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Abstract

Let X be a non-empty, compact, convex set in IRn and � an upper semi-continuous

mapping from X to the collection of non-empty, compact, convex subsets of IRn. It is well

known that such a mapping has a stationary point on X, i.e. there exists a point in X

satisfying that its image under � has a non-empty intersection with the normal cone of X

at the point. In case for every point in X it holds that the intersection of the image under

� with the normal cone of X at the point is either empty or contains the origin 0n, then �

must have a zero point on X, i.e. there exists a point in X satisfying that 0n lies in the

image of the point. Another well-known condition for the existence of a zero point follows

from Ky Fan's coincidence theorem, which says that if for every point the intersection of

the image with the tangent cone of X at the point is non-empty, the mapping must have a

zero point. In this paper we extend all these existence results by giving a general zero point

existence theorem, of which the two results are obtained as special cases. We also discuss

what kind of solutions may exist when no further conditions are stated on the mapping �:

Finally, we show how our results can be used to establish several new intersection results

on a compact, convex set.

Keywords: stationary point, zero point, �xed point, normal cone, tangent cone, inter-

section point.



1 Introduction

Whenever a mathematical model of some phenomenon is constructed, for instance, in

engineering or in economics, the �rst question to ask is whether a solution to the model

exists. A very powerful tool that is often used to this end in case the model is a system of

nonlinear functions is Brouwer's �xed point theorem; see Brouwer (1912). When the model

is not a system of equations but a system of correspondences, often Kakutani's �xed point

theorem (1941) is invoked. Sometimes, models allow for a continuum of solutions, and

appropriate generalizations of Brouwer's and Kakutani's �xed point theorems as provided

by Browder (1960) and Herings, Talman, and Yang (1996, 2001) apply. An alternative to

�xed point theorems consists of using intersection theorems, with the lemma of Knaster,

Kuratowski and Mazurkiewicz (1929) on the unit simplex perhaps the most prominent

example.

The existence of a solution to a nonlinear system of functions or correspondences is

equivalent to the existence of a zero point of a function or a correspondence. A zero point

is a point in the domain satisfying that the origin lies in its image. In this paper we will

present a new general condition for the existence of a zero point.

Let X be a nonempty convex and compact set in IRn and let � be a compact-valued,

convex-valued upper-semicontinuous mapping from X to IRn. By Eaves (1971) it has been

shown that with respect to any such correspondence a solution exists to the variational

inequality problem, i.e. there exists a stationary point. Such a point x in X satis�es that

its image �(x) has a nonempty intersection with the normal cone N(X; x) to X at x. From

this it immediately follows that if at every point of X the intersection of the image and

the normal cone is either empty or contains the origin, then � has a zero point in X. Fan

(1972) proved a coincidence result, stating a weakly seperating condition under which there

is a point x in X such that �(x) has a nonempty intersection with the image at x of some

other correspondence  on X. This condition also makes use of the normal cone at any

point in X. When  maps every point of X to the origin and the seperating condition is

satis�ed, a zero point of � exists.

In this paper we present a unifying theorem on the existence of zero points. The theorem

puts two conditions on �(x) at every x in X. Both conditions are related to the normal

cone. More precisely, the conditions put restrictions on the set A�(x) \ �(v);, where A is

a nonsingular n � n-matrix, v is any normalized element of the normal cone at x, and �

is an upper hemi-continuous correspondence de�ned on the unit ball. The new theorem

contains the two existence results for zero points mentioned above as special cases. The

stationary point condition is obtained when A is the identity matrix and �(v) is equal to

IRn for every v, while the coincidence point condition is obtained by also taking A equal

to the identity matrix and �(v) equal to the set fy 2 IRn
j y>v � 0g. Other choices for the
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matrix A and the correspondence � lead to di�erent and new zero point existence theorems.

Further we show how Kakutani's �xed point theorem as well as other �xed point theorems

on unbounded domains, as presented in Merrill (1971) and Eaves (1972), can be obtained

as special cases of our main result. We also generalize the notion of stationary point in

case for at least one point in X the two conditions are satis�ed for no correspondence �.

These results are exempli�ed in Sections 2 and 3.

Section 4 treats the special case of the zero point problem when X is a polytope. The

special structure of the polytope is exploited to obtain a sharp result on the existence of

a zero point. Section 5 shows how a more general intersection theorem can be derived

from our main theorem on the existence of zero points. This general intersection theorem

contains several well known intersection theorems like the ones of Knaster, Kuratowski,

and Mazurkiewicz (1929), Scarf (1967), Shapley (1973), and Ichiishi (1988) as special cases.

2 The Zero Point Problem

Consider an arbitrary non-empty, convex, compact set X in the n-dimensional Euclidean

space IRn. For x 2 X; the set N(X; x) = fy 2 IRn
j(x � x0)>y � 0 for all x0 2 Xg denotes

the normal cone of the set X at the point x. Since X is compact and convex, N(X; �) is

an upper semi-continuous, convex-valued and closed-valued mapping.

Let � be a point-to-set mapping or correspondence from X to the collection of non-

empty subsets of IRn. We assume that � is an upper semi-continuous and bounded mapping

and that for every x in X the set �(x) is a compact and convex subset of IRn. We are

interested in conditions on the mapping �, under which � has a zero point, being a point

x� in X satisfying 0n 2 �(x�), where 0n is the n-vector of zeroes. Without any conditions

on � a zero point may not exist. However, as has been shown in Eaves (1971), a stationary

point of � on X always exists.

De�nition 2.1 A point x� 2 X is a stationary point of � if there exists y� 2 �(x�)

such that (x� � x)>y� � 0 for all x 2 X, i.e. �(x�) \N(X; x�) 6= ;.

From Eaves' result it immediately follows that if all stationary points of � are zero points

of �, then � has at least one zero point.

Theorem 2.2 If for every x 2 X it holds that �(x) \ N(X; x) is either empty or

contains 0n, then there exists a zero point of �.

The condition in the theorem says that a zero point of � exists if at any x 2 X no nonzero

element of the image �(x) lies in the normal cone of X at x unless the image contains 0n.

Although this condition is rather weak it has to hold for all elements in every image set.
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Another existence result for zero points can be obtained from the coincidence theorem of

Fan (1972).

De�nition 2.3 Let � and  be to correspondences from X to IRn. A point x� 2 X is

a coincidence point of � and  if �(x�) \  (x�) 6= ;.

By Fan (1972) it has been proved that if  is also an upper semi-continuous, bounded,

convex-valued and compact-valued correspondence from X to IRn and for every x 2 X and

every v 2 N(X; x) there exists y 2 �(x) and z 2  (x) such that v>y � v>z, then � and

 have a coincidence point. By taking  (x) equal to f0ng for all x in X, we obtain the

following zero point result, which is an equivalent form of Fan's coincidence theorem.

Theorem 2.4 If for every x 2 X and every v 2 N(X; x) there exists y 2 �(x) such

that v>y � 0, then � has a zero point.

The condition in this theorem says that for every x in X the set �(x) should have a non-

empty intersection with any halfspace that is the polar (or dual) cone of an element of

the normal cone of X at x. The fact that two rather di�erent conditions lead to the same

existence result suggests a more general zero point existence result. In the next section we

give a zero point existence theorem that contains both theorems above and several other

known existence results as special cases.

3 The Existence Results

In this section we give a unifying zero point existence result on a compact, convex set.

Both Theorems 2.2 and 2.4 as well as Kakutani's �xed point theorem and other �xed and

zero point theorems are special cases of this theorem. As in Section 2 we assume that

the set X is a non-empty compact and convex subset of IRn and that � is an upper semi-

continuous, bounded, compact-valued and convex-valued correspondence from X to IRn.

Let Bn denote the n-dimensional unit ball.

Theorem 3.1 Suppose that there exists a non-singular n � n matrix A and an upper

semi-continuous, convex-valued, closed-valued mapping � : Bn ! IRn
such that for every

x 2 X and every v 2 N(X; x) \ Bn
the following two properties hold:

1. The set A�(x) \ �(v) \ fyjy = �v; � � 0g is either empty or contains 0n;

2. The set A�(x) \ �(v) 6= ;.

Then there exists a zero point of � in X.
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Proof: Let the set Q be de�ned by

Q = fq 2 IRn jk q � x k2� 1 for some x 2 Xg:

Since X is compact, Q is a compact set. For q 2 Q, let p(q) be the orthogonal projection

of q on X. Since X is a non-empty, compact, convex set, p is a continuous function from

Q to X. For every q 2 Q it holds that

k q � p(q) k2 � 1:

To prove convexity of Q, take any q1; q2 2 Q and 0 � � � 1; and let

q(�) = �q1 + (1� �)q2

and

p(�) = �p(q1) + (1� �)p(q2):

Since X is convex, we have that p(�) 2 X: Moreover,

k q(�)� p(�) k2 � � k q1 � p(q1) k2 +(1� �) k q2 � p(q2) k2 � 1:

Therefore, q(�) 2 Q, i.e. Q is a convex set. Hence, Q is a full-dimensional compact, convex

set in IRn. For q 2 Q, let v(q) = q � p(q). By construction, v(q) 2 Bn for each q 2 Q,

k v(q) k2= 1 if and only if q 2 bd(Q); and v(q) = 0n if and only if q 2 X. Since Q

is full-dimensional, for q 2 int(Q) it holds that N(Q; q) = f0ng. Now we will show that

the normal cone N(Q; q) of Q at any point q on the boundary of Q is a ray. Since Q is

convex and compact, N(Q; q) is nonempty for every q 2 Q. Take any point q 2 bd(Q)

and consider the ball B(p(q); 1) with radius one centered at p(q). Clearly, B(p(q); 1) is

contained by Q and q also lies on the boundary of B(p(q); 1). It follows that N(Q; q) is a

subset of N(B(p(q); 1); q). Since the boundary of B(p(q); 1) is smooth, N(B(p(q); 1); q) is

a ray. Consequently, N(Q; q) must be a ray as well and in fact is equal to N(B(p(q); 1); q).

More precisely, for q 2 bd(Q) we have

N(Q; q) = fy 2 IRn j y = �v(q); � � 0g:

Since p is the orthogonal projection on X, for every q 2 Q it holds that N(Q; q) �

N(X; p(q)). Now consider the mapping  : Q! IRn de�ned by

 (q) = A�(p(q)) \ �(q � p(q)):

From Condition 2 it follows that for every q 2 Q the set  (q) is non-empty. Since A is

a regular matrix, p is a continuous function and both � and � are upper semi-continuous

mappings,  is an upper semi-continuous mapping from the full-dimensional, compact,
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convex set Q to IRn. Moreover, being the intersection of a convex and compact set and a

convex and closed set,  (q) is convex and compact for any q 2 Q. From Eaves (1971) it

now follows that  has a stationary point on Q, i.e., there exists a point q� 2 Q such that

 (q�) \N(Q; q�) 6= ;:

Take any f � in this intersection. Since f � 2 N(Q; q�) it holds that f � = ��v(q�) 2

N(X; p(q�)) for some �� � 0. Hence,

f � 2 f�v(q�)j� � 0g \ A�(p(q�)) \ �(v(q�));

with v(q�) 2 N(X; p(q�))\Bn. Since we showed that the intersection of these three sets is

non-empty, Condition 1 implies that this intersection contains 0n, from which we conclude

that p(q�) is a zero point of A� on X. Since A is a nonsingular matrix, p(q�) is a zero

point of �. 2

The theorem says that the mapping � has a zero point on X, if there exists a regular

matrix A and an upper semi-continuous, convex-valued and closed-valued mapping on the

unit ball Bn satisfying that for every element v of the normal cone of X at any x with

length at most one the image of A� at x and the image of � at v intersect, but this

intersection has no points in common with the ray determined by the vector v unless the

origin is in the intersection. In case � is a continuous function f from X to IRn, Conditions

1 and 2 reduce to for every x 2 X and v 2 N(X; x) \ Bn it holds that Af(x) 2 �(v) and

Af(x) =2 (�(v) \ fyjy = �v; � � 0g) n f0ng.

Instead of taking a mapping on the whole unit ball, we may restrict ourselves to a

mapping � on the sphere bd(Bn). The proof is then the same, by extending the mapping �

to the whole unit ball as follows: �(0n) contains every �(v), v 2 Bn, and �(v) = �(v= k v k2)

for v 2 int(Bn) n f0ng. The matrix A translates the images �(x) in a linear way, so that

A�(x) has the same properties as �(x) has. Due to the regularity of A a point x� is a zero

point of � if and only if x� is a zero point of A�.

The use of the matrix A expands the cases to which our result applies. For example,

consider the function f : Bn ! IRn de�ned by f(x) = x. Then there is no mapping � that

satis�es both conditions 1 and 2, although f(0n) = 0n. However, when we take A = �I,

where I is the n�n identity matrix, conditions 1 and 2 are satis�ed if we take for example

�(v) = IRn for all v 2 Bn.

In the following we will show that several known existence results are special cases of

Theorem 3.1.

Example 3.2 When �(v) = IRn for every v 2 Bn, then Condition 2 of Theorem 3.1

is always satis�ed and Condition 1 reduces to A�(x) \ N(X; x) is empty or contains 0n,
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for every x 2 X. For A = I this is precisely the condition of Theorem 2.2. However, the

result holds for any regular matrix A, e.g. a zero point also exists when for every x 2 X it

holds that ��(x) \N(X; x) is either empty or contains 0n.

Example 3.3 When �(v) = fy 2 IRnjy>v � 0g, for every v 2 Bn, then

�(v) \ fy 2 IRn
jy = �v; � � 0g = f0ng;

for any v 2 Bn, and so Condition 1 of Theorem 3.1 is always satis�ed, while when A = I

Condition 2 becomes precisely the condition of Theorem 2.4. Also now, the result holds

for any regular matrix A.

Thus, both Theorem 2.2 and Theorem 2.4 are special cases of Theorem 3.1. For x 2 X,

let the tangent cone of X at x be de�ned by

T (X; x) = fz 2 IRnjz>y � 0; for all y 2 N(X; x)g:

The next result says that � has a zero point if for every x inX the set �(x) has a non-empty

intersection with T (X; x).

Theorem 3.4 If for every x 2 X it holds that �(x) \ T (X; x) 6= ;, then � has a zero

point.

Proof: We show that the conditions of Theorem 3.1 are satis�ed for �(v) = fy 2 IRn j

y>v � 0g and A = I, and so � has a zero point. Condition 1 of Theorem 3.1 is satis�ed

because �(v) \ fy j y = �v; � � 0g = f0ng; so �(x) \ �(v) \ fy j y = �v; � � 0g is

either empty or contains f0ng: When v 2 N(X; x); it follows that T (X; x) � �(v); so

�(x) \ �(v) 6= ; if �(x) \ T (X; x) 6= ;, and Condition 2 follows. 2

Obviously, � has also a zero point on X if there exists a regular matrix A satisfying

that A�(x) \ T (X; x) 6= ;, for every x 2 X. The condition in Theorem 3.4 is very simple

and in general easy to check. From Theorem 3.4 we immediately get Kakutani's �xed point

theorem.

Example 3.5 Kakutani's �xed point theorem states that if � is a correspondence

from X into itself it has at least one �xed point, i.e., there exists x� 2 X satisfying

x� 2 �(x�). De�ne the mapping  from X to IRn by  (x) = �(x) � fxg for all x 2 X.

Since X � fxg � T (X; x) and �(x) � X for all x 2 X, we have that  (x) � T (X; x) and

so  (x)\T (X; x) 6= ; for all x 2 X. From Theorem 3.4 it follows that there exists x� 2 X

such that 0n 2  (x�). Clearly, x� is a �xed point of �.

The set �(v) is not necessarily a half-space or the whole space as is illustrated in the

next example.
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Example 3.6 Fix some strictly positive vector m 2 IRn: Let �(v) be given by �(0n) =

IRn and, for v 2 Bn n f0ng; by

�(v) = fy 2 IRnjyi � mi(1� vi=max
j

jvjj) if vi > 0; yi � mi(�1� vi=max
j

jvjj) if vi < 0g:

Clearly, � is an upper semi-continuous, convex-valued, and closed-valued correspondence

on Bn: Moreover, for every v 2 Bn it holds that

�(v) \ fy 2 IRn
jy = �v; � � 0g = f0ng;

and so Condition 1 of Theorem 3.1 is always satis�ed. If Condition 2 holds for this �, then

there exists a zero point of � on X.

The result in Example 3.6 was introduced in Herings, van der Laan and Talman (2001)

to prove the existence of a continuum of quantity constrained equilibria in an exchange

economy with prices restricted to an arbitrary convex, compact set. The next �xed point

theorem is due to Eaves (1972) and is used to guarantee the convergence of simplicial

homotopy algorithms.

Example 3.7 Let X be full-dimensional and suppose there exists c 2 int(X) such that

for all x 2 bd(X) it holds that c 2 �(x), then there exists a �xed point of � in X. De�ne

 (x) = �(x)� fxg for all x 2 X. For x 2 bd(X) it holds that c� x 2 T (X; x) \  (x) and

for x 2 int(X) it holds that T (X; x) = IRn. Hence, T (X; x) \  (x) 6= ; for every x 2 X,

i.e. the mapping  satis�es the condition of Theorem 3.4. Therefore,  has a zero point

on X, which is a �xed point of �.

The following �xed point theorem is due to Merrill (1971) and has also applications in

constrained and unconstrained optimization.

Example 3.8 Let  be an upper semi-continuous mapping from IRn to the collection

of compact, convex subsets of IRn. Suppose there exists w 2 IRn and � > 0 satisfying for

all x =2 B(w; �) and f 2  (x)

(f � x)>(w � x) > 0;

then  has a �xed point in B(w; �). Take X = B(w; �) and �(v) = fy 2 IRn
jy>v � 0g

for v 2 Bn: For x on the boundary of B(w; �); it holds that x � w 2 N(X; x) and

there is f 2  (x) such that (f � x)>(w � x) � 0: For those x; Condition 2 of Theorem

3.1 holds for the mapping � on X de�ned by �(x) =  (x) � fxg. For v in the interior of

B(w; �); Condition 2 is trivially satis�ed. Also Condition 1 is satis�ed for �, since for every

x 2 bd(X) it holds that N(X; x) = fy 2 IRnjy = �(x�w); � � 0g and (x�w)>(x�w) > 0.

Hence, there exists x� in X satisfying 0n 2 �(x�), and therefore x� 2  (x�).
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In Theorem 3.1 we have provided a suÆcient condition for the existence of a zero point

of a mapping on an arbitrary compact and convex set. In case the conditions of Theorem

3.1 are not satis�ed, a zero point may not exist. In this case, it is possible to obtain a

generalization of the notion of a stationary point, without losing existence of a stationary

point under standard assumptions.

De�nition 3.9 Let � : Bn ! IRn be a convex-valued, closed-valued, upper semi-

continuous mapping and let A be any nonsingular n � n matrix. A point x� 2 X is a

stationary point with respect to � and A of the mapping � from X to IRn if 0n 2 �(x�) or

A�(x�) \ �(v) \ fy j y = �v; � � 0g 6= ; for some v 2 N(X; x�) or A�(x�) \ �(v) = ; for

some v 2 N(X; x�):

Notice that when �(v) = IRn for all v 2 Bn; and A is the identity matrix, then the

above de�nition is reduced to the usual de�nition of a stationary point; see De�nition 2.1.

As a consequence of Theorem 3.1, we have:

Theorem 3.10 Let X be non-empty, compact, and convex, and let � be upper semi-

continuous, bounded, convex-valued, and compact-valued. Then, for every convex-valued,

closed-valued, upper semi-continuous mapping � : Bn ! IRn; and for every nonsingular

n� n matrix A, � has a stationary point with respect to � and A.

4 Zero Points on Polytopes

In this section we consider the case that the compact, convex set X is a polytope. Let a

polytope P be described in polyhedral form by

P = fx 2 IRn
jai>x � bi; i 2 Img;

where for every i 2 Im = f1; : : : ; mg the vector ai is a nonzero vector in IRn and bi 2 IR.

Without loss of generality we assume that P is full-dimensional, simple and there are no

redundant constraints. For I � Im, de�ne

F (I) = fx 2 P jai>x = bi; i 2 Ig

and

C(I) = fy 2 IRn
jy =

X

i2I

�ia
i; �i � 0; i 2 Ig:

Notice that F (;) = P and C(;) = f0ng. When F (I) 6= ;, we call F (I) a face of P . Let

I be the collection of subsets I of Im such that F (I) is a face of P . For x 2 P , de�ne

Ix = fi 2 Imja
i>x = big, i.e. F (I

x) is the (unique) face of P of which x is an interior point.

Clearly, C(Ix) is the normal cone of P at x 2 P , i.e. C(Ix) = N(P; x). The next theorem

gives a suÆcient condition for the existence of a zero point of a mapping on P .
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Theorem 4.1 Let P be a polytope and � a mapping from P to IRn
satisfying the condi-

tions stated before. Suppose that there exists a nonsingular n�n matrix A and a collection

of closed convex cones Y (I), I 2 I, such that Y (I) � Y (J) whenever J � I and satisfying

the following two properties for every x 2 P :

4.1. The set A�(x) \ Y (Ix) \ C(Ix) is either empty or contains 0n;

4.2. The set A�(x) \ Y (Ix) 6= ;.

Then there exists a zero point of � in P .

Proof: Since P is assumed to be simple and there are no redundant constraints, for every

vector v 2 Bn there is a unique index set I 2 I for which it holds that v 2 int(C(I)). For

v 2 Bn de�ne �(v) = Y (I) for the unique I 2 I for which v 2 int(C(I)). Clearly, �(v) is

a convex and closed set for every v 2 Bn. To prove upper semi-continuity, let (vk; k 2 IN),

be a convergent sequence of points in Bn and let v be its limit point. For k 2 IN, let Ik be

such that vk 2 int(C(Ik)), and let I be such that v 2 int(C(I)). Since I and all the Ik,

k 2 IN, are uniquely determined and vk converges to v, it holds that I � Ik for suÆciently

large k 2 IN. Hence, Y (Ik) � Y (I) for suÆciently large k 2 IN and therefore � is an upper

semi-continuous mapping. Moreover, because of Conditions 4.1 and 4.2, � satis�es the

Conditions 1 and 2 of Theorem 3.1. Consequently, there exists a zero point of � on P . 2

The conditions in the theorem for a point x in P are completely determined by the set of

indices that determines the face of P in which x lies.

5 Intersection Theorems

In this section we give a general intersection theorem on compact, convex sets. Let X

be again a non-empty, compact, convex set in IRn. For some �nite set of indices J , let

fDjjj 2 J g be a �nite closed covering of X, i.e. for every j 2 J the set Dj is a closed,

possibly empty, subset of X and the union of all these sets is X. Let fcjjj 2 J g be some

collection of vectors in IRn. For a subset J of J ; let C(J) be de�ned by

C(J) = confcjjj 2 Jg:

A collection fcjjj 2 Jg or the set J itself is called balanced if J is a non-empty subset of

J and 0n 2 C(J). A point x� 2 X is called an intersection point if x� 2 \j2JD
j for some

balanced set J . For x 2 X de�ne the index set Jx as

Jx = fj 2 J jx 2 Djg:

9



Because fDjjj 2 Jg is a covering of X, we have that Jx is non-empty for every x 2 X.

By de�nition, x� is an intersection point if and only if the index set Jx
�

is balanced. The

next theorem gives a suÆcient condition for the existence of an intersection point.

Theorem 5.1 Let fDjjj 2 J g be a �nite closed covering of a non-empty, compact,

convex set X in IRn
and let fcjjj 2 J g be a collection of vectors in IRn

. Suppose that there

exists a closed-valued, convex-valued, upper semi-continuous mapping � : Bn ! IRn
such

that for every x 2 X and v 2 N(X; x) \ Bn
the following two properties hold:

5.1. The set C(Jx) \ �(v) \ fyjy = �v; � � 0g is either empty or contains 0n;

5.2. The set C(Jx) \ �(v) 6= ;.

Then there exists an intersection point.

Proof: De�ne � : X ! IRn by

�(x) = C(Jx); x 2 X:

Since fDjjj 2 J g is a closed covering of X, we have that � is an upper semi-continuous

mapping. Moreover, for every x 2 X, since Jx is non-empty and C(Jx) is the convex hull of

a �nite number of points, �(x) is non-empty, convex, and compact. Because of Conditions

5.1 and 5.2 the mapping � satis�es all the conditions of Theorem 3.1 and therefore there

exists x� 2 X satisfying 0n 2 �(x�), i.e., x� is an intersection point. 2

In the remaining section we will show that several known intersection theorems like the

ones of KKM (1929), Scarf (1967), Shapley (1973), and Ichiishi (1988) follow as special

cases of Theorem 5.1.

The set Sn = fx 2 IRn

+ j
P

n

i=1 xi = 1g is called the unit simplex, which is a simple

example of polytopes. For h 2 In; S
n

h
denotes the facet Sn

h
= fx 2 Sn j xh = 0g; and for

T � In; S
n(T ) = \h2TS

n

h
: We de�ne the j-th unit vector in IRn by ej: The �rst result is

the classical KKM-lemma.

Example 5.2 Let fDj j j 2 Ing be a collection of closed sets covering the unit simplex

Sn satisfying that for every T � In; the face S
n(T ) is contained in [j 62TD

j: Then \j2InD
j 6=

;:

Proof: From the de�nition of the simplex, Sn = fx 2 IRn j �xi � 0; i 2 In; and 1
n�x = 1g;

it follows immediately that

N(X; x) = fv 2 IRn
j v = �1n �

X

fijxi=0g

�ie
i; � 2 IR; �i � 0g:

10



We de�ne �(v) = fy 2 IRn j y>v � 0g and cj = 1

n
1n� ej; j 2 In: Notice that the collection

fcj j j 2 Jg is balanced if and only if J = In: To show the KKM-lemma, it remains to

verify the two conditions of Theorem 5.1.

Since �(v) \ fy j y = �v; � � 0g equals 0n; Condition 1 is clearly satis�ed.

Consider x 2 Sn: If x 2 int(Sn); then N(X; x) = fv 2 IRn j v = �1n; � 2 IRg; so

v 2 N(X; x) n f0ng implies �(v) = fx 2 IRn j 1n � x = 0g; so C(Jx) \ �(v) = C(Jx) 6= ;: If

x 2 bd(Sn); say x 2 Sn(T ) with T = fj j xj = 0g; then x 2 Dj for some j 2 In n T: The

corresponding cj 2 C(Jx) satis�es c
j

j
= 1

n
� 1 and c

j

k
= 1

n
if k 6= j: Whenever v 2 N(X; x)

it holds that v = �1n�
P

i2T �ie
i; so v>cj = �

P
i2T �i

1

n
� 0: It follows that cj 2 �(v): 2

The next example is due to Scarf (1967) and can be viewed as a dual version of the

KKM lemma.

Example 5.3 Let fDj j j 2 Ing be a collection of closed sets covering the unit simplex

Sn satisfying that for every j 2 In; the facet S
n

j
is contained in Dj: Then \j2InD

j 6= ;:

Proof: We de�ne �(v) = fy 2 IRn j y>v � 0g and cj = ej � 1

n
1n; j 2 In: Notice that

the collection fcj j j 2 Jg is balanced if and only if J = In: To show the Scarf-lemma, it

remains to verify the two conditions of Theorem 5.1.

Condition 1 is satis�ed for the same reason as in Example 5.2.

Consider x 2 Sn: If x 2 int(Sn); then v 2 N(X; x) n f0ng implies �(v) = fx 2

IRn
j 1n � x = 0g; so C(Jx) \ �(v) = C(Jx) 6= ;: If x 2 bd(Sn); say x 2 Sn(T ) with

T = fj j xj = 0g; then x 2 Dj for all j 2 T: The vector c 2 C(Jx) de�ned by c =
P

j2T
1

jT j
cj

satis�es cj =
1

jT j
� 1

n
if j 2 T and cj = � 1

n
if j 2 In n T: Whenever v 2 N(X; x) it holds

that v = �1n �
P

j2T �je
j; so v>c = �

P
j2T (

1

jT j
� 1

n
)�j � 0: It follows that c 2 �(v): 2

We continue with the Shapley lemma. We de�ne the collection of non-empty subsets of

In by In: For S � In; we de�ne e
S 2 IRn as the vector satisfying eS

i
= 1 if i 2 S and eS

i
= 0

otherwise. We say that a collection B = fB1; : : : ; Bkg of members of I is set-balanced if

there exist non-negative numbers �j; j = 1; : : : ; k; such that
P

k

j=1 �je
Bj = 1n:

Example 5.4 Let fDS j S 2 Ing be a collection of closed sets covering the unit simplex

Sn satisfying that for every T � In; the face S
n(T ) is contained in [S�InnTD

S: Then there

is a set-balanced family B = fB1; : : : ; Bkg of elements of In for which \k

j=1D
Bj 6= ;:

Proof: We de�ne �(v) = fy 2 IRn j y>v � 0g and cS = 1

n
1n � eS; S 2 In: Notice that the

collection fcS1; : : : ; cSkg is balanced if and only if fS1; : : : ; Skg is set-balanced. To show

the KKMS-lemma, it remains to verify the two conditions of Theorem 5.1.

Since �(v) \ fy j y = �v; � � 0g equals 0n; Condition 1 is clearly satis�ed.
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Consider x 2 Sn: If x 2 int(Sn); then v 2 N(X; x) n f0ng implies �(v) = fx 2

IRn j 1n � x = 0g; so C(Jx) \ �(v) = C(Jx) 6= ;: If x 2 bd(Sn); say x 2 Sn(T ) with

T = fj j xj = 0g; then x 2 DS for some S � In n T: The corresponding cS 2 C(Jx)

satis�es cS
j
= 1

n
� 1

jSj
if j 2 S and cS

j
= 1

n
if j 62 S: Whenever v 2 N(X; x) it holds that

v = �1n �
P

i2T �ie
i; so v>cS = �

P
i2T �ic

S

i
= �
P

i2T �i
1

n
� 0: It follows that cS 2 �(v):

2

The next result is due to Ichiishi (1988) which can be seen as a dual version of Shapley's

intersection lemma.

Example 5.5 Let fDS j S 2 Ing be a collection of closed sets covering the unit simplex

Sn satisfying that for every T 2 In; the face S
n(T ) is contained in [T�SD

S: Then there is

a set-balanced family B = fB1; : : : ; Bkg of elements of In for which \k

j=1D
Bj 6= ;:

Proof: We de�ne �(v) = fy 2 IRn j y>v � 0g and cS = eS � 1

n
1n; S 2 In: Notice that the

collection fcS1; : : : ; cSkg is balanced if and only if fS1; : : : ; Skg is set-balanced. To show

the Ichiishi-lemma, it remains to verify the two conditions of Theorem 5.1.

Condition 1 is satis�ed for the same reason as in Example 5.2.

Consider x 2 Sn: If x 2 int(Sn); then v 2 N(X; x) n f0ng implies �(v) = fx 2

IRn j 1n � x = 0g; so C(Jx) \ �(v) = C(Jx) 6= ;: If x 2 bd(Sn); say x 2 Sn(T ) with

T = fj j xj = 0g; then x 2 DS for some S � T: The vector cS 2 C(Jx) satis�es

cS
j
= 1

jSj
� 1

n
if j 2 S and cS

j
= � 1

n
if j 2 In n S: Whenever v 2 N(X; x) it holds that

v = �1n �
P

j2T �je
j; so v>cS = �

P
j2T (

1

jSj
� 1

n
)�j � 0: It follows that cS 2 �(v): 2

Finally, we will show that a quite general intersection theorem of van der Laan, Talman

and Yang (1999) also follows from Theorem 5.1 as a particular case. To state their result,

we �rst de�ne, for I � Im; the set A
�(I) by

A�(I) = fy 2 IRn j y>x � 0 for all x 2 A(I)g:

Their theorem reads as follows.

Theorem 5.6 Let fDjjj 2 J g be a �nite closed covering of a full-dimensional polytope

P = fx 2 IRn j ai
>

x � �i; i 2 Ig and let fcjjj 2 J g be a collection of vectors in IRn
.

Suppose that for every x 2 bd(P ) it holds that C(Jx) \ A�(Ix) 6= ;: Then there exists a

balanced set J � J for which \j2JD
j 6= ;:

Proof: De�ne �(v) = fy 2 IRn j y>v � 0g:

Since P is a full-dimensional polytope, it follows that for x 2 int(P ) it holds that

N(X; x) = f0ng; so Conditions 1 and 2 of Theorem 5.1 are obviously satis�ed.
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Consider x 2 bd(P ): Condition 1 of Theorem 5.1 is satis�ed for the same reason as in

Example 5.2. Let y be an element of C(Jx) \ A�(Ix): Then y>v � 0 for all v 2 N(X; x);

so y 2 C(Jx) \ �(v) for all v 2 N(X; x); and Condition 2 of Theorem 5.1 is satis�ed as

well. It follows that there is an intersection point, i.e. there exists a balanced set J � J

for which \j2JD
j 6= ;: 2

Theorem 5.1 generalizes Theorem 5.6 in two respects. First, it treats the case of an

arbitrary non-empty, compact, and convex set X; and thereby generalizes the assumption

that X be a polytope. Secondly, it weakens the boundary condition.

Theorem 5.6 contains generalizations of the lemmas of KKM, Scarf, Shapley and Ichiishi

to the polytope as special cases, as well as lemmas on the cube by Freund (1986) and

lemmas on the polytope by Ichiishi and Idzik (1991). Since Theorem 5.6 is a special case

of Theorem 5.1, these results follow as special cases of Theorem 5.1 as well. We also

refer to Gale (1984), Herings and Talman (1998) and Yang (1999, 2001) for other types of

intersection results.
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