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The P -value for cost sharing in minimum cost
spanning tree situations1

Rodica Branzei2, Stefano Moretti3, Henk Norde4 and Stef Tijs5

August 1, 2003

Abstract: The aim of this paper is to introduce and axiomatically char-
acterize the P -value as a rule to solve the cost sharing problem in minimum
cost spanning tree (mcst) situations. The P -value is related to the Kruskal
algorithm for finding an mcst. Moreover, the P -value leads to a core allo-
cation of the corresponding mcst game, and when applied also to the mcst
subsituations it delivers a population monotonic allocation scheme. A cone-
wise positive linearity property is one of the basic ingredients of an axiomatic
characterization of the P -value.

Key-words: Cost sharing, minimum cost spanning tree games, value, po-
pulation monotonic allocation schemes.

1 Introduction

Since the basic paper of Bird (1976) much attention has been paid to the
problem of sharing costs in situations where agents have to be connected
with a source as cheap as possible, and where connections between users and
between users and the source can be shared among users if they cooperate.
Let us refer to the dissertations of Aarts (1994) and Feltkamp (1995), and
to the papers of Granot and Huberman (1981), Feltkamp et al. (1994), and
Kar (2002). In the papers of Dutta and Kar (2002), Kent and Skorin-Kapov
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(1996), Moretti et al. (2002), and Norde et al. (2001), the existence of cost
monotonic and population monotonic allocation rules (Sprumont (1990)) is
central.

The P -value introduced in Section 3, has been arisen from our interest
in monotonic allocation schemes too (Tijs et al. (2003)). Our introduction
of the P -value is a two-step procedure. First, we define this value on cones
of mcst situations with the same ordering pattern of the edges with respect
to costs. Then, we prove that we can patch these P -values together to the
whole cone of mcst situations. It turns out that our P -value equals the
Equal Remaining Obligations (ERO) rule suggested by Jos Potters (which
explains the name of our rule) and which is studied first in Feltkamp et
al. (1994). Furthermore, our P -value turns out to be the average of the
population monotonic allocation rules introduced in Norde et al. (2001). In
Section 4 we give an axiomatic characterization of the P -value, where the
cone-wise positive linearity of P is a fundamental property and where the
decomposition of an mcst situation into simple mcst situations (cf. Kuipers
(1993), Norde et al. (2001)) plays a role. In Section 5, which concludes the
paper, the related Π-value for minimum spanning tree games is introduced
and it is shown that the Π-value is a population monotonic allocation rule.

2 Preliminaries and notations

First, we recall some definitions from graph theory which are used in this
paper. An (undirected) graph is a pair < V,E >, where V is a set of vertices
or nodes and E is a set of edges e of the form {i, j} with i, j ∈ V , i 6= j.
The complete graph on a set V of vertices is the graph < V,EV >, where
EV = {{i, j}|i, j ∈ V and i 6= j}. A path between i and j in a graph < V,E >
is a sequence of nodes i = i0, i1, . . . , ik = j, k ≥ 1, such that {is, is+1} ∈ E
for each s ∈ {0, . . . , k − 1}. A cycle in < V, E > is a path from i to i for
some i ∈ V . Two nodes i, j ∈ V are connected in (V,E) if i = j or if there
exists a path between i and j in E.

Now, we consider minimum cost spanning tree (mcst) situations. In an
mcst situation a set N = {1, . . . , n} of agents is involved willing to be con-
nected as cheap as possible to a source (i.e. a supplier of a service) denoted
by 0. In the sequel we use the notation N ′ = N ∪{0}. An mcst situation can
be represented by a tuple < N ′, EN ′ , w >, where < N ′, EN ′ > is the complete
graph on the set N ′ of nodes or vertices, and w : EN ′ → IR+ is a map which
assigns to each edge e ∈ EN ′ a nonnegative number w(e) representing the
weight or cost of edge e. We call w a weight function. If w(e) ∈ {0, 1} for
every e ∈ EN ′ , the weight function w is called a simple weight function, and
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we refer then to < N ′, EN ′ , w > as a simple mcst situation.
Since in our paper the graph of possible edges is always the complete

graph, we simply denote an mcst situation with set of users N , source 0,
and weight function w by < N ′, w >. Often we identify an mcst situation
< N ′, w > with the corresponding weight function w. We denote by WN ′

the
set of all mcst situations < N ′, w > (or w) with node set N ′. For each S ⊆ N ,
one can consider the mcst subsituation < S ′, w|S′ >, where S ′ = S ∪{0} and
w|S′ : ES′ → IR+ is the restriction of the weight function w to ES′ ⊆ EN ′ ,
i.e. w|S′(e) = w(e) for each e ∈ ES′ .

Let < N ′, w > be an mcst situation. Two nodes i and j are called (w, N ′)-
connected if i = j or if there exists a sequence of nodes i = i0, . . . , ik = j in
N ′, k ≥ 1, with w({is, is+1}) = 0 for every s ∈ {0, . . . , k − 1}. A (w, N ′)-
component of N ′ is a maximal subset of N ′ with the property that any
two nodes in this subset are (w, N ′)-connected. We denote by Ci(w) the
(w, N ′)-component to which i belongs and by C(w) the set of all the (w, N ′)-
components of N ′. Clearly, the collection of (w,N ′)-components forms a
partition of N ′.

We define the set ΣEN′ of linear orders on EN ′ as the set of all bijections
σ : {1, . . . , |EN ′|} → EN ′ , where |EN ′| is the cardinality of the set EN ′ . For
each mcst situation < N ′, w > there exists at least one linear order σ ∈ ΣEN′
such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′|)). We denote by wσ the

column vector
(
w(σ(1)), w(σ(2)), . . . , w(σ(|EN ′|)))t

.
For any σ ∈ ΣEN′ we define the set

Kσ = {w ∈ IR
EN′
+ | w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′|))}.

The set Kσ is a cone in IR
EN′
+ , which we call the Kruskal cone with respect

to σ. One can easily see that
⋃

σ∈ΣEN′
Kσ = IR

EN′
+ . For each σ ∈ ΣEN′ the

cone Kσ is a simplicial cone with generators eσ,k ∈ Kσ, k ∈ {1, 2, . . . , |EN ′ |},
where

eσ,k(σ(1)) = eσ,k(σ(2)) = . . . = eσ,k(σ(k − 1)) = 0
and

eσ,k(σ(k)) = eσ,k(σ(k + 1)) = . . . = eσ,k(σ(|EN ′|)) = 1
(1)

[Note that eσ,1(σ(k)) = 1 for all k ∈ {1, 2, . . . , |EN ′|}].
This implies that each w ∈ Kσ can be written in a unique way as non-

negative linear combination of these generators. To be more concrete, for
w ∈ Kσ we have

w = w(σ(1))eσ,1 +

|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
eσ,k. (2)
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Clearly, we can also write WN ′
=

⋃
σ∈ΣEN′

Kσ, if we identify an mcst

situation < N ′, w > with w.
Any mcst situation gives rise to two problems: the construction of a

network Γ ⊆ EN ′ of minimal cost connecting all users to the source, and
a cost sharing problem of distributing this cost among users in a fair way.
The cost of a network Γ is w(Γ) =

∑
e∈Γ w(e). A network Γ is a spanning

network on S ′ ⊆ N ′ if for every e ∈ Γ we have e ∈ ES′ and for every i ∈ S
there is a path in Γ from i to the source. The cost of a minimum (cost)
spanning network Γ on N ′ in a simple mcst situation equals |C(w)| − 1 (see
Lemma 2 in Norde et al. (2001)). To construct a minimum cost spanning
network Γ on N ′ we use in this paper the Kruskal algorithm (Kruskal (1956)),
where the edges are considered one by one according to non-decreasing cost,
and an edge is either rejected, if it generates a cycle with the edges already
constructed, or it is constructed, otherwise.

Let < N ′, w > be an mcst situation. The minimum cost spanning tree
game (N, cw) (or simply cw), corresponding to < N ′, w >, is defined by

cw(S) = min{w(Γ)|Γ is a spanning network on S ′}
for every S ∈ 2N\{∅}, where 2N stands for the power set of the player set
N , with the convention that cw(∅) = 0.

We denote by MCST N the class of all mcst games corresponding to mcst
situations inWN ′

. For each σ ∈ ΣEN′ , we denote by Gσ the set {cw | w ∈ Kσ}
which is a cone. We can express MCST N as the union of all cones Gσ, i.e.
MCST N =

⋃
σ∈ΣEN′

Gσ, and we would like to point out that MCST N itself

is not a cone if |N | ≥ 2.

3 The P -value

Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. We can consider

a sequence of precisely |EN ′| + 1 graphs < N ′, F σ,0 >,< N ′, F σ,1 >, . . . ,
< N ′, F σ,|EN′ | > such that F σ,0 = ∅, F σ,k = F σ,k−1 ∪ {σ(k)} for each
k ∈ {1, . . . , |EN ′|}. Now, we define the connection vectors bσ,k ∈ IRN for
each k ∈ {0, 1, . . . , |EN ′|} as follows

bσ,k
i =





0 if i is connected to 0 in < N ′, F σ,k >

1
ni(F σ,k)

otherwise
(3)

for each i ∈ N , where ni(F
σ,k) is the number of nodes in N which are

connected to i, directly or indirectly, via edges in F σ,k. Note that ni(F
σ,k) = 1
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if i is disconnected from each other node in < N ′, F σ,k >. Note also that for

each σ ∈ ΣEN′ , bσ,0
i = 1 and b

σ,|EN′ |
i = 0, for each i ∈ N .

Example 1 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w as depicted in Figure 1. Note that w ∈ Kσ, with σ(1) = {1, 3},
σ(2) = {1, 2}, σ(3) = {2, 3}, σ(4) = {1, 0}, σ(5) = {2, 0}, σ(6) = {3, 0}.
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Figure 1: An mcst situation with three agents.

The sequence of seven graphs < N ′, F σ,k > and the corresponding con-
nection vectors bσ,k are shown in the following table

< N ′, ∅ > bσ,0 = (1, 1, 1)t

< N ′, {{1, 3}} > bσ,1 = (1
2
, 1, 1

2
)t

< N ′, {{1, 3}, {1, 2}} > bσ,2 = (1
3
, 1

3
, 1

3
)t

< N ′, {{1, 3}, {1, 2}, {2, 3}} > bσ,3 = (1
3
, 1

3
, 1

3
)t

< N ′, {{1, 3}, {1, 2}, {2, 3}, {1, 0}} > bσ,4 = (0, 0, 0)t

< N ′, {{1, 3}, {1, 2}, {2, 3}, {1, 0}, {2, 0}} > bσ,5 = (0, 0, 0)t

< N ′, {{1, 3}, {1, 2}, {2, 3}, {1, 0}, {2, 0}, {3, 0}} > bσ,6 = (0, 0, 0)t

Remark 1 Let σ ∈ ΣEN′ . For each k ∈ {1, . . . , |EN ′|}, consider the simple
mcst situation eσ,k. Then, for k > 1, each edge e ∈ F σ,k−1 has cost eσ,k(e) = 0.
Therefore, if i and j in N ′ are connected in < N ′, F σ,k−1 >, then they are
also in the same (eσ,k, N ′)-component. Conversely, if i and j are in the same
(eσ,k, N ′)-component, then they are also connected in < N ′, F σ,k−1 > and as
a consequence, by relation (3), bσ,k−1

i = bσ,k−1
j .

Definition 1 Let σ ∈ ΣEN′ . The contribution matrix w.r.t. σ is the matrix
Mσ ∈ IRN×EN′ where the rows correspond to the agents and the columns to
the edges and such that the k-th column of Mσ equals

Mσek = bσ,k−1 − bσ,k (4)

for each k ∈ {1, . . . , |EN ′|}. [Here ek is a column vector such that ek
i = 1 if

i = k and ek
i = 0 for each i ∈ {1, . . . , |EN ′ |} \ {k}.]
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Note that each column Mσek such that (Mσek)i 6= 0 for some i ∈ N corre-
sponds to the edge σ(k) constructed at stage k in Kruskal’s algorithm. Note
that the sum of the elements of such a column equals 1. The interpretation of
the contribution vector Mσek is that each entry (Mσek)i, i ∈ N , represents
the fraction of the cost of edge σ(k) paid by user i. On the other hand, the
zero columns in Mσ correspond to rejected edges in Kruskal’s algorithm.

Another characteristic of the contribution matrix is that the sum of the
elements in each row i ∈ N is equal to 1,

|EN′ |∑

k=1

(Mσek)i =

|EN′ |∑

k=1

(
bσ,k−1
i − bσ,k

i

)
= bσ,0

i − b
σ,|EN′ |
i = 1− 0 = 1. (5)

Definition 2 For each σ ∈ ΣEN′ , we define the P σ-value as the map P σ :
Kσ → IRN , where P σ(w) = Mσwσ for each mcst situation w in the cone Kσ.

In order to define P on WN ′
we need Proposition 1, which follows directly

from the following lemma.

Lemma 1 Let σ ∈ ΣEN′ , w ∈ Kσ and suppose that, for some t ∈ {1, . . . ,
|EN ′|−1}, wσ

t = wσ
t+1. Then for the ordering σ′ ∈ ΣEN′ such that σ′(i) = σ(i)

for each i ∈ {1, . . . , |EN ′|} \ {t, t + 1}, σ′(t) = σ(t + 1) and σ′(t + 1) = σ(t),
we have that w ∈ Kσ′ and P σ(w) = P σ′(w).

Proof It is obvious that w ∈ Kσ′ . Put a = wσ
t . Note that bσ,k = bσ′,k for all

k ∈ {1, . . . , |EN ′|} with k 6= t. This implies that wσ
k Mσek = wσ′

k Mσ′ek for
all k ∈ {1, . . . , |EN ′|} with k /∈ {t, t + 1} and

wσ′
t Mσ′et + wσ′

t+1M
σ′et+1 =

= a(bσ′,t−1 − bσ′,t) + a(bσ′,t − bσ′,t+1) =
= a(bσ′,t−1 − bσ′,t+1) = a(bσ,t−1 − bσ,t+1) =
= a(bσ,t−1 − bσ,t) + a(bσ,t − bσ,t+1) =
= wσ

t Mσet + wσ
t+1M

σet+1

(6)

So, Mσwσ = Mσ′wσ′ or, equivalently, P σ(w) = P σ′(w).

Proposition 1 If w ∈ Kσ ∩Kσ′ with σ, σ′ ∈ ΣEN′ , then P σ(w) = P σ′(w).

This proposition makes it possible to define the P -value on WN ′
.

Definition 3 The P -value is the map P : WN ′ → IRN , defined by

P (w) = P σ(w) = Mσwσ (7)

for each w ∈ WN ′
, and σ ∈ ΣEN′ such that w ∈ Kσ.
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Example 2 Consider again the mcst situation in Example 1. Then the
contribution matrix is

Mσ =




1
2

1
6

0 1
3

0 0
0 2

3
0 1

3
0 0

1
2

1
6

0 1
3

0 0




and wσ = (10, 18, 20, 24, 24, 26)t. Therefore P (w) = Mσwσ = (16, 20, 16)t.

An alternative way of calculating P (w), which will be useful in the following,
is as nonnegative linear combination of P (eσ,k), k ∈ {1, . . . , |EN ′|}, where
σ ∈ ΣEN′ is such that w ∈ Kσ (see equation (2)). In formula,

P (w) = w(σ(1))P (eσ,1) +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
P (eσ,k). (8)

Note that since for each σ ∈ ΣEN′ the connection vector bσ,|EN′ | is the zero
vector, the P -value of each mcst situation eσ,k ∈ Kσ, k ∈ {1, . . . , |EN ′ |},
equals the connection vector corresponding to the graph < N ′, F σ,k−1 >

P (eσ,k) = Mσeσ,k =

|EN′ |∑

r=k

(bσ,r−1 − bσ,r) = bσ,k−1. (9)

Remark 2 It turns out that the P -value coincides with the Equal Remain-
ing Obligations (ERO) rule. The ERO-rule has been introduced in Feltkamp
et al. (1994) via an extension of Kruskal’s algorithm. According to the
ERO-rule, at each stage k ∈ {0, 1, . . . , |EN ′|} of the algorithm, each player
i ∈ N pays exactly the difference fk

i between remaining obligations ok−1
i and

ok
i , i.e. fk

i = ok−1
i − ok

i for each i ∈ N , where, as shown in Theorem 4.3 of
Feltkamp et al. (1994), ok

i is equal to bσ,k
i , with σ such that w ∈ Kσ, as cal-

culated in relation (3). An axiomatic characterization of the ERO-rule using
the properties of NE (Non-Emptiness), FSC (Free-for-Source-Component),
LOC (Local), Eff (Efficiency), ET (Equal Treatment) and IPCons (Inversely
Proportional Consistency) is given there.

In the next section we provide an alternative axiomatic characterization.

4 An axiomatic characterization of the

P -value

We call a map F : WN ′ → IRN assigning to every mcst situation w a unique
cost allocation in IRN a solution. Some interesting properties for solutions of
mcst situations are the following.
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Property 1 The solution F is efficient (EFF) if for each w ∈ WN ′

∑
i∈N

Fi(w) = w(Γ),

where Γ is a minimum cost spanning network on N ′.

Property 2 The solution F has the Equal Treatment (ET) property if for
each w ∈ WN ′

and for each i, j ∈ N with Ci(w) = Cj(w)

Fi(w) = Fj(w).

Property 3 The solution F has the Upper Bounded Contribution (UBC)
property if for each w ∈ WN ′

and every (w,N ′)-component C 6= {0}
∑

i∈C\{0}
Fi(w) ≤ min

i∈C\{0}
w({i, 0}).

Property 4 The solution F has the Cone-wise Positive Linearity (CPL)
property if for each σ ∈ ΣEN′ , for each pair of mcst situations w, ŵ ∈ Kσ

and for each pair α, α̂ ≥ 0, we have

F (αw + α̂ŵ) = αF (w) + α̂F (ŵ).

Proposition 2 The P -value satisfies the properties EFF, ET, UBC and
CPL.

Proof Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. Then the

following considerations hold:

i) Let σ(t1), σ(t2), . . ., σ(tn), be the n edges of the mcst Γ corresponding
to Kruskal order σ. These edges correspond to non-zero columns in
Mσ and then the sum of coordinates of each column equals 1. Hence,

P (w) = Mσwσ =
n∑

r=1

w(σ(tr))M
σeσ(tr),

∑
i∈N

Pi(w) =
n∑

r=1

w(σ(tr))
∑
i∈N

(
Mσeσ(tr)

)
i
=

n∑
r=1

w(σ(tr)) = w(Γ),

which proves the EFF property.
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ii) Note that if w is the zero function then the ET property is trivially
satisfied. Consider w 6= 0 and define k = min{j|w(σ(j)) > 0}. Then
wσ is of the form (0, . . . , 0, w(σ(k)), . . . , w(σ(|EN ′|)))t. Then for each
i ∈ N

Pi(w) =
(
Mσwσ

)
i
=

|EN′ |∑

r=k

(bσ,r−1
i − bσ,r

i )w(σ(r)). (10)

Let C be a (w, N ′)-component and consider two users i, j ∈ C. By Re-
mark 1 this means that i and j are connected in the graph < N ′, F σ,k−1 >
and so also in < N ′, F σ,r > for every r ∈ {k, . . . , |EN ′|}. Then for each
r ∈ {k, . . . , |EN ′|}

bσ,r−1
i − bσ,r

i = bσ,r−1
j − bσ,r

j .

Hence, by (10), Pi(w)=Pj(w), which proves the ET property.

iii) If w is the zero function then the UBC property is trivially satisfied.
Consider w 6= 0 and let C 6= {0} be a (w, N ′)-component. Note
that there exists m ∈ {1, . . . , |EN ′|} such that σ(m) ⊆ C ∪ {0} and
w(σ(m)) = mini∈C\{0} w({i, 0}). Define k = min{j|w(σ(j)) > 0}. If
m < k, then 0 ∈ C and we are done since nodes in C \{0} pay nothing
according to P (w). Instead, if m ≥ k then

∑
i∈C\{0} Pi(w) =

=
∑

i∈C\{0}
∑m

r=k w(σ(r))(bσ,r−1
i − bσ,r

i ) ≤
≤ w(σ(m))

∑
i∈C\{0}

∑m
r=k(b

σ,r−1
i − bσ,r

i ) =

= w(σ(m))
∑

i∈C\{0} bσ,k−1
i =

= w(σ(m))

(11)

where in the first equality we use that bσ,u
i = 0 for all u ∈ {m, . . . , |EN ′|}

and for each i ∈ C, and in the last one we use the fact that all nodes
in C \ {0} are connected in the graph < N ′, F σ,k−1 >. Note that (11)
proves the UBC property.

iv) The CPL property follows trivially from the definition of P .

Theorem 1 The P -value is the unique solution which satisfies the properties
EFF, ET, UBC and CPL on the class WN ′

of mcst situations.

Proof We already know by Proposition 2 that the P -value satisfies the four
properties EFF, ET, UBC and CPL. To prove the uniqueness consider a map
ψ : WN ′ → IRN satisfying EFF, ET, UBC and CPL.
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Let σ ∈ ΣEN′ and k ∈ {1, . . . , |EN ′|}. First we will show that for each
mcst situation eσ,k ∈ Kσ, ψ(eσ,k) = P (eσ,k). By UBC, for each (eσ,k, N ′)-
component C 6= {0}

∑

i∈C\{0}
ψi(e

σ,k) ≤ min
i∈C\{0}

w({i, 0}) =





0 if 0 ∈ C

1 if 0 /∈ C
(12)

implying that

∑
i∈N

ψi(e
σ,k) =

∑

C∈C(eσ,k)

∑

j∈C\{0}
ψj(e

σ,k) ≤ |C(eσ,k)| − 1 = eσ,k(Γ),

where Γ is a minimum spanning network on N ′ for mcst situation eσ,k. By
EFF, we have

∑
i∈N ψi(e

σ,k) = eσ,k(Γ), and then inequalities in relation (12)
are equalities. Finally, by ET, we find that for each i ∈ N

ψi(e
σ,k) =





0 if 0 ∈ Ci(e
σ,k)

1
|Ci(eσ,k)| if 0 /∈ Ci(e

σ,k)
=





0 if 0 ∈ Ci(e
σ,k)

1
ni(F σ,k−1)

if 0 /∈ Ci(e
σ,k)

=

= Pi(e
σ,k).

(13)
Now we show that for any mcst situation w ∈ WN ′

, ψ(w) = P (w). Let
σ ∈ ΣEN′ be such that w ∈ Kσ. From the CPL property of ψ and equation
(2) it follows

ψ(w) = w(σ(1))ψ(eσ,1) +

|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
ψ(eσ,k). (14)

Further, from (8), (13) and (14) we obtain ψ(w) = P (w).

To prove the logical independence of the four properties we need to con-
sider some other solutions on WN ′

:

i) αP , an α multiple of the solution concept P , with α ∈ [0, 1);

ii) ε, such that εi(w) = w(Γ)
|N | and i ∈ N , where Γ is a minimum spanning

network on N ′ for mcst situation w;

iii) P τ where τ ∈ ΣN , the set of bijections on N . To introduce this so-
lution we follow the same plan used for the P -value. Analogously
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to Definition 3, for each σ ∈ ΣEN′ we define P σ,τ (w) = Mσ,τwσ for
each mcst situation w in the cone Kσ. Similarly to Definition 1, here
Mσ,τek = bσ,τ,k−1 − bσ,τ,k where, for each k ∈ {1, . . . , |EN ′| − 1} and
i ∈ N , bσ,τ,k is such that

bσ,τ,k
i =





1 if i = arg minj∈Ci(eσ,k+1) τ(j) and 0 /∈ Ci(e
σ,k+1)

0 otherwise;

in addition bσ,τ,0
i = 1 and b

σ,τ,|EN′ |
i = 0 for each i ∈ N .

A variant of Proposition 1 holds also for the maps P σ,τ , σ ∈ ΣEN′ , and
so this enables us to define the solution P τ (w) = P σ,τ (w) = Mσ,τwσ

for each w ∈ WN ′
, where σ ∈ ΣEN′ is such that w ∈ Kσ. The solution

P τ turns out to coincide with the allocation xN introduced in Norde
et al. (2001) via an algorithmic procedure (called the Subtraction Al-
gorithm) for the computation of a population monotonic allocation
scheme (pmas) of a mcst game.

iv) D, such that (w,N ′)-components “pay” proportionally to their “dis-
tance” from the source, i.e. such that for each i ∈ N

Di(w) =





1
|Ci(w)|

minj∈Ci(w) w({j,0})P
C∈C(w) minj∈C\{0} w({j,0}) w(Γ) if 0 /∈ Ci(w)

0 if 0 ∈ Ci(w),

where Γ is a minimum spanning network on N ′ for mcst situation w.

Proposition 3 The axioms EFF, ET, UBC and CPL are logically indepen-
dent.

Proof The logical independence of the four properties follows from the
following table.

EFF ET UBC CPL

αP no yes yes yes
P τ yes no yes yes
ε yes yes no yes
D yes yes yes no

In order to prove the first row, note that by Proposition 2, also αP satisfies
axioms ET, UBC and CPL but not EFF for each α ∈ IR+ such that α < 1.
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By definition, P τ satisfies the CPL property. Similarly, via a variant of the
arguments used in Proposition 2, it is possible to prove that P τ satisfies also
EFF and UBC. In order to show that P τ does not satisfy the ET property,
consider the mcst situation < N ′, w > with N ′ = {0, 1, 2} and w as depicted
in Figure 2. Then P τ (w) = (1, 2) for τ = (2, 1).

¡
¡

¡¡

@
@

@@

i

ii

0

1 2

1 5

2

Figure 2: The mcst situation < {0, 1, 2}, w >.

To prove the third row, it is easy to see that ε satisfies EFF, ET and
CPL. To see that ε does not satisfy the UBC property, consider again the
mcst situation < N ′, w > with N ′ = {0, 1, 2} and w as depicted in Figure
2. Then ε(w) = (3

2
, 3

2
), i.e. player 1 in the (w, N ′)-component C = {1} pays

more than mini∈C\{0} w({i, 0}) = 1.
For the proof of the last row, note that D trivially satisfies EFF and ET.

Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. The UBC property

follows from the fact that for each component C∗ ∈ C(w), if 0 /∈ C∗ then

minj∈C∗ w({j, 0}) =
minj∈C∗ w({j,0})P

C∈C(w) minj∈C\{0} w({j,0})
∑

C∈C(w) minj∈C\{0} w({j, 0}) ≥

≥ minj∈C∗ w({j,0})P
C∈C(w) minj∈C\{0} w({j,0})w(Γ) =

∑
j∈C∗ Dj(w).

In order to prove that D does not satisfy the CPL property, consider the
two mcst situations < N ′, w′ > and < N ′, w′′ >, with N ′ = {0, 1, 2} and w′,
w′′ as depicted in Figure 3.
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0
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1

< {0, 1, 2}, w′ >

¡
¡

¡¡

@
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@@

i

ii

0

1 2

20 1

2

< {0, 1, 2}, w′′ >

Figure 3: Two mcst situations in the same Kruskal cone.

Note that w′, w′′ ∈ Kσ with σ(1) = {0, 2}, σ(2) = {1, 2} and σ(3) = {0, 1}.
Then D(w′) = (1, 0) and D(w′′) = (60

21
, 3

21
).

Differently, the sum of the two mcst situations w′ + w′′ is the mcst
situation < N ′, w′ + w′′ > with w′ + w′′ depicted in Figure 4. Finally,
D(w′ + w′′) = (96

25
, 4

25
) 6= (81

21
, 3

21
) = D(w′) +D(w′′).
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Figure 4: The mcst situation < {0, 1, 2}, w′ + w′′ >.

5 Concluding remarks

In this paper a solution for mcst situations, the P -value, has been introduced.
Also, an axiomatic characterization of the P -value using the properties EFF
(Efficiency), ET (Equal Treatment), UBC (Upper Bounded Contribution)
and CPL (Cone-wise Positive Linearity) is given.

One can prove that

P (w) =
1

n!

∑
τ∈ΣN

P τ (w) (15)

where w ∈ WN ′
and P τ (w) are as described in Section 4. It is shown in

Norde et al. (2001) that [P τ
i (w|S∪{0})]S∈2N\{∅},i∈S is a pmas.

The P -value for mcst situations induces a cost sharing rule for mcst
games, which we call the Π-value (Potters value). The Π-value is the map
Π : MCST N → IRN

+ obtained by Π(cw) = P (w), where w ∈ WN ′
. It follows

that Π is positive linear on the cone Gσ, i.e. for all cw, cw′ ∈ Gσ and all
α, α′ ∈ IR+ it holds

Π(αcw + α′cw′) = αΠ(cw) + α′Π(cw′).

Moreover, (15) implies that the Π-value is a population monotonic allocation
rule. To be more concrete, let us denote by cS

w the subgame of cw with player
set S, S ⊆ N , defined by cS

w(T ) = cw(T ), for each T ⊆ S. The Π-value
assigns to each cS

w ∈ MCST S the P -value of the mcst subsituation w|S′ ,
where S ′ = S ∪ {0}. In formula Π(cS

w) := P (w|S′) for each cS
w ∈ MCST S.

Then, [Πi(c
S
w)]S∈2N\{∅},i∈S is a pmas.

In Tijs et al. (2003) we focus on other monotonicity properties of the
P -value like cost monotonicity and drop-out monotonicity.
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