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Abstract

This paper defines models of cooperation among players partition-
ing a completely divisible good (such as a cake or a piece of land). The
novelty of our approach lies in the players’ ability to form coalitions
before the actual division of the good with the aim to maximize the
average utility of the coalition. A social welfare function which takes
into account coalitions drives the division. In addition, we derive a
cooperative game which measures the performance of each coalition.
This game is compared with the game in which players start cooper-
ating only after the good has been portioned and has been allocated
among the players. We show that a modified version of the game
played before the division outperforms the game played after the di-
vision.
Keywords: fair division, cooperative games, maximin partition
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1 Introduction

The problem of dividing a non-homogeneous cake among children with sub-
jective likes has gone a long way from the first pioneering works of Ba-
nach, Knaster, Steinhaus (cited in Brams and Taylor (1996)) and Dubins
and Spanier (1961) to reach the status of an independent field of research,
named fair division theory. An overview of the advances in this topic can be
found in Hill (1993), Brams and Taylor (1996), and Brams (2008).

The attention of most authors in the field has been focused on the design
of simple procedures to achieve a satisfactory division, and the classification
of the various and often conflicting optimality criteria. Less urgent, and
therefore less developed — but by no means less important — is the analysis
of the players’ strategic concerns. Most approaches to fair division require
the adherence of the players to a procedure, usually under the supervision of
a referee. This leaves little freedom to the players, whose strategic behavior is
usually limited to actions such as: cutting (a portion of) the cake according
to a specified ratio in their own preferences, choosing a part of the cake
among many, or instructing the referee about their likes and dislikes. All
these actions deal with the revelation of the personal preferences by the
players. Truthfulness is not usually guaranteed in many procedures, and
the attention of some authors has been focused on designing strategy-proof
procedures that encourage players in revealing their true preferences, or,
conversely, on showing the impossibility of this effort (see Tadenuma and
Thomson (1995), Brams and Taylor (1996)).

Beyond the mere process of division, players may engage in other strate-
gic actions: for instance they may exchange parts of the slice they have been
assigned, or they may compensate a player who gives up a part of her fair
share for the sake of the whole coalition. Traditionally, this model has been
associated with the division of a piece of land among heirs (instead of a cake
among children) who have already received their share of inheritance and
look for a better allocation of the whole lot of land, but the mathematical
structure underlying the problem remains essentially unaltered. In Berliant
(1985), in Berliant, Thomson and Dunz (1992), and in Berliant and Dunz
(2004) it is shown that heirs trade their endowments knowing that there ex-
ists an equilibrium allocation which belongs to the core of an NTU game,
implying that such allocation cannot be improved upon by a further redis-
tribution among groups of heirs. In these works, great care is devoted to
the formal description of the preferences, which departs from the classical
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measure theoretic settings in fair division to take into account non-additivity
and the preference for shape and location of the plots.

Legut (1990) defines a model of cooperation within the classical frame-
work of fair division. Similarly to the model for land division, children at-
tending the division of the cake may redistribute the total amount of cake
within a group in order to maximize the joint utility of the group. This time
side payments are allowed and a TU game is defined. The same model is
also considered by Legut, Potters and Tijs (1994) who characterize the TU
game and its core in great detail.

The models reviewed so far introduce cooperation by exchanges within
the context of fair division. As a matter of fact, however, this results in
the juxtaposition of two stages of activity which are separate both in time
and in goals. At first, each child on his own (with no hindsight for future
cooperation) attends the division of the cake. Then, once the division is
completed, they may turn to the other players in search for a mutually better
arrangement. As it is presented, this is a division procedure, followed by a
model of exchange economy where the slices of the cake (or the plots of land)
represent the agents’ initial endowments. There is no interaction of sorts
between the two stages, so that in the trading phase any division, no matter
how unfair, would be considered just fine. The discrepancy was already noted
by Legut, Potters and Tijs (1994) who kept the name of “fair division game”
for the exchange model they analyzed, but noted in a footnote that

“this name does not seem to be very appropriate in the present
situation but in Legut (1990) this term has been introduced for
games of this kind where the initial endowment [. . .] was a result
of a fair division process. Since we are studying the same games
it is not sensible to change the name.”

Here we propose models in which the two activities of dividing the cake
and cooperating among children are merged together. At the beginning of the
procedure and before the cake is actually cut, children may form coalitions.
Each coalition acts as a single player in the division by reclaiming a share
proportional to the cardinality of the coalition, and distributing the share
of the cake in the most efficient way within the coalition, i.e., giving each
crumble of the cake to the player in the coalition who appreciates it most.
A fair evaluation of the conflicting interests between competing coalitions is
taken care of by means of a maximin social welfare function, which is widely
used in the fair division literature.
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We point out that, as a result of this procedure, while coalitions as a
whole will be treated fairly, the allocation within a single coalition may turn
out to be extremely unfair to single members of the coalition. Fairness at this
level will be restored by means of side payments according to the principles of
TU-models: the overall payoff of each player (inclusive of the side payments)
should be high enough to discourage single players or subgroups to leave the
coalition. In particular, we will be interested in payments that make the
grand coalition formed by all players stable. Such payments belong to the
core of the cooperative game.

The use of transferable utility is inherited from Legut (1990). Such as-
sumption is often criticized in the classical context of fair division where
children attending the division are not supposed to handle money. We have
already noted, however, that the domain of fair division theory is very large
and extends to applications such as the division of land, where money com-
pensations are more common. Also, Legut, Potters and Tijs (1995) connect
situations where side payments are allowed (TU-models) to situations where
such transfers are not allowed (NTU-models) by means of a result (Theo-
rem 5) that guarantees the existence of equilibrium payoffs in one setting
whenever an equilibrium payoff exists in the other setting.

We will make two proposals for the definition of cooperative games as-
sociated to the combined model of exchange and division, emphasizing the
importance of picking the right weights for the individuals, as well as for the
coalitions that they form.

Section 2 recalls the mathematical framework of fair division and intro-
duces a couple of essential assumptions. Section 3 gives a formal description
of the two opposite attitudes which the players may put on: competition
and cooperation, and describes how to mix the two attitudes in a single
model. Furthermore, we define a cooperative game arising from cooperation
in fair division before the division of the cake takes place, and show that
this game is superadditive, balanced and possesses population monotonic al-
location schemes. This game is compared in Section 4 with the cooperative
game introduced by Legut (1990), in which players have initial endowments
arising from a process of fair division. To our surprise, it may be convenient
for a group of players to form a coalition after the division has taken place,
rather than participating to the division as a single coalition from the start.
We also propose a modification of the game defined in Section 3, which out-
performs the corresponding game of cooperation after division. We conclude
with some remarks in Section 5.
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2 Basic definitions and assumptions

A cake X ⊂ <n is to be divided among n players (children). Let N =
{1, 2, . . . , n} denote the set of players. Each µi (i = 1, 2, . . . , n) is a prob-
ability measure on (X,B(X)), B(X) being the Borel sets in X. For each
A ∈ B(X), µi(A) measured on the unit scale tells us how much player i likes
slice A. Throughout this work we will require some assumptions to hold.
The first one guarantees the complete divisibility of the cake.

(A) – Atomless preferences Each µi does not contain atoms: If µi(A) >
0, then there exists a measurable B ⊂ A such that µi(A ∩ B) > 0 and
µi(A ∩Bc) > 0.

Each µi is absolutely continuous w.r.t. ν =
∑

i µi/n. Consequently, by the
Radon-Nykodym theorem, each µi admits a density function fi w.r.t. ν such
that

µi(A) =

∫
Ai

fidν for every A ∈ B(X) .

As a special case, the preferences may be absolutely continuous w.r.t. the
Lebesgue measure λ, which therefore replaces ν in the above formula. In
such case, (A) holds and each density function gives a pointwise description
of the corresponding player.

Another useful assumption requires the players to share a common inter-
est to the same parts of the cake (though the liking may vary from player to
player).

(B) - Common support If µi(A) > 0 for some i and A ∈ B(X), then
µj(A) > 0 for every other j 6= i.

The cake X will be partitioned into n measurable sets (A1, A2, . . . , An).
The set of all measurable n-partitions of X is denoted as Πn.

The main purpose of fair division is to find a partition (A1, A2, . . . , An) ∈
Πn and assign “slice” Ai to player i, who will evaluate it µi(Ai). The goal is
then to find a “good” partition that keeps the values µi(Ai) as high and as
even as possible.

A partition (A1, A2, . . . , An) ∈ Πn is equitable if

µ1(A1) = µ2(A2) = . . . = µn(An), (1)
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and it is fair if

µi(Ai) ≥
1

n
for every i ∈ {1, . . . , n} . (2)

Since all players assign value 1 to the whole cake and they are all treated
equally, it makes sense to assign each one a part which is worth at least one
n-th of the whole cake.

In fair division players are usually treated equal, since it is assumed that
they have equal rights over the cake. If players have different entitlements,
this is usually managed by means of different weights wi ≥ 0, i ∈ N , associ-
ated to the players. The notions of fairness and equitability could be adjusted
by dividing each µi(Ai) by wi in (1) and by replacing 1/n with wi/

∑
i∈N wi

in (2). For what follows, we consider the case of equal entitlements, but we
keep in mind that when it comes to comparing coalitions in place of single
players, we will have to resort to weights taking into account the cardinality
of the coalitions.

The following set,

D = {(µ1(A1), µ2(A2), . . . µn(An)) : (A1, . . . , An) ∈ Πn} ,

is called the allocation range. It plays a central role in many well-known
results of fair division theory and the present work will be no exception. The
importance of the allocation range can be explained by its properties, as
Proposition 2.1 states.

Proposition 2.1. (Lyapunov, 1940, Dubins and Spanier, 1961) D is a com-
pact subset of <n. Moreover, if (A) holds, then D is also convex.

3 Competition and cooperation

An important issue in fair division theory regards the existence and con-
struction of an allocation which enjoys one or more desirable properties such
as fairness or envy-freeness. Usually, uniqueness of such allocation is not
guaranteed, and often a whole class of such allocations can be identified. To
reduce the cardinality of such class of allocations, the use of a social welfare
function may come handy. The choice of such function depends on the cir-
cumstances under which the division takes place. Dubins and Spanier (1961)
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define two such functions related to optimization problems corresponding to
two types of players’ behavior1:

Complete competition Each player is assigned a part of the cake and
no further action is possible. Therefore, an allocation is sought with
players’ values as high and equitable as possible. This can be achieved
by maximizing the utility of the least well-off player, via a maximin
allocation

um = sup

{
min

i=1,...,n
µi(Ai) : (A1, . . . , An) ∈ Πn

}
. (3)

Dubins and Spanier (1961) show in Corollary 6.10 that the supremum
is always attained. Therefore “sup” can be replaced by “max” in the
above definition. In the optimization problems that follow the same
reasoning applies and we will consider the maximizing partitions.

It is easy to verify that when (A) holds, a maximin allocation is fair.
Furthermore, if also (B) holds, Dubins and Spanier note that the allo-
cation is equitable.

Complete cooperation Suppose now that after the allocation players are
allowed to transfer money to other players. Players are therefore likely
to agree on an allocation which maximizes their joint utility, as ex-
pressed by the sum, and compensate the less fortunate players by means
of side payments. The problem is now to find a partition that maxi-
mizes the average utility, i.e. find

up = max

{∑
i∈N µi(Ai)

n
: (A1, . . . , An) ∈ Πn

}
. (4)

The allocation is equitable by construction, and it is fairer, on average,
than the previous one, since

up ≥ um . (5)

The inequality holds since, for any vector (x1, . . . , xn) ∈ D,

min
i∈N

xi ≤
∑

i∈N xi

n
.

1Dubins and Spanier define these two optimization problems — but do not attach any
meaning to them in terms of competition or cooperation.
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Maximizing both sides over D yields the result.

Dubins and Spanier (1961) show that

up =

∫
X
fdν

n
, (6)

where f = maxi fi. Moreover, they exhibit a maximizing allocation

A1 = {x ∈ X : f1(x) = f(x)} ;

Aj = {x ∈ X : fh(x) < f(x) for h < j, fj(x) = f(x)} , j = 2, . . . , n .

In what follows we study a class of intermediate situations between the two
cases listed above and we address the question: What happens when players
form several competing groups and are allowed to transfer money only within
the coalition they belong to? Within each coalition, players will agree on
maximizing their joint utility and divide the resulting wealth equally.

Let S = {S1, . . . , Sh} be a partition of N . A partition S ′ = {S ′1, . . . , S ′h′}
is finer than the partition S ′′ = {S ′′1 , . . . , S ′′h′′} (and S ′′ is coarser than S ′) if
for each S ′i ∈ S ′ there exists S ′′j ∈ S ′′ such that S ′i ⊂ S ′′j .

Now, assume that players cluster into the coalitions specified by the par-
tition S = {S1, . . . , Sh}. In this situation we recommend an allocation satis-
fying

u(S1, . . . , Sh) = max

{
min

j=1,...,h

{∑
i∈Sj

µi(Ai)

|Sj|

}
: (A1, . . . , An) ∈ Πn

}
. (7)

The cases of complete competition and complete cooperation, respectively,
are included as special cases, since

um = u({1}, . . . , {n}) and up = u(N) .

For a given coalition structure S = {S1, . . . , Sh}, u(S1, . . . , Sh) can be inter-
preted as the minimal average utility that each coalition is bound to receive.
If (A∗1, . . . , A

∗
n) attains the maximin value in (7), then,∑
i∈Sj

µi(A
∗
i )

|Sj|
≥ u(S1, . . . , Sh) for each j = 1, . . . , h.

It must be noted that, in the same context, it is not guaranteed that µi(A
∗
i ) ≥

u(S1, . . . , Sh) for every i ∈ N .
We now turn to an alternative interpretation for the value defined by (7).
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Proposition 3.1. For any coalition structure S = {S1, . . . , Sh},

u(S1, . . . , Sh) = max

{
min

j=1,...,h

{
µSj

(Bj)

|Sj|

}
: (B1, . . . , Bh) ∈ Πh

}
(8)

where for each B ∈ B(X) and j = 1, . . . , h

µSj
(B) =

∫
B

fSj
dν with fSj

(x) = max
i∈Sj

fi(x) .

Proof. The main ideas for this proof are derived from Theorem 2 in Dubins
and Spanier (1961).

Denote with ũ the right-hand side in (8). For any partition (A1, . . . , An) ∈
Πn and the given coalition structure {S1, . . . , Sh} define a partition (B∗1 , . . . , B

∗
h)

in Πh by B∗j = ∪i∈Sj
Ai, j = 1, . . . , h. The following inequality holds∑

i∈Sj

µi(Ai) =
∑
i∈Sj

∫
Ai

fidν ≤
∑
i∈Sj

∫
Ai

fSj
dν =

∫
B∗j

fSj
dν = µSj

(B∗j ) .

Consequently,

min
j=1,...,h

{∑
i∈Sj

µi(Ai)

|Sj|

}
≤ min

j=1,...,h

{
µSj

(B∗j )

|Sj|

}
.

Take the supremum over the two classes of partitions Πn and Πh to obtain

u(S1, . . . , Sh) ≤ ũ .

Following the same lines of Corollary 6.10 in Dubins and Spanier (1961) we
can show that the optimal value ũ is attained by some (B̃1, . . . , B̃h) ∈ Πh.
We now show that, for each j = 1, . . . , h, there exists a partition (Ãi)i∈Sj

of

B̃j (and therefore a partition of the whole space) such that∑
i∈Sj

µi(Ãi) = µSj
(B̃j) . (9)

In fact, write Sj = {i1, . . . , ir} and let Ãip (p = 1, . . . , r) be the subset of B̃j

where fi`(x) < fSj
(x) for ` < p and fip(x) = fSj

(x). Then, (Ãi1 , . . . , Ãir) is

a measurable partition of B̃j with∑
`=1,...,r

∫
Ãi`

fi`dν =
∑

`=1,...,r

∫
Ãi`

fSj
dν =

∫
B̃j

fSj
dν = µSj

(B̃j) .
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From (9) we derive

u(S1, . . . , Sh) ≥ min
j=1,...,h

{∑
i∈Sj

µi(Ãi)

|Sj|

}
= min

j=1,...,h

{
µSj

(B̃j)

|Sj|

}
= ũ

which completes the proof.

Proposition 3.1 suggests an alternative interpretation: players who coa-
lesce into Sj state their joint preferences as µSj

and participate in a maximin
division with the competing coalitions. Each coalition is given a weight which
is proportional to the cardinality of the group.

Inequality (5) shows that moving from complete competition to complete
cooperation is beneficial on average to the players. This improvement carries
on to the intermediate situations as well: merging subcoalitions into larger
ones improves the average value of the division.

Proposition 3.2. If S ′ = {S ′1, . . . , S ′h′} is finer than S ′′ = {S ′′1 , . . . , S ′′h′′},
then

u(S ′1, . . . , S
′
h′) ≤ u(S ′′1 , . . . , S

′′
h′′) . (10)

Proof. Since S ′ is finer than S ′′, each S ′′j ∈ S ′′ is partitioned into elements of
S ′, say S ′′j = {S ′1, . . . , S ′q}.

For any (x1, . . . , xn) ∈ D, the following holds:

min
`=1,...,q

{∑
i∈S′`

xi

|S ′`|

}
≤
|S ′1|

(∑
i∈S′1

xi

|S′1|

)
+ · · ·+ |S ′q|

(∑
i∈S′q

xi

|S′q |

)
|S ′1|+ · · ·+ |S ′q|

=

∑
i∈S′′j

xi

|S ′′j |
.

The inequality is preserved once we minimize over all S ′′j ∈ S ′′ and then again
maximize this result over all (x1, . . . , xn) ∈ D.

As a straightforward consequence, for any coalition structure S = {S1, . . . , Sh},
a division attaining (7) is fair on average, since

u(S1, . . . , Sh) ≥ u({1}, . . . , {n}) ≥ 1

n
.

The first inequality derives from the Proposition 3.2, while the last one is
a consequence of the fairness of the maximin allocation reaching (3) in the
complete competitive setting.
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A maximin objective function controls the value of the least well-off
player. The other players will get at least as much as that player, but little is
known, in general, about their exact value. If the preferences have common
support, however, all players are treated equal.

Proposition 3.3. If (A) and (B) hold and (A∗1, . . . , A
∗
n) is a maximin par-

tition with respect to (7) for a given coalition structure S = (S1, . . . , Sh),
then ∑

i∈S1
µi(A

∗
i )

|S1|
= · · · =

∑
i∈Sh

µi(A
∗
i )

|Sh|
.

Therefore, all players get the same average value, no matter what coalitions
they belong to.

Proof. First of all, it is easy to verify that since D is a convex subset of <n

and by virtue of the Lyapunov theorem, the set

H =

{(∑
i∈S1

xi

|S1|
, · · · ,

∑
i∈Sh

xi

|Sh|

)
: (x1, . . . , xn) ∈ D

}
is also a convex subset of <h.

Now, assume that for some coalition structure S = {S1, . . . , Sh} the par-
tition (A∗1, . . . , A

∗
n) attaining the maximin value in (7) is not equitable and,

say, ∑
i∈S1

µi(A
∗
i )

|S1|
>

∑
i∈Sj

µi(A
∗
i )

|Sj|
≥ 1

n
for j = 2, . . . , h .

Denote Ã = ∪i∈S1A
∗
i . Since

∑
i∈S1

µi(A
∗
i ) > 0, then µp(1)(Ã) ≥ µp(1)(A

∗
p(1)) >

0 for some p(1) ∈ S1.
For each j = 2, . . . , h, take a player p(j) ∈ Sj, fix ε, 0 < ε < 1, and
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consider the following convex combination of elements in H

(1− ε)
(∑

i∈S1
µi(A

∗
i )

|S1|
,

∑
i∈S2

µi(A
∗
i )

|S2|
,

∑
i∈S3

µi(A
∗
i )

|S3|
, · · · ,

∑
i∈Sh

µi(A
∗
i )

|Sh|

)
+

+
ε

h− 1

(
0,

∑
i∈S2

µi(A
∗
i ) + µp(2)(Ã)

|S2|
,

∑
i∈S3

µi(A
∗
i )

|S3|
, · · · ,

∑
i∈Sh

µi(A
∗
i )

|Sh|

)
+

+
ε

h− 1

(
0,

∑
i∈S2

µi(A
∗
i )

|S2|
,

∑
i∈S3

µi(A
∗
i ) + µp(3)(Ã)

|S3|
, · · · ,

∑
i∈Sh

µi(A
∗
i )

|Sh|

)
+

· · ·

+
ε

h− 1

(
0,

∑
i∈S2

µi(A
∗
i )

|S2|
,

∑
i∈S3

µi(A
∗
i )

|S3|
, · · · ,

∑
i∈Sh

µi(A
∗
i ) + µp(h)(Ã)

|Sh|

)
=

=

(
(1− ε)

∑
i∈S1

µi(A
∗
i )

|S1|
,

∑
i∈S2

µi(A
∗
i )

|S2|
+

εµp(2)(Ã)

(h− 1)|S2|
,∑

i∈S3
µi(A

∗
i )

|S3|
+

εµp(3)(Ã)

(h− 1)|S3|
, · · · ,

∑
i∈Sh

µi(A
∗
i )

|Sh|
+

εµp(h)(Ã)

(h− 1)|Sh|

)
.

Since H is convex, there exists a partition (Ā1, . . . , Ān) with the same values
for the players as the right-hand side term in the above equality. Since
µp(1)(Ã) > 0, by assumption (B), also µp(j)(Ã) > 0 for every j = 2, . . . , h
and, for ε positive close to 0, we have exhibited a partition with a better
maximin value than (A∗1, . . . , A

∗
n) for the coalition structure S. This is in

contradiction with the previous assumptions.

The partition maximizing (7) depends on the whole coalition structure.
We change the perspective and look at the division from the point of view of
a single coalition S ⊂ N .

Players may want to explore the advantage of joining a particular coalition
S, independently of the behavior of the players outside that coalition. By
Propositions 3.2 and 3.3 we know that players in S will get at least the value
of the coalition structure defined when all the players outside S decide not
to cooperate. Consequently, we propose the following value for coalition S:

v(S) = |S| u(S, {j}j /∈S) for S ⊂ N . (11)
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i.e., the minimal value that the coalition S as a whole is bound to receive
when the coalition is formed, irrespective of the behavior of the other players.
The function is suitable for analysis in a cooperative game theoretical setting.

Proposition 3.4. The function v defines a superadditive game.

Proof. First of all, we note that the empty coalition has value zero

v(∅) = |∅|u(∅, {j}j∈N) = 0 .

Next, we consider S1, S2, disjoint subsets of N . Then,

v(S1 ∪ S2) = |S1 ∪ S2|u(S1 ∪ S2, {j}j /∈S1∪S2) =

= |S1|u(S1 ∪ S2, {j}j /∈S1∪S2) + |S2|u(S1 ∪ S2, {j}j /∈S1∪S2) ≥
≥ |S1|u(S1, {j}j /∈S1) + |S2|u(S2, {j}j /∈S2) = v(S1) + v(S2)

The inequality is motivated by Proposition 3.2, since {S1 ∪S2, {j}j /∈S1∪S2} is
coarser than both {S1, {j}j /∈S1} and {S2, {j}j /∈S2}.

In the cooperative game just defined, players are encouraged to form the
grand coalition N since the equal-share vector belongs to the core of v. The
same equal share principle can be applied to the smaller coalitions to provide
a Population Monotonic Allocation Scheme (PMAS, see Sprumont, 1990).

Proposition 3.5. The game v has non-empty core and admits a PMAS.

Proof. We show that the equal share vector(
v(N)

n
, · · · , v(N)

n

)
belongs to the core of v. To prove that a reward vector (x1, . . . , xn) is in the
core of a game, we need to show that

(i)
∑
i∈S

xi ≥ v(S) for each S ∈ 2N \ {∅} ;

(ii)
∑
i∈N

xi = v(N) .

To prove (i) for the vector
(

v(N)
n
, · · · , v(N)

n

)
consider

∑
i∈S

xi =
∑
i∈S

v(N)

n
=
∑
i∈S

u(N) = |S|u(N) ≥ |S|u(S, {j}j /∈S) = v(S)

13



where the inequality holds by Proposition 3.2. Statement (ii) is trivial.
In a similar fashion we show that, for each non-empty S ⊂ N , the payoff

vector (xS,i)i∈S, with xS,i = v(S)/|S|, i ∈ S, generates a PMAS for v, since
it is easy to verify that∑

i∈S

xS,i = v(S) for every non-empty S ⊂ N

xS,i =
v(S)

|S|
≤ v(T )

|T |
= xT,i whenever i ∈ S ⊂ T .

4 Cooperation after the division versus coop-

eration before the division

We now consider a two-stage model. At first, players take part into a fully
competitive scheme, and receive their share of the cake. Afterwards, they
may trade parts of their slices with other players for mutual benefit. A formal
model for the cooperative behavior of players who already own slices of the
cake and exchange their endowments was first examined in Legut (1990) and
Legut, Potters and Tijs (1994) in the context of economies with land. In that
setting the players’ endowments are arbitrary as long as they form a partition
of X. Here, we specify that players just took part in a competitive maximin
division (3). Denote as (Am

1 , . . . , A
m
n ) the resulting maximin partition. A

coalition S ⊂ N of players will redistribute the total wealth of the players in
the coalition, Am(S) = ∪i∈SA

m
i , to maximize the joint utility. The following

post-division game (posterior to the actual division) can be therefore defined
by

vpost(S) = sup

{∑
i∈S

µi(Ci)|{Ci}i∈S is a partition of Am(S)

}
for each S ⊂ N.

Legut, Potters and Tijs (1994) show that

vpost(S) =

∫
Am(S)

fSdν = µS(Am(S)) for each S ⊂ N. (12)
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More importantly, the same authors give a two-fold characterization of this
game: (i) as a sum of n different games, each one defined on the initial
endowment of the single players, and (ii) as a linear combination of simple
games characterizing information market games with one informed player.

The multiple characterization allows a fairly detailed description of the
core of the game. In particular it is non-empty and each element belonging
to a specific non-empty subset of the core can be extended to a PMAS. For
more details we refer to Legut, Potters and Tijs (1994).

Here, we are interested in the relationship between the game v defined in
the previous section, in which cooperation occurs before the division of the
cake, and the game, which we denote here by vpost, where cooperation takes
place after the division of the cake. The two games coincide in the extreme
cases of complete competition, where by definition,

v({i}) = vpost({i}) i ∈ N ,

and that of total cooperation, i.e.

v(N) = vpost(N) ,

equality which holds by virtue of the definitions of the games v and vpost and
the results (6) and (12).

In the game v, players cooperate at an earlier stage than in the game vpost,
and before the partition is actually performed. Thus, when earlier agreements
are allowed, the optimal division of the cake takes into account the coalitions
that have already formed. In the vpost game, conversely, cooperation comes
into play only after the cake has already been divided. Therefore, one would
expect that the earlier the cooperation occurs, the better a coalition will
perform, and the game v yields values at least as high as those of vpost. Quite
surprisingly, this is not always the case, as the following counterexample
shows.

Example 4.1. Consider X = [0, 3] and the preferences of three players defined
by the following density functions:

f1(x) = 0.3I[0,1)(x) + 0.4I[1,2)(x) + 0.3I[2,3](x) ,

f2(x) = 0.2I[0,1)(x) + 0.3I[1,2)(x) + 0.5I[2,3](x) ,

f3(x) = 0.4I[0,1)(x) + 0.3I[1,2)(x) + 0.3I[2,3](x) ,

where I[a,b) is the indicator function of the interval [a, b). The values of v and
vpost can be computed by means of simple linear programs.
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S v vpost

{i}, i = 1, 2, 3 0.4231 0.4231
{1, 2} 0.86 0.8615
{1, 3} 0.8462 0.8462
{2, 3} 0.86 0.8615
{1, 2, 3} 1.3 1.3

The trouble with the given definition of v lies in one of its apparent
strengths: equitability, assessed by Proposition 3.3. For a given coalition
structure {S, {i}i/∈S} every player gets the same per-capita value, u(S, {i}i/∈S),
whether or not they belong to the coalition S. Suppose now that no coalition
is formed before the division, and after the division, exchanges are allowed
only among players in the coalition S. Clearly, the coalition S will receive
vpost(S), while each player i outside S will receive vpost({i}). Now, it is easy
to verify that

vpost(S)

|S|
≥ vpost({i}) , (13)

with strict inequality whenever the slice received by some player in S con-
tains a part which is strictly more valuable for some other player in the
same coalition. In other terms, the resulting allocation will not be equitable,
with players in the coalition S taking advantage of exchanges internal to the
coalition.

Therefore, any coalition S ⊂ N deciding to cooperate before the division
will expect an advantage over players outside S proportional to the bonus
they would get if they cooperated after the division. Accordingly, we can
modify the weights of the coalitions in v by replacing the cardinality of each
coalition with the corresponding value of the vpost game. For each S ⊂ N
define the pre-division game (precedent to the actual division) as

vpre(S) = vpost(S) max

{
min

{∑
i∈S µi(Ai)

vpost(S)
,
µj(Aj)

vpost({j}) j /∈S

}
:

(A1, . . . , An) ∈ Πn

}
(14)

with the convention
vpre(∅) = vpost(∅) = 0. (15)

16



The game vpre makes sure that when the players in S coalesce before the
cake is cut, they maintain the same advantage over the players outside S,
illustrated by (13), that they would get if they coalesced after the division.

The games v and vpre differ in the system of weights contrasting the
players in S to those outside S. Some features of vpre, however, are inherited
from those of v with little effort.

Proposition 4.2. If (A∗1, . . . , A
∗
n) ∈ Πn belongs to argmax with respect to

(14), then ∑
i∈S µi(A

∗
i )

vpost(S)
=

µj(A
∗
j)

vpost({j})
for all j /∈ S .

Moreover, we can write

vpre(S) = vpost(S) max

{
min

{
µS(BS)

vpost(S)
,
µj(Bj)

vpost({j}) j /∈S

}
:

(BS, Bj(j /∈ S)) ∈ Π|Sc|+1

}
.

Proof. Repeat the proofs of Propositions 3.3 and 3.1 with the modified sys-
tem of weights.

We now turn to the properties of vpre.

Proposition 4.3. The characteristic function vpre defines a monotonic game.

Proof. In the definition (14), the factor vpost(S) is a constant, and can be
distributed among the terms composing the maximin objective. Thus, we
can write

vpre(S) = max
(A1,...,An)∈Πn

min

{∑
i∈S

µi(Ai), vpost(S)
µj(Aj)

vpost({j}) j /∈S

}
. (16)

Further, by (15), vpre is a characteristic function. Now, take S, T ⊂ N with
S ⊂ T and consider (A∗1, . . . , A

∗
n) ∈ Πn, a partition that attains the maximin

value defining vpre(S) in (16). We can write

vpre(T ) ≥ min

{∑
i∈T

µi(A
∗
i ), vpost(T )

µj(A
∗
j)

vpost({j}) j /∈T

}
≥

min

{∑
i∈S

µi(A
∗
i ), vpost(S)

µj(A
∗
j)

vpost({j}) j /∈S

}
= vpre(S) .
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The second inequality is justified by the fact that
∑

i∈T\S µi(A
∗
i ) ≥ 0 and

vpost(T ) ≥ vpost(S).

Next, we show that vpre overcomes the difficulties associated with v.

Proposition 4.4. The game vpre dominates vpost, in the sense that for each
S ⊂ N ,

vpre(S) ≥ vpost(S) (17)

holds, with a strict equality sign holding for the extreme cases S = N and
S = {i}, i ∈ N .

Proof. Take i ∈ N . When S = {i}, vpost({i}) = vpost({j}), j 6= i. Let
(Am

1 , . . . , A
m
n ) be a maximin partition achieving (3). Then, the same partition

attains the maximin value defining vpre({i}). In fact

vpre({i}) = vpost({i}) max
(A1,...,An)∈Πn

min
j∈N

µj(Aj)

vpost({i})
= µi(A

m
i ) = vpost({i}) .

For a generic S ⊂ N , it holds

vpre(S) = vpost(S) max
(BS ,Bj(j /∈S))∈Π|Sc|+1

min

{
µS(BS)

vpost(S)
,
µj(Bj)

vpost({j}) j /∈S

}
≥

vpost(S) min

{
µS(Am(S))

vpost(S)
,
µj(A

m
j )

vpost({j}) j /∈S

}
= vpost(S) .

Finally, both vpre(N) and vpost(N) coincide, up to the scale factor 1/n, with
the fully cooperative approach (4).

Apart from the extreme cases, the values of the two games usually dif-
fer. Consider again the situation presented in Example 4.1. The values of
the games vpre and vpost, shown in the following table, make clear that vpre

dominates vpost with a strict inequality for the coalitions {1, 2} and {2, 3}.

S vpre vpost

{i}, i = 1, 2, 3 0.4231 0.4231
{1, 2} 0.8662 0.8615
{1, 3} 0.8462 0.8462
{2, 3} 0.8662 0.8615
{1, 2, 3} 1.3 1.3
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We note that the game vpre overcomes a major difficulty of the first pro-
posal v and, therefore, it seems highly preferable to it. The game vpre, how-
ever, requires the use of non-additive weights for the single coalitions, and
poses new technical challenges which make it more difficult to examine than
its predecessor.

5 Conclusions

The proposed models are an attempt to overcome the limitations of the
existing models of cooperation in the allocation of a divisible good. Here,
players can cooperate as soon as they are involved in the division process. The
results show that, if side payments are allowed, it is beneficial for the players
to join the grand coalition. Moreover, in the modified game where coalitions
are given incentives, it is better to form coalitions as soon as possible.

More investigation of the topic is needed. It would be useful to provide
a description of the core of v and vpre following the lines of what has been
done in Legut, Potters and Tijs (1994) for the game of cooperation after the
division vpost. The most evident difficulty lies in the fact that, while vpost

can be seen as the sum of n games, each defined on the endowments of the
single players, the new context we are analyzing dispenses altogether with
the notion of endowments, since the players will receive a share of the cake
only at a second stage.

One of the main concerns in fair division is the design of procedures to
achieve a partition with the required properties. So it would be advisable to
devise a procedure that achieves the optimal partitions in (11) and (14) or
at least a good approximation of them. On a less ambitious scale it would
be advisable to find an easy way to compute the values of the two games v
and vpre.
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