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Abstract

In this paper we study the formation of coalition structures in situations described

by a cooperative game. Players choose independently which coalition they want

to join. The payoffs to the players are determined by an allocation rule on the

underlying game and the coalition structure that results from the strategies of

the players according to some formation rule. We study two well-known coalition

structure formation rules. We show that for both formation rules there exists

a unique component efficient allocation rule that results in a potential game and

study the coalition structures resulting from potential maximizing strategy profiles.
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1 Introduction

In this paper, we study the formation of coalition structures in case the underlying eco-

nomic possibilities of the players are represented by a cooperative game. The process of

coalition formation and payoff division will be modeled by means of a game in strate-

gic form, which can be seen as a two-stage game. In the first stage, players reveal their

preferred coalition and some coalition formation rule then determines the coalition struc-

ture. In the second stage, the payoffs to the players are determined by an exogenously

given allocation rule for cooperative games with coalition structures.

We study two descriptions of the first stage, one reflects a stringent coalition formation

rule and the other a less stringent rule. Both assume that each player chooses a coalition

he wants to join. According to the stringent formation rule, two players end up in the

same coalition if they choose the same coalition and all players in their preferred coalition

also choose this coalition, whereas the less stringent formation rule only requires that

they choose the same coalition.

The second stage, the stage of payoff division, is modeled by means of an exogenous

allocation rule for cooperative games with a fixed coalition structure. The payoffs to

the players are determined by applying the allocation rule to the underlying cooperative

game and the coalition structure that was formed in the first stage. Aumann and Drèze

(1974) study such allocation rules, mainly extensions of well-known allocation rules for

cooperative games to the setting of cooperative games with a coalition structure. They

impose component efficiency, which states that each element in a coalition structure

should divide the total payoffs accruing to this coalition among its members. We will

impose component efficiency as well.

These two-stage models of coalition formation might result in multiple equilibria. In

this paper we will not interfere in the discussion on equilibrium selection. Rather, we

study coalition formation models that are potential games (cf. Monderer and Shapley

(1996)). Potential games are games in strategic form with a natural and generally

accepted equilibrium refinement, the potential maximizer.

The goal of this paper is two-fold. First, for the two specifications of the coalition

formation rule described above, we study which component efficient allocation rules

result in the coalition formation game being a potential game. Secondly, if the coalition

formation rule and the allocation rule are such that the coalition formation game is a

potential game, we study which coalition structures result according to the potential

maximizer.

We will show that if we adopt the stringent formation rule in the first stage and we
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impose component efficiency on the allocation rule in the second stage, then there is a

unique allocation rule that results in a potential game. This allocation rule divides for

each element of the coalition structure the gains over stand-alone values equally among

the players in this coalition.

If we adopt the less stringent coalition formation rule rather than the stringent one

and impose component efficiency on the allocation rule in the second stage, then we also

find that there is a unique allocation rule that results in a potential game. This allocation

rule is the extension of the Shapley value to cooperative games with coalition structures

as suggested by Aumann and Drèze (1974). Moreover, we show that with this allocation

rule, if the underlying game is superadditive then the strategy profile resulting in the

grand coalition is a potential maximizing strategy profile, and all potential maximizing

strategy profiles result in the same payoffs.

Von Neumann and Morgenstern (1944) already present a non-cooperative two-stage

game of coalition formation in (superadditive) cooperative games. The first stage is

described by the stringent formation rule. Von Neumann and Morgenstern (1944) assume

that if a coalition is formed, in the second stage it equally divides the value of this

coalition among its members.

An innovative approach to coalition structure formation is presented in Hart and

Kurz (1983). In contrast with the models described so far, Hart and Kurz (1983) assume

that coalitions only form for the sake of bargaining over the division of the value of the

grand coalition. For a specific coalition structure they employ the Shapley value in two

negotiation stages, first between coalitions, and then within coalitions. The resulting

allocation rule is called the coalitional Shapley value and coincides with the value for

games with a priori unions of Owen (1977). Hart and Kurz (1983) then analyze a two-

stage model of coalition formation. They study two descriptions of the first stage, the

stringent coalition formation rule and the less stringent rule. In the second stage, the

players receive the coalitional Shapley value of the underlying game with the coalition

structure of the first stage.

Meca-Martinez et al. (1998) also study a two-stage model of coalition structure for-

mation. The first stage of their model is described by the stringent coalition formation

rule. Unlike Hart and Kurz (1983), Meca-Martinez et al. (1998) do not fix an allocation

rule for the second stage a priori. Rather, they study conditions on the allocation rule

to ensure that if the underlying game is convex, then the grand coalition results from

a strong Nash equilibrium of the corresponding game in strategic form. In this paper

we show that the results shown by Meca-Martinez et al. (1998) also hold for the less
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stringent formation rule.

In the last few years several papers have studied two-stage cooperation structure

formation models and their relation to non-cooperative potential games. Monderer and

Shapley (1996) study a participation game. Players choose whether or not to participate

in some underlying cooperative game. Subsequently, a non-participating player receives

some stand-alone value, whereas a participating player receives a payoff according to an

allocation rule applied on the subgame of participating players. Monderer and Shapley

(1996) restrict themselves to allocation rules that divide the value of the coalition of

participating players among these players. They show that if such an allocation rule

results in a potential game, then this allocation rule coincides with the Shapley value.

Related cooperation structure formation models are studied by Qin (1996) and Slikker

et al. (1999). Qin (1996) studies a model describing the formation of bilateral inter-

action links, introduced by Myerson (1991). Qin (1996) shows that under an efficiency

requirement there is only one allocation rule that results in a potential game and that is

the Myerson value (cf. Myerson (1977)). Furthermore, it is shown that if the underlying

game is superadditive, then the strategy profile that results in the full cooperation struc-

ture is a potential maximizing strategy profile, and every potential maximizing strategy

profile results in the same payoffs as the full cooperation structure. Slikker et al. (1999)

find similar results for the formation of conferences, where conferences are subsets of

players, representing the possibilities of direct negotiations between the players.

The plan of this paper is as follows. Section 2 contains preliminaries and a char-

acterization of the extension of the Shapley value to cooperative games with coalition

structures as introduced by Aumann and Drèze (1974). In section 3 we describe the

model of coalition structure formation and two coalition formation rules. We show that

the results of Meca-Martinez et al. (1998) also hold if the less stringent coalition forma-

tion rule is employed rather than the the stringent coalition formation rule. In section

4 we show that for both descriptions of the first stage it holds that under a feasibility

requirement there is only one allocation rule that results in a potential game: the value

of Aumann and Drèze (1974) for the less stringent formation rule and an allocation rule

that coincides with the equal division rule of Von Neumann and Morgenstern (1944) on

the class of zero-normalized games for the stringent formation rule. In section 5 we show

that if the less stringent formation rule and the value of Aumann and Drèze (1974) are

employed, then the strategy profile resulting in the grand coalition maximizes the po-

tential and that every strategy profile that maximizes the potential, results in the same

payoffs as are obtained if the grand coalition is formed. We conclude in section 6.
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2 Preliminaries

A cooperative game is a pair (N, v), where N = {1, . . . , n} denotes the set of players and

v : 2N → IR the characteristic function, with v(∅) = 0. If no confusion can arise we some-

times identify a game with its characteristic function. The set of all cooperative games

with player set N is denoted by TUN . A cooperative game (N, v) is zero-normalized if

for all i ∈ N it holds that v({i}) = 0. A cooperative game (N, v) is superadditive if for

all T1 ⊆ N and all T2 ⊆ N\T1 it holds that1

v(T1 ∪ T2) ≥ v(T1) + v(T2).

Hence, a game is superadditive if the value of the union of two disjoint coalitions (weakly)

exceeds the sum of the values of these coalitions. A cooperative game (N, v) is convex if

for all i ∈ N and all T1 ⊆ T2 ⊆ N with i ∈ T1 it holds that

v(T1)− v(T1\{i}) ≤ v(T2)− v(T2\{i}).

So, a game is convex if the marginal contribution of a player to a coalition is (weakly)

less than his marginal contribution to a superset of that coalition.

The subgame (S, v|S) corresponding to a game (N, v) with S ⊆ N is determined by

v|S(T ) = v(T ) for all T ⊆ S. The unanimity game (N, uR) is the game with uR(S) = 1 if

R ⊆ S and uR(S) = 0 otherwise (see Shapley (1953)). Every game (N, v) can be written

as a unique linear combination of unanimity games, i.e., v =
∑
R⊆N λR(v)uR. In case

there is no ambiguity about the underlying game we simply write λR instead of λR(v).

The Shapley value Φ of a game (cf. Shapley (1953)) is now easily described by

Φi(N, v) =
∑

R⊆N, i∈R

λR

|R|
for all i ∈ N.

The Shapley value is the unique allocation rule that satisfies efficiency, i.e.,∑
i∈N Φi(N, v) = v(N), and balanced contributions, i.e., Φi(N, v)− Φi(N\{j}, v|N\{j}) =

Φj(N, v)− Φj(N\{i}, v|N\{i}) for all i, j ∈ N with i 6= j (see Myerson (1980)).

A player i ∈ N is a dummy player in the game (N, v) if v(T ∪ {i}) = v(T ) + v({i})

for all T ⊆ N\{i}.

A game with a coalition structure is a triple (N, v,B), where (N, v) is a cooperative

game and B a partition of N . The set of all partitions of N is denoted by ΠN . For

notational convenience we denote for all B = {B1, . . . , Bm} ∈ ΠN , all k ∈ {1, . . . ,m},

and all i ∈ Bk:

B − i = {B1, . . . , Bk−1, Bk\{i}, {i}, Bk+1, . . . , Bm}.

1T ⊆ N denotes that T is a subset of N , T ⊂ N denotes that T is a strict subset of N .
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An allocation rule γ for cooperative games with coalition structures is a function that

assigns to every triple (N, v,B) a vector γ(N, v,B) ∈ IRN . In case there is no ambiguity

on the underlying game, we will simply write γ(B) instead of γ(N, v,B). Aumann and

Drèze (1974) studied cooperative games with coalition structures and allocation rules for

these situations. Among other things they studied the allocation rule ΦAD that attributes

to player i ∈ Bk ∈ B the Shapley value Φ for player i of the game restricted to partition

element Bk, i.e., ΦAD
i (N, v,B) = Φ(Bk, v|Bk). We will refer to ΦAD as the value of

Aumann and Drèze. We characterize the value of Aumann and Drèze by two properties,

component efficiency and component restricted balanced contributions. Consider these

properties for an allocation rule γ:

Component Efficiency (CE) For every cooperative game (N, v) and every partition

B = {B1, . . . , Bm} of N it holds for all k ∈ {1, . . . ,m} that∑
i∈Bk

γi(N, v,B) = v(Bk).

Component Restricted Balanced Contributions (CRBC) For every cooperative

game (N, v), every partition B = {B1, . . . , Bm} of N , every k ∈ {1, . . . ,m}, and

all i, j ∈ Bk it holds that

γi(N, v,B)− γi(N, v,B − j) = γj(N, v,B)− γj(N, v,B − i).

Theorem 2.1 The value of Aumann and Drèze (1974) is the unique allocation rule for

cooperative games with coalition structures satisfying (CE) and (CRBC).

Proof: The Shapley value satisfies efficiency and balanced contributions. Since the

value of Aumann and Drèze for the players in a partition element coincides with the

Shapley value of the game restricted to the players of this element it follows by efficiency

and balanced contributions of the Shapley value that the value of Aumann and Drèze

satisfies component efficiency and component restricted balanced contributions.

Let γ be an allocation rule that satisfies component efficiency and component restrict-

ed balanced contributions. Let (N, v) be a cooperative game. We will show that

γi(N, v,B) = ΦAD
i (N, v,B), for all B ∈ ΠN , all B ∈ B, and all i ∈ B.

The proof will be by induction to |B|. Obviously, for all B ∈ ΠN , all B ∈ B with

|B| = 1 it follows by component efficiency that

γi(N, v,B) = v({i}) = ΦAD
i (N, v,B).
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Let p ∈ IN, p ≥ 2. Assume that it holds for all B ∈ ΠN , all B ∈ B with |B| ≤ p− 1, and

all i ∈ B that γi(N, v,B) = ΦAD
i (N, v,B). We will prove that γi(N, v,B) = ΦAD

i (N, v,B)

for all B ∈ ΠN , all B ∈ B with |B| = p, and all i ∈ B.

Let B ∈ ΠN and B ∈ B such that |B| = p. Let i ∈ B, then for all j ∈ B\{i} it holds

that

γj(N, v,B)− γi(N, v,B) = γj(N, v,B − i)− γi(N, v,B − j)

= ΦAD
j (N, v,B − i)− ΦAD

i (N, v,B − j)

= ΦAD
j (N, v,B)− ΦAD

i (N, v,B),

where the first and third equality follow by component restricted balanced contributions

of γ and ΦAD respectively. The second equality follows by the induction hypothesis. So,

for all j ∈ B\{i}:

γj(N, v,B)− ΦAD
j (N, v,B) = γi(N, v,B)− ΦAD

i (N, v,B). (1)

Hence,

∑
j∈B

[
γj(N, v,B)− ΦAD

j (N, v,B)
]

= |B|
[
γi(N, v,B)− ΦAD

i (N, v,B)
]
.

Component efficiency of γ and ΦAD then implies that γi(N, v,B) = ΦAD
i (N, v,B).

This completes the proof. 2

Potential games associated with cooperative games, were introduced by Hart and

Mas-Colell (1989). They define a potential P as a map on the set of all cooperative

games. Hart and Mas-Colell (1989) remark that for a specific TU-game (N, v) one can

view PHM
(N,v)(S) = P (S, v|S) as a TU-game as well (see remark 2.8 of Hart and Mas-Colell

(1989)). Furthermore, they show that PHM
(N,v) =

∑
R⊆N

λR(v)
|R| uR. If there is no ambiguity

about the underlying game we will simply write PHM instead of PHM
(N,v). Note that a

cooperative game completely determines its associated potential game and vice versa.

For convenience we will sometimes refer to an associated potential game without speci-

fying the underlying cooperative game. Finally, to avoid confusion with non-cooperative

potential games, we will refer to potential games associated with cooperative games as

HM-potential games.

A game in strategic form will be denoted by Γ = (N ; (Xi)i∈N ; (πi)i∈N), where N =

{1, . . . , n} denotes the player set, Xi the strategy space of player i ∈ N , and π = (πi)i∈N

the payoff function which assigns to every strategy-tuple x = (xi)i∈N ∈
∏
i∈N Xi = X a
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vector in IRN . For notational convenience we write x−i = (xl)l∈N\{i}, x−ij = (xl)l∈N\{i,j},

and xR = (xl)l∈R.

Monderer and Shapley (1996) formally defined the class of non-cooperative potential

games. A function P :
∏
i∈N Xi → IR is called a potential for Γ if for every i ∈ N , every

x ∈ X, and every ti ∈ Xi it holds that

πi(xi, x−i)− πi(ti, x−i) = P (xi, x−i)− P (ti, x−i). (2)

The game Γ is called a potential game if it admits a potential.

The following set of collections of cooperative games forms the basis for a represen-

tation theorem of potential games.

GN,X :=
{
{(N, vx)}x∈X ∈ (TUN)X | vx(R) = vt(R) if xR = tR for all x, t ∈ X, R ⊆ N

}
.

(3)

This representation theorem (cf. Ui (1996)) describes a relation between non-cooperative

potential games and Shapley values of cooperative games.

Theorem 2.2 Let Γ = (N ; (Xi)i∈N ; (πi)i∈N) be a game in strategic form. Γ is a potential

game if and only if there exists {(N, vx)}x∈X ∈ GN,X such that

πi(x) = Φi(vx) for all i ∈ N and all x ∈ X. (4)

Proof: See Ui (1996). 2

3 A model of coalition formation

In this section we will describe two models of coalition formation. We describe the model

of coalition formation of Meca-Martinez et al. (1998) and a slight modification of this

model. We will argue that this modification does not affect their results.

Both models of coalition formation we analyze in this section can be seen as two-

stage models. We assume that a cooperative game (N, v) is exogenously given. In the

first stage, each player announces the coalition he wants to join. Depending on the

announcements of the players a coalition structure results. In the second stage, players

negotiate over the division of the surplus, given the coalition structure of the first stage.

This stage is modeled by means of an allocation rule.
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Firstly, we will describe the model of coalition formation that is a slight modification

of the model of coalition formation of Meca-Martinez et al. (1998). Formally, this model

of coalition formation is given by Γ(N, v, γ) = (N ; (Xi)i∈N ; (fγi )i∈N) where for all i ∈ N

Xi = {T ⊆ N | i ∈ T}

represents the strategy space of player i. A strategy of a player is interpreted as the

partition element this player wants to be in. A strategy profile x = (x1, . . . , xn) induces

a cooperation structure B(x) = {B1, . . . , Bm} where players i and j are in the same

partition element if and only if xi = xj, i.e., if they prefer the same partition element.

Note that this condition can only be satisfied if i ∈ xj and j ∈ xi. The payoff function

fγ = (fγi )i∈N is then defined as the allocation rule γ applied to the cooperation structure

that results,

fγ(x) = γ(N, v,B(x)).

In case there is no ambiguity on the underlying game we will simply write Γ(γ) instead

of Γ(N, v, γ). For notational convenience we define for all T ⊆ N and all xT ∈
∏
i∈T Xi,

B(xT) as the partition of T where players i and j are in the same partition element if

and only if xi = xj.

Meca-Martinez et al. (1998) model the formation of a coalition slightly different. In

their model a strategy profile x = (x1, . . . , xn) induces a cooperation structure BM(x) =

{B1, . . . , Bm} where player i ends up in coalition xi if and only if xj = xi for all j ∈ xi,

i.e., all players in the coalition prefered by player i prefer that coalition. If xj 6= xi for

some j ∈ xi player i ends up isolated. The formulation of Meca-Martinez et al. (1998)

implies that a player ends up either isolated or in the coalition that he chose. In our

formulation he can also end up in a subset of the coalition that he chose. For notational

convenience we define for all T ⊆ N and all xT ∈
∏
i∈T Xi, BM(xT ) as the partition of T

where player i is in partition element xi if xi ⊆ T and xj = xi for all j ∈ xi. Otherwise,

player i ends up isolated.

The difference between the two models of coalition structure formation is illustrated

in the following example.

Example 3.1 Let (N, v) be a 3-person cooperative game and γ some allocation rule

for cooperative games with coalition structures. Consider Γ(N, v, γ) and assume the

players have chosen the following strategies: x1 = N , x2 = N , and x3 = {2, 3}. Then

B(x) = {{1, 2}, {3}} since x1 = x2 6= x3. However, in the model of Meca-Martinez et

al. (1998) the resulting coalition structure is BM(x) = {{1}, {2}, {3}} since 3 ∈ x1 = x2

and x3 6= x1 = x2. Note that in the model of Meca-Martinez et al. (1998) player 3 can
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influence whether players 1 and 2 end up in the same partition element. Player 3 does

not have this influence in our model Γ(N, v, γ).

We will refer to the model of Meca-Martinez et al. (1998) with underlying cooperative

game (N, v) and allocation rule γ by ΓM (N, v, γ). The distinction between the model

of Meca-Martinez et al. (1998) and our model is exactly the same as the distinction

between models γ and δ of Hart and Kurz (1983). In fact, the only difference between

model γ of Hart and Kurz (1983) and the model of Meca-Martinez et al. (1998) is that

they analyze different allocation rules. The difference between model δ of Hart and Kurz

(1983) and our model is of a similar nature.

We will show that the results of Meca-Martinez et al. (1998) also hold for our model.

The allocation rules they study have the property that in a game with coalition structure

(N, v,B) the payoff for player i ∈ B ∈ B depends only on (v(S))S⊆B. We will call such an

allocation rule a component restricted allocation rule.2 Consider the following properties

for a component restricted allocation rule γ:

Weak Monotonicity (WM) For all cooperative games with coalition structures

(N, v,B) and (N,w,B) it holds for all B ∈ B that if

v(S ∪ {i})− v(S) ≥ w(S ∪ {i})− w(S) for all i ∈ B and all S ⊆ B\{i}

then γi(N, v,B) ≥ γi(N,w,B) for all i ∈ B.

Dummy Out (DO) For all cooperative games (N, v) and every partition B =

{B1, . . . , Bm} of N it holds for every k ∈ {1, . . . ,m} and every i ∈ Bk which

is a dummy player in the game (Bk, v|Bk) that

γ(N, v,B) = γ(N, v,B − i).

The following lemma corresponds to lemma 1 of Meca-Martinez et al. (1998).

Lemma 3.1 Let (N, v) be a convex game and γ a component restricted allocation

rule satisfying Weak Monotonicity and Dummy Out. Then for every partition B =

{B1, . . . , Bm} of N , every k ∈ {1, . . . ,m}, and every S ⊆ Bk it holds that for all i ∈ S

γi(N, v,B) ≥ γi(N, v, {B1, . . . , Bk−1, S, {j}j∈Bk\S, Bk+1, . . . , Bm}).

2Meca-Martinez et al. (1998) simply look at the game (B, v|B) and allocation rules for cooperative

games. This corresponds to restricting to component restricted allocation rules. We have changed the

properties accordingly.
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Proof: Let B = {B1, . . . , Bm} ∈ ΠN , k ∈ {1, . . . ,m}, and let S ⊆ Bk. Define

vS(T ) = v(S ∩ T ) for all T ⊆ N ;

v̂S(T ) = vS(T ) +
∑
i∈T \S

v({i}) for all T ⊆ N.

Now, since v is convex,

v(T ∪ {i})− v(T ) ≥ vS(T ∪ {i})− vS(T ) = v̂S(T ∪ {i})− v̂S(T ) (5)

for all i ∈ S and all T ⊆ Bk\{i}. Also, for all i ∈ Bk\S and all T ⊆ Bk\{i},

v(T ∪ {i})− v(T ) ≥ v({i}) = v̂S(T ∪ {i})− v̂S(T ). (6)

We conclude from (5) and (6) that

v(T ∪ {i})− v(T ) ≥ v̂S(T ∪ {i})− v̂S(T )

for all i ∈ Bk and all T ⊆ Bk\{i}. Then, since γ is a component restricted allocation

rule that satisfies (WM), it follows that γi(N, v,B) ≥ γi(N, v̂S,B) for all i ∈ Bk. Note

that for all j ∈ Bk\S, j is a dummy player in (N, v̂S). Hence, j is a dummy player

in (T, v̂S|T) for all T ⊆ N with j ∈ T . Specifically, j is a dummy player in (T, v̂S|T ) for

all T = S ∪ U , U ⊆ Bk\S with j ∈ U . By repeated application of (DO) for all j ∈

Bk\S it follows that γi(N, v̂S,B) = γi(N, v̂S, {B1, . . . , Bk−1, S, {j}j∈Bk\S, Bk+1, . . . , Bm})

for all i ∈ S. Now, since (v̂S)|S = v|S and γ is a component restricted al-

location rule, it follows that γi(N, v̂S, {B1, . . . , Bk−1, S, {j}j∈Bk\S, Bk+1, . . . , Bm}) =

γi(N, v, {B1, . . . , Bk−1, S, {j}j∈Bk\S, Bk+1, . . . , Bm}) for all i ∈ S.

We conclude that γi(N, v,B) ≥ γi(N, v, {B1, . . . , Bk−1, S, {j}j∈Bk\S, Bk+1, . . . , Bm})

for all i ∈ S. 2

It is now straightforward to show that theorems 1 and 2 of Meca-Martinez et al. (1998)

also hold for our model. Recall that x ∈ X is a strong Nash equilibrium of Γ(γ) if there is

no coalition T ⊆ N and strategy profile x̂T such that fγi (x̂T , xN\T) ≥ f
γ
i (x) for all i ∈ T ,

with the inequality being strict for at least one player i ∈ T . We denote the set of strong

Nash equilibria by SNE(Γ(γ)). Furthermore, we define the set of coalition structures

that result according to strong Nash equilibria (strong Nash equilibrium partitions):

SNEP(Γ(γ)) := {B ∈ ΠN | ∃x ∈ SNE(Γ(γ)) : B(x) = B}.

The following theorem corresponds to theorems 1 and 2 in Meca-Martinez et al.

(1998).
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Theorem 3.1 Let (N, v) be a convex game and γ a component restricted allocation

rule satisfying (WM) and (DO). Then {N} ∈ SNEP(Γ(γ)) and for all B ∈ SNEP(Γ(γ))

it holds that γ(N, v,B) = γ(N, v, {N}).

Proof: Let x ∈ X be such that γ(N, v,B(x)) = γ(N, v, {N}). Let t ∈ X, i ∈ N , and

B ∈ B(t) with i ∈ B. Since γ is a component restricted allocation rule it follows that

γi(N, v,B(t)) = γi(N, v, {B, {j}j∈N\B}) ≤ γi(N, v, {N}) = γi(N, v,B(x)), (7)

where the inequality follows by lemma 3.1. We conclude that x ∈ SNE(Γ(γ)).

Let x ∈ X be such that γ(N, v,B(x)) 6= γ(N, v, {N}). By (7) it follows that for all

i ∈ N it holds that γi(N, v,B(x)) ≤ γi(N, v, {N}). Hence, the deviation to ti = N for all

i ∈ N weakly improves the payoff for all players with a strict improvement for at least

one player. So, x 6∈ SNE(Γ(γ)).

This completes the proof. 2

Note that in fact we prove a somewhat stronger result: B ∈ SNEP(Γ(γ)) if only if

γ(N, v,B) = γ(N, v, {N}). A similar strengthening is possible in the original model of

Meca-Martinez et al. (1998).

4 Potential games

In this section we study under what conditions on the allocation rule the two models

of coalition formation result in a potential game. We will show that under an efficiency

requirement our model of coalition formation is a potential game if and only if the value

of Aumann and Drèze (1974) is used as an allocation rule, whereas the original model

of Meca-Martinez et al. (1998) is a potential game if and only if an allocation rule that

equally divides the gains over the sum of stand-alone values is used. Furthermore, we

describe for the model of coalition formation of Meca-Martinez et al. (1998) the potential

maximizing strategy profiles.

Firstly, we study Γ(N, v, γ), the model of coalition formation with the less stringent

formation rule. We show that the value of Aumann and Drèze (1974) is the unique

component efficient allocation rule that results in a coalition formation game that is a

potential game. To accomplish this, we need two lemma’s.

Lemma 4.1 Let γ be a component efficient allocation rule. Let (N, v) be a cooperative

game. If the associated coalition formation game Γ(N, v, γ) is a potential game then for
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all B ∈ ΠN , all B ∈ B, and all i, j ∈ B it holds that

γi(B)− γi(B − j) = γj(B)− γj(B − i). (8)

Proof: Let P be a potential for Γ(N, v, γ). Let B ∈ ΠN , B ∈ B, and i, j ∈ B. Let

x be a strategy profile that results in partition B, i.e., B(x) = B. Define ti = {i} and

tj = {j}. Then

0 = P (x)− P (x−i, ti) + P (x−i, ti)− P (x−ij, ti, tj)

+P (x−ij , ti, tj)− P (x−j, tj) + P (x−j , tj)− P (x)

= (γi(B)− γi(B − i)) + (γj(B − i)− γj(B − j − i))

+(γi(B − j − i)− γi(B − j)) + (γj(B − j)− γj(B))

= γi(B)− v({i}) + γj(B − i)− v({j}) + v({i})− γi(B − j) + v({j})− γj(B)

= γi(B)− γi(B − j)− γj(B) + γj(B − i), (9)

where the second equality follows by definition of a potential and the third equality

follows since γi(B − i) = γi(B − i − j) = v({i}) by component efficiency. Equation (9)

implies equation (8). This completes the proof. 2

In the following lemma we show that if the value of Aumann and Drèze (1974) is

applied as an allocation rule then the coalition formation game is a potential game.

Lemma 4.2 Let (N, v) be a cooperative game. The coalition formation game

Γ(N, v,ΦAD) is a potential game.

Proof: For all x ∈ X and all R ⊆ N define

vx(R) :=
∑

B∈B(x)

v(B ∩R).

Then (N, vx)x∈X ∈ GN,X since vx(R) depends only on xR. Furthermore, Φ(N, vx) =

ΦAD(N, v,B(x)) for all x ∈ X. This follows directly by noting that ΦAD can be found

by computing the Shapley value for the subgames restricted to the partition elements.

Now, theorem 2.2 completes the proof. 2

Combining the lemmas above we can prove that the value of Aumann and Drèze

(1974) is the unique allocation rule that results in a potential game.
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Theorem 4.1 Let (N, v) be a cooperative game. Let γ be a component efficient allo-

cation rule. The coalition formation game Γ(N, v, γ) is a potential game if and only if γ

coincides with the value of Aumann and Drèze (1974) for all partitions of N .

Proof: Suppose that the coalition formation game Γ(γ) is a potential game. Lemma

4.1 implies that for all B ∈ ΠN , all B ∈ B, and all i, j ∈ B equation (8) holds. It can

then be shown analogously to the proof of theorem 2.1 that γ coincides with the value

of Aumann and Drèze (1974) for all partitions of N .3

The reverse statement follows by lemma 4.2. 2

The following example shows that the value of Aumann and Drèze (1974) does not

result in a potential game in the model of Meca-Martinez et al. (1998).

Example 4.1 Consider the TU-game (N, v) with N = {1, 2, 3} and

v(S) =



0 if |S| ≤ 1;

40 if S = {1, 2};

50 if S = {1, 3};

60 if S = {2, 3};

72 if S = N.

(10)

Suppose that player 3 plays strategy x3 = {1, 2, 3}. Then part of the payoff-matrix of

ΓM (N, v,ΦAD) is given below.

x2 = {2, 3} t2 = {1, 2, 3}

x1 = {1, 3} (0,0,0) (0,0,0)

t1 = {1, 2, 3} (0,0,0) (19,24,29)

If ΓM (N, v,ΦAD) is a potential game it should hold that there exists a potential P such

that

0 = P (x)− P (t1, x2, x3) + P (t1, x2, x3)− P (t1, t2, x3)

+P (t1, t2, x3)− P (x1, t2, x3) + P (x1, t2, x3)− P (x)

=
(
ΦAD

1 (BM(x))− ΦAD
1 (BM(t1, x2, x3))

)
+
(
ΦAD

2 (BM(t1, x2, x3))− ΦAD
2 (BM(t1, t2, x3))

)
3It only follows that γ satisfies (CRBC) for the game (N, v). Therefore, we cannot use theorem 2.1

directly, since this requires (CRBC) for all cooperative games. Careful reading of the proof, however,

reveals that (CRBC) for (N, v) is enough.
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+
(
ΦAD

1 (BM(t1, t2, x3))− ΦAD
1 (BM(x1, t2, x3))

)
+
(
ΦAD

2 (BM(x1, t2, x3))− ΦAD
2 (BM(x))

)
= (0− 0) + (0− 24) + (19− 0) + (0− 0)

6= 0, (11)

where the second equality follows by definition (2) of a potential and the third equality

by the payoffs above. We conclude that ΓM (N, v,ΦAD) is not a potential game.

In the following theorem we show that the model of Meca-Martinez et al. (1998) is a

potential game if and only if every coalition divides the surplus of the coalition over the

sum of stand-alone values equally among the players in this coalition.

Theorem 4.2 Let (N, v) be a cooperative game. Let γ be a component efficient allo-

cation rule. The coalition formation game ΓM (N, v, γ) is a potential game if and only if

for all B ∈ ΠN , all B ∈ B, and all i ∈ B it holds that γi(B) = v({i}) +
v(B)−

∑
j∈B

v({j})

|B| .

Proof: First we show the only-if-part. Assume that ΓM (N, v, γ) is a potential game

with associated potential P . We will show that for all B ∈ ΠN , all B ∈ B, and all i ∈ B

it holds that

γi(B) = v({i}) +
v(B)−

∑
j∈B v({j})

|B|
(12)

Obviously, by component efficiency (12) holds for all B ∈ ΠN , all B ∈ B with |B| = 1,

and i ∈ B. Let p ≥ 2. We will show that (12) holds for all B ∈ ΠN , all B with |B| = p,

and all i ∈ B. Let B ∈ ΠN and B ∈ B such that |B| = p. Let x ∈ X be a strategy

profile that results in partition B, i.e., BM(x) = B. Let i, j ∈ B and define ti = {i} and

tj = {j}. Then

0 = P (x)− P (x−i, ti) + P (x−i, ti)− P (x−ij, ti, tj) + P (x−ij , ti, tj)− P (x−j , tj)

+P (x−j , tj)− P (x)

= (γi(B)− v({i})) + (v({j})− v({j})) + (v({i})− v({i}))

+(v({j})− γj(B)). (13)

The second equality follows by definition of a potential P . We conclude that γi(B) −

v({i}) = γj(B) − v({j}). Since i and j were chosen arbitrarily in B it follows by

component efficiency that for all i ∈ B

γi(B) = v({i}) +
v(B)−

∑
j∈B v({j})

|B|
.
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This completes the only-if-part.

It remains to show the if-part. Let γ be the allocation rule determined by

γi(B) = v({i}) +
v(B)−

∑
j∈B v({j})

|B|
, for all B ∈ ΠN , all B ∈ B, and all i ∈ B.

Define for all x ∈ X:

vx =
∑
i∈N

v({i})u{i}+
∑

B∈BM(x)

[
v(B)−

∑
i∈B

v({i})

]
uB.

Hence, for all x ∈ X and all T ⊆ N

vx(T ) =
∑
i∈T

v({i}) +
∑

B∈BM(x),B⊆T

[
v(B)−

∑
i∈B

v({i})

]

=
∑

B∈BM(x),B⊆T

v(B) +
∑

B∈BM(x),B 6⊆T

∑
i∈T∩B

v({i})

=
∑

B∈BM(xT )

v(B).

So, the value of coalition T ⊆ N in the game corresponding to strategy profile x ∈ X

depends only on the strategies of the players in coalition T and hence,

{(N, vx)}x∈X ∈ GN,X.

Furthermore, for all x ∈ X

Φi(N, vx) = v({i}) +
v(B)−

∑
j∈B v({j})

|B|
for all B ∈ BM(x) and all i ∈ B.

By theorem 2.2 it follows that ΓM (N, v, γ) is a potential game.

This completes the if-part. 2

For a zero-normalized game this implies that the model of Meca-Martinez et al. (1998)

is a potential game if and only if the value of each partition element is divided equally

among its members. Since for zero-normalized games the model of Meca-Martinez et al.

(1998) with this allocation rule coincides with the model of coalition formation of Von

Neumann and Morgenstern (1944), we conclude that the model of Von Neumann and

Morgenstern (1944) is a potential game if the underlying game is zero-normalized. It can

be checked that for zero-normalized games a potential is given by P (x) =
∑
B∈BM(x)

v(B)
|B|

for all x ∈ X. Analyzing this associated potential function then implies that according

to the potential maximizer, a strategy x will be chosen by the players such that∑
B∈BM(x)

v(B)

|B|
= max
B∈ΠN

∑
B∈B

v(B)

|B|
.

The potential maximizer selects a coalition structure that maximizes the sum over all

partition elements of the payoffs each player in a partition element receives.
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5 Potential Maximizers

In this section we will consider potential maximizing strategies in the coalition formation

game Γ(N, v,ΦAD) with (N, v) a superadditive underlying cooperative game. We will

show that the cooperation structure with all players in one component results from a

potential maximizing strategy profile. Subsequently, we will show that every potential

maximizing strategy profile results in a cooperation structure that is payoff equivalent

to this structure.

Before we can show that cooperation structure {N} results from a potential maximiz-

ing strategy profile we need some results on cooperative HM-potential games, cf. Hart

and Mas-Colell (1989).

Theorem 5.1 Let (N, v) be a superadditive game. Then the associated HM-potential

game (N,PHM ) is also superadditive.

Proof: Hart and Mas-Colell (1989) showed that (N,PHM ) satisfies PHM(∅) = 0 and

PHM (S) =
1

|S|

v(S) +
∑
k∈S

PHM (S\{k})

 for all S ⊆ N, S 6= ∅. (14)

We have to show that for all S ⊆ N and all T ⊆ N\S it holds that

PHM (S ∪ T ) ≥ PHM(S) + PHM(T ). (15)

The proof will be by induction to the number of elements in S∪T . Obviously, (15) holds

for all S, T with |S ∪ T | = 0, since PHM(∅) = 0. Let p ≥ 1. Assume that (15) holds for

all S, T with |S∪T | ≤ p− 1. We will show that (15) holds for all S, T with |S∪T | = p.

Let S ⊆ N , T ⊆ N\S such that |S ∪ T | = p. Then

PHM(S ∪ T ) =
1

|S ∪ T |

v(S ∪ T ) +
∑

k∈S∪T

PHM ((S ∪ T )\{k})


≥

1

|S ∪ T |

v(S) + v(T ) +
∑
k∈S

[PHM(S\{k}) + PHM(T )]+

∑
k∈T

[PHM(S) + PHM(T\{k})]


=

1

|S ∪ T |

v(S) +
∑
k∈S

PHM(S\{k}) + v(T ) +
∑
k∈T

PHM(T\{k})+

|S|PHM(T ) + |T |PHM(S)
]

=
1

|S ∪ T |

[
|S|PHM(S) + |T |PHM(T ) + |S|PHM(T ) + |T |PHM(S)

]
= PHM(S) + PHM(T ), (16)
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where the inequality follows from superadditivity of (N, v) and the induction hypothesis.

The third equality follows by equation (14). This completes the proof. 2

The following lemma shows that a potential for Γ(ΦAD) can be given in terms of the

HM-potential game associated with the underlying cooperative game.

Lemma 5.1 Let (N, v) be a cooperative game. Then P with

P (x) =
∑

B∈B(x)

PHM
(N,v)(B) for all x ∈ X (17)

is a potential for the coalition formation game Γ(N, v,ΦAD).

Proof: We have to show that P is a potential. Therefore, consider x ∈ X, i ∈ N

and ui ∈ Xi with xi 6= ui. It suffices to check that P (x) − P (x−i, ui) = ΦAD
i (B(x))−

ΦAD
i (B(x−i, ui)). Denote by B∗1 and B∗2 the partition elements player i belongs to ac-

cording to x and (x−i, ui) respectively. Then it follows from xi 6= ui that B∗1 ∩B
∗
2 = {i}.

Since B∗2\{i} ∈ B(x) or B∗2\{i} = ∅, and B∗1\{i} ∈ B(x−i, ui) or B∗1\{i} = ∅ it holds

that4

P (x)− P (x−i, ui) =
∑

B∈B(x)

PHM(B)−
∑

B∈B(x−i,ui)

PHM(B)

=
∑
S⊆B∗1

λS(v)

|S|
+

∑
S⊆B∗2\{i}

λS(v)

|S|
+

∑
B∈B(x)\{B∗1,B

∗
2\{i}}

PHM(B)

−
∑

S⊆B∗1\{i}

λS(v)

|S|
−

∑
S⊆B∗2

λS(v)

|S|
−

∑
B∈B(x−i,ui)\{B∗2,B

∗
1\{i}}

PHM (B)

=
∑
S⊆B∗1

λS(v)

|S|
−

∑
S⊆B∗1\{i}

λS(v)

|S|
+

∑
S⊆B∗2\{i}

λS(v)

|S|
−

∑
S⊆B∗2

λS(v)

|S|

=
∑

S⊆B∗1 ,i∈S

λS(v)

|S|
−

∑
S⊆B∗2 ,i∈S

λS(v)

|S|

= ΦAD
i (N, v,B(x))− ΦAD

i (N, v,B(x−i, ui)),

where the third equality holds since B(x)\{B∗1, B
∗
2\{i}} = B(x−i, ui)\{B∗2 , B

∗
1\{i}}.

This completes the proof. 2

For every player i ∈ N we denote x̄i = N . Using the results above we can prove that

the strategy profile x̄ = (x̄i)i∈N is a potential maximizing strategy profile.

4Recall that PHM(N,v) =
∑
R⊆N

λR(v)
|R| uR.
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Theorem 5.2 Let (N, v) be a superadditive game and Γ(ΦAD) the associated coalition

formation game with potential P . Then x̄ ∈ argmax P .

Proof: From lemma 5.1 it follows that a potential is given by

P (x) =
∑

B∈B(x)

PHM(B) for all x ∈ X.

Let x ∈ X. It follows from theorem 5.1 that

P (x) =
∑

B∈B(x)

PHM(B) ≤ PHM(N) = P (x̄).

Monderer and Shapley (1996) show that the set of potential maximizing strategy profiles

does not depend on the choice of a particular potential. Hence, x̄ ∈ argmax P ′ for every

potential P ′.

This completes the proof. 2

Before we can show that every potential maximizing strategy profile results in the

same payoffs as the strategy profile resulting in the unique component N , we need

another lemma.

Lemma 5.2 Let (N, v) be a superadditive game. Then for all S ⊆ N and all T ⊆ N\S

it holds that

PHM(S ∪ T ) = PHM(S)+PHM(T ) ⇒ v(U) = v(S ∩U) + v(T ∩U) ∀U ⊆ S ∪ T. (18)

Proof: First note that it follows from theorem 5.1 that (N,PHM) is superadditive. We

proceed by induction to the number of elements in S ∪ T . Obviously, if |S ∪ T | = 0 then

(18) holds. Let p ≥ 1. Suppose that (18) holds for all S, T with |S ∪ T | ≤ p− 1. We

will show that (18) holds for all S, T with |S ∪ T | = p. Let S ⊆ N and T ⊆ N\S with

|S ∪ T | = p. Suppose PHM (S ∪ T ) = PHM(S) + PHM(T ). Then since the inequality in

equation (16) must hold with equality it follows that

v(S ∪ T ) = v(S) + v(T ); (19)

PHM((S ∪ T )\{k}) = PHM(S\{k}) + PHM(T ) ∀k ∈ S; (20)

PHM((S ∪ T )\{k}) = PHM(S) + PHM(T\{k}) ∀k ∈ T. (21)

From the induction hypothesis and equations (20) and (21) it follows that for all k ∈ S∪T

v(U) = v(S ∩ U) + v(T ∩ U) ∀U ⊆ (S ∪ T )\{k}. (22)
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Combining equations (19) and (22) completes the proof. 2

Using the lemma above we can prove the following theorem.

Theorem 5.3 Let (N, v) be a superadditive game and Γ(ΦAD) the associated coalition

formation game with potential P . Let x ∈ argmax P . Then ΦAD(B(x)) = ΦAD({N}).

Proof: Denote B(x) = (B1, . . . , Bm). If Γ(ΦAD) is a potential game then a potential

is given by equation (17). Since the set of potential maximizing strategy profiles is

independent of the specific potential, we can assume without loss of generality that P is

given by equation (17). Then

P (x̄) = PHM(N) ≥ PHM(∪m−1
k=1 Bk) + PHM (Bm)

≥ . . . ≥ PHM (B1 ∪ B2) +
m∑
k=3

PHM(Bk)

≥
m∑
k=1

PHM(Bk) = P (x), (23)

where the equalities follow by lemma 5.1 and the inequalities follow by theorem 5.1.

Since x ∈ argmax P all inequalities hold with equality.

Let U ⊆ N then, using lemma 5.2, the following equalities are implied by the corre-

sponding equalities in equation (23).

v(U) = v(U ∩ (∪m−1
k=1 Bk)) + v(U ∩Bm)

= . . . = v(U ∩ (B1 ∪B2)) +
m∑
k=3

v(U ∩Bk)

=
m∑
k=1

v(U ∩ Bk). (24)

So, for all U ⊆ N

v(U) =
∑

B∈B(x)

v(B ∩ U). (25)

Equation (25) implies that ΦAD(B(x)) = ΦAD({N}). This completes the proof. 2

In the following example we will show that not every strategy profile that results in

the same payoffs as the full cooperation structure is potential maximizing.
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Example 5.1 Let (N, v) be a 4-person superadditive cooperative game with N =

{1, 2, 3, 4} and

v(S) =



0 if |S| ≤ 1;

2 if |S| = 2;

3 if |S| = 3;

4 if S = N.

(26)

Then some straightforward calculations show that ΦAD
i ({N}) = 1 for all i ∈ N and

ΦAD
i (({1, 2}, {3, 4})) = 1 for all i ∈ N . Since v =

∑
S:|S|=2 2uS −

∑
S:|S|=3 3uS + 4uN it

follows that PHM =
∑
S:|S|=2 uS −

∑
S:|S|=3 uS + uN , i.e.,

PHM(S) =



0 if |S| ≤ 1;

1 if |S| = 2;

2 if |S| = 3;

3 if S = N.

(27)

Hence, PHM(N) > PHM({1, 2}) + PHM({3, 4}). Then by lemma 5.1 it follows that

P (x̄) > P (x), with x = ({1, 2}, {1, 2}, {3, 4}, {3, 4}), showing that not every strategy

profile that results in the same payoffs as the full cooperation structure maximizes the

potential function.

6 Conclusions

In this paper we have studied two models of coalition formation. The models differ only

in the formation rule. We showed that the results of Meca-Martinez et al. (1998) also

hold for our model. These results deal with sufficient conditions on an allocation rule to

ensure that the grand coalition results from a strong Nash equilibrium when the original

TU-game is convex.

Subsequently, we showed that under an efficiency requirement, our model of coalition

formation is a potential game if and only if the value of Aumann and Drèze (1974) is used

as an allocation rule. The model of coalition formation of Meca-Martinez et al. (1998)

is a potential game if and only if an allocation rule that equally divides the surplus over

the sum of stand-alone values is used.

Finally, we showed that if the underlying cooperative game is superadditive then the

potential maximizer in our model with the value of Aumann and Drèze (1974) used as

an allocation rule points towards the formation of the grand coalition. This result is in

line with results of Qin (1996) and Slikker et al. (1999) who deal with link formation
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and conference formation respectively. However, all these results are sensitive to the

superadditivity assumption and the equilibrium refinement chosen.
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