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1. INTRODUCTION

In this paper we are interested in multifunctions F : X →→ X which

possess fixed points or approximate fixed points. Fixed point theorems deal

with sufficient conditions on X and F guaranteeing that there exists a fixed

point, that is an x̂ ∈ X with x̂ ∈ F (x̂). There are many fixed point theo-
rems known on topological spaces (Brouwer [5], Kakutani [8], Banach [3], ...)

which have proved to be useful in many applied fields such as game theory,

mathematical economics and the theory of quasi-variational inequalities (cf.

Baiocchi and Capelo [2]). If X is a metric space, approximate fixed point

theorems are theorems with conditions on X and F guaranteeing that, for

each ε > 0, there is an ε-fixed point, i. e. an x∗ ∈ X with d(x∗, F (x∗)) ≤ ε,
where d(x∗, F (x∗)) = inf{d(x∗, z) | z ∈ F (x∗)}. In Tijs, Torre and Brânzei
[20], approximate fixed point theorems in the spirit of Brouwer, Kakutani

and Banach were derived. In the first two theorems, in finite dimensional

spaces, the compactness conditions used in the above quoted theorems were

replace by boundedness conditions. In the third one, the completeness of the

metric space (used in Banach’s contraction theorem) was dropped.

In this paper we will present some new approximate fixed point theorems

for multifunctions defined in Banach spaces. Weak and strong topologies

play a role and bounded and unbounded regions are allowed.

The outline of the paper is as follows. In Section 2, first we present

some approximate fixed point theorems for closed or upper semicontinuous

(with respect to the weak or strong topologies) multifunctions on bounded or

totally bounded convex regions. Then unbounded convex regions are consid-

ered and here the notion of tame multifunction plays a crucial role. Section 3

gives an outline of how to use approximate fixed point theorems to guarantee

that non-cooperative games have approximate Nash equilibria and Section 4

concludes with some remarks.
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2. NEW APPROXIMATE FIXED POINT THEOREMS

In this section, V will be a real Banach space and for F : X →→ X

with X ⊆ V , the set {x ∈ V | d(x, F (x)) = infy∈F (x) k y − x k≤ ε} of the
ε-fixed points of the multifunction F on X will be denoted by FIXε(F ).

First we present two theorems where the weak topology plays a role.

Theorem 2.1 Let V be a reflexive real Banach space and let X be a

non-empty bounded and convex subset of V . Assume that F : X →→ X is

a weakly closed multifunction (that is a multifunction closed with respect to

the weak topology) such that F (x) is a non-empty and convex subset of X for

each x ∈ X. Then FIXε(F ) 6= ∅ for each ε > 0.

Proof. Suppose without loss of generality that 0 ∈ X. Let α = sup{k x k
| x ∈ X}. Take ε > 0 and 0 < δ < 1 such that δα ≤ ε. Let Y be the weakly
compact and convex subset of X defined by Y = (1 − δ)X, where X is the

closure of X. Define the multifunction G : Y →→ Y by G(x) = (1− δ)F (x)
for all x ∈ Y . Then G is a weakly closed multifunction with non empty,

convex and weakly compact values. But, with respect to the weak topol-

ogy, V is an Hausdorff locally convex topological vector space, so, in view of

Glicksberg’s Theorem [7], G has at least one fixed point on Y . So there is

an x∗ ∈ Y such that x∗ ∈ G(x∗) = (1− δ)F (x∗). Then there is a z ∈ F (x∗)
such that x∗ = (1 − δ)z, so k z − x∗ k= δ k z k≤ δα ≤ ε. Hence x∗ is an

ε-fixed point of F . 2

Theorem 2.2 Let V be a reflexive and separable real Banach space

and let X be a non-empty bounded and convex subset of V . Assume that

F : X →→ X is a weakly upper semicontinuous multifunction (that is a

multifunction upper semicontinuous with respect to the weak topology) such
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that F (x) is a non-empty and convex subset of X for each x ∈ X. Then
FIXε(F ) 6= ∅ for each ε > 0.

Proof. As in the proof of Theorem 2.1, we assume that 0 ∈ X and

α = sup{k x k | x ∈ X}. Take ε > 0, 0 < δ < 1 such that δα ≤ ε
2
and

Y = (1−δ)X. Define the multifunction G : Y →→ Y by G(x) = (1−δ)F (x)
for all x ∈ Y . G is weakly upper semicontinuous. In fact, since V is a sep-

arable real Banach space and X is bounded, there exists a metric dw on

V such that the weak topology on X is induced by the metric dw (see, for

example, [6, Proposition 8.7]). Let x ∈ Y and assume that A is a weakly

open neighbourhood of G(x). For σ > 0, we denote with Aσ the open

set {y ∈ Y | dw(y,G(x)) < σ}. Since G(x) is weakly compact, we have
that dw(Y \A,G(x)) = inf{dw(y, z) | y ∈ Y \A, z ∈ G(x)} > 0, where

Y \A = {y ∈ Y | y 6∈ A}. So, if 0 < σ0 < σ < dw(Y \A,G(x)), we have
G(x) ⊂ Aσ0 ⊂ {y ∈ Y | dw(y,G(x)) ≤ σ0} ⊂ Aσ ⊂ A. In view of the

weakly upper semicontinuity of the multifunction (1 − δ)F , there exists an
open neighbourhood I of x such that (1− δ)F (z) ⊂ Aσ0 for all z ∈ I. There-
fore G(z) = (1 − δ)F (z) ⊆ {y ∈ Y | dw(y,G(x)) ≤ σ0} ⊂ A for all z ∈ I.
So G is a weakly upper semicontinuous multifunction at x. In the light of

Proposition 4 pag. 72 in [1], G is also a weakly closed multifunction at x.

Therefore, in view of Glicksberg’s theorem, there exists a point x∗ ∈ Y such
that x∗ ∈ G(x∗). Hence, there exists z ∈ F (x∗) such that x∗ = (1 − δ)z,
so k z − x∗ k= δ k z k≤ δα ≤ ε

2
. Moreover, there is z0 ∈ F (x∗) such that

k z0 − z k< ε
2
. Hence k z0 − x∗ k< ε, that is x∗ ∈ FIXε(F ). 2

In the next theorem the strong topology is involved.

Theorem 2.3 Let V be a real Banach space and let X be a non-empty,

convex and totally bounded subset of V . Assume that F : X →→ X is a

closed or upper semicontinuous multifunction such that F (x) is a non-empty
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and convex subset of X for each x ∈ X. Then FIXε(F ) 6= ∅ for each ε > 0.

Proof. Assume without loss of generality that 0 ∈ X. Take ε > 0 and η >
0. Since X is totally bounded there exists m ∈ N and x1, ..., xm ∈ X such

that X ⊆ ∪mi=1

o

B(xi, η) (see, for example, [4]), where
o

B(xi, η) = {y ∈ V | k
y − xi k< η}. Moreover, let h = max{k xi k | i ∈ {1, ...,m}}. If 0 < δ < 1
the set Y = (1− δ)X is a non-empty, convex and totally bounded subset of

V . Since Y is also closed, Y is complete and therefore compact.

• If we assume that F is a closed multifunction and we take 0 < δ < 1

such that δ(η + h) ≤ ε, then the multifunction G : Y →→ Y defined by

G(x) = (1 − δ)F (x) for all x ∈ Y is closed. This implies by Glicksberg’s

theorem that G possesses a fixed point x∗. Then there is a z ∈ F (x∗) such
that x∗ = (1− δ)z. Because X ⊆ ∪mi=1

o

B(xi, η), there exists an r ∈ {1, ...,m}
such that z ∈

o

B(xr, η). So k x∗ − z k= δ k z k≤ δ(k z − xr k + k xr k) <
δ(η + h) ≤ ε. Hence x∗ ∈ FIXε(F ).

• Assume now that F is an upper semicontinuous multifunction. We take

0 < δ < 1 such that δ(η + h) ≤ ε
2
. Let G : Y →→ Y defined by

G(x) = (1− δ)F (x) for all x ∈ Y . We claim that G is upper semicontinuous.
In fact, let x ∈ Y and assume that A is an open neighbourhood of G(x). If

σ > 0, we denote with Aσ the open set {y ∈ Y | infz∈G(x) k z − y k< σ}.
Since G(x) is compact, we have that d(Y \A,G(x)) = inf{k y − z k |
y ∈ Y \A, z ∈ G(x)} > 0. So, if 0 < σ0 < σ < d(Y \A,G(x)), we have
G(x) ⊂ Aσ0 ⊂ Aσ0 = {y ∈ Y | infz∈G(x) k z − y k≤ σ0} ⊂ Aσ ⊂ A.

In view of the upper semicontinuity of the multifunction (1 − δ)F , there
exists an open neighbourhood I of x such that (1 − δ)F (z) ⊂ Aσ0 for all

z ∈ I. Therefore G(z) = (1 − δ)F (z) ⊆ Aσ0 ⊂ A for all z ∈ I. So G is

an upper semicontinuous multifunction at x and is also a closed multifunc-

tion at x. Therefore, in view of Glicksberg’s theorem, there exists a point

x∗ ∈ Y such that x∗ ∈ G(x∗) and z ∈ F (x∗) such that x∗ = (1 − δ)z. Since
X ⊆ ∪mi=1

o

B(xi, η), there exists an s ∈ {1, ...,m} such that z ∈
o

B(xs, η), so
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k z−x∗ k= δ k z k≤ δ(k z−xs k + k xs k) < δ(η+h) ≤ ε
2
. But there exists a

z0 ∈ F (x∗) such that k z0−z k< ε
2
, so k z0−x∗ k< ε, that is x∗ ∈ FIXε(F ). 2

The next theorems deal with the existence of approximate fixed points for

multifunctions on convex regions which are not necessarily bounded. Useful

here is the notion of a tame multifunction, which we introduce in

Definition 2.1 Let U be a normed space and X ⊆ U with 0 ∈ X. A
multifunction F : X →→ X is called a tame multifunction if, for each ε > 0,

there is anR > 0 such that for each x ∈ B(0, R) ∩X the set F (x)∩B(0, R+ε)
is non-empty, where B(0, R) = {z ∈ U | k z k≤ R}.

Example 2.1 For a normed linear space U the translation T : U −→ U

given by T (x) = x + a, where a ∈ U\{0}, is not tame and T has for small
ε > 0 no ε-fixed points.

Example 2.2 The map F : [0,∞[→→ [0,∞[ defined by

F (x) = [x+ (x+ 1)−1,∞[ for all x ∈ [0,∞[

is a tame multifunction and F has ε-fixed points for each ε > 0.

Example 2.3 Each F : X →→ X, where X is a bounded subset of a

normed space U and F (x) is non-empty for all x ∈ X is a tame multifunction.

Theorem 2.4 Let X be a convex subset, containing 0, of a reflexive real

Banach space. Assume that F : X →→ X is a tame and weakly closed mul-

tifunction such that F (x) is a non-empty and convex subset of X for each

x ∈ X. Then FIXε(F ) 6= ∅ for each ε > 0.

Proof. Take ε > 0 and R > 0 such that F (x) ∩ B(0, R + ε
2
) 6= ∅ for each
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x ∈ B(0, R) ∩X. Let C = B(0, R) ∩ X. C is a non-empty, bounded and

convex set. Then G : C →→ C, defined by

G(x) = R(R+
ε

2
)−1F (x) ∩B(0, R+ ε

2
) for all x ∈ C

satisfies the conditions of Theorem 2.1. Hence there is x∗ ∈ FIX ε
4 (G) such

that d(x∗, G(x∗)) ≤ ε
4
< ε

2
and there exists x0 ∈ G(x∗) such that k x0−x∗ k<

ε
2
. Moreover there exists an element z ∈ F (x∗) such that z = R−1(R+ ε

2
)x0.

This implies that

k z − x∗ k≤k R−1(R+
ε

2
)x0 − x0 k + k x0 − x∗ k< ε

2
R−1 k x0 k +ε

2
≤ ε

So x∗ ∈ FIXε(F ). 2

Theorem 2.5 Let X be a convex subset, containing 0, of a reflexive and

separable real Banach space. Assume that F : X →→ X is a tame and

weakly upper semicontinuous multifunction such that F (x) is a non-empty

and convex subset of X for each x ∈ X. Then FIXε(F ) 6= ∅ for each ε > 0.

Proof. Using the same arguments of the proof of Theorem 2.4, we can

show that the multifunction G defined on B(0, R) ∩X by

G(x) = R(R +
ε

2
)−1F (x) ∩B(0, R+ ε

2
)

satisfy the conditions of Theorem 2.2 and the conclusion follows as in Theo-

rem 2.4. 2

3. APPROXIMATE NASH EQUILIBRIA FOR STRATEGIC

GAMES

In Nash [10], Nash-equilibria for n-person non-cooperative games were

introduced. Further using Kakutani’s fixed point theorem it was shown that

7



mixed extensions of finite n-person games non-cooperative games possess at

least one Nash equilibrium. With the aid of best response multifunctions

for each player the aggregate best response multifunction on the Cartesian

product of the strategy spaces was constructed and the fixed points of this

multifunction coincide with the Nash equilibria of the game.

Of course, for many non-cooperative games Nash equilibria do not exist.

Interesting are games for which still ε-Nash equilibria exist for each ε > 0.

Here a strategy profile is called an ε-Nash equilibrium if unilateral deviation

of one of the players does not increase his payoff with more than ε. One can

try to derive the existence of approximate equilibrium points following the

next scheme:

(i) develop ε-fixed point theorems and find conditions on strategy spaces and

payoff functions of the game such that the aggregate ε-best response multi-

function satisfies conditions in an ε-fixed point theorem;

(ii) add extra conditions on the payoff-functions, guaranteeing that points in

the cartesian product of the strategy spaces nearby each other have payoffs

sufficiently nearby.

We will derive in this section a key proposition, which gives the possibility

to find various approximate equilibrium theorems.

First we recall some definitions. An n-person strategic game is a tuple

Γ = hX1, ...,Xn, u1, ..., uni where for each player i ∈ N = {1, ..., n} Xi is the
set of strategies and ui :

Q
i∈N Xi −→ R is the payoff function. If players

1, ..., n choose strategies x1, ..., xn, then u1(x1, ..., xn), ..., un(x1, ..., xn) are the

resulting payoffs for the players 1, ..., n respectively. Let ε > 0. Then we say

that (x∗i )i∈N ∈
Q
i∈N Xi is an ε-Nash equilibrium if

ui(xi, x
∗
−i) ≤ ui(x∗) + ε for all xi ∈ Xi and for all i ∈ N.

Here x∗−i is a shorthand for (x
∗
j)j∈N\{i} and we will denote by NE

ε(Γ) the set

of ε-Nash equilibria. Note that for an x∗ ∈ NEε(Γ), a unilateral deviation
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by a player does not improve the payoff with more than ε. Useful will be

for each i ∈ N the ε-best response multifunction Bεi :
Q
j∈N\{i}Xj →→ Xi

defined by

Bεi (x−i) = {xi ∈ Xi | ui(xi, x−i) ≥ sup
ti∈Xi

ui(ti, x−i)− ε}

and the aggregate ε-best response multifunction Bε : X →→ X, defined by

Bε(x) =
Y
i∈N

Bεi (x−i).

Obviously, if x∗ ∈ Bε(x∗), then x∗ ∈ NEε(Γ) and conversely. So if Bε has a
fixed point, then we have an ε-Nash equilibrium. If we do not know whether

Bε has a fixed point but we know that Bε has δ-fixed points for each δ > 0,

then this leads under extra continuity conditions to the existence of approx-

imate Nash equilibria for the game as we will see.

The next result we call the key proposition because this proposition opens

the door to obtain different ε-equilibrium point theorems, using as inspiration

source the existing literature on Nash equilibrium point theorems. Many of

them contain collections of sufficient conditions on strategy space and payoff

functions, guaranteeing that the aggregate best response multifunction has a

fixed point. To guarantee the existence of ε-fixed points one has to modify,

often in an obvious way, the conditions guaranteeing the existence of δ-fixed

points for the aggregate ε-best response multifunction and to replace the

condition (iii) in the key proposition by the obtained conditions.

KEY PROPOSITION Let Γ = hX1, ..., Xn, u1, ..., uni be an n-person
strategic game with the following three properties:

(i) for each i ∈ N = {1, ..., n}, the strategy space Xi is endowed with a metric
di;

(ii) the payoff functions u1, ..., un are uniform continuous functions on X =
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Qn
i=1Xi, where X is endowed with the metric d, defined by

d(x, y) =
nX
i=1

di(xi, yi) for all x, y ∈ X;

(iii) for each ε > 0 and δ > 0, the aggregate ε-best response multifunction

Bε possesses at least one δ-fixed point, i. e. FIXδ(Bε) 6= ∅.
Then, NEε(Γ) 6= ∅ for each ε > 0.

Proof. Take ε > 0. Because of (ii) we can find η > 0 such that for all

x, x0 ∈ X with d(x, x0) < η we have | ui(x)−ui(x0) |< 1
2
ε for each i ∈ N . We

will prove that

x∗ ∈ FIX 1
2
η(B

1
2
ε) =⇒ x∗ ∈ NEε(Γ).

Take x∗ ∈ FIX 1
2
η(B

1
2
ε), which is possible by (iii). Then there is an x̂ ∈

B
1
2
ε(x∗) such that d(x∗, x̂) < η. Then for each i ∈ N : d((x∗i , x∗−i), (x̂i, x∗−i)) <

η. This implies that

ui(x
∗
i , x

∗
−i) ≥ ui(x̂i, x∗−i)−

1

2
ε for all i ∈ N. (1)

Further x̂ ∈ B 1
2
ε(x∗) implies

ui(x̂i, x
∗
−i) ≥ sup

ti∈Xi
ui(ti, x

∗
−i)−

1

2
ε for all i ∈ N. (2)

Combining (1) and (2) we obtain

ui(x
∗
i , x

∗
−i) ≥ sup

ti∈Xi
ui(ti, x

∗
−i)− ε for all i ∈ N, (3)

and this is equivalent to x∗ ∈ NEε(Γ). 2

It will be clear that using the key proposition many approximate Nash

equilibrium theorems can be obtained. We restrict ourselves here in giving

two examples.
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Example 3.1 (Games on the open unit square). Let h]0, 1[, ]0, 1[, u1, u2i
be a game with uniform continuous payoff functions u1 and u2. Suppose that

u1 is concave in the first coordinate and u2 is concave in the second coordi-

nate. Then for each ε > 0, the game has an ε-Nash equilibrium point.

Example 3.2 (Completely mixed approximate Nash equilibria for finite

games). Let A and B be m × n-matrices of real numbers. Consider the
two-person game h

o

∆m,
o

∆n, u1, u2i, where:
o

∆m = {p ∈ Rm | pi > 0 for each i ∈ {1, ...,m},
mX
i=1

pi = 1},

o

∆n = {q ∈ Rn | qj > 0 for each j ∈ {1, ..., n},
nX
j=1

qj = 1},

u1(p, q) = p
TAq, u2(p, q) = p

TBq for all p ∈
o

∆m, q ∈
o

∆n.

Then for each ε > 0 this game has an ε-Nash equilibrium. Such an ε-Nash

equilibrium is called completely mixed, because both players use each of their

pure strategies with a positive probability.

4. CONCLUDING REMARKS

In Section 2 we developed new approximate fixed point theorems in

infinite dimensional spaces. It seems important to find more sophisticated ap-

proximate fixed point theorems, especially for multifunctions on unbounded

sets. Also finding new applications in economic theory and in the study of

well-posed fixed point problems (Lemaire, Salem and Revalsky [9]) could be

interesting. In Section 3 we indicated, via the key proposition, how approx-

imate fixed point theorems can play a role in non-cooperative game theory

to prove the existence of approximate Nash equilibria. For a survey of tech-

niques to prove the existence of (ε-) Nash equilibria see Tijs [19]. For ap-

proximate equilibrium theorems using approximations of games with smaller
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subgames see Lucchetti, Patrone and Tijs [13]. Also we want to refer to

Lignola [10] for the existence of Nash equilibria for games with non compact

strategy sets and to Lignola and Morgan [11] for convergence of Nash equilib-

ria. The importance of ε-Nash equilibria is also motivated by well-posedness

for Nash equilibria (cf. Lignola and Morgan [12], Margiocco, Patrone and

Pusillo Chicco [16]), convergence properties of approximate Nash equilib-

ria (cf. Morgan and Raucci [17]) and approximate solutions for hierarchical

games (cf. Mallozzi and Morgan [14] and Mallozzi and Morgan [15] for ap-

proximate mixed strategies).
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