pi,m i
k
− ⋅( ) ) ≥ ui(ri,m i

k
− ⋅( ) ).  Hence, pi ∈ Zi

k  implies,  ∀si ∈ supp(mi) ⊆

Zi
k−1,  ∀ri ∈ Zi

k−1,  ui(pi,m i
k
− ⋅( ) ) = ui(si,m i

k
− ⋅( ) ) ≥ ui(ri, p i

k
− ⋅( ) ).  However,  {pi} ∪supp(mi) ⊆ Zi

K

contradicts that mi weakly dominates pi.  (iii)  For each information set  h  for i in  Γ,  there

exists a corresponding set  S(h) ⊆ S  in G;  see Mailath et al. (1993, Section 2).  By perfect

recall,  S(h) = Si(h)×S−i(h).  Write  Hi := {S(h) ⊆ S| h is an information set for i in Γ}  and

Hi(si) := {X ∈ Hi| si ∈ Xi}.  If Xi×X−i ∈ Hi,  let m i
X i
−

− ∈ ∆(X−i)  be defined by, ∀s−i ∈ X−i,

m s m s m ri
X

i i
k

i i
k

ir X
i

i i− − − − − −∈
−

− −
= ∑( ) ( ) ( ) , where supp(m i

k
− ) ∩ X−i ≠ ∅  and,  ∀l∈{1,...,k−1},

supp(m i−
l ) ∩ X−i = ∅.  Then  {m i

X i
−

− | Xi×X−i ∈ Hi} is a system of conjectures satisfying Bayes

law.  It remains to be shown that  ∀Xi×X−i ∈ Hi(pi),  ∀si ∈ Xi,  ui(pi,m i
X i
−

− ⋅( ) ) ≥ ui(si,m i
X i
−

− ⋅( ) ).

Suppose to the contrary that there exist  Yi×Y−i ∈ Hi(pi)  and  ri∈Yi  such that  ui(pi,m i
Y i
−

− ⋅( ) ) <

ui(ri,m i
Y i
−

− ⋅( ) ),  where supp(m i
k
− ) ∩ Y−i ≠ ∅  and, ∀l∈{1,...,k−1}, supp(m i−

l ) ∩ Y−i = ∅.  It

follows from Mailath et al. (1993, Def. 2, Def. 3 & Thm. 1) that  Yi×Y−i  is a strategic

independence for player i in the sense that, ∀pi, si ∈ Yi, ∃ri ∈ Yi such that, ∀s−i ∈ Y−i, ui(ri, s−i) 

= ui(si, s−i)  and, ∀s−i ∈ S−i\Y−i, ui(ri, s−i) = ui(pi, s−i).  Hence,  ri  can be chosen such that  ∀s−i ∈

S−i\Y−i,  ui(ri,s−i) = ui(pi,s−i).  By construction of m i
Y i
−

−  and ri,  either (a) both pi and ri are in Zi
k−1,

in which case it follows that  p Z Zi i
k

i
K∉ ⊇   (since ui(pi,m i

Y i
−

− ⋅( ) ) < ui(ri,m i
Y i
−

− ⋅( ) )  and, ∀s−i ∈

supp(m i
k
− )\Y-i, ui(ri,s−i) = ui(pi,s−i) imply that ui(pi,m i

k
− ⋅( ) ) < ui(ri,m i

k
− ⋅( ) ),  or (b) both pi and ri

are not in Zi
k−1,  in which case  p Z Zi i

k
i
K∉ ⊇−1 .    •

Proofs of Propositions 2 and 3.  Given the monotonicity of α i
0 , Propositions 2 and 3 are

straightforward consequences of the states-of-the-world model of Section 2.  They are there-

fore provided without proof.  Proofs are available on request from the authors.

If  ∅ ≠ X− i ⊆ S− i,  let  a Xi i( )− := {pi ∈ Si| ∃ ( ,..., )m mi i
K

− −
1  ∈ L∆0(S−i) with m Xi i− −∈1 ∆( )  such

that pi is an admissible best response to ( ,..., )m mi i
K

− −
1 }.  If  ∅ ≠ ′ ⊆ ′′− −X Xi i  ⊆ S−i,  then  ∅ ≠

a X a Xi i i i( ) ( )′ ⊆ ′′− −  ⊆ Si.  If  ∅ ≠ X = X1 ×...× Xn ⊆ S,  write a X( ) :=a X a Xn n1 1( ) ... ( )− −× × .  By

Brandenburger (1992),  pi  is a permissible strategy iff there exists  X = X1 ×...× Xn  with  pi ∈
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Xi such that X a X⊆ ( ) .  If  P = P1 ×...× Pn  denotes the set of permissible strategy vectors,

then  P a P= ( ) .

Proof of Prop. 5.  Using Proposition 3(ii), Definitions 1 and 3 imply, ∀i∈N,  Pi
0  := σσ ii i∈Π0U

= σσ α ii i i∈ −
0 0( )ΠU  ⊆ a Pi i( )−

0 .  Since  P a P0 0⊆ ( )   implies  P0  ⊆ P,  it follows that, ∀i∈N,

σσ ii i∈Π0U  ⊆ Pi.    •

Proof of Prop. 6.  Write Πi := {π i ∈ Σi| π i is a permissible set for i}.  (If)  Using the

analogue to Proposition 3(ii), Definitions 1 and 2 imply, ∀i∈N,  Pi  := σσ ii i∈ΠU  =

σσ α ii i i∈ −( )ΠU  ⊆ a Pi i( )− .  Since  P a P⊆ ( )    implies  P  ⊆ P,  it follows that, ∀i∈N,

σσ ii i∈ΠU  ⊆ Pi.  (Only if)  Π  := {(P1, ... , Pn)}  satisfies Π Π= α ( )  since  P a P= ( ) .  By the

analogue to Proposition 2, ∀i∈N,  Pi  is a permissible set for i.  Hence, ∀i∈N,  σσ ii i∈ΠU  ⊇ Pi.

•

If  ∅ ≠ X− i ⊆ S− i,  let  b Xi i( )− := { ri ∈ Si| ∃ m− i ∈ ∆(X− i) such that ri is a best response to m

− i}.  If  ∅ ≠ ′ ⊆ ′′− −X Xi i  ⊆ S−i,  then  ∅ ≠ b X b Xi i i i( ) ( )′ ⊆ ′′− −  ⊆ Si.  If  ∅ ≠ X = X1 ×...× Xn ⊆ S,

write b X( ) :=b X b Xn n1 1( ) ... ( )− −× × .  By Bernheim (1984) and Pearce (1984) (but note that we

here consider pure strategies only and allow conjectures to be correlated),  ri  is a rationalizable

strategy iff there exists  X = X1 ×...× Xn  with  ri ∈ Xi  such that X b X⊆ ( ) .  Pearce (1984)

says that X satisfies the best response property if X b X⊆ ( ) .  If  R = R1 ×...× Rn  denotes the

set of rationalizable strategy vectors, then  R b R= ( ) .

Proof of Prop. 4.  Using Proposition 3(ii), Definitions 1, 3 and 6 imply, ∀i∈N,  Pi
0  :=

σσ i
i i∈Π0U  = σσ α i

i i i∈ −
0 0( )ΠU  ⊆ b Pi i( )−

0 .  Since  P b P0 0⊆ ( )   implies  P0  ⊆ R,  it follows that, 

∀i∈N,  σσ i
i i∈Π0U  ⊆ Ri.    •

Proof of Prop. 7.  Write Ρi := {ρi ∈ Σi| ρi is a rationalizable set for i}.  (If) Using the analogue

to Proposition 3(ii), Definitions 2 and 6 imply, ∀i∈N,  Ri  := σσ i
i i∈ΡU  = σσ β i

i i i∈ −( )ΡU  ⊆

b Ri i( )− .  Since  R b R⊆ ( )   implies  R  ⊆ R,  it follows that, ∀i∈N,  σσ i
i i∈ΡU  ⊆ Ri.  (Only if)

Ρ  := {(R1, ... , Rn)}  satisfies Ρ Ρ= β( )  since  R b R= ( ) .  By the analogue to Proposition 2, ∀

i∈N,  Ri  is a rationalizable set for i.  Hence, ∀i∈N,  σσ ii i∈ΡU  ⊇ Ri.    •
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APPENDIX B: DERIVATIONS FOR THE EXAMPLES

The algorithm of Proposition 3(iii) is used to determine the collection of vectors of fully per-

missible sets in G1 – G6.

G1:

Ξ(0) = Σ = Σ1 × Σ2

Ξ(1) = {{ U},{ M},{ U,M}} × Σ2

Ξ(2) = {{ U},{ M},{ U,M}} × {{ L},{ L,R}}

Π0 = Ξ(3) = {{ U},{ U,M}} × {{ L},{ L,R}}

G2:

Ξ(0) = Σ = Σ1 × Σ2

Ξ(1) = {{ U,M}} × Σ2

Π0 = Ξ(2) = {{ U,M}} × {{ L}}

G3:

Ξ(0) = Σ = Σ1 × Σ2

Ξ(1) = {{ U},{ M},{ U,M}} × Σ2

Ξ(2) = {{ U},{ M},{ U,M}} × {{ L},{ L,R}}

Ξ(3) = {{ M},{ U,M}} × {{ L},{ L,R}}

Ξ(4) = {{ M},{ U,M}} × {{ L}}

Π0 = Ξ(5) = {{ M}} × {{ L}}

G4:

Ξ(0) = Σ = Σ1 × Σ2

Ξ(1) = {{ NU},{ ND},{ BU},{ NU,ND},{ ND,BU},{ NU,BU},{ NU,ND,BU}} × Σ2

Ξ(2) = {{ NU},{ ND},{ BU},{ NU,ND},{ ND,BU},{ NU,BU},{ NU,ND,BU}} ×

{{ LL},{ RL},{ LL,LR},{ RL,RR},{ LL,RL},{ LL,LR,RL,RR}}

Ξ(3) = {{ NU},{ BU},{ ND,BU},{ NU,BU},{ NU,ND,BU}} ×
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{{ LL},{ RL},{ LL,LR},{ RL,RR},{ LL,RL},{ LL,LR,RL,RR}}

Ξ(4) = {{ NU},{ BU},{ ND,BU},{ NU,BU},{ NU,ND,BU}} ×

{{ LL},{ RL},{ LL,LR},{ LL,RL}}

Ξ(5) = {{ NU},{ BU},{ NU,BU}} × {{ LL},{ RL},{ LL,LR},{ LL,RL}}

Ξ(6) = {{ NU},{ BU},{ NU,BU}} × {{ LL},{ LL,LR},{ LL,RL}}

Ξ(7) = {{ NU},{ NU,BU}} × {{ LL},{ LL,LR},{ LL,RL}}

Ξ(8) = {{ NU},{ NU,BU}} × {{ LL},{ LL,LR}}

Ξ(9) = {{ NU}} × {{ LL},{ LL,LR}}

Π0 = Ξ(10) = {{ NU}} × {{ LL,LR}}

G5:

Ξ(0) = Σ = Σ1 × Σ2

Ξ(1) = {{ M},{ D},{ M,D}} × Σ2

Ξ(2) = {{ M},{ D},{ M,D}} × {{ L},{ L,R}}

Π0 = Ξ(3) = {{ D},{ M,D}} × {{ L},{ L,R}}

G6:

Ξ(0) = Σ = Σ1 × Σ2

Ξ(1) = {{ U}} × Σ2

Π0 = Ξ(2) = {{ U}} × {{ L}}
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