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Conditions are derived for the consistency of kernel estimators of the covari-
ance matrix of a sum of vectors of dependent heterogeneous random variables,
which match those of the currently best-known conditions for the central limit
theorem, as required for a unified theory of asymptotic inference. These include
finite moments of order no more than 2 + δ for δ > 0, trending variances, and
variables which are near-epoch dependent on a mixing process, but not nec-
essarily mixing. The results are also proved for the case of sample-dependent
bandwidths.

1 Introduction

This paper derives conditions for the consistency of kernel estimators of the covariance
matrix of a weighted sum of vectors of dependent heterogeneous random variables.
This a problem which has been studied recently by, among others, Newey and West
(1987), Gallant and White (1988), Andrews (1991), Pötscher and Prucha (1991b),
Andrews and Monahan (1992), and Hansen (1992). Interest in it is motivated typi-
cally by the fact that many estimators θ̂n of a parameter θ0 are known to satisfy

n1/2(θ̂n − θ0)−Bn

n∑
t=1

Xnt(θ0)
p
−→ 0 (1)

where Xnt(θ) is a random vector of dimension p, defined on a probability space
(Ω,F , P ), that has mean zero at the point θ = θ0, and Bn is some nonrandom matrix
of dimension r×p that is usually easily estimated. 1 Applying a central limit theorem
to the second of the terms in (1) leads to

(BnΩnB
′
n)−1/2n1/2(θ̂n − θ0)

d
−→ N(0, Ir) (2)

∗The first author thanks Herman Bierens for discussion that eventually led to the proof of Lemma
1.

1For example, in the linear regression model yt = z′tβ + ut, we would have Xnt(θ0) = n−1/2ztut
and Bn = n−1

∑n
t=1 Eztz

′
t.
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where

Ωn =
n∑
t=1

n∑
s=1

EXntX
′
ns (3)

where we defined Xnt = Xnt(θ0). A complete asymptotic distribution theory for θ̂n
must incorporate whatever conditions are needed to ensure consistent estimation of
Ωn when the array Xnt is dependently and heterogeneously distributed. However,
an undesirable feature of all the above-cited studies is that they impose conditions
stronger than are known to be required for the application of a central limit theorem
(CLT) to the same variables. All except the last-mentioned assume that the random
variables under consideration possess finite fourth moments, and all impose either a
form of stationarity, or uniform boundedness in Lp-norms for some p ≥ 2, precluding
the possibility of trending moments. Further, all except Pötscher and Prucha (1991b)
assume that the random variables considered are strong or uniform mixing and that
the true covariance matrix converges to some well-defined limit.
In this paper, we will bridge the gap between asymptotic normality and covariance
matrix estimation by obtaining conditions for the latter similar to those obtained
for the CLTs in Davidson(1992, 1993) and De Jong (1995), which are the best such
results currently known to us. These theorems, which develop techniques pioneered
by McLeish (1975,1977), permit globally nonstationary data processes and require
the existence only of 2 + δ-order moments for some δ > 0. The weak dependence
is characterized by near-epoch dependence on a mixing process, a more general con-
cept than strong or uniform mixing; for example, under general regularity conditions
ARMA processes are near epoch dependent, but need not satisfy the strong mixing
condition. We will prove our results for stochastic (sample-dependent) bandwidths
for the kernel estimators, and also show that a sufficient condition on the bandwidth
for consistency of the variance estimator is that its ratio with the sample size con-
verges to zero. Of the above-cited references only Andrews (1991) gives results that
allow for such a behavior of the bandwidth, although under stronger assumptions.
Our central result shows convergence to zero of the difference between the elements
of the estimated and the true covariance matrix, and there is no need to assume that
the true covariance matrix itself converges to a well-defined limit. Finally, we will
argue that relaxing the so-called size conditions on the sequences measuring depen-
dence for the case of covariance matrix estimation for root-n consistent minimization
estimators is not possible, and in that sense, our dependence conditions are the best
possible.
Newey-West type estimators also occur in the presence of unit roots, as in the vari-
ance estimation for Phillips or Phillips-Perron tests for example, and we will also
state results for such cases.
Section 2 of the paper will present our main results. The proofs of the results can be
found in the Appendix.
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2 Main results

The main consistency results of the paper are, in fact, inspired by the proofs of the
CLTs for possibly trending-variance processes given in Davidson (1992), Davidson
(1993), and De Jong (1995), in which showing the consistency of a certain variance
estimate is an essential step. However, the role of these results is relatively obscure,
and the statistics considered in those papers do not allow for an easy interpretation.
Moreover, the conditions given are those for the CLTs to hold, and stronger in some
respects than the conditions required for convergence of the variance estimates alone.
We therefore follow the approach of Andrews (1991) and Hansen (1992). Similarly
to the latter authors, define

Ω̂n =
n−1∑

j=−n+1

k(j/γn)Γ̂n(j), (4)

Γ̂n(j) =
n−j∑
t=1

XntX
′
n,t+j j ≥ 0, (5)

Γ̂n(j) = Γ̂n(−j)′ j < 0. (6)

The function k(.) is called the kernel function, and the sequence γn is called the
bandwidth or the lag truncation parameter. It is assumed that γn →∞ as n→∞.
Note that (5) adopts an array notation which allows us to generalize our results,
but direct comparability with the results of Andrews and Hansen is obtained by
considering the case Xnt = n−1/2Xt. In this case, (5) becomes

Γ̂n(j) = n−1
n−j∑
t=1

XtX
′
t+j j ≥ 0. (7)

The variance estimator of Newey and West (1987) can be obtained by choosing
k(x) = (1 − |x|)I (−1 < x ≤ 1) (the Bartlett kernel). For that case, Newey and
West have proven that a consistent covariance matrix estimator results under regu-
larity conditions if γn = o(n1/4). Pötscher and Prucha (1991b) require γn = o(n1/3).
Kool (1988) and Hansen (1992) have shown that it is sufficient that γn = o(n1/2)
under regularity conditions, while the results of Andrews (1991) imply that we can
choose γn = o(n). From Andrews (1991), however, it can be seen that choosing γn
such that γn = o(n) but not o(n1/2) can never be optimal under a mean squared error
criterion function. Alternatively, we can write

Ω̂n =
n∑
t=1

n∑
s=1

XntX
′
nsk((t− s)/γn). (8)

Finally, define

Ω̂n(θ̂n) =
n∑
t=1

n∑
s=1

Xnt(θ̂n)Xns(θ̂n)′k((t− s)/γn), (9)
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which is our operational estimator for Ωn. The representations of (8) and (9) illustrate
the idea behind the estimator. While we cannot set k(.) = 1 because that would
introduce too much variance into the estimator, we require the weights k((t− s)/γn)
to approach unity as n→∞ for each fixed value of t− s. We assume that the kernel
function k(.) is an element of the function class K:

Assumption 1 k(.) ∈ K, where

K = {k(.) : IR→ [−1, 1] | k(0) = 1, k(x) = k(−x) ∀x ∈ IR,

∫ ∞
−∞
|k(x)|dx <∞,

∫ ∞
−∞
|ψ(ξ)|dξ <∞,

k(.) is continuous at 0 and at all but a finite number of points} , (10)

where

ψ(ξ) = (2π)−1
∫ ∞
−∞

k(x) exp(−iξx)dx. (11)

In Andrews (1991), function classes K1 and K2 are defined. Our definition of K is
identical to Andrews’ definition of K2, except that Andrews’ condition that k(.) ∈
L2(−∞,∞) is replaced by the condition that k(.) ∈ L1(−∞,∞), and the require-
ment that ψ(ξ) ≥ 0 from Andrews (1991) is replaced by the requirement that∫∞
−∞ |ψ(ξ)|dξ <∞. The integrability condition on ψ(.) that we impose is weaker than

Andrews’ requirement. This follows because for all functions k(.) that satisfy the con-
ditions for K except for the integrability condition on ψ(.),

∫∞
−∞ ψ(ξ)dξ = k(0) = 1

(see the proof of Theorem 2 of Andrews (1991)), and therefore ψ(ξ) ≥ 0 implies that∫∞
−∞ |ψ(ξ)|dξ <∞. As Andrews (1991) notes, his function classK2 corresponds to the

function class for which Ω̂n and Ω̂n(θ̂n) necessarily are positive semidefinite matrices
with probability one. It is clear that this property is desirable. In view of this, the
fact that the function class K does not contain the truncated kernel (see Andrews
(1991) for definitions) does not seem an important restriction of the analysis that is
provided here. The Bartlett, Parzen, Quadratic Spectral, and Tukey-Hanning kernels
are included in K. Note that the Tukey-Hanning kernel is not included in Andrews’
(1991) K2 class, while the truncated kernel is an element of Andrews’ K1 class. Again
the reader is referred to Andrews (1991) for definitions of these kernel functions.
The concept of weak dependence that we employ is that of near epoch dependence.
Let Vnt denote a triangular array of random variables. The Lq-norm of a random
matrix X in this paper will be defined as ‖ X ‖q= (

∑
i

∑
j E|Xij|q)1/q for q ≥ 1.

Definition 1 A triangular array of random variables Xnt is called L2-near epoch
dependent on an array Vnt if for m ≥ 0

‖ Xnt − E(Xnt|V
t+m
n,t−m) ‖2≤ dntν(m) (12)

where V t+mn,t−m = σ({Vn,t−m, . . . , Vn,t+m}), and ν(m)→ 0 as m→∞.
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The reader is referred to Gallant and White (1988), Pötscher and Prucha (1991a,
1991b) or Davidson (1994) for more details about the concept of near epoch depen-
dence. Furthermore, we will say that the sequence ν(m) is of size −λ if ψ(m) =
O(m−λ−ε) for some ε > 0. For the proof of our main result, we need the following
assumption.

Assumption 2 Xnt is L2-near epoch dependent on Vnt, where Vnt are strong or
uniform mixing random variables; for some triangular array cnt we have

sup
n≥1

sup
1≤t≤n

(‖ Xnt ‖r +dnt)/cnt <∞ (13)

for some r > 2 and ν(m) is of size -1/2 and either α(m) is of size −r/(r − 2), or
φ(m) is of size −r/(2(r − 1)), and

sup
n≥1

n∑
t=1

c2
nt <∞. (14)

Also note that from the proof it can be seen that in the φ-mixing case it is allowed
that we set r = 2, but in that case we have to assume uniform integrability of X2

nt/c
2
nt

in addition. These dependence conditions match those of the best-known central limit
theorem in both the φ-mixing and α-mixing cases. Also, from the discussion in De
Jong (1995) and the covariance inequalities in Doukhan, Massart and Rio (1994),
it can be shown that relaxing the size requirements on the α(m) or ν(m) sequences
of the Xnt implies that Xnt need no longer be covariance summable. Considering
the standard case in which Xnt = n−1/2Xt where Xt is a stationary sequence, and
Bn = B, this would imply that n−1E(

∑n
t=1Xt)(

∑n
t=1X

′
t) →∞ as n →∞, implying

that the result of Equation (1) would be incompatible with root-n consistency of θ̂n.
For such applications, our results are in effect the best possible with respect to the
size conditions on the α(m) and ν(m) sequences.
Our assumption on the behavior of the bandwidth is as follows:

Assumption 3

lim
n→∞

(γ−1
n + γn max

1≤t≤n
c2
nt) = 0. (15)

The following assumption is needed in order to show that Ω̂n(θ̂n) is asymptotically
equivalent to Ω̂n.

Assumption 4 For each deterministic triangular array ant such that 0 ≤ ant ≤ 1
for all t, n ≥ 1, and for all j, j = 1, . . . , r, we have

sup
θ∈Θ
|n−1/2

n∑
t=1

ant ((∂/∂θj)Xnt(θ)− E(∂/∂θj)Xnt(θ)) |
p
−→ 0, (16)

lim sup
n→∞

n∑
t=1

E sup
θ∈Θ
|(∂/∂θj)Xnt(θ)|

2 <∞, (17)
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n1/2(θ̂n − θ0) = OP (1), (18)

n−1/2
n∑
t=1

E(∂/∂θj)Xnt(θ) is continuous at θ0 uniformly in n. (19)

Note that, although the above uniform convergence requirement of Equation (16) is
nonstandard, proofs of uniform laws of large numbers are usually not affected by the
presence of the ant. Therefore, usually the requirement of Equation (16) will hold
if it holds for the case ant = 1. For the case of covariance matrix estimation for
minimization estimators, the resulting condition then is usually proven as a part of
the asymptotic normality proof of the minimization estimator.
The following alternative assumption is similar to one that has been introduced in
Hansen (1992) and can be found in Andrews and Monahan (1992) as well. It is used
for nonlinear dynamic models with deterministic or stochastic trends.

Assumption 5 limn→∞ γnn
−1/2 = 0, and for some sequence δn of nonsingular ma-

trices and for random variables Wnt we have

Xnt(θ) = Xnt(θ0)− (θ − θ0)Wnt; (20)

δn

n∑
t=1

WntW
′
ntδ
′
n = OP (1); (21)

n1/2(θ̂n − θ0)δ−1
n = OP (1). (22)

We will state three lemmas that provide the tools for showing consistency of Ω̂n. The
first shows the asymptotic equivalence of Ω̂n to its expectation.

Lemma 1 Under Assumptions 1, 2 and 3,

Ω̂n − EΩ̂n
p
−→ 0. (23)

The asymptotic bias of our covariance matrix estimator can be shown to disappear
as well:

Lemma 2 Under Assumptions 1, 2 and 3,

lim
n→∞

(EΩ̂n − Ωn) = 0. (24)

The third lemma states that the effect of estimation of θ0 is asymptotically negligible
under regularity conditions:

Lemma 3 Under Assumptions 1, 2 and 3, and either Assumption 4 or Assumption
5,

Ω̂n − Ω̂n(θ̂n)
p
−→ 0. (25)
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The main result that follows from Lemma 1, 2 and 3 is the following:

Theorem 1 Under Assumptions 1, 2 and 3, and either Assumption 4 or Assumption
5,

Ω̂n(θ̂n)− Ωn
p
−→ 0. (26)

Finally, we establish a result that allows bandwidths to be stochastic. See Andrews
and Monahan (1992) and Newey and West (1994) for such procedures. Let Ω̂n(θ̂n, δ̂n)
denote Ω̂n(θ̂n) as before, but evaluated at the possibly stochastic bandwidth δ̂n instead
of γn.

Theorem 2 Assume that Assumptions 1, 2 and 3, and either Assumption 4 or As-
sumption 5 hold. In addition, assume that δ̂n = α̂nγn, where α̂n = OP (1) and
1/α̂n = OP (1). Moreover, assume that for all ε ∈ (0, 1) the kernel function k(.)
satisfies∫ ∞

−∞
sup

α∈[ε,1/ε]
|ψ(αξ)|dξ <∞ (27)

and ∫ ∞
−∞

sup
α∈[ε,1/ε]

|k(αx)|dx <∞, (28)

and γn satisfies the bandwidth conditions of the assumptions. Then

Ω̂n(θ̂n, δ̂n)− Ωn
p
−→ 0. (29)

Finally, note that the conditions on k(.) and ψ(.) that are imposed in Theorem 2 are
satisfied for the Bartlett, Parzen, Quadratic Spectral, and Tukey-Hanning kernels.

Department of Econometrics, Tilburg University, PO Box 90153, 5000 LE Tilburg,
The Netherlands

and

Department of Economics, Cardiff Business School, Aberconway Building, Colum
Drive, Cardiff CF1 3EU, U.K.

Appendix

For simplicity, in the proofs and the lemmas that follow, we assume that Xnt(θ) is
real-valued, i.e. p = 1. From the reasoning as in Newey and West (1987), it follows
that convergence in probability then has to hold for the case of vector-valued Xnt(θ)
as well. In what follows, we will need the mixingale concept. Let Hnt denote an array
of σ-fields that is nondecreasing in t for each n. Mixingales are defined as follows:
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Definition 2 {Xnt,Hnt} is called an L2-mixingale if for m ≥ 0

‖ Xnt − E(Xnt|Hn,t+m) ‖2≤ cntψ(m+ 1), (30)

‖ E(Xnt|Hn,t−m) ‖2≤ cntψ(m), (31)

and ψ(m)→ 0 as m→∞.

The cnt are usually referred to as the mixingale magnitude indices, and we will refer
to {Xnt,Hnt} as a mixingale of szie -1/2 if the associated ψ(m) sequence is of size
-1/2. Also, note that Assumption 2 implies that {Xnt,Hnt} is a mixingale of size -1/2
and mixingale magnitude indices cnt for Hnt = σ({Vnt, Vn,t−1, . . .}) by Theorem 17.5
of Davidson (1994), and in this Appendix Hnt will denote this sigma field. Before
proving our main results, we will state the following result (see e.g. Lemma 2.1 of
Hall and Heyde(1980) ):

Lemma A.1 Let {Xnt,Hnt} be an L2-mixingale of size -1/2 with mixingale magni-
tude indices cnt. Then E(

∑n
t=1 Xnt)

2 = O(
∑n
t=1 c

2
nt).

Proof of Lemma 1:

Define

bn = [γn/δ] and rn = [n/bn], (32)

ηδ(x) = (δ22π)−1/2 exp(−x2δ−22−1), (33)

Ω1nδ =
2n∑

t=−n+1

(γ−1/2
n

n−t∑
l=1−t

Xn,t+lk(l/γn)1[0,n](|l|))×

(γ−1/2
n

n−t∑
j=1−t

Xn,t+jηδ(j/γn)), (34)

Ω2nδ =
2n∑

t=−n+1

(γ−1/2
n

n−t∑
l=1−t

Xn,t+lk(l/γn)1[0,bn](|l|)1[0,n](|l|))×

(γ−1/2
n

n−t∑
j=1−t

Xn,t+jηδ(j/γn)), (35)

and

Ω3nδ =
2n∑

t=−n+1

(γ−1/2
n

n−t∑
l=1−t

Xn,t+lk(l/γn)1[0,bn](|l|))×

(γ−1/2
n

n−t∑
j=1−t

Xn,t+jηδ(j/γn)1[0,bn](|j|)). (36)
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Lemma 1 will be proven by noting that

‖ Ω̂n − EΩ̂n ‖1≤‖ Ω̂n − Ω1nδ ‖1 + ‖ Ω1nδ − Ω2nδ ‖1 + ‖ Ω2nδ − Ω3nδ ‖1

+ ‖ Ω3nδ − EΩ3nδ ‖1 + ‖ EΩ3nδ − EΩ2nδ ‖1

+ ‖ EΩ2nδ − EΩ1nδ ‖1 + ‖ EΩ1nδ − EΩ̂n ‖1

≤ 2 ‖ Ω̂n − Ω1nδ ‖1 +2 ‖ Ω1nδ − Ω2nδ ‖1

+2 ‖ Ω2nδ − Ω3nδ ‖1 + ‖ Ω3nδ − EΩ3nδ ‖1 . (37)

The lemmas that follow show that each of the four terms on the right-hand side of
the last equation vanish if we first take the ’limsup’ as n approaches infinity and then
take the limit as δ approaches zero.

Lemma A.2 Under the conditions of Lemma 1,

lim
δ→0

lim sup
n→∞

‖ Ω̂n − Ω1nδ ‖1= 0. (38)

Proof:

Firstly note that under the conditions stated,

k(x) =
∫ ∞
−∞

exp(iξx)ψ(ξ)dξ (39)

by the inversion formula for Fourier transforms. Therefore, using the fact that ψ(.)
is an even function (which is a consequence of the fact that k(.) is an even function),
we can write

Ω̂n =
∫ ∞
−∞

n∑
t=1

n∑
s=1

XntXns exp(iξ(t− s)/γn)ψ(ξ)dξ

=
∫ ∞
−∞

n∑
t=1

n∑
s=1

XntXns cos(ξ(t − s)/γn)ψ(ξ)dξ

=
∫ ∞
−∞

(
(
n∑
t=1

Xnt cos(tξ/γn))2 + (
n∑
t=1

Xnt sin(tξ/γn))2

)
ψ(ξ)dξ. (40)

Next, note that we can rewrite the expression for Ω1nδ as

γ−1
n

∞∑
s=−∞

∞∑
l=−∞

∞∑
j=−∞

Xn,s+jXn,s+lk(l/γn)ηδ(j/γn)1[0,n](|l|)1[1,n](s+ l)1[1,n](s+ j)

= γ−1
n

∞∑
t=−∞

∞∑
l=−∞

∞∑
j=−∞

XntXn,t+l−jk(l/γn)ηδ(j/γn)1[0,n](|l|)1[1,n](t+ l − j)1[1,n](t)

= γ−1
n

∞∑
t=−∞

∞∑
l=−∞

∞∑
s=−∞

XntXnsk(l/γn)ηδ((t− s)/γn + l/γn)1[0,n](|l|)1[1,n](s)1[1,n](t)
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=
n∑
t=1

n∑
s=1

XntXnsknδ((t− s)/γn), (41)

where

knδ(x) = γ−1
n

n∑
l=−n

k(l/γn)ηδ(x+ l/γn). (42)

The inverse Fourier transform of knδ(.) equals

(2π)−1
∫ ∞
−∞

exp(−iξx)γ−1
n

n∑
l=−n

k(l/γn)ηδ(x+ l/γn)dx

= (γn2π)−1
n∑

l=−n

k(l/γn) exp(iξl/γn)
(∫ ∞
−∞

exp(−iξ(x+ l/γn))ηδ(x+ l/γn)dx
)

= (γn2π)−1
n∑

l=−n

k(l/γn) exp(iξl/γn) exp(−δ2ξ2/2)

≡ ψn(ξ) exp(−δ2ξ2/2), (43)

and note that for all x ∈ IR, limn→∞ ψn(x) = ψ(x). Next, note that from the
representation of Equation (40) and the properties of ‖ . ‖1, it follows that

‖ Ω̂n − Ω1nδ ‖1

≤
∫ ∞
−∞

(
E(

n∑
t=1

Xnt cos(tξ/γn))2 + E(
n∑
t=1

Xnt sin(tξ/γn))2

)
×

(ψ(ξ)− ψn(ξ) exp(−ξ2δ2/2))dξ, (44)

and therefore by Lemma A.1,

‖ Ω̂n − Ω1nδ ‖1

= O(
∫ ∞
−∞

(|ψ(ξ)− ψ(ξ) exp(−ξ2δ2/2)| + |ψ(ξ)− ψn(ξ)| exp(−ξ2δ2/2))dξ) (45)

and by first taking the ’limsup’ as n → ∞ and then the limit as δ → 0, the result
follows by dominated convergence.

Lemma A.3 Under the conditions of Lemma 1,

lim
δ→0

lim sup
n→∞

‖ Ω1nδ − Ω2nδ ‖1= 0. (46)

10



Proof:

Note that

‖ Ω1nδ − Ω2nδ ‖1

=‖
2n∑

t=−n+1

(γ−1/2
n

n−t∑
l=1−t

Xn,t+lk(l/γn)1[0,n](|l|)1[bn+1,∞)(|l|))×

(γ−1/2
n

n−t∑
j=1−t

Xn,t+jηδ(j/γn)) ‖1

≤
2n∑

t=−n+1

‖ γ−1/2
n

n−t∑
l=1−t

Xn,t+lk(l/γn)1[bn+1,∞)(|l|)1[0,n](|l|) ‖2 ×

‖ γ−1/2
n

n−t∑
j=1−t

Xn,t+jηδ(j/γn) ‖2

≤ 3(
2n∑

t=−n+1

γ−1
n

n−t∑
l=1−t

c2
n,t+lk(l/γn)21[bn+1,∞)(|l|)1[0,n](|l|))

1/2×

(
2n∑

t=−n+1

γ−1
n

n−t∑
j=1−t

c2
n,t+jηδ(j/γn)2)1/2

= O((
∞∑

l=bn+1

γ−1
n k(l/γn)2(sup

n≥1

n∑
t=1

c2
nt))

1/2(
∞∑
j=0

γ−1
n ηδ(j/γn)2(sup

n≥1

n∑
t=1

c2
nt))

1/2)

= O((
∫ ∞

1/δ
k(x)2dx)1/2)→ 0 (47)

as δ → 0, where the first two inequalities are Cauchy-Schwartz’s.

Lemma A.4 Under the conditions of Lemma 1,

lim
δ→0

lim sup
n→∞

‖ Ω2nδ − Ω3nδ ‖1= 0. (48)

Proof:

This proof is similar to the previous proof.

Lemma A.5 Under the conditions of Lemma 1, for all δ > 0,

lim
n→∞

‖ Ω3nδ − EΩ3nδ ‖1= 0. (49)
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Proof:

Note that

Ω3nδ =
2n∑

t=−n+1

YntZnt, (50)

where

Ynt = γ−1/2
n

n−t∑
l=1−t

Xn,t+lk(l/γn)1[0,bn](|l|), (51)

Znt = γ−1/2
n

n−t∑
j=1−t

Xn,t+jηδ(j/γn)1[0,bn](|j|), (52)

and define

φ2
nt = γ−1

n

n−t∑
l=1−t

c2
n,t+lk(l/γn)21[0,bn](|l|), (53)

ψ2
nt = γ−1

n

n−t∑
j=1−t

c2
n,t+jηδ(j/γn)21[0,bn](|j|). (54)

Next, note that Y 2
nt/φ

2
nt and Z2

nt/ψ
2
nt are uniformly integrable by Lemma 3.2 of

Davidson (1992) and the discussion following that lemma. Next, define h(K, x) =
x1[−K,K](x) +K1(K,∞)(x)−K1(−∞,−K)(x), and let Kη be some constant that will be

defined later on. Let Ỹnt = h(Kηφnt, Ynt) and Z̃nt = h(Kηψnt, Znt). Then we have

lim sup
n→∞

‖
2n∑

t=−n+1

YntZnt − ỸntZ̃nt ‖1

≤ lim sup
n→∞

(‖
2n∑

t=−n+1

YntZnt1(Kηφnt,∞](|Ynt|) ‖1 + ‖
2n∑

t=−n+1

YntZnt1(Kηψnt,∞)(|Znt|) ‖1)

≤ C

(
sup
t,n≥1

E(Z2
nt/ψ

2
nt)1(K2

η ,∞)(Z
2
nt/ψ

2
nt)

)1/2

+C

(
sup
t,n≥1

E(Y 2
nt/φ

2
nt)1(K2

η,∞)(Y
2
nt/φ

2
nt)

)1/2

< η (55)

for some constant C > 0 by a large enough choice of Kη and because

sup
n≥1

2n∑
t=−n+1

(ψ2
nt + φ2

nt) <∞ (56)

by assumption. Next, note that for ỸntZ̃nt we have for m ≥ 0

‖ ỸntZ̃nt − E(ỸntZ̃nt|V
t+m
n,t−m) ‖2

12



≤‖ ỸntZ̃nt −E(Ỹnt|V
t+m
n,t−m)Z̃nt ‖2

+ ‖ E(Ỹnt|V
t+m
n,t−m)Z̃nt −E(Ỹnt|V

t+m
n,t−m)E(Z̃nt|V

t+m
n,t−m) ‖2

≤‖ Z̃nt ‖∞‖ Ỹnt − E(Ỹnt|V
t+m
n,t−m) ‖2

+ ‖ E(Ỹnt|V
t+m
n,t−m) ‖∞‖ Z̃nt −E(Z̃nt|V

t+m
n,t−m) ‖2

= O((γ−1
n

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|))

1/2 ‖ Ynt − E(Ynt|V
t+m
n,t−m) ‖2)

+O((γ−1
n

n−t∑
l=1−t

c2
n,t+l1[0,bn](|l|))

1/2 ‖ Znt − E(Znt|V
t+m
n,t−m) ‖2)

= O((γ−1
n

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|))γ

1/2
n ν(m)). (57)

Next, we introduce our blocking scheme. Define r′n = [3n/2bn], and note that

2n∑
t=−n+1

ỸntZ̃nt =
r′n∑
i=1

(2i−1)bn−n∑
t=(2i−2)bn−n+1

ỸntZ̃nt

+
r′n∑
i=1

2ibn−n∑
t=(2i−1)bn−n+1

ỸntZ̃nt +
2n∑

t=r′nbn−n+1

ỸntZ̃nt

≡
r′n∑
i=1

Uni +
r′n∑
i=1

U ′ni +
2n∑

t=r′nbn−n+1

ỸntZ̃nt. (58)

For the last term, we have

‖
2n∑

t=r′nbn−n+1

ỸntZ̃nt ‖1= O(bn max
1≤t≤n

c2
nt) = o(1) (59)

by assumption. We will analyze the sum of the Uni, noting that the case of the U ′ni is
analogous, and note that the assertion of the lemma follows if we can show that the
first term of Equation (58) obeys a law of large numbers. Define

W i+m
n,i−m = σ({Vn,(2i−2m−2)bn−n+1, . . . , Vn,(2i+2m−1)bn−n})

and note that Uni is near epoch dependent on Wni because for m ≥ 1

‖ Uni − E(Uni|W
i+m
n,i−m) ‖2≤

(2i−1)bn−n∑
t=(2i−2)bn−n+1

‖ ỸntZ̃nt − E(ỸntZ̃nt|W
i+m
n,i−m) ‖2

≤
(2i−1)bn−n∑

t=(2i−2)bn−n+1

‖ ỸntZ̃nt − E(ỸntZ̃nt|V
t+mbn
n,t−mbn) ‖2

13



= O(γ−1
n

(2i−1)bn−n∑
t=(2i−2)bn−n+1

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|)m

−1/2−ε) (60)

where the second inequality follows because V t+mbnn,t−mbn ⊆ W
i+m
n,i−m for t ∈ [(2i− 2)bn −

n+ 1, (2i− 1)bn − n] and m ≥ 1. For m = 0, the relevant result is

‖ Uni − E(Uni|W
i
ni) ‖2≤ 2 ‖ Uni ‖2

= O(
(2i−1)bn−n∑

t=(2i−2)bn−n+1

(γ−1
n

n−t∑
l=1−t

c2
n,t+lk(l/γn)2)1/2(γ−1

n

n−t∑
j=1−t

c2
n,t+jηδ(j/γn)2)1/2)

= O(γ−1
n

(2i−1)bn−n∑
t=(2i−2)bn−n+1

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|)). (61)

We conclude that Uni is also an L2-mixingale of size -1/2 with respect to the Fni =
σ({Vn,2ibn−n, Vn,2ibn−n−1, . . .}) because for all m ≥ 1

‖ E(Uni|Fn,i−2m)−EUni ‖2= O(γ−1
n

(2i−1)bn−n∑
t=(2i−2)bn−n+1

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|)m

−1/2−ε)

+O(α(mbn)1/2−1/r ‖ Uni ‖r)

= O(γ−1
n

(2i−1)bn−n∑
t=(2i−2)bn−n+1

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|)m

−1/2−ε) (62)

similarly to the argument in De Jong (1995). For m = 0, the result from Equation
(61) can again be used. Finally, note that from Lemma A.1 it follows that

E|
r′n∑
i=1

Uni − EUni|
2 = O(

r′n∑
i=1

h2
ni) (63)

where the hni denote the mixingale magnitude indices of Uni. Therefore, the lemma
holds because

lim
n→∞

r′n∑
i=1

γ−1
n

(2i−1)bn−n∑
t=(2i−2)bn−n+1

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|)

2

≤ lim
n→∞

r′n∑
i=1

γ−1
n

(2i−1)bn−n∑
t=(2i−2)bn−n+1

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|)×

max
1≤i≤r′n

γ−1
n

(2i−1)bn−n∑
t=(2i−2)bn−n+1

n−t∑
j=1−t

c2
n,t+j1[0,bn](|j|)

= O(γn max
1≤t≤n

c2
nt) = o(1) (64)

under the conditions stated.
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Proof of Lemma 2:

Let Ytk = E(Xnt|Hn,t−k)− E(Xnt|Hn,t−k−1), and note that

Xnt =
∞∑

k=−∞

Ytk (65)

and also that

EYtkYt+m,i+m = 0 (66)

unless i = k. Further, letting

ξtk = ‖E(Xnt|Hn,t−k)‖2 (67)

and

ζtk = ‖Xnt −E(Xnt|Hn,t+k)‖2 , (68)

we have

‖ Ytk ‖
2
2= ξ2

tk − ξ
2
t,k+1 = ζ2

t,k−1 − ζ
2
t,k. (69)

Substituting from De Jong (1995), Lemma 3 we have

|EXntXn,t+j | ≤ |
∞∑

k=−∞

∞∑
i=−∞

EYtkYt+j,k+j | = |
∞∑

k=−∞

EYtkYt+j,k+j |

≤
∞∑

k=−∞

‖Ytk‖2 ‖Yt+j,k+j‖2 =
0∑

k=−∞

(
ξ2
tk − ξ

2
t,k+1

)1/2 (
ξ2
t+j,k+j − ξ

2
t+j,k+j+1

)1/2

+
∞∑
k=1

(
ζ2
t,k−1 − ζ

2
tk

)1/2 (
ζ2
t+j,k−j−1 − ζ

2
t+j,k−j

)1/2
(70)

where on the assumptions, ξtk ≤ cntψ(k) for k ≥ 0, and ζtk ≤ cntψ(k + 1) for k ≥ 0,
where the numbers ψ(k) are from the mixingale definition. Therefore,

|EΩ̂n −Ωn| = |
n∑
t=1

n∑
s=1

EXntXns(1− k((t− s)/γn))|

≤ 2|
n∑
t=1

n−t∑
j=0

EXntXn,t+j(1− k(j/γn))| ≤ 2Tn1 + 2Tn2 (71)

where

Tn1 =
0∑

k=−∞

n∑
t=1

(
ξ2
tk − ξ

2
t,k+1

)1/2
n−t∑
j=0

|1− k(j/γn)|
(
ξ2
t+j,k+j − ξ

2
t+j,k+j+1

)1/2
(72)

and

Tn2 =
∞∑
k=1

n∑
t=1

(
ζ2
t,k−1 − ζ

2
tk

)1/2
n−t∑
j=0

|1− k(j/γn)|
(
ζ2
t+j,k−j−1 − ζ

2
t+j,k−j

)1/2
. (73)
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Take Tn1 as representative. Define a summable sequence {βm}∞m=0 by setting β0 = 1
and βm = m−1 log(m + 1)−2 for m ≥ 1. Two applications of the Cauchy-Schwartz
inequality yield

Tn1 =
0∑

k=−∞

n∑
t=1

(
(ξ2
tk − ξ

2
t,k+1)1/2

)n−t∑
j=0

|1− k(j/γn)|
(
ξ2
t+j,k+j − ξ

2
t+j,k+j+1

)1/2



≤
0∑

k=−∞

(
n∑
t=1

(ξ2
tk − ξ

2
t,k+1)

)1/2

×

n∑
t=1

n−t∑
j=0

(β1/2
j |1− k(j/γn)|)(β−1/2

j

(
ξ2
t+j,k+j − ξ

2
t+j,k+j+1

)1/2
)

2

≤
0∑

k=−∞

(
n∑
t=1

(ξ2
tk − ξ

2
t,k+1)

)1/2

×

 n∑
t=1

(
n−t∑
j=0

β−1
j (ξ2

t+j,k+j − ξ
2
t+j,k+j+1))(

∞∑
j=0

βj(1− k(j/γn))2

1/2

. (74)

Note that for any array {hsj},
∑n
t=1

∑n−t
j=0 ht+j,j =

∑n
s=1

∑s−1
j=0 hsj, and therefore in

particular

n∑
t=1

n−t∑
j=0

β−1
j (ξ2

t+j,k+j − ξ
2
t+j,k+j+1) =

n∑
s=1

s−1∑
j=0

β−1
j (ξ2

s,k+j − ξ
2
s,k+j+1)

≤
n∑
s=1

s−2∑
j=0

(β−1
j+1 − β

−1
j )ξ2

s,k+j+1 + β−1
0 ξ2

s,k+1

 = O(n) (75)

by assumption. Therefore,

Tn1 = O(
0∑

k=−∞

(
n∑
t=1

(ξ2
tk − ξ

2
t,k+1))1/2(

∞∑
j=0

βj(1− k(j/γn))2)1/2)

= O(1) × o(1) = o(1) (76)

where it is used that limn→∞ γ
−1
n = 0 and k(0) = 1. This concludes the proof.
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Proof of Lemma 3:

For the case that Assumptions 1, 2, 3 and 5 hold, the proof is identical to that in
Hansen (1992, p. 971-972). For the case that Assumptions 1, 2, 3 and 4 hold, first
note that by Taylor’s theorem,

Ω̂n(θ̂n)− Ω̂n = 2
n∑
t=1

n∑
s=1

(∂/∂θ)Xnt(θ̃n)(θ̂n − θ0)Xnsk((t− s)/γn)

+
n∑
t=1

n∑
s=1

(∂/∂θ)Xns(θ̃n)(θ̂n − θ0)(∂/∂θ)Xnt(θ̃n)(θ̂n − θ0)k((t− s)/γn) (77)

for some θ̃n that is on the line between θ0 and θ̂n. The last term converges in
probability to zero because n1/2(θ̂n − θ0) = OP (1) by assumption and because

‖ n−1
n∑
t=1

n∑
s=1

(∂/∂θ′)Xns(θ̃n)(∂/∂θ)Xnt(θ̃n)k((t− s)/γn) ‖1

= O(n−1
n∑
t=1

n∑
s=1

|k((t− s)/γn)| ‖ (∂/∂θ)Xns(θ̃n) ‖2‖ (∂/∂θ)Xnt(θ̃n) ‖2)

= O(
n−1∑

j=−n+1

|k(j/γn)|n−1
n∑
t=1

E sup
θ∈Θ
|(∂/∂θ)Xnt(θ)|

2)

= O(
n−1∑

j=−n+1

|k(j/γn)|/n) = O(γn/n) = o(1) (78)

by assumption. Next, write λt = E(∂/∂θ)Xnt(θ0) and note that

n∑
t=1

n∑
s=1

(∂/∂θ)Xnt(θ̃n)(θ̂n − θ0)Xnsk((t− s)/γn)

=
n∑
t=1

n∑
s=1

((∂/∂θ)Xnt(θ̃n)− λt)(θ̂n − θ0)Xnsk((t− s)/γn)

+n−1
n∑
t=1

n∑
s=1

λt(θ̂n − θ0)Xnsk((t− s)/γn), (79)

and the first term converges in probability to zero because n1/2(θ̂− θ0) = OP (1) and
because

‖ n−1/2
n∑
t=1

n∑
s=1

((∂/∂θ)Xnt(θ̃n)− λt)Xnsk((t− s)/γn) ‖1

≤
∫ ∞
−∞
‖

(
n∑
s=1

Xns exp(−iξs/γn)

)
×
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(
n−1/2

n∑
t=1

((∂/∂θ)Xnt(θ̃n)− λt) exp(iξt/γn)

)
‖1 |ψ(ξ)|dξ

≤
∫ ∞
−∞
‖

n∑
s=1

Xns exp(−iξs/γn) ‖2 ×

(
‖ sup
θ∈Θ
|
n∑
t=1

((∂/∂θ)Xnt(θ) −E(∂/∂θ)Xnt(θ)) exp(iξt/γn)| ‖2 +

‖
n∑
t=1

(E(∂/∂θ)Xnt(θ̃n))− λt) exp(iξt/γn) ‖2

)
|ψ(ξ)|dξ = o(1) (80)

by assumption. Finally, note that

(
n∑
t=1

n∑
s=1

λt(θ̂n − θ0)Xnsk((t− s)/γn))2

= n(θ̂n − θ0)
′M(θ̂n − θ0) (81)

where

M = n−2
n∑
t=1

n∑
s=1

n∑
i=1

n∑
j=1

λ′tXnsXniλjk((t− s)/γn)k((i− j)/γn), (82)

and because M is a positive definite matrix and because n1/2(θ̂n − θ0) = OP (1), the
result now follows if we can show that

En−2
n∑
t=1

n∑
s=1

n∑
i=1

n∑
j=1

λtλ
′
jXnsXnik((t− s)/γn)k((i− j)/γn) = o(1).

In order to prove this, first note that from the proof of Lemma 2 it can be seen that
for L2-mixingale random variables Xnt of size -1/2 and a positive deterministic array
anst we have

|
n∑
i=1

n∑
s=1

EXniXnsanijanst|

= O((
n∑
i=1

c2
nia

2
nij

n∑
s=1

c2
nsa

2
nst)

1/2). (83)

Therefore, we have

En−2
n∑
t=1

n∑
s=1

n∑
i=1

n∑
j=1

λjλ
′
tXnsXnik((t− s)/γn)k((i− j)/γn)

= O

n−2
n∑
t=1

n∑
j=1

|λt||λj |(
n∑
i=1

c2
nik((i− j)/γn)2

n∑
s=1

c2
nsk((s− t)/γn)2)1/2
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= O

n−2

(
n∑
t=1

|λt|(
n∑
s=1

c2
nsk((t− s)/γn)2)1/2

)2


= O

(
(
n∑
t=1

|λt|
2)(n−1

n∑
t=1

n∑
s=1

c2
nsk((t− s)/γn)2)

)

= O(γn/n) = o(1), (84)

where the third equality follows from the Cauchy-Schwartz inequality. This concludes
the proof.

Proof of Theorem 2:

For the case that Assumptions 1, 2, 3 and 5 hold, the proof is identical to that in
Hansen (1992, p. 971-972). For the case that Assumptions 1, 2, 3 and 4 hold, note
that by assumption, with arbitrary large probability α̂ can be made an element of
the interval [ε, 1/ε] for some small ε ∈ (0, 1). Furthermore note that it is well-known
(see e.g. Newey (1991)) that

sup
α∈[ε,1/ε]

|Ω̂n(θ̂n, αγn)− Ωn|
p
−→ 0 (85)

if |Ω̂n(θ̂n, αγn) − Ωn| converges to zero pointwise in α and if Ω̂n(θ̂n, αγn) − Ωn is
stochastically equicontinuous on [ε, 1/ε]. Compactness is obvious, and pointwise con-
vergence follows from the results that were established earlier. Stochastic equicon-
tinuity follows if Ω̂n(θ̂n, αγn) − Ω̂n(θ0, αγn) and Ω̂n(θ0, αγn) − Ωn are stochastically
equicontinuous on [ε, 1/ε]. The last result follows because

Ω̂n(θ0, αγn)

=
∫ ∞
−∞

(
(
n∑
t=1

Xnt sin(tξ/αδn))2 + (
n∑
t=1

Xnt cos(tξ/αδn))2

)
ψ(ξ)dξ

=
∫ ∞
−∞

(
(
n∑
t=1

Xnt sin(tφ/δn))2 + (
n∑
t=1

Xnt cos(tφ/δn))2

)
ψ(αφ)αdφ (86)

so

sup
α∈[ε,1/ε]

sup
α∈[ε,1/ε]:|α−α′|<η

|Ω̂n(θ0, αγn)− Ω̂n(θ0, α
′γn)|

≤
∫ ∞
−∞

(
E(

n∑
t=1

Xnt sin(tφ/δn))2 + E(
n∑
t=1

Xnt cos(tφ/δn))2

)
×

sup
α∈[ε,1/ε]

sup
α′∈[ε,1/ε]:|α−α′|<η

|ψ(αφ)α− ψ(α′φ)α′|dφ. (87)

Therefore, using Lemma A.1 again, it is easily seen that

lim
η→0

lim sup
n→∞

E sup
α∈[ε,1/ε]

sup
α′∈[ε,1/ε]:|α−α′|<η

|Ω̂n(θ0, αγn)− Ω̂n(θ0, α
′γn)| = 0, (88)
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which implies stochastic equicontinuity of Ω̂n(θ0, αγn) − Ωn. For showing the other
result, consider Equation (77). From copying the reasoning leading up to Equation
(78), it is easily shown that

‖ sup
α∈[ε,1/ε]

|n−1
n∑
t=1

n∑
s=1

(∂/∂θ)Xns(θ̃n)(∂/∂θ′)Xnt(θ̃n)k((t− s)/γn)| ‖1

= O(n−1
n−1∑

j=−n+1

sup
α∈[ε,1/ε]

|k(αx)|dx) = O(γn/n) = o(1) (89)

by assumption. Therefore, for proving stochastic equicontinuity of Ω̂n(θ̂n, αγn) −
Ω̂n(θ0, αγn) it is sufficient to show that

Tn(α) =
n∑
t=1

n∑
s=1

(∂/∂θ)Xnt(θ̃n)(θ̂n − θ0)Xnsk((t− s)/γn) (90)

is stochastically equicontinuous. This is shown by noting that

Tn(α) =
∫ ∞
−∞

(
n∑
s=1

Xnt exp(−isξ/γn))(
n∑
t=1

(∂/∂θ)Xnt(θ̃n) exp(itξ/γn))αψ(αξ)dξ,(91)

and therefore

E sup
α∈[ε,1/ε]

sup
|α−α′|<η

|Tn(α)− Tn(α′)|

≤
∫ ∞
−∞
‖

n∑
t=1

Xnt exp(itξ/γn) ‖2 ×

‖
n∑
t=1

sup
θ∈Θ

(∂/∂θ)Xnt(θ) exp(itξ/γn) ‖2 sup
α∈[ε,1/ε]

sup
|α−α′|<η

|αψ(αξ)− α′ψ(α′ξ)|dξ

= O(
∫ ∞
−∞

sup
α∈[ε,1/ε]

sup
|α−α′|<η

|αψ(αξ) − α′ψ(α′ξ)|dξ) −→ 0 (92)

as η → 0.
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