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Connection situations under uncertainty

Stefano Moretti1, S. Zeynep Alparslan Gök2,5, Rodica Branzei3

and Stef Tijs4

Abstract: This paper deals with cost allocation problems arising from con-

nection situations where edge costs are closed intervals of real numbers. To

solve such problems, we extend classical solutions from the theory of mini-

mum cost spanning tree games. We study the properties of such solutions

and suggest how to use them under uncertainty conditions.

JEL Classification: C71

Key-words: cooperative cost games, minimum cost spanning tree situations,
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1 Introduction

A connection situation takes place in the presence of a group of agents, each

of which needs to be connected directly or via other agents to a source,

where connections are costly and the configuration of links which minimizes

the total cost of connection is provided by a minimum cost spanning tree

(mcst). However, finding an mcst does not guarantee that it is going to be
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really implemented: agents must still support the cost of the mcst and then

a cost allocation problem must be addressed. This cost allocation problem

was introduced by Claus and Kleitman in 1973 and has been studied with

the aid of cooperative game theory since the basic paper of Bird (1976).

Since that basic paper, many authors have noted that this kind of cost

allocation problems may arise from many different physical networks, as tele-

phone lines, highways, electric power systems, computer chips, water delivery

systems, rail lines etc. On the other hand, it seems to us that, in many real

applications, to retrieve the information about the exact cost of all of the

links of a network is often an impossible mission. We argue that it is more

likely to imagine real connection situations where the costs of links are trace-

able at a level of uncertainty, i.e. only the range of the costs is known, and

no probability information on the realization of costs is given.

The problem to find an optimal spanning tree on a weighted graph where

edge costs are interval numbers has been widely studied in literature. We

mainly follow the approaches introduced in Yaman et al. (1999; 2001) to

solve the optimization problem. See also Montemanni (2006).

As in the classical case where edge costs are real numbers, also in the

situation where edge costs are intervals of real numbers a cost allocation

problem arises. With the goal to study this kind of cost allocation problems,

in this paper we extend the notion of conservative Construct and Charge

rules, which have been introduced in Moretti et al. (2008), and we study

their properties under uncertainty conditions.

To the best of our knowledge, this is the first attempt to study a cost

allocation problem arising from connection situation under uncertainty. Suijs

(2003) studied mcst problems in which the connection costs are represented

by random variables. In our paper, costs are not random variables, but just

closed intervals of real numbers with no probability distribution attached.

In Section 2 some preliminaries and basic notations are introduced. In

Section 3 the notion of minimum interval cost spanning tree situation is

presented and the concept of mcst situation associated to different scenarios
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is given. Section 4 deals with minimum interval cost spanning tree situations

where a permanent tree exists, i.e. a spanning tree which is of minimum cost

under all possible scenarios. In Section 5 a pessimistic approach to solve the

optimization problem and the consequent pessimistic cost game are studied.

In a similar way, Section 6 deals with an optimistic approach.

Permanent trees and trees selected by the pessimistic and optimistic ap-

proach are ex-ante (before the construction of the optimal tree) choices. Dif-

ferently, Section 7 introduce ex-post procedures to adjust the cost allocations

provided by ex-ante choices. Section 8 concludes with some open problems.

2 Preliminaries

In this section we recall some basic definitions and results regarding minimum

cost spanning tree (mcst) situations.

An (undirected) graph is a pair < V,E >, where V is a set of vertices

or nodes and E is a set of edges e of the form {i, j} with i, j ∈ V , i 6= j.

The complete graph on a set V of vertices is the graph < V,EV >, where

EV = {{i, j}|i, j ∈ V and i 6= j}.

A mcst situation is a situation where a set N = {1, . . . , n} of agents is

willing to be connected as cheap as possible to a source (i.e. a supplier of a

service) denoted by 0, based on a given weight (or cost) system of connection.

In the sequel we use also the notation N ′ = N ∪ {0}, and w for the weight

function, i.e. a map which assigns to each edge e ∈ EN ′ a nonnegative number

w(e) representing the weight or cost of edge e. We denote an mcst situation

with set of users N , source 0, and weight function w by < N ′, w > (or simply

w). Further, we denote by WN ′
the set of all of the mcst situations < N ′, w >

(or w) with node set N ′. A path between i and j in a graph < N ′, E > is

a sequence of nodes i = i0, i1, . . . , ik = j, k ≥ 1, such that all the edges

{is, is+1} ∈ E, for each s ∈ {0, . . . , k − 1}, are distinct edges. A cycle in

< N ′, E > is a path from i to i for some i ∈ N ′. Two nodes i, j ∈ N ′ are

connected in < N ′, E > if i = j or if there exists a path between i and j in
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E. A connected component of N ′ in a graph < N ′, E > is a maximal subset

of N ′ with the property that any two nodes in this subset are connected in

< N ′, E >.

The cost of a network Γ ⊆ EN ′ is w(Γ) =
∑

e∈Γ w(e). A network Γ is

a spanning network on S ′ = S ∪ {0}, with S ⊆ N , if for every e ∈ Γ we

have e ∈ ES′ and for every i ∈ S there is a path in < S ′, Γ > from i to the

source. For any mcst situation w ∈ WN ′
it is possible to determine at least

one spanning tree on N ′, i.e. a spanning network without cycles on N ′, of

minimum cost; each spanning tree of minimum cost is called an mcst for N ′

in w or, shorter, an mcst for w. In the following we will denote by ST N ′

the

set of all spanning tree on N ′.

The set ΣEN′ of linear orders on EN ′ is defined as the set of all bijections

σ : {1, . . . , |EN ′ |} → EN ′ , where |EN ′| is the cardinality of the set EN ′ . For

each mcst situation < N ′, w > there exists at least one linear order σ ∈ ΣEN′

such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′|)). For any σ ∈ ΣEN′ we

define the set

Kσ = {w ∈ IR
EN′

+ | w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′|))}.

The set Kσ is a cone in IR
EN′

+ , which we call the Kruskal cone with respect

to σ.

Let N = {1, . . . , n} and ∆(N) = {x ∈ IRN
+ |

∑

i∈N xi = 1}. The set

of n-vectors of edges which form a spanning tree on N ′ is denoted by EN ′ ,

i.e. EN ′ = {(a1, . . . , an) ∈ (EN ′)n|{a1, . . . , an} ∈ ST N ′

}. Note that the

number of edges which form a spanning tree on N ′ is n.

Given an element a = (a1, . . . , an) ∈ (EN ′)n, we denote by a|j the restric-

tion of a to the first j components, that is a|j = (a1, . . . , aj) for each j ∈ N .

Further, for each j ∈ N , we denote by Π(a|j) the partition of N ′ such that

Π(a|j) = {T ⊆ N ′|T is a connected component in < N ′, {a1, . . . , aj} >}.

Let θ ∈ Θ(N ′), where Θ(N ′) is the family of partitions of N ′, and let

T ⊆ N ′. If T is a subset of a certain element of the partition θ, we denote
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this element as S(θ, T ). A charge system C on N is a set of functions C =

{C1, . . . , Cn} with Cj : {a|j|a ∈ EN ′} → ∆(N) for each j ∈ N satisfying the

following properties:

(Connection property): Cj
i (a|j) = 0 for each i ∈ S(Π(a|j−1), {0}),

each j ∈ N,

and each a = (a1, . . . , an) ∈ EN ′ ;

(Involvement property): Cj
i (a|j) = 0 for each i ∈ N \ S(Π(a|j), aj)

each j ∈ N,

and each a = (a1, . . . , an) ∈ EN ′ ;

(Total aggregation property):
∑n

j=1 Cj
i (a|j) = 1 for each i ∈ N,

and each a = (a1, . . . , an) ∈ EN ′ .

Based on the notion of charge systems, we may define special allocation

rules for spanning trees where costs are shared among agents during the edge

by edge construction of the tree. Let C = {C1, . . . , Cn} be a charge system

on N and Let σ ∈ ΣEN′ . We define the set Eσ
N ′ = {a ∈ EN ′ : σ−1(a1) ≤

σ−1(a2) ≤ . . . ≤ σ−1(an)}. The tree dependent allocation protocol κC,σ

based on C and σ is the map χC,σ : Kσ × Eσ
N ′ → IRN given by

κC,σ(w, a) =
n

∑

r=1

w(σ(r))Cr(a|j) (1)

for each mcst situation w in the Kruskal cone Kσ and each a ∈ Eσ
N ′ .

According to Moretti et al. (2008), the aggregate contribution of the

charge system C on a|j, for each j ∈ N and for each a = (a1, . . . , an) ∈ EN ′ ,

is the n-vector AC(a|j) calculated as follows

AC(a|j) =

j
∑

k=1

Ck(a|k). (2)

C is a conservative charge system if for all j ∈ N and for each pair a,b ∈ EN ′ ,

with Π(a|j) = Π(b|j) we have that AC(a|j) = AC(b|j).

Remark 2.1 Let σ ∈ ΣEN′ be such that w ∈ Kσ and let Γ∗ ∈ SPN ′

be a mcst in w. We denote by aΓ∗,σ ∈ Eσ
N ′ the unique vector such that
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{aΓ∗,σ
1 , aΓ,σ

2 , . . . , aΓ∗,σ
n } ≡ Γ∗. In addition, the allocation protocol κC,σ(·, aΓ∗,σ),

simply denoted as the map χC,σ : Kσ → IRN , is the Construct and Charge

(CC-) rule w.r.t. C and σ introduced in Moretti et al. (2008).

Remark 2.2 Let σ, σ′ ∈ ΣEN′ and let Kσ and Kσ′
be the respective Kruskal

cones. Let w ∈ Kσ ∩Kσ′
. Moretti et al. (2008) proved that if C is conserva-

tive, then χC,σ(w) = χC,σ′
(w).

3 Minimum interval cost spanning trees

This work deals with minimum interval cost spanning tree (micst) situations,

i.e. situations where a set N = {1, . . . , n} of agents is willing to be connected

as cheap as possible to a source (i.e. a supplier of a service) denoted by 0,

based on an uncertain weight (or cost) system of connection. Let I(IR+) be

the set of all closed intervals in IR. In the sequel we use also the notation

W for the interval weight function, i.e. a map which assigns to each edge

e ∈ EN ′ a closed interval W (e) ∈ I(IR+) representing all possible uncertain

weights or costs of edge e. The interval cost W (e) of each edge e ∈ EN ′

will be denoted by [W (e),W (e)]. No probability distribution is assumed for

edge costs. We will denoted by ws(e) ∈ [W (e),W (e)] the realization of cost

of edge e ∈ EN ′ in scenario s. We will denote by S the set of all possible

scenarios.

We denote an micst situation with set of users N , source 0, and interval

weight function W by < N ′,W > (or simply W ). Further, we denote by

IWN ′

the set of all micst situations < N ′,W > (or W ) with node set N ′.

Example 3.1 We consider a micst situation with three agents denoted by 1,

2, and 3 and the source 0. As depicted in Figure 1, to each edge e ∈ E{0,1,2,3}

is assigned a closed interval W (e) ∈ I(IR+) representing the uncertain cost

of edge e. For each scenario s ∈ S we have a realization ws ∈ WN ′
such that

ws({0, 1}) ∈ [1, 9], ws({0, 2}) ∈ [6, 11], ws({0, 3}) ∈ [1, 5], ws({1, 2}) ∈ [2, 4],

ws({1, 3}) ∈ [1, 3], and ws({2, 3}) ∈ [0, 6].
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Figure 1: An micst situation < {0, 1, 2, 3},W >.

After the decision on which spanning tree must be constructed, agents

face the problem of how to divide the cost of the spanning tree. In the

following, we study this problem using the notion of cooperative cost game.

A cooperative cost game or cost game is a pair (N, c), where N denotes

the finite set of players and c : 2N → IR is the characteristic function, with

c(∅) = 0 (here 2N denotes the power set of player set N). Often we identify

a cost game (N, c) with the corresponding characteristic function c. A group

of players T ⊆ N is called a coalition and c(T ) is called the cost of this

coalition. A payoff vector (or cost allocation) is a vector in IRN .

A particular set, possibly empty, of cost allocations of a cost game (N, c)

is the core of c, which is defined as follows:

Core(c) = {x ∈ IRN |
∑

i∈S

xi ≤ c(S) ∀S ∈ 2N \ {∅};
∑

i∈N

xi = c(N)}.

We first note that to each possible scenario s ∈ S with the associated

realization ws ∈ WN ′
, corresponds to a mcst game (N, cw) (or simply cws),

which is defined by

cws(T ) = min{ws(Γ)|Γ is a spanning network on T ′}

for every T ∈ 2N\{∅}, with the convention that cw(∅) = 0.

We call a map F : WN ′
→ IRN assigning to every mcst situation w a

unique cost allocation in IRN a solution. A solution F is a cost monotonic
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solution if for all mcst situations w,w′ ∈ WN ′
such that w(ē) ≤ w′(ē) for

one edge ē ∈ EN ′ and w(e) = w′(e) for each e ∈ EN ′ \ {ē}, it holds that

F (w) ≤ F (w′).

All these notions may be useful to solve the cost allocation problem re-

lated to each scenario s ∈ S, i.e. considering the associated realization

ws ∈ WN ′
and the corresponding mcst game cws .

We notice that, in many real cases, once a spanning tree Γ is constructed

under a scenario s ∈ S, all that the agents know about ws is just the cost of

ws(e), for each edge e ∈ Γ. However, in other realistic situations, only the

total cost ws(Γ) is known. In all these circumstances, only few values of cws

are revealed after the construction of a spanning tree Γ.

In following sections we present some criteria useful to solve the deci-

sion making problem on which spanning tree must be constructed in micst

situations. For each criterium, we study some properties of cost allocation

protocols based on charge systems.

4 Permanent trees

According to Yaman et al. (1999), a permanent tree in a micst situation

W ∈ IWN ′

is a spanning tree ΓP which has minimum cost for each scenario

s ∈ S. In formula, a spanning tree ΓP is a permanent tree iff

ws(ΓP ) ≤ ws(Γ) (3)

for each scenario s ∈ S and each spanning tree Γ in ws.

Proposition 4.1 Let W ∈ IWN ′

and let ΓP be a permanent tree in W

and let C = {C1, . . . , Cn} be a conservative charge system on N . Then, the

following assertions hold:

(i) κC,σ(ws, aΓP ,σ) = χC,σ(ws) for each s ∈ S and each σ ∈ ΣEN′ such that

ws ∈ Kσ;
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(ii) χC(ws) = χC,σ(ws) = χC,σ′
(ws) ∈ Core(cws) for each s ∈ S and each

σ, σ′ ∈ ΣEN′ such that ws ∈ Kσ ∩ Kσ′
;

(iii) χC
i (w

s) ≤ κC,σ
i (ws, aΓ,σ) for all i ∈ N , Γ ∈ ST N ′

, s ∈ S and each

σ ∈ ΣEN′ such that ws ∈ Kσ.

Proof Assertion (i) directly follows by Remark 2.1 and relation (3), which

means that ΓP is a mcst in ws, for each s ∈ S.

Equalities in assertion (ii) follow by Remark 2.2. Moretti et al. (2008)

showed that an allocation provided by a conservative CC-rule in a mcst

situation w ∈ WN ′
belongs to the core of the game cw. So, assertion (ii) is

proved.

Now, to prove (iii), let Γ ∈ ST N ′

, s ∈ S and σ ∈ ΣEN′ be such that

ws ∈ Kσ. Consider a mcst situation w̃ ∈ WN ′
such that

w̃(e) =

{

ws(e) if e ∈ Γ

maxa∈EN′ w
s(a) otherwise.

(4)

Note that,

ws(e) ≤ w̃(e) (5)

for each e ∈ EN ′ . Moreover, Γ is a mcst in w̃.

Let σ̃ ∈ ΣEN′ be such that w̃ ∈ K σ̃. By Remark 2.1 we have

κC,σ̃(w̃, aΓ,σ̃) = χC(w̃). (6)

Note that, by relation (4), we have aΓ,σ
i = aΓ,σ̃

i for each i ∈ N . Then, by

relation (1) we have

κC,σ̃(w̃, aΓ,σ̃) =
n

∑

i=1

w̃(aΓ
i )Ci =

n
∑

i=1

ws(aΓ
i )Ci = κC,σ(ws, aΓ,σ). (7)

Finally, we have that for each i ∈ N

χC
i (w

s) ≤ χC
i (w̃) = κC,σ̃

i (w̃, aΓ,σ̃) = κC,σ
i (ws, aΓ,σ), (8)

where the inequality follows from relation (5) and the fact that conservative

CC-rules are cost monotonic (see Moretti et al. (2008), Tijs et al. (2006)),



10

and the equalities follow from relations (6) and (7), respectively.

For each W ∈ IWN ′

, Yaman et al. (1999) proved that a spanning tree

Γ ∈ ST N ′

in W is a permanent tree if and only if Γ is a mcst under a sce-

nario s̆ ∈ S such that ws̆(e) = W (e) for each e ∈ Γ and ws̆(e) = W (e) for

each e ∈ EN ′ \ Γ. We use this result to provide an example where a special

conservative Construct and Charge rule, the P -value (Branzei et al. (2004)),

is used to share the cost of a permanent tree among agents.

Example 4.1 Consider the set of functions Ĉ = {Ĉ1, . . . , Ĉn} on N such

that for each a = (a1, . . . , an) ∈ EN ′ and for each j ∈ N

Ĉj
i (a|j) =















































1
|S(Π(a|j−1),{i})|

− 1
|S(Π(a|j),{i})|

if 0 /∈ S(Π(a|j), aj)

1
|S(Π(a|j−1),{i})|

if {0, i} ⊆ S(Π(a|j), aj)

and 0 /∈ S(Π(a|j−1), {i}),

0 otherwise,

(9)

for each i ∈ N . Moretti et al. (2008) proved that Ĉ is a conservative charge

system. They also proved that the conservative CC-rule χĈ equals the P -

value for mcst situations (Branzei et al. (2004), Feltkamp et al. (1994),

Bergañtinos and Vidal-Puga (2007)).

Consider the micst situation < {0, 1, 2, 3},W > depicted in Figure 2.

The unique permanent tree in W is ΓP = {{0, 1}, {0, 3}, {1, 2}}. Let s ∈ S

and let σ ∈ ΣEN′ be such that ws ∈ Kσ. By Proposition 4.1 we have that

χĈ(ws) = κĈ,σ(ws, aΓP ,σ). More precisely, we have that χĈ
1(w

s) = ws({0, 1}),

if ws({0, 1}) ≤ ws({1, 3}), and χĈ
1(w

s) = 1
2
ws({0, 1}) + 1

2
ws({1, 3}), other-

wise; χĈ
3(w

s) = ws({0, 1}) + ws({1, 3}) − χĈ
1(w

s); χĈ
2(w

s) = ws({1, 2}).



11

@
@

@@

A
A

A
A

A
A

AA

¢
¢
¢
¢
¢
¢
¢¢

¡
¡

¡¡

i

i

ii

0

1 2

3

[1, 3] [11, 18]

[6, 8]

[2, 5] [11, 15]

[7, 10]

Figure 2: An micst situation < {0, 1, 2, 3},W > and the related permanent

mcst (thicker lines).

5 A pessimistic approach

Given a micst situation W ∈ IWN ′

and a spanning tree Γ in W , an absolute

worst case scenario s∗Γ for Γ is a scenario in which the cost of Γ is the

maximum. In formula, s∗Γ ∈ arg maxs∈S ws(Γ). It follows from this definition

that in an absolute worst case scenario for a given spanning tree Γ the costs of

all edges e ∈ Γ are fixed at their upper bounds and the costs of the remaining

edges can assume any value in their intervals.

A spanning tree ΓA in W whose cost is the minimum under absolute worst

case scenarios is called, according to Yaman et al. (1999, 2001), absolute

robust spanning tree in W , i.e. ΓA ∈ arg minΓ∈ST N′ maxs∈S ws(Γ). In order to

study the cost allocation problem arising from a micst situation W ∈ IWN ′

,

we introduce the notion of pessimistic spanning tree game (N, cA
W ) (or simply

cA
W ), which is defined by

cA
W (T ) = min

Γ∈ST T ′
{ws∗Γ(Γ) | s∗Γ is an absolute worst case scenario for Γ}

for every T ∈ 2N\{∅} with the convention that cA
W (∅) = 0. The following

proposition provides an interesting property of allocation protocols based on

charge systems when the pessimistic spanning tree game is considered.

Proposition 5.1 Let W ∈ IWN ′

, let ΓA be an absolute robust spanning

tree in W and let s∗ΓA be an absolute worst case scenario for ΓA. Let C =

{C1, . . . , Cn} be a charge system on N and let σ ∈ ΣEN′ be such that ws∗
ΓA ∈
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Kσ. Then,

κC,σ(ws∗
ΓA , aΓA,σ) = χC(ws∗

ΓA ) ∈ Core(cA
W ). (10)

Proof Consider the scenario in which all edge costs are at their upper

bounds. The set of minimum spanning trees under this scenario is exactly

the set of absolute robust spanning trees (see e.g. Yaman et al. (1999)).

Then ΓA is a mcst for ws∗
ΓA ∈ WN ′

, where ws∗
ΓA (e) = W (e) for each edge

e ∈ EN ′ . Then, by Remark 2.1 we have that κC,σ(ws∗
ΓA , aΓA,σ) equals the

CC-rule χC(ws∗
ΓA ).

We conclude the proof with the remark that the allocation provided by

a conservative CC-rule in a mcst situation w ∈ WN ′
belongs to the core of

the game cw (Moretti et al. (2008)).

According to this pessimistic approach, it is also reasonable to expect that

each agent i ∈ N would support the construction of a spanning tree Γ which

makes minimum the cost allocated to agent i in an absolute worst case sce-

nario. Next proposition shows that if conservative CC-rules are adopted,

then such a tree Γ coincides with an absolute robust spanning tree ΓA.

Proposition 5.2 Let W ∈ IWN ′

and let ΓA be an absolute robust spanning

tree in W and let s∗ΓA be an absolute worst case scenario for ΓA. Let C =

{C1, . . . , Cn} be a conservative charge system on N and let σ ∈ ΣEN′ be such

that ws∗
ΓA ∈ Kσ. Then,

κC,σ′

i (ws∗Γ , aΓ,σ′

) ≥ κC,σ′

i (ws∗
ΓA , aΓA,σ)

for all i ∈ N and Γ ∈ ST N ′

, where s∗Γ is an absolute worst case scenario for

Γ and σ′ ∈ ΣEN′ is such that ws∗Γ ∈ Kσ′
.

Proof Let Γ ∈ ST N ′

be such that Γ 6= ΓA and let s∗Γ ∈ S be an absolute

worst case scenario for Γ, in formula

ws∗Γ(Γ) = max
s∈S

ws(Γ). (11)

By relation (11) it follows that

ws∗
ΓA (aΓ,σ̂

i ) ≤ ws∗Γ(aΓ,σ̂
i ), (12)
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for each i ∈ N , where σ′ ∈ ΣEN′ is such that ws∗Γ ∈ Kσ′
.

Recall that by Remark 2.1

κC,σ′

(ws∗Γ , aΓ,σ′

) = χC(ws∗Γ) (13)

and

κC,σ′

(ws∗
ΓA , aΓA,σ) = χC(ws∗

ΓA ). (14)

Now define a mcst situation w̃ ∈ WN ′
as follows

w̃(e) =

{

ws∗Γ(e) if e ∈ Γ

maxa∈EN′ w
s∗
ΓA (a) otherwise.

(15)

By cost monotonicity of χC we have that

χC
i (w̃) ≥ χC

i (w
s∗
ΓA ) (16)

for each i ∈ N .

By relation (13), (15) and (1) we have that

χC
i (w

s∗Γ) =
n

∑

i=1

ws∗Γ(aΓ
i )Ci = χC

i (w̃). (17)

Finally, by relations (13), (14), (16) and (17) we have

κC,σ′

(ws∗Γ , aΓ,σ′

) = χC
i (w

s∗Γ) ≥ χC
i (w

s∗
ΓA ) = κC,σ′

(ws∗
ΓA , aΓA,σ). (18)

Suppose that there is agreement among the players about the allocation

protocol to be used. The property for allocation protocols based on conser-

vative charge systems which is stated by Proposition 5.2, captures a condition

for the “stability” of the decision to construct an absolute robust spanning

tree: no group of pessimistic agents has any incentive to move from an abso-

lute robust spanning tree to another spanning tree. The following example

illustrates this property on a particular instance.
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Example 5.1 Consider the micst situation < {0, 1, 2, 3},W > depicted in

Figure 1. Note that in this micst situation W there are no permanent trees.

The unique absolute robust spanning tree in W is ΓA = {{0, 3}, {1, 3},

{1, 2}}. Let s∗ΓA be an absolute worst case scenario for ΓA. Then, ws∗
ΓA =

W (e) for each e ∈ EN ′. The corresponding pessimistic spanning tree game

cA
W is given in Table 2.

T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

cA
W (T ) 9 11 5 13 8 11 12

Table 1: Pessimistic spanning tree game cA
W corresponding to the micst sit-

uation W depicted in Figure 1.

Consider again the conservative charge system of Example 4.1 and the re-

lated conservative CC-rule χĈ and let σ ∈ ΣEN′ be such that ws∗
ΓA ∈ Kσ.

Then, κĈ,σ
1 (ws∗

ΓA , aΓA,σ) = χĈ
1(w

s∗
ΓA ) = 1

2
3+ 1

6
4+ 1

3
5 = 23

6
; κĈ,σ

2 (ws∗
ΓA , aΓA,σ) =

χĈ
2(w

s∗
ΓA ) = 2

3
4+ 1

3
5 = 26

6
; κĈ,σ

3 (ws∗
ΓA , aΓA,σ) = χĈ

3(w
s∗
ΓA ) = 1

2
3+ 1

6
4+ 1

3
5 = 23

6
.

According to Proposition 5.2, there are no Γ ∈ ST N ′

and i ∈ N such

that κĈ,σ
i (ws∗

ΓA , aΓA,σ) > κĈ,σ′

i (ws∗Γ , aΓ,σ′
), where s∗Γ is an absolute worst case

scenario for Γ and σ′ ∈ ΣEN′ is such that ws∗Γ ∈ Kσ′
.

6 An optimistic approach

Following a similar line as in Section 5, given a micst situation W ∈ IWN ′

and a spanning tree Γ in W , we define an absolute best case scenario s◦Γ

for Γ, as a scenario in which the cost of Γ is the minimum. In formula,

s◦Γ ∈ arg mins∈S ws(Γ). A spanning tree in W whose cost is the mini-

mum under the absolute best case scenarios is denoted by ΓB, i.e. ΓB ∈

arg minΓ∈ST N′ mins∈S ws(Γ).

For each micst situation W ∈ IWN ′

, we may define the optimistic span-
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ning tree game (N, cB
W ) (or simply cB

W ), which is defined by

cB
W (S) = min

Γ∈ST T ′
{ws◦Γ(Γ)| s◦Γ is an absolute best case scenario for Γ}

for every S ∈ 2N\{∅} with the convention that cB
W (∅) = 0.

Proposition 6.1 Let W ∈ IWN ′

, let ΓB ∈ arg minΓ∈ST N′ mins∈S ws(Γ) and

let s◦ΓB be an absolute best case scenario for ΓB. Let C = {C1, . . . , Cn} be a

charge system on N and let σ ∈ ΣEN′ be such that ws◦
ΓB ∈ Kσ. Then,

κC,σ
i (ws◦

ΓB , aΓB ,σ) ∈ Core(cB
W ).

Proof Consider the scenario in which all edge costs are at their lower bounds.

The set of minimum spanning trees under this scenario is exactly the set of

spanning trees whose cost is the minimum under the absolute best case sce-

narios. Then ΓB is a mcst for ws◦
ΓB ∈ WN ′

, where ws◦
ΓB (e) = W (e) for each

edge e ∈ EN ′ . The proof follows as the proof of Proposition 5.1.

Similar to Proposition 5.2, we may claim the following proposition.

Proposition 6.2 Let W ∈ IWN ′

, let ΓB = arg minΓ∈ST N′ mins∈S ws(Γ) and

let s◦ΓB be an absolute best case scenario for ΓB. Let C = {C1, . . . , Cn} be a

conservative charge system on N and let σ ∈ ΣEN′ be such that ws◦
ΓB ∈ Kσ.

Then,

κC,σ′

i (ws◦Γ , aΓ,σ′

) ≥ κC,σ′

i (ws◦
ΓB , aΓB ,σ)

for all i ∈ N and each Γ ∈ ST N ′

, where s◦Γ is an absolute best case scenario

for Γ and σ′ ∈ ΣEN′ is such that ws◦Γ ∈ Kσ′
.

Proof Similar to the proof of Proposition 5.2.

Example 6.1 Consider the micst situation < {0, 1, 2, 3},W > depicted in

Figure 1.
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T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

cB
W (T ) 1 6 1 3 2 1 2

Table 2: Optimistic spanning tree game cB
W corresponding to the micst situ-

ation W depicted in Figure 1.

Let ΓB = {{0, 1}, {0, 3},{2, 3}} and let s◦ΓB be an absolute best case sce-

nario for ΓB. Note that ws◦
ΓB (ΓB) = minΓ∈ST N′ mins∈S ws(Γ) = 2. The

corresponding optimistic spanning tree game cB
W is given in Table 2.

Consider again the conservative charge system of Example 4.1 and the re-

lated conservative CC-rule χĈ and let σ ∈ ΣEN′ be such that ws◦
ΓB ∈ Kσ.

Then, κĈ,σ
1 (ws◦

ΓB , aΓB ,σ) = χĈ
1(w

s◦
ΓB ) = 1; κĈ,σ

2 (ws◦
ΓB , aΓB ,σ) = χĈ

2(w
s◦
ΓB ) = 1

2
;

κĈ,σ
3 (ws◦

ΓB , aΓB ,σ) = χĈ
3(w

s◦
ΓB ) = 1

2
.

According to Proposition 5.2, there are no Γ ∈ ST N ′

and i ∈ N such

that κĈ,σ
i (ws◦

ΓB , aΓB ,σ) > κĈ,σ′

i (ws◦Γ , aΓ,σ′
), where s◦Γ is an absolute best case

scenario for Γ and σ′ ∈ ΣEN′ is such that ws◦Γ ∈ Kσ′
.

Remark 6.1 Let W ∈ IWN ′

be such that ΓP is a permanent tree in W .

Then ΓA = ΓB = ΓP .

7 Cost allocation problem after realizations

Let W ∈ IWN ′

. If all the agents in N decide to adopt the pessimistic

approach, then they will construct the spanning tree ΓA in W . On the other

hand, if they decide to adopt the optimistic approach they will construct the

spanning tree ΓB in W . Using the pessimistic approach, if scenario s ∈ S

is realized, then the saving ws∗
ΓA (ΓA) − ws(ΓA) ≥ 0 should be redistributed

among agents. Using the optimistic approach, if scenario s ∈ S is realized,

then the extra cost ws(ΓB) − ws◦
ΓB (ΓB) ≥ 0 should be reallocated among

agents.

Suppose that an allocation protocol based on a conservative charge sys-

tem C = {C1, . . . , Cn} is used and let ΓA be the spanning tree which is



17

constructed, according to the pessimistic approach, under scenario s ∈ S.

We distinguish two cases:

1.A) the cost of ws(e) is known, for each e ∈ ΓA. Then a reasonable way to

share the saving ws∗
ΓA (ΓA)−ws(ΓA) ≥ 0 is to give to each agent i ∈ N

the ∆A
i saving

∆A
i = κC,σ

i (ws∗
ΓA , aΓA,σ) − κC,σ′

i (ws, aΓA,σ′

) (19)

where σ ∈ ΣEN′ is such that ws∗
ΓA ∈ Kσ and σ′ ∈ ΣEN′ is such that

ws ∈ Kσ′
.

2.A) only the total cost ws(ΓA) is known. Let σ ∈ ΣEN′ be such that

ws∗
ΓA ∈ Kσ. In order to allocate the cost saving ws∗

ΓA (ΓA) − ws(ΓA),

one possibility is to divide it proportionally to previous agents’ contri-

butions κC,σ
i (ws∗

ΓA , aΓA,σ), for each i ∈ N ; in formula1

PROPA
i =

κC,σ
i (ws∗

ΓA , aΓA,σ)
∑n

k=1 κC,σ
k (ws∗

ΓA , aΓA,σ)

(

ws∗
ΓA (ΓA) − ws(ΓA)

)

. (20)

The taxation problem related to the optimistic approach, after the spanning

tree ΓB is constructed, is very close to lines above. We distinguish again two

cases:

1.B) the cost of ws(e) is known, for each e ∈ ΓB. Then the extra cost to

be divide now is ws(ΓB) − ws◦
ΓB (ΓB) ≥ 0 and to each agent i ∈ N is

allocated the ∆B
i cost

∆B
i = κC,σ′

i (ws, aΓB ,σ′

) − κC,σ
i (ws◦

ΓB , aΓB ,σ) (21)

where σ ∈ ΣEN′ is such that ws◦
ΓB ∈ Kσ and σ′ ∈ ΣEN′ is such that

ws ∈ Kσ′
.

1In this case it is possible to look at the saving allocation problem as a bankruptcy

problem where each agent claims the share of savings necessary to null his/her previ-

ous contribution, i.e. consider the bankruptcy problem (Aumann and Maschler (1985))
(

w
s∗

ΓA (ΓA)−w
s(ΓA);κC,σ

1
(ws∗

ΓA ,a
Γ

A,σ), . . . , κ
C,σ
n (ws∗

ΓA ,a
Γ

A,σ)
)

. Note that allocation pro-

vided by relation (20) corresponds to the proportional rule (Curiel et al. (1987)) for

bankruptcy problems.
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2.B) only the total cost ws(ΓB) is known. Similar to point (2.A), in this

case the extra cost ws(ΓB) − ws◦
ΓB (ΓB) ≥ 0 is divided proportionally

according to the following formula

PROPB
i =

κC,σ
i (ws◦

ΓB , aΓB ,σ)
∑n

k=1 κC,σ
k (ws◦

ΓB , aΓB ,σ)

(

ws(ΓB) − ws◦
ΓB (ΓB)

)

, (22)

for each i ∈ N .

Example 7.1 Consider the micst situation < {0, 1, 2, 3},W > depicted in

Figure 1. Note that in this micst situation W there are no permanent trees.

Consider again the conservative charge system of Example 4.1 and the related

conservative CC-rule χĈ. Suppose that a scenario s ∈ S is realized and that

the associated mcst situation ws is depicted in Figure 3. Note that ws(ΓA) = 9

and ws(ΓB) = 10. The allocations of the saving ws∗
ΓA (ΓA)−ws(ΓA) = 12−9 =

@
@

@@

A
A

A
A

A
A

AA

¢
¢
¢
¢
¢
¢
¢¢

¡
¡

¡¡

i

i

ii

0

1 2

3

2 4

4

2 6

3

Figure 3: The mcst situation < {0, 1, 2, 3}, ws > realized under scenario s.

3 computed according to (19) and (20) and the allocations of the extra cost

ws(ΓB) − ws◦
ΓB (ΓB) = 10 − 2 = 8 computed according to (21) and (22) are

shown in Table 3.

8 Concluding remarks

In this paper we cope with uncertainty in cost allocation problems arising

from connection situations. Basically, we deal with mcst situations where

costs are intervals and agents may act optimistically or pessimistically.
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agent 1 2 3

∆A 23

6
−

(

1

2
2 + 1

6
3 + 1

3
4
)

= 1 26

6
−

(

2

3
3 + 1

3
4
)

= 1 23

6
−

(

1

2
2 + 1

6
3 + 1

3
4
)

= 1

PROP A
23

6

12

(

12 − 9) = 23

24

26

6

12

(

12 − 9) = 26

24

23

6

12

(

12 − 9) = 23

24

∆B 2 − 1 = 1 4 − 1

2
= 7

2
4 − 1

2
= 7

2

PROP B 1

2

(

10 − 2) = 4
1

2

2

(

10 − 2) = 2
1

2

2

(

10 − 2) = 2

Table 3: Allocations of savings (∆A and PROPA) and of extra costs (∆B

and PROPB) after the realization of scenario s.

In the sequel, we briefly introduce a more complex problem as a possible

topic for further research: how to deal with micst situations where not all

the agents follow the same (pessimistic or optimistic) approach to make the

decision on which spanning tree must be realized?

In theory of decisions under uncertainty, it is well known the Hurwicz’s

criterion (see Wald (1950)), giving to a decision of a single decision maker a

value which is a weighted sum of the worst (pessimistic) and best (optimistic)

possible outcomes, where the weight is represented by an α which is known

as an index of pessimism / optimism. How to determine such an α index

for a single decision maker in an uncertain situation is a difficult task. In

micst situations, things are much more complicated by the presence of n >

1 agents, and the related problem to find n, possibly different, indices of

pessimism/optimism. In addition, even if such α1, . . . , αn are given, it is not

clear how this information may help to chose and realize an optimal spanning

tree.

We finally remark that, to take the decision on whether to cooperate

or not, the pessimistic spanning tree game cA
W and the optimistic spanning

tree game cB
W set the bounds of the cost games that would be interesting to

consider in a micst situation W ∈ IWN ′

where agents have different levels of

pessimism/optimism. These bounds may be given in terms of interval cost
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games (Branzei, et al. (2003), Alparslan Gök et al. (2008)), i.e. defining the

corresponding micst game cW = [cA
W , cB

W ]. The model of cooperative interval

games was firstly introduced in Branzei, et al. (2003) to model bankruptcy

situations under interval uncertainty of claims. The theory of cooperative

interval games has been recently developed. We refer here to Alparslan Gök

et al. (2008), Alparslan Gök et al. (2008a; b; c; d).

References

Alparslan Gök S.Z., Miquel S., Tijs S. (2008) Cooperation under interval

uncertainty. Preprint no. 73, Institute of Applied Mathematics, METU

and Tilburg University, Center for Economic Research, The Netherlands,

CentER DP 09 (to appear in Mathematical Methods of Operations

Research).

Alparslan Gök S.Z., Branzei R., Tijs S. (2008a) Cooperative inter-

val games arising from airport situations with interval data. Preprint no.

107, Institute of Applied Mathematics, METU and Tilburg University,

Center for Economic Research, The Netherlands, CentER DP 57.

Alparslan Gök S.Z., Branzei R., Tijs S. (2008b) Convex interval

games. Preprint no. 100, Institute of Applied Mathematics, METU and

Tilburg University, Center for Economic Research, The Netherlands,

CentER DP 37.

Alparslan Gök S.Z., Branzei R., Tijs S. (2008c) Cores and stable

sets for interval-valued games. Preprint no. 90, Institute of Applied

Mathematics, METU and Tilburg University, Center for Economic

Research, The Netherlands, CentER DP 17.

Alparslan Gök S.Z., Branzei R., Tijs S. (2008d) Big boss interval



21

games. Preprint no. 103, Institute of Applied Mathematics, METU and

Tilburg University, Center for Economic Research, The Netherlands,

CentER DP 47.

Aumann R., Maschler M. (1985) Game theoretic analysis of a bankruptcy

problem from the Talmud. Journal of Economic Theory 36 195-213.
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